
Algorithmic Information Theory: The Basics

Adam Elga

�

IAP January 10, 2000

1 Preliminaries

1.1 Turing machines

Turing machine An idealized computing device attached to a tape, each

square of which is capable of holding a symbol. We write a program

p (a �nite binary string) on the tape, and start the machine. If the

machine halts with string o written at a designated place on the tape,

then o is the output.

Universal Turing machine A Turing machine capable of simulating any

other Turing machine, in the following sense. Given an input that

encodes the command \Simulate machine k on program p", a universal

machine will output whatever machine k would output if given program

p.

1.2 De�nition of complexity

The complexity of string s relative to machine T is de�ned to be the length

of the shortest program that gets T to produce s as output.

We choose some universal Turing machine U , and de�ne the complexity of

string s to be the complexity of s relative to U .

How much does the choice of universal machine matter?

�

adam@philosophers.net

1



Lots. For any string s, there is a universal machine U

s

such that the com-

plexity of s relative to U

s

is zero.

Not much. Suppose that U and U

0

are both universal machines. Then there

is a constant k such that for any s, the complexity of s relative to U

never di�ers from the complexity of s relative to U

0

by more than k. So

for increasingly long strings, the di�erence between U and U

0

becomes

less and less signi�cant.

Upshot: this complexity measure allows us to bootstrap a single qualitative

simplicity judgment into many quantitative simplicity judgments.

2 Basic facts

1. Strings never have complexities much greater than their lengths. There

is a constant k such that no string's complexity is more than k greater

than its length.

2. Low-complexity strings are relatively rare. Example: of the strings of

length 1000, only a tiny fraction have complexity less than 900.

3. A minimal program has a complexity approximately equal to its length.

4. The complexity function C(�) is not computable.

Hint on how to prove this: Berry paradox.

D: The smallest number not describable in fewer than twenty syllables.

D describes some number, since there are only �nitely many under-

twenty-syllable descriptions.

But suppose that D refers to n. Then n is describable in nineteen

syllables, so D doesn't refer to n. Contradiction.

3 Randomness

Two approaches to the question of whether a string is random:

2



1. Consider what sort of process produced the string. Call the string

process-random if it was produced by the right sort of chancy process.

2. Pay no attention to what produced the string. Instead, call the string

product-random if it is appropriately unpatterned.

We'll focus on the second approach, as applied to in�nite binary strings.

Think of a minimal-length program for a �nite string as a compressed version

of the string. The compressibility of a �nite string s is de�ned to be the length

of s minus the length of a minimal-length program for s.

Intuition: an in�nite string that is product-random ought to have initial seg-

ments that aren't very compressible. That motivates the following de�nition:

An in�nite string is product-random if and only if there is an upper bound

B such that no initial segment of the string has compressibility greater than

B.

Tweak: require programs to be self-delimiting.

In the long run, product-random sequences have just as many 1s as 0s. Also,

product-random sequences cannot be exploited by gambling machines.

4 Incompleteness

The language of arithmetic contains logical symbols, expressions that denote

numbers, and the addition and multiplication signs.

In the language of arithmetic, one can make numerical assertions such as:

� For all x, for all y, x + y = y + x.

� There exists an x such that for all y, x� y = y � y.

Suppose that we've got some axioms that are such that some Turing machine

prints the axioms out in order.

Suppose that we've got some rules of inference for deriving consequences

of the axioms, rules such that there is a machine M that prints out every

3



sentence derivable from the axioms using the rules (and prints no other sen-

tences).

Question: Can it be that our axioms and rules satisfy both of the following

conditions?

1. Every sentence derivable from the axioms on the basis of the rules is

true. (In other words, every sentence that M prints is true.)

2. Every true arithmetical sentence is derivable from the axioms on the

basis of the rules. (In other words, M eventually prints every true

arithmetical sentence.)

References

[1] Gregory Chaitin. Algorithmic information theory. Cambridge Uni-

versity Press, 1987. This book develops algorithmic pre�x complex-

ity, emphasizing its analogies with the entropy of classical information

theory. Chapter 6 investigates in�nite random sequences. Available at

http://www.cs.auckland.ac.nz/CDMTCS/chaitin/cup.pdf.

[2] Ming Li and Paul Vitanyi. An introduction to Kolmogorov complexity and

its applications. Springer, 1997. A comprehensive textbook. This book

has everything, including extensive notes on the history of the various

ideas.

[3] Michiel van Lambalgen. Von mises' de�nition of random sequences recon-

sidered. Journal of Symbolic Logic, 4:725{755, 1987. A technical article

comparing various criteria for randomness.

[4] Michiel van Lambalgen. Algorithmic information theory. Journal of Sym-

bolic Logic, 54(4):1389{1400, 1989. Argues against some of Chaitin's

claims about the relationship between algorithmic information theory and

Godel's incompleteness theorems. If you read anything by Chaitin, you

should also read this article.

4


