MAE 545: Lecture 10 (10/20)

How bacteria find midline for cell division?

Contraction of FtsZ-ring divides bacterial cell in two

FtsZ is analogous to tubulin (assembly by GTP hydrolysis)

1 μm

Bacterial division is extremely precise. FtsZ forms at $(0.50 \pm 0.01) L$

How does bacteria know where to place the contractile ring?

Min system oscillations provide cues for the formation of FtsZ ring

FtsZ T MinC MinD T MinE Predator-prey like dynamics between MinD and MinE proteins produce oscillations on a minute time scale, which is much shorter than typical division time (~20 min).

On average MinC/MinD proteins are depleted near the cell center, where FtsZ ring forms!

H. Meinhardt and P.A.J. de Boer, PNAS 98, 14202 (2001)

1D model of Min system

Concentrations of proteins in the cytoplasm

 $C_{\text{D:ADP}}(x,t)$ $C_{\text{D:ATP}}(x,t)$ $C_{\text{E}}(x,t)$

Concentrations of membrane bound proteins

$$C_{\rm d}(x,t)$$
 $C_{\rm de}(x,t)$

Note: in paper they treat the full 3D model

K.C. Huang *et al.*, PNAS 100, 12724 (2003)

S

Diffusion of Min proteins

Diffusion of Min proteins in cytoplasm

 $D_D \approx D_E \approx 2.5 \mu \mathrm{m}^2 \mathrm{/s}$

Diffusion of membrane bound Min proteins is negligible!

MinE

4

MinD

3c

MinD

MinD

ATP

ATP

MinD

ATP

S

 \mathcal{X}

MinD-ATP binds to the membrane

 $\sigma_D \approx 0.1 \mathrm{s}^{-1}$

MinD-ATP in the membrane

MinE binds to MinD-ATP in the membrane

 $\sigma_E \approx 0.12 \mu \mathrm{m \, s^{-1}}$

4

MinD

MinD

ATP

3c

3b

MinD

MinD

ATP

ATP

ATP

S

 \mathcal{X}

MinE increases the rate of ATP hydrolysis and afterwards both MinE and MinD fall off the membrane

 $\sigma_{de} \approx 0.7 \mathrm{s}^{-1}$

Boundary conditions

No flux of proteins through the edge

$$\frac{\partial C_{\text{D:ADP}}}{\partial x}(x=0,t) = \frac{\partial C_{\text{D:ADP}}}{\partial x}(x=L,t) = 0$$
$$\frac{\partial C_{\text{D:ATP}}}{\partial x}(x=0,t) = \frac{\partial C_{\text{D:ATP}}}{\partial x}(x=L,t) = 0$$
$$\frac{\partial C_{\text{E}}}{\partial x}(x=0,t) = \frac{\partial C_{\text{E}}}{\partial x}(x=L,t) = 0$$

$$\begin{aligned} \frac{\partial C_{\text{D:ADP}}}{\partial t} &= D_D \frac{\partial^2 C_{\text{D:ADP}}}{\partial x^2} + \sigma_{de} C_{\text{de}} - \sigma_D^{\text{ADP} \to \text{ATP}} C_{\text{D:ADP}} \\ \frac{\partial C_{\text{D:ATP}}}{\partial t} &= D_D \frac{\partial^2 C_{\text{D:ATP}}}{\partial x^2} - \sigma_D C_{\text{D:ATP}} - \sigma_{dD} C_{\text{D:ATP}} \left[C_{\text{d}} + C_{\text{de}} \right] + \sigma_D^{\text{ADP} \to \text{ATP}} C_{\text{D:ADP}} \\ \frac{\partial C_{\text{E}}}{\partial t} &= D_E \frac{\partial^2 C_{\text{E}}}{\partial x^2} - \sigma_E C_{\text{d}} C_{\text{E}} + \sigma_{de} C_{\text{de}} \\ \frac{\partial C_{\text{d}}}{\partial t} &= \sigma_D C_{\text{D:ATP}} + \sigma_{dD} C_{\text{D:ATP}} \left[C_{\text{d}} + C_{\text{de}} \right] - \sigma_E C_{\text{d}} C_{\text{E}} \\ \frac{\partial C_{\text{de}}}{\partial t} &= \sigma_E C_{\text{d}} C_{\text{E}} - \sigma_{de} C_{\text{de}} \end{aligned}$$

How do we analyze such system of PDEs?

$$\frac{dC_{\text{D:ADP}}}{\partial t} = D_D \frac{\partial^2 C_{\text{D:ADP}}}{\partial x^2} + \sigma_{de} C_{de} - \sigma_D^{\text{ADP} \to \text{ATP}} C_{\text{D:ADP}}$$

$$\frac{\partial C_{\text{D:ATP}}}{\partial t} = D_D \frac{\partial^2 C_{\text{D:ATP}}}{\partial x^2} - \sigma_D C_{\text{D:ATP}} - \sigma_{dD} C_{\text{D:ATP}} [C_d + C_{de}] + \sigma_D^{\text{ADP} \to \text{ATP}} C_{\text{D:ADP}}$$

$$\frac{\partial C_{\text{E}}}{\partial t} = D_E \frac{\partial^2 C_{\text{E}}}{\partial x^2} - \sigma_E C_d C_{\text{E}} + \sigma_{de} C_{de}$$

$$\frac{\partial C_d}{\partial t} = \sigma_D C_{\text{D:ATP}} + \sigma_{dD} C_{\text{D:ATP}} [C_d + C_{de}] - \sigma_E C_d C_{\text{E}}$$

$$\frac{\partial C_{de}}{\partial t} = \sigma_E C_d C_{\text{E}} - \sigma_{de} C_{de}$$

$$\frac{\partial C_i(x, t)}{\partial t} = F_i (\{C_j(x, t)\}) + D_i \frac{\partial^2 C_i(x, t)}{\partial x^2}$$

Stable fixed point for uniformly distributed concentrations

$$\frac{\partial C_i(x,t)}{\partial t} = F_i\big(\left\{C_j(x,t)\right\}\big) + D_i\frac{\partial^2 C_i(x,t)}{\partial x^2}$$

First let us assume that concentration profiles are independent of *x* and find stable fixed point concentrations.

$$F_i\left(\left\{C_j^*\right\}\right) = 0$$

Linear stability analysis of fixed point

$$\frac{\partial C_i(x,t)}{\partial t} = F_i\big(\left\{C_j(x,t)\right\}\big) + D_i\frac{\partial^2 C_i(x,t)}{\partial x^2}$$

Let's assume small perturbations around the fixed point

$$c_i(x,t) = C_i(x,t) - C_i^*$$

and linearize the PDE

$$\frac{\partial c_i(x,t)}{\partial t} = \sum_j M_{ij}^0 c_j(x,t) + D_i \frac{\partial^2 c_i(x,t)}{\partial x^2}$$

$$M_{ij}^{0} = \frac{\partial F_{i}}{\partial C_{j}}\Big|_{C^{*}} = \begin{pmatrix} -\sigma_{D}^{\text{ADP} \to \text{ATP}}, & 0, & 0, & 0, & \sigma_{de} \\ +\sigma_{D}^{\text{ADP} \to \text{ATP}}, & -\sigma_{D} - \sigma_{dD} (C_{d}^{*} + C_{de}^{*}), & 0, & -\sigma_{dD} C_{\text{D:ATP}}^{*}, & -\sigma_{dD} C_{\text{D:ATP}}^{*} \\ 0, & 0, & -\sigma_{E} C_{d}^{*} & -\sigma_{E} C_{E}^{*}, & \sigma_{de} \\ 0, & \sigma_{D} + \sigma_{dD} (C_{d}^{*} + C_{de}^{*}), & -\sigma_{E} C_{d}^{*}, & \sigma_{dD} C_{\text{D:ATP}}^{*} - \sigma_{E} C_{E}^{*}, & \sigma_{dD} C_{\text{D:ATP}}^{*} \\ 0, & 0, & \sigma_{E} C_{d}^{*}, & \sigma_{E} C_{E}^{*}, & -\sigma_{de} \end{pmatrix}$$

Linear stability analysis of fixed point

$$\frac{\partial c_i(x,t)}{\partial t} = \sum_j M_{ij}^0 c_j(x,t) + D_i \frac{\partial^2 c_i(x,t)}{\partial x^2}$$

It is convenient to analyze this PDE in Fourier space, but note that only cos(kx) modes are consistent with boundary conditions. Boundary conditions also restrict the values for wavenumber *k*

$$\frac{\partial c_i}{\partial x}(x=0,t) = \frac{\partial c_i}{\partial x}(x=L,t) = 0 \quad \longrightarrow \quad k = \frac{n\pi}{L}, \quad n = 0, 1, 2, \cdots$$

Let's rewrite the PDE in Fourier space

$$c_i(x,t) = \sum_k \tilde{c}_i(k,t) \cos(kx)$$
$$\frac{\partial \tilde{c}_i(k,t)}{\partial t} = \sum_j M_{ij}^0 \tilde{c}_j(k,t) - D_i k^2 \tilde{c}_i(k,t) = \sum_j M_{ij}(k) \tilde{c}_j(k,t)$$

Note: in higher dimensions use solutions of Helmholtz equation with $u(\vec{r}) = -k^2 \nabla^2 u(\vec{r})$ appropriate boundary conditions

Linear stability analysis of fixed point

$$\frac{\partial \tilde{c}_i(k,t)}{\partial t} = \sum_j M_{ij}^0 \tilde{c}_j(k,t) - D_i k^2 \tilde{c}_i(k,t) = \sum_j M_{ij}(k) \tilde{c}_j(k,t)$$

From linear algebra we know that the solution of this equation can be expressed in terms of eigenvalues and eigenvectors of matrix $M_{ij}(k)$:

$$\tilde{c}_i(k,t) = \sum_{\alpha} A_{\alpha}(k) v_i^{\alpha}(k) e^{\lambda_{\alpha}(k)t}$$

$$\lambda_{\alpha} v_i^{\alpha} = \sum_j M_{ij}(k) v_j^{\alpha}$$

Thus small perturbations from fixed point evolve as

$$c_i(x,t) = \sum_{\alpha,k} A_\alpha(k) v_i^\alpha(k) e^{\lambda_\alpha(k)t} \cos(kx)$$

Fixed point is stable if and only if all eigenvalues have negative real parts for all allowed wavenumbers *k*! $\operatorname{Re}[\lambda_{\alpha}(k)] < 0$

For unstable fixed points the mode that corresponds to the eigenvalue with the largest real part dominates!

Eigenvalues in the model Min system

Eigenvalues in the model Min system

Note that only discrete set For bacteria that is shorter than of wavenumber is allowed! $L < (\pi/1.5)\mu m \approx 2.1\mu m$

$$k = \frac{n\pi}{L}, \quad n = 0, 1, 2, \cdots$$

 $L < (\pi/1.5) \mu m \approx 2.1 \mu m$ fixed point is stable and there are no oscillations! $k = \pi/L \approx 0.8 \mu \mathrm{m}$ $\lambda_{1,2} \approx (0.06 \pm i0.10) \mathrm{s}^{-1}$ **Period of oscillations** $(2\pi/0.010) \mathrm{s} \approx 60 \mathrm{s}$

Min system oscillations in larger cells

C.A. Hale et al., EMBO 20, 1563 (2001)

MinD

MinE

) <	36 >	72
) <	42 >	⁷⁸ <
2	48 >	⁸⁴ <
8	⁵⁴ >	90 <
24 >	60 >	⁹⁶ <
80 >	66	DIC

MinE

Min system oscillations in large cells

MinD oscillations in normal E. Coli

MinD oscillations in E. Coli, where division is prevented by removing FtsZ

1 μm

R. Phillips et al., Physical Biology of the Cell

Can the same mechanism work for spherical bacteria?

Patterns in nature

1952: Alan Turing wrote "The Chemical Basis of Morphogenesis" Many of these patterns can be constructed with reaction-diffusion models. What are the minimal requirements that produce such patterns?

Reaction-diffusion equations

$$\frac{\partial C_i(\vec{r},t)}{\partial t} = F_i\left(\{C_j(\vec{r},t)\}\right) + D_i \nabla^2 C_i(\vec{r},t)$$
$$i = 1, 2, \cdots, N \quad \text{N interacting components}$$
In the absence of diffusion find stable fixed points
$$F_i\left(\{C_i^*\}\right) = 0$$

Can diffusion destabilize such fixed points?

Linearize the PDE around the fixed point

One component system (N=1)

$$\frac{\partial \tilde{c}_1\left(\vec{k},t\right)}{\partial t} = \left(M_{11}^0 - k^2 D_1\right) \tilde{c}_1\left(\vec{k},t\right) \equiv \lambda(k) \tilde{c}_1\left(\vec{k},t\right)$$

Because fixed point is stable in the absence of diffusion, we must have $M_{11} < 0$.

Two component system (N=2)

$$\frac{\partial}{\partial t} \left(\begin{array}{c} \tilde{c}_1(\vec{k},t) \\ \tilde{c}_2(\vec{k},t) \end{array} \right) = \left(\begin{array}{c} M_{11}^0 - k^2 D_1, & M_{12}^0 \\ M_{21}^0, & M_{22}^0 - k^2 D_2 \end{array} \right) \left(\begin{array}{c} \tilde{c}_1(\vec{k},t) \\ \tilde{c}_2(\vec{k},t) \end{array} \right)$$

Relation between eigenvalues and trace of the matrix

$$\lambda_1(0) + \lambda_2(0) = M_{11}^0 + M_{22}^0 < 0$$

$$\lambda_1(k) + \lambda_2(k) = M_{11}^0 + M_{22}^0 - k^2(D_1 + D_2) < 0$$

Therefore we must have one positive and one negative eigenvalue for Turing instability! No temporal oscillations are possible!

 → k for matrix M⁰_{ij} that lead to Turing instability?

Two component system (N=2)

$$\frac{\partial}{\partial t} \left(\begin{array}{c} \tilde{c}_1(\vec{k},t) \\ \tilde{c}_2(\vec{k},t) \end{array} \right) = \left(\begin{array}{c} M_{11}^0 - k^2 D_1, & M_{12}^0 \\ M_{21}^0, & M_{22}^0 - k^2 D_2 \end{array} \right) \left(\begin{array}{c} \tilde{c}_1(\vec{k},t) \\ \tilde{c}_2(\vec{k},t) \end{array} \right)$$

Relation between eigenvalues and determinant of the matrix

 $\lambda_1(k)\lambda_2(k) = (M_{11}^0 - k^2 D_1)(M_{22}^0 - k^2 D_2) - M_{12}^0 M_{21}^0$

 $\lambda_1(k)\lambda_2(k) = M_{11}^0 M_{22}^0 - M_{12}^0 M_{21}^0 - k^2 (M_{11}^0 D_2 + M_{22}^0 D_1) + k^4 D_1 D_2$

Determinant becomes negative and reaches minimal value at $k^* \in (k_-, k_+)$.

Two component system (N=2)

$$\frac{\partial}{\partial t} \left(\begin{array}{c} \tilde{c}_1(\vec{k},t) \\ \tilde{c}_2(\vec{k},t) \end{array} \right) = \left(\begin{array}{c} M_{11}^0 - k^2 D_1, & M_{12}^0 \\ M_{21}^0, & M_{22}^0 - k^2 D_2 \end{array} \right) \left(\begin{array}{c} \tilde{c}_1(\vec{k},t) \\ \tilde{c}_2(\vec{k},t) \end{array} \right)$$

Without loss of generality we can assume $M_{11}^0 < 0$, $M_{22}^0 > 0$

$$|M_{11}^{0}| > |M_{22}^{0}|$$
$$D_{1} > \frac{|M_{11}^{0}|}{|M_{22}^{0}|} D_{2} > D_{2}$$

 $\lambda(k)$ $0 \xrightarrow{\lambda_1(k)} k_+ \xrightarrow{k_+} k$ $\lambda_2(k)$

Finite wavelength Turing instabilities arise by long-ranged inhibition and short-range excitation. The resulting patterns are fixed in time.

In the system with 3 or more components oscillating patterns in time are also possible.