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Abstract

The ‘best-system’ analysis of lawhood [Lewis 1994] faces the ‘zero-fit
problem’: that many systems of laws say that the chance of history
going actually as it goes—the degree to which the theory ‘fits’ the
actual course of history—is zero. Neither an appeal to infinitesimal
probabilities nor a patch using standard measure theory avoids the
difficulty. But there is a way to avoid it: to replace the notion of ‘fit’
with the notion of a world being typical with respect to a theory.

1 The zero-fit problem

Take a god’s eye view. Before you is the spacetime manifold: the distri-

bution of local qualities to point-sized things and the spatiotemporal re-
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lations among those things. According to the thesis of Humean superve-

nience, everything that is true of the actual world is made true somehow

by this arrangement [Lewis 1986b, ix].1 In order to countenance laws of

nature, a defender of the thesis is obliged to say how it is that this arrange-

ment determines what laws there are.

One proposal, the best-system analysis of lawhood [Lewis 1994], draws

our attention to various deductive systems. Each system makes only true

assertions about what happens, and (perhaps) also makes assertions about

the chances of various things happening in various circumstances.

On this proposal, the laws are the regularities that are members of the

best candidate system, and the chances are whatever the best candidate

system asserts them to be. The best system is the one with the best bal-

ance of the following three virtues. Simplicity: A system is simple to the

extent that it can be concisely formulated in a certain canonical language.2

Strength: The strength of a system is its informativeness, both regarding

matters of particular fact and regarding what chances arise in various cir-

cumstances. Fit: Systems that assign chances to certain courses of history

also assign a chance to the actual course of history. The fit of such a system

1I have omitted several qualifications to the thesis of Humean supervenience. The
qualifications do not affect the present discussion. See for example [Lewis 1994, 474-475].

2The language is one with a primitive predicate for each perfectly natural property.
See [Lewis 1983, 367-368].
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is defined to be that chance—how likely the system counts it that things

would go just as they actually do.3 (By stipulation, systems that don’t

mention chances have perfect fit.)

Here is how the analysis works in a simple case. Consider a world that

consists of a long finite sequence atomic events, each of which happens

in one of two ways. Call the events ‘tosses’, and call the ways ‘heads’

and ‘tails’. At one extreme, the entire sequence may be captured by a

simple regularity (say, heads and tails alternate throughout). In that case,

a system stating that regularity will be simple, strong, and fit well—it will

be the best system. As a result, that regularity will qualify as a law.

At another extreme, the sequence may not contain many simply de-

scribable regularities. In that case, any system that is very informative re-

garding the details of the sequence will need to be extremely complicated.

Certain systems avoid this complication by asserting that the sequence is

the result of a repeated chance process. Such systems gain much in sim-

plicity at the cost of some strength (they only address the chances of vari-

ous sequences, as opposed to making claims about the details of the actual

3Some systems specify the chances of future evolutions given an initial condition, but
fail to specify a chance distribution over initial conditions. The above definition leaves
the fit of such systems undefined. A natural fix is to stipulate that the fit of such a system
is the conditional chance that the system ascribes to the actual course of history, given
that the universe started in the initial state that it did.
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sequence). We can compare these chance-ascribing systems by comparing

their fits.

For example, suppose that 1/10 of the tosses land heads, and that the

heads outcomes are scattered haphazardly among the tosses. One can-

didate system asserts that the tosses are independent chancy events, and

that each has chance 1/10 of landing heads. A competing system also

treats the tosses as independent, but asserts that each toss has chance 1/2

of landing heads. The two systems are roughly equally informative and

simple, but the ‘chance-1/10’ system ascribes a higher chance to the actual

sequence than the ‘chance-1/2’ system does. In other words, the ‘chance-

1/10’ system fits better. It is thereby a better competitor in the simplic-

ity/strength/fit competition. Plausibly, this system beats all comers and

thereby qualifies as being the correct system of laws.

That is a welcome result for the best system analysis. A friend of

Humean supervenience is committed to thinking that the actual sequence

of outcomes determine the chances. Given that commitment, it makes

sense that a tails-heavy sequence of tosses makes it the case that each toss

has a high chance of landing tails.

Notice that in this case, the notion of ‘fit’ deserves its name. The chances

ascribed by the ‘chance-1/10’ theory accord well with a history in which
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1/10 of the tosses land heads. The chances ascribed by the ‘chance-1/2’

theory do so poorly. And the notion of ‘fit’ measures that difference. More

generally, when finite state-spaces are involved, the notion of fit usefully

ranks competing candidate systems of chancy laws. But—as I learned

from Ned Hall [1996], and as Nick Bostrom has independently noted [1999]—

when infinite state-spaces are involved, the notion of fit no longer ranks

chancy systems in a useful way.

To see this, change the above heads/tails example by letting the se-

quence of tosses be (countably) infinite. Much of the best-system analysis

goes through unchanged. Again, if the entire sequence is captured by a

simple regularity, then a system stating that regularity will be decisively

best. Again, if the sequence is unpatterned, then any system that is very

informative regarding the details of the sequence will need to be extremely

complicated. And again, certain competing systems avoid this complica-

tion by asserting that the sequence is the result of a repeated chance pro-

cess.

But when we compare these chancy systems by comparing their fits,

we run into trouble. We might hope that the systems that fit best are the

ones whose chances accord well with the actual pattern of outcomes. But

our hopes are dashed: far too many systems have fits equal to exactly zero.
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For example, suppose that in the infinite sequence of tosses, 1/10 land

heads.4 In order for the notion of fit to do its job, the ‘chance-1/10’ system

should fit this sequence better than the ‘chance-1/2’ system does. (Re-

call that the ‘chance-1/10’ system treats the tosses as independent chancy

events with chance 1/10 of heads on each toss.) But that’s not so: both

systems ascribe chance zero to the sequence, and so both systems have fits

equal to zero.5 More generally, when continuously infinite state-spaces are

involved, a great many candidate systems (including systems of chancy

laws that physicists have taken seriously) will ascribe zero chance to any

individual history.6 That leaves the best-system analysis with no way of

differentiating between chance-ascribing systems whose chances accord

well with the actual history, and those whose chances do so poorly. This is

the zero fit problem.

41/10 of the tosses land heads in the sense that the limiting relative frequency of heads
is 1/10.

5Proof: Consider the chance-1/2 system (the argument in the chance-1/10 case is sim-
ilar). For any natural number n, consider the proposition En that specifies the actual
outcomes of the first n tosses. The proposition E that specifies all of the outcomes is
stronger than each En, and so its chance can’t be any greater than the chance of any En.
But the chance of En is 2−n, which gets arbitrarily close to zero as n tends to infinity. So
the chance of E—and hence the fit of the chance-1/2 system—equals zero.

6For example, any system that treats an infinite series of events as a series of (non-
trivial) independent chancy coin-tosses will have a fit of zero. So will any theory of ra-
dioactive decay according to which the chance of decay within a time interval is gotten
by integrating a density over that interval.
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2 Infinitesimals to the rescue?

It can seem odd when a system counts an outcome as possible, and yet as-

cribes it chance zero.7 There is a way of using nonstandard models of anal-

ysis to avoid this oddness. Nonstandard extensions of the real line contain

infinitesimals—positive numbers smaller than any positive real number.

And the nonstandard universe contains nonstandard probability functions,

which take their values from a nonstandard extension of the reals.8

Nonstandard probability functions may ascribe infinitesimal probabil-

ity to certain outcomes. As a result, if we allow candidate systems to be as-

sociated with nonstandard probability functions, we may impose the reg-

ularity condition: that each candidate system ascribe some nonzero chance

to every outcome that it counts as possible. In doing so, we may hope to

rescue the best system analysis from the zero fit problem. For in that case,

no system under consideration will have a fit of zero.9

7With standard probability functions, this is often unavoidable, since such functions
assign positive probability to at most countably many incompatible propositions.

8For an accessible introduction to nonstandard analysis, see [Skyrms 1980, Appendix
4]. For a brief technical introduction, see [Bernstein and Wattenberg 1969, Section 1]. For
a thorough technical introduction, see [Hurd and Loeb 1985].

9Perhaps Lewis had this strategy in mind. He insists that ‘Zero chance is no chance,
and nothing with zero chance ever happens. The [fair spinner’s] chance of stopping ex-
actly where it did was not zero; it was infinitesimal, and infinitesimal chance is still some
chance.’ [Lewis 1986a, 176] and writes ‘It might happen—there is some chance of it, in-
finitesimal but not zero—that each nucleus lasted for precisely its expected lifetime...’
[Lewis 1986c, 125]. He also explicitly invokes nonstandard probability functions in an-
other circumstance in which zero probabilities threaten to cause trouble [Lewis 1986c,
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Let us apply this strategy to the special case mentioned above: a world

consisting of an infinite sequence of tosses. If the strategy fails in this

case—a simple instance in which the zero fit problem arises—it is sure

to fail in general.

And it does fail in this case. To see why, consider the Bernoulli systems—

candidate systems that treat the tosses as independent chancy events. For

any real number strictly between zero and one, let Bx be the probability

function that treats the tosses as independent events with probability x of

heads. These functions are all ruled out as chance functions by the regular-

ity requirement. (They assign probability zero to each individual infinite

sequence of toss outcomes). What we need are regular nonstandard prob-

ability functions to play the role that the functions Bx play in the standard

case.

We can be assured that there are such functions. It turns out that for

every standard probability function there exists a nonstandard probabil-

ity function that (i) approximates the standard probability function (in the

sense that the two functions never differ by more than an infinitesimal)

and (ii) satisfies the regularity condition (i.e., assigns positive probabil-

ity to every nonempty proposition). Appendix A uses a method due to

88–90].
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Vann McGee to prove the existence of such functions. Once we have im-

posed the regularity condition, such functions will represent the chances

ascribed by candidate systems.10

So for each Bx there exists regular nonstandard probability function

B′
x that approximates Bx. So far, so good. Now suppose that in fact 1/10

of the tosses land heads. Which functions fit this sequence of outcomes?

If things turn out well, then the functions B′
x with good fits will be the

ones for which x is close to 1/10. Unfortunately, things do not turn out

well. The trouble is that for each Bx, there are many regular nonstandard

probability functions that approximate it. Furthermore, the functions that

treat the coin as a chance device with bias 1/10 do not fit any better than

the ones that treat it as a chance device with any other bias. For example,

it can happen that a nonstandard probability function B′
1/2 that approxi-

mates B1/2 fits much better than a function B′
1/10 that approximates B1/10—

even though the actual limiting relative frequency of heads is 1/10.

10To my knowledge, there are only two methods for cooking up regular nonstandard
probability functions. One method—mentioned in the text above and explained in detail
in Appendix A—is to start with an arbitrary (standard) probability function and build
a nonstandard regular probability function that approximates it. A second method is to
focus on a probability space with some natural symmetries, and seek regular probabil-
ity functions on that space that respect those symmetries. (For example, [Bernstein and
Wattenberg 1969] proves the existence of a nonstandard probability function on the unit
circle that (i) is rotationally invariant (up to an infinitesimal) and (ii) assigns the same
(infinitesimal) probability to each point. [Parikh and Parnes 1972] extends Bernstein and
Wattenberg’s construction.) This second method treats only certain very special cases,
and so fails to rescue the best-system analysis from the zero-fit problem.
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The trouble is this. We have required our nonstandard probability

function to be regular, and to approximate given standard probability func-

tions. But those requirements only very weakly constrain the probabili-

ties those functions assign to any individual outcome. (This follows from

Corollary 1, which is proved in Appendix A.) And the fit of a system as-

sociated with such a function is just the chance it assigns to actual history.

So the fit of such a system indicates nothing about how well its chances

accord with actual history.11

The moral is that if we allow nonstandard probability functions, good-

ness of fit is no indication that a system’s chances accord well with actual

frequencies. In that case, comparing fits still fails to distinguish between

systems whose chances accord with the actual frequencies and systems

whose chances do so poorly. So introducing nonstandard probability func-

tions is of no help to the best-system analysis.

11It might be thought that simplicity saves the day. Perhaps B′
1/10, though it fits worse,

is much more simple than B′
1/2. But since the proof that assures us of the existence of

both functions is nonconstructive, we have no reason to expect that to be so.
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3 An alternate proposal: fit profiles

One might hope to use a standard measure-theoretic technique (the method

of integrating over densities) to solve the zero fit problem. Sadly, such

methods do not help. So I relegate their consideration to Appendix B, and

turn to an alternate approach.

The fit between a system S and a world w is defined to be the chance

the system ascribes to a certain proposition: the proposition true only at

w. Separate out two parts of this definition:

1. Good fit between a system S and a world w is a matter of certain

propositions true at w (call them ‘test propositions’) having high

enough chance, according to S.

2. There is exactly one test proposition: the proposition true only at w.

The conjunction of these parts leads to the zero fit problem. So let us mod-

ify the notion of fit by abandoning part 2. We’re left with the task of spec-

ifying the test propositions—the task of saying which propositions true at

w are the ones whose chances (according to S) determine the fit between

S and w.

Some work by Gaifman and Snir helps us out here [1980]. Gaifman

and Snir formalize the notion of a world being typical with respect to a
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probability function.12 Given a world w, a probability function P , and a

set T of test propositions, they stipulate that w is typical with respect to

P and T iff P assigns nonzero probability to every test proposition true at

w. Their research makes it reasonable to let the test propositions be those

propositions simply expressible in a certain first-order language.

For example, consider just worlds that are infinite heads/tails sequences,

and fix a language L in which it is natural to describe those sequences.13

Let the test propositions be the propositions simply expressible14 in L and

examine the worlds Gaifman and Snir’s criterion counts as typical with

respect to B1/2. With this choice of test propositions, Gaifman and Snir’s

criterion does just the right thing. That is, the worlds that Gaifman and

Snir’s criterion counts as typical with respect B1/2 satisfy just the sorts

of conditions we’d expect a world to satisfy if it consisted of a sequence

of independent unbiased chance events. (Examples of such conditions:

that the limiting relative frequency of heads is 1/2; that in the limit the

12Gaifman and Snir’s work is much more general than my discussion might indicate. I
have extracted a small piece for the sake of clarity. I have also modified their terminology
slightly: where they write that a world is random with respect to a probability function, I
write that it is typical with respect to that function.

13An appropriate language is first-order arithmetic augmented with a one place predi-
cate H , where H(i) is to be interpreted as ‘Toss i is heads’.

14More exactly, let the test propositions be the ones expressible by Σ2 sentences of L—
sentences of the form ∃x∀yφ, where φ is replaced by a formula containing only bounded
quantifiers [Gaifman and Snir 1980, 501].
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pattern HTH appears exactly as often as THT; and that deleting the odd-

numbered elements of the sequence produces another sequence that satis-

fies the above conditions.)

In general, by fixing the choice of test propositions as the simply ex-

pressible propositions, Gaifman and Snir’s criterion succeeds in picking

out those worlds that are typical relative to a probability function. Now,

the job of the notion of fit in the best-system analysis is to measure the typ-

icality of a world relative to a system. So let us adapt Gaifman and Snir’s

criterion and say that the test propositions figuring in our revised notion

of fit are exactly the true, simple propositions. Accordingly, the way to

compare chance-ascribing systems for fit is to compare their fit profiles: the

chances they ascribe to the test propositions. System X fits better than

system Y iff the chances X assigns to the test propositions are predom-

inantly greater than the corresponding chances that Y assigns. (Perhaps

X assigns a higher chance than Y to every test proposition. Or perhaps

X assigns higher chances than Y overall—in a sense I won’t try to make

precise—although not to every single test proposition.) More generally,

the fit of a system is an overall measure of the magnitude of the chances it

ascribes to true, simple propositions.

This proposal avoids the zero fit problem. For even systems that as-
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sign chance zero to actual history will assign positive chance to many test

propositions. So even in this case, the fit profile of a system remains a

useful indicator of how well its chances accord with the actual outcomes.

On this proposal, it can certainly happen that two systems are incom-

parable with respect to fit. That is no special worry—the best-systems

analysis already depends on the hope that some system will be robustly

best, as regards the tradeoff between simplicity, strength, and fit. It is no

great cost to add an additional hope: that this robustly best system pos-

sess a fit profile that holds its own against the profiles of its competitors

on any reasonable way of judging when one profile assigns higher chances

overall than another.
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Appendices

A Nonstandard probability functions

This appendix proves the existence of a nonstandard probability function
that (i) approximates any given conditional probability function (ii) as-
signs strictly positive probability to every nonempty proposition. The
method is a variant of one due to Vann McGee [1994]. One might hope
that such functions save the best-system analysis from the zero-fit prob-
lem. For if such functions represent the chances ascribed by competing
systems, each system will have strictly positive fit.

Corollary 1 (proved below) dashes any such hopes. The trouble is that
once infinitesimals are in play, the notion of fit fails to measure the de-
gree to which a system’s chances accord with the actual pattern of out-
comes. For example, consider any standard probability function that as-
cribes probability zero to actual history. There are many regular nonstan-
dard probability functions that approximate this function. All of them
assign infinitesimal probability to actual history. But the probabilities that
these approximating functions ascribe to actual history span the entire range
of infinitesimals (that’s what Corollary 1 says). So by picking an appro-
priate approximating function, we can get any such system to have any
(infinitesimal) fit we’d like.

Definitions and notation. A probability space is a pair 〈W,F〉, where W
is a set of elementary outcomes and F is an algebra of subsets of W , called
events. F′ is the set of nonempty events. A (finitely additive) probability
function is a function P that maps F to the unit interval in such a way
that (i) P (W ) = 1 and (ii) P (A1 ∪ · · · ∪An) = P (Ai) + · · ·+ P (An) whenever
A1, · · · ,An are disjoint events.

A nonstandard probability function is a function P that maps F to a
nonstandard extension of the unit interval in such a way that those same
conditions are satisfied. A probability function is regular iff it assigns pos-
itive probability to every nonempty event. If x and y are members of a
nonstandard extension of the real line, ‘x ∼= y’ means that x and y differ by
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at most an infinitesimal. A conditional probability function15 on the probabil-
ity space 〈W,F〉 is a function C : F ×F′ → [′,∞] such that

1. For any D ∈ F , C(·,D) is a probability function with C(D,D) = 1.

2. For any X,Y,Z ∈ F with Y ∩ Z nonempty, C(X ∩ Y,Z) = C(Y,Z) ·
C(X,Y ∩Z).

A nonstandard probability function P ′ is said to approximate a probability
function P iff for any X ∈ F , P ′(X) ∼= P (X). P ′ is said to approximate a
conditional probability function C iff for any X ∈F and Y ∈F′, P ′(X|Y )∼=
C(X,Y ). The following theorem was proved as Theorem 3.4 of [Krauss
1968] and independently rediscovered as Theorem 1 of [McGee 1994].

Theorem 1 For any conditional probability function C, there exists a regular
nonstandard probability function that approximates C.

It will be handy to have the following slightly stronger result.

Theorem 2 For any conditional probability function C and infinitesimal α, there
are regular nonstandard probability functions P+ and P− that satisfy the follow-
ing conditions:

1. P+ and P− both approximate C.

2. For any nonempty B ∈ F ,
P+(B) > α.

3. For any B ∈ F such that C(B,W ) = 0,
P−(B) < α.

Proof A small modification of the proof in [McGee 1994] does the trick. Let
relation Y + hold between D ∈ F′ and a nonstandard probability function
P iff

(1) For all B ∈ F , P (B|D) ∼= C(B,D).

(2+) P (D) > α.

15On conditional probability functions, see [Renyi 1955 Popper 1952 Hájek 2003].

16



Let relation Y − hold between D ∈ F′ and a nonstandard probability func-
tion P iff

(1) For all B ∈ F , P (B|D) ∼= C(B,D).

(2−) For any B ∈ F such that C(B,W ) = 0,
P−(B) < α.

Showing that Y + is finitely satisfiable is sufficient to show the existence of
a nonstandard model containing a function P+ meeting the conditions of
the theorem (see, e.g., [Hurd and Loeb 1985]). Similarly, showing that Y −

is finitely satisfiable is sufficient to show the existence of a nonstandard
model containing the required function P−.

First we show that Y + is finitely satisfiable. Suppose that we are given
D, a finite subset of F′. We need a nonstandard probability function P
such that Y +(D,P ) for every D ∈ D. To that end, form the decreasing
sequence of members of F as follows: At stage 0, set A0 = W . At stage
k, set Ak+1 =

⋃{D ∈ D|C(D,Ak) = 0} . Let m be the greatest integer such
that Am is nonempty.

Choose an infinitesimal ε such that εm+1 > α. Define P by stipulating
that for any B ∈ F ,

P (B)
def
= k−1

(
C(B,A0) + εC(B,A1) + ε2C(B,A2) + · · ·+ εmC(B,Am)

)
,

where k =
∑m

i=0 εi is a normalizing constant. P is a convex combination of
probability functions, and hence is a probability function. Now take any
D ∈ D and B ∈ F . Let z be the least integer such that C(D,Az) > 0. Then:
P (B|D) = P (B ∩D)/P (D) = (

∑m
i=z εi−zC(B ∩D,Ai))/ (

∑m
i=z εi−zC(D,Ai))

= (C(B ∩D,Az) + infinitesimal)/ (C(D,Az) + infinitesimal) ∼= C(B,D).
This shows that P satisfies the first condition of Y + with respect to any
D ∈ D. To see that P satisfies (2+), start with any D ∈ D, and let z be
the least integer so that C(D,Az) > 0. Then P (D) = k−1 ∑m

i=0 εiC(D,Ai)
= k−1 ∑m

i=z εiC(D,Ai) ≥ εzk−1C(D,Az) ≥ εz+1> α This shows that Y + is
finitely satisfiable.

To show that Y − is finitely satisfiable, repeat the same construction,
except that instead of choosing ε so that εm+1 > α, choose ε so that ε < α.
2

17



Corollary 1 For any probability function P on 〈W,F〉 such that for all w ∈ W ,
P ({w}) = 0, and for any infinitesimal α, there are regular nonstandard probabil-
ity functions P+ and P− that satisfy the following conditions:

1. P+ and P− both approximate P .

2. For any w ∈ W , P+({w}) > α.

3. For any w ∈ W , P−({w}) < α.

Proof Let≺ be a well-ordering of W . Define a conditional probability func-
tion C by stipulating that for any X ∈ F and Y ∈ F′: C(X,Y ) = P (X ∩
Y )/P (Y ) if P (Y ) > 0; C(X,Y ) = 1 if P (Y ) = 0 and X contains the ≺-
minimal element of Y ; and C(X,Y ) = 0 otherwise.

Since C(·,W ) = P (·), in order to approximate P it is sufficient to ap-
proximate C. So apply Theorem 2 to C and α to obtain P+ and P− as
desired. 2

B Integrating over densities

One might hope to use the method of integrating over densities to solve
the zero fit problem. This appendix presents the most natural such pro-
posal, and shows how it comes to grief.

Here is the proposal. Instead of associating each candidate system with
a probability function, associate each system with a probability density
function—a function that assigns a density (a real number) to each world.
Define the chance that a system ascribes to a proposition to be an appropri-
ate average of the densities it assigns to worlds at which that proposition
is true. (In other words, the probability function to be associated with a
system is the one gotten by integrating over the system’s density function
in the usual way.) Finally, stipulate that the fit of a system is the density it
assigns to the actual world. This setup seeks to avoid the zero fit problem
by allowing a system to assign nonzero density to the actual world (and
hence have nonzero fit), even if it assigns zero chance to the actual world.

Unfortunately, this setup doesn’t work. Trouble arises because in order
to recover a probability function from a probability density function, one
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needs an underlying probability measure with respect to which one per-
forms an integration. And one had better use the same measure when re-
covering probability functions from the probability density functions asso-
ciated with different systems—otherwise the relative density two systems
assign to the same world would have no significance.

So we need to fix a common underlying measure over the space of
possible worlds. But no appropriate choices are available. To see this,
consider how the story would have to go in order for us to check how well
the various Bernoulli systems fit a world consisting of an infinite sequence
of tosses. In order to get started, we’d need an underlying measure µ on
the space of infinite heads/tails sequences, as well as a probability density
function fx to associate with each Bernoulli system with bias x. We would
need, for each fx, that one could recover the probability function Bx by
integrating over the density fx in the usual way (otherwise the Bernoulli
systems wouldn’t deserve their names). But no choice of a measure µ and
functions fx satisfies these conditions.16 As a result, even in this simple
case, the integrate-over-densities proposal doesn’t get off the ground.
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