MAE 545: Lecture 11 (10/22)

Thermodynamics of the cell environment

Gibbs free energy

Derivatives of system energy

$$dE = TdS - pdV + \sum_{i} \mu_{i}dN_{i}$$
$$T = \left(\frac{\partial E}{\partial S}\right)_{V,N_{i}} \qquad p = -\left(\frac{\partial E}{\partial V}\right)_{S,N_{i}}$$
$$\mu_{i} = \left(\frac{\partial E}{\partial N_{i}}\right)_{S,V}$$

Derivatives of Gibbs free energy

$$dG = -SdT + Vdp + \sum_{i} \mu_{i}dN_{i}$$
$$S = -\left(\frac{\partial G}{\partial T}\right)_{p,N_{i}} \quad V = \left(\frac{\partial G}{\partial p}\right)_{T,N_{i}}$$
$$\mu_{i} = \left(\frac{\partial G}{\partial N_{i}}\right)_{T,p}$$

In thermodynamic equilibrium system minimizes Gibbs free energy, when temperature *T* and pressure *p* are fixed!

In thermodynamic equilibrium $\Delta G = 0$

$$c = \frac{N}{V} = \frac{1}{v_0} e^{-E_b/k_B T}$$

concentration of dissociated ions

Entropy is the reason why many molecules dissociate and ionize in solution!

Free energy of dilute solutions

Ideal solution: interactions between solute particles are negligible

Gibbs free energy of ideal solution

$$G = N_{\rm H_2O} \mu_{\rm H_2O}^0 + N_s \epsilon_s - TS_{\rm mix}$$

water free solute mixing energy energy entropy

Figure from R. Phillips et al., Physical Biology of the Cell

Mixing entropy of dilute solutions

Let's divide volume in small boxes each containing one water molecule or one solute molecule. How many different configurations of water and solute molecules are possible?

$$\Omega = \begin{pmatrix} N_{\rm H_2O} + N_s \\ N_s \end{pmatrix} = \frac{(N_{\rm H_2O} + N_s)!}{N_{\rm H_2O}!N_s!}$$

$$S_{\rm mix} = k_B \ln \Omega$$

$$S_{\rm mix} \approx k_B \left[N_{\rm H_2O} \ln \left(\frac{N_{\rm H_2O} + N_s}{N_{\rm H_2O}} \right) + N_s \ln \left(\frac{N_{\rm H_2O} + N_s}{N_s} \right) \right]$$

$$S_{\rm mix} \approx k_B \left[N_{\rm H_2O} \ln \left(\frac{N_{\rm H_2O} + N_s}{N_{\rm H_2O}} \right) + N_s \ln \left(\frac{N_{\rm H_2O} + N_s}{N_s} \right) \right]$$

$$S_{\rm mix} \approx k_B \left[N_s - N_s \ln \left(\frac{N_s}{N_{\rm H_2O}} \right) \right]$$

Chemical potentials in dilute solution

$$G = N_{\rm H_2O} \mu_{\rm H_2O}^0 + N_s \epsilon_s - TS_{\rm mix}$$
$$G \approx N_{\rm H_2O} \mu_{\rm H_2O}^0 + N_s \epsilon_s + k_B T \left[N_s \ln \left(\frac{N_s}{N_{\rm H_2O}} \right) - N_s \right]$$

Chemical potential of solute

$$\mu_s = \frac{\partial G}{\partial N_s} = \epsilon_s + k_B T \ln\left(\frac{N_s}{N_{\rm H_2O}}\right)$$

$$\mu_s(T, p, c_s) = \epsilon_s(T, p) + k_B T \ln(c_s v)$$

solute concentration $c_s = N_s/V$ volume occupied by
one water molecule $v = V/N_{\rm H_2O}$

Chemical potential of water

$$\mu_{\mathrm{H}_{2}\mathrm{O}} = \frac{\partial G}{\partial N_{\mathrm{H}_{2}\mathrm{O}}} = \mu_{\mathrm{H}_{2}\mathrm{O}}^{0} - k_{B}T\frac{N_{s}}{N_{\mathrm{H}_{2}\mathrm{O}}}$$

$$\mu_{\rm H_2O}(T, p, c_s) = \mu^0_{\rm H_2O}(T, p) - k_B T c_s v$$

Figure from R. Phillips et al., Physical Biology of the Cell

Osmotic pressure

 H_2O solution of molecules macromolecules in H₂O **O**)), 00 u(O \bigcirc **O**)), ((())) (() \bigcirc ())) 0 semipermeable membrane

Figure from R. Phillips et al., Physical Biology of the Cell

Small water molecules can pass through a semipermeable membrane, which blocks large solute macromolecules.

In thermodynamic equilibrium the Gibbs free energy *G* is minimized, which means that chemical potentials of water are the same on both sides of the semipermeable membrane!

$$\mu_{\rm H_2O}(T, p_1, 0) = \mu_{\rm H_2O}(T, p_2, c_s)$$

Osmotic pressure

Figure from R. Phillips H₂O solution of molecules macromolecules et al., Physical in H₂O Water flows from region of low Biology of the Cell concentration of macromolecules to **O**)), 0 00 region of large concentrations. This ıı(O additional water increases pressure ((())) u(O and the water stops flowing once the osmotic pressure is reached. semipermeable membrane $\mu_{\rm H_2O}(T, p_1, 0) = \mu_{\rm H_2O}(T, p_2, c_s)$ \mathcal{U} $\mu_{\rm H_2O}(T, p_2, c_s) = \mu_{\rm H_2O}^0(T, p_2) - k_B T c_s v$ $\mu_{\mathrm{H}_{2}\mathrm{O}}(T, p_{2}, c_{s}) \approx \mu_{\mathrm{H}_{2}\mathrm{O}}^{0}(T, p_{1}) + \left(\frac{\partial \mu_{\mathrm{H}_{2}\mathrm{O}}^{0}}{\partial p}\right)(p_{2} - p_{1}) - k_{B}Tc_{s}v$ $\Pi = p_2 - p_1 = k_B T \Delta c_s$

Osmotic pressure depends only on temperature and concentration difference across the membrane!

Osmotic pressure in cells

If extracellular solution has different concentration of ions from the interior of cells, then the resulting flow of water can cause the cell to shrink or swell and even burst.

 $c_{s,\mathrm{out}} \ll c_{s,\mathrm{in}}$

 $c_{s,\mathrm{out}} \sim c_{s,\mathrm{in}}$

 $c_{s,\mathrm{out}} \gg c_{s,\mathrm{in}}$

Cells use ion channels and ion pumps to regulate concentration of ions and therefore also the cell volume.

(Note: cell membrane is impermeable for charged particles)

Osmotic pressure in bacteria

Bacteria have strong cell wall that can support large osmotic pressure (Turgor pressure).

 $\Pi \sim 10^5 \mathrm{Pa} \sim 1 \mathrm{bar}$

Antibiotics cause damage to cell wall and as a result cells rupture due to large Turgor pressure.

Energetics of ATP hydrolysis

How much energy is released during ATP hydrolysis?

11

relative to concentration $c_0 \sim 1$ M.

$$\mu_s(c_s) = \mu_s(c_0) + k_B T \ln(c_s/c_0)$$

Law of mass action

In thermodynamic equilibrium

 $\Delta G = \mu_{AB} - \mu_A - \mu_B = 0$

$$\frac{[A][B]}{[AB]} = c_0 e^{-(\mu_A^0 + \mu_B^0 - \mu_{AB}^0)/k_B T} = K_{eq}(T, p) = \frac{k_{off}}{k_{on}}$$

For general chemical reaction

$$a_1 \mathbf{R}_1 + a_2 \mathbf{R}_2 + \dots \longleftrightarrow b_1 \mathbf{P}_1 + b_2 \mathbf{P}_2 + \dots$$

$$\frac{\prod_i [\mathbf{R}_i]^{a_i}}{\prod_j [\mathbf{P}_j]^{b_j}} = c_0^{\left(\sum_i a_i - \sum_j b_j\right)} e^{-\left(\sum_i a_i \mu_{\mathbf{R}_i}^0 - \sum_j b_j \mu_{\mathbf{P}_j}^0\right)/k_B T} = K_{\text{eq}}(T, p)$$

Chemical potentials are typically defined relative to concentration c₀ ~ 1 M.

2
$$\mu_s(c_s) = \mu_s(c_0) + k_B T \ln(c_s/c_0)$$

13

Nernst electric potential *E*

Charge environment of the cell

in water some salts completely dissociate cations anions $\bigoplus \quad \bigcirc \quad \bigcirc \quad \\ Na^+ \quad Cl^- \\ K^+ \quad Cl^-$

> Ca^{2+} $2Cl^{-}$ Mg^{2+} $2Cl^{-}$

besides salt ions there are also other mobile ions (H⁺, electrons, phosphates, ...)

Mobile ions screen electrostatic interactions between macroions!

Electrostatic energy

Coulomb's law

$$E_c = rac{q_1 q_2}{\epsilon r} = rac{z_+ z_- e_0^2}{\epsilon r}$$

Gaussian units

water dielectric constant

 $\epsilon \approx 81$

$$E_c = \frac{q_1 q_2}{4\pi\epsilon_0 \epsilon r} = \frac{z_+ z_- e_0^2}{4\pi\epsilon_0 \epsilon r}$$

SI units

vacuum permittivity $\epsilon_0 = 8.85 \times 10^{-12} \text{As/Vm}$

Electrostatic interaction is small for large separation

$$\frac{E_c}{k_B T} = \frac{z_+ z_- \ell_B}{r}$$

Bjerrum length
$$\ell_B = \frac{e_0^2}{k_B T \epsilon}$$

Bjerrum length in water at room T $\ell_B \approx 0.7 \mathrm{nm}$

Poisson-Boltzmann equation

Let's assume some mean-field electric potential $\phi(\vec{r})$ throughout the cell.

Local density of mobile ions carrying charge $z_{\alpha}e_0$. $n_{\alpha}(\vec{r}) = \overline{n}_{\alpha}e^{-z_{\alpha}e_0\phi(\vec{r})/k_BT}$

$$\int d^3 \vec{r} \, \overline{n}_{\alpha} e^{-z_{\alpha} e_0 \phi(\vec{r}\,)/k_B T} = N_{\alpha}$$

Charge density of mobile ions

$$\rho_{\text{mobile ions}}(\vec{r}) = \sum_{\alpha} z_{\alpha} e_0 \overline{n}_{\alpha} e^{-z_{\alpha} e_0 \phi(\vec{r})/k_B T}$$

Poisson equation

$$\nabla^2 \phi(\vec{r}) = -\frac{4\pi}{\epsilon} \rho(\vec{r})$$

Poisson-Boltzmann equation

$$\nabla^2 \phi(\vec{r}) = -\frac{4\pi}{\epsilon} \left[\rho_{\text{macroions}}(\vec{r}) + \sum_{\alpha} z_{\alpha} e_0 \overline{n}_{\alpha} e^{-z_{\alpha} e_0 \phi(\vec{r})/k_B T} \right]$$

For a given distribution of macroions Poisson-Boltzmann equation must be solved self-consistently for the electric potential $\phi(\vec{r})$.

Debye-Hückel approximation

Let's assume that electrostatic energy due to the mean field electric potential is small compared to k_BT .

Local density of mobile ions carrying charge $z_{\alpha}e_0$.

$$n_{\alpha}(\vec{r}) = \overline{n}_{\alpha} e^{-z_{\alpha} e_{0} \phi(\vec{r})/k_{B}T}$$
$$n_{\alpha}(\vec{r}) \approx \overline{n}_{\alpha} \left(1 - \frac{z_{\alpha} e_{0} \phi(\vec{r})}{k_{B}T}\right)$$

$$\int d^3 \vec{r} \, \overline{n}_{\alpha} e^{-z_{\alpha} e_0 \phi(\vec{r}\,)/k_B T} = N_{\alpha}$$
$$\overline{n}_{\alpha} \approx N_{\alpha}/V$$

Charge neutrality

$$\sum_{\alpha} z_{\alpha} \overline{n}_{\alpha} = 0$$

Charge density of mobile ions

$$\rho_{\text{mobile ions}}(\vec{r}) = \sum_{\alpha} z_{\alpha} e_0 \overline{n}_{\alpha} e^{-z_{\alpha} e_0 \phi(\vec{r})/k_B T}$$

$$\rho_{\text{mobile ions}}(\vec{r}) \approx -\frac{e_0^2 \phi(\vec{r})}{k_B T} \sum_{\alpha} z_{\alpha}^2 \overline{n}_{\alpha} = -\ell_B \epsilon \phi(\vec{r}) \sum_{\alpha} z_{\alpha}^2 \overline{n}_{\alpha}$$

Debye-Hückel approximation

Charge density of mobile ions

$$\rho_{\rm mobile\ ions}(\vec{r}) \approx -\frac{e_0^2 \phi(\vec{r})}{k_B T} \sum_{\alpha} z_{\alpha}^2 \overline{n}_{\alpha} = -\ell_B \epsilon \phi(\vec{r}) \sum_{\alpha} z_{\alpha}^2 \overline{n}_{\alpha}$$

Poisson equation

$$\nabla^2 \phi(\vec{r}) = -\frac{4\pi}{\epsilon} \left[\rho_{\text{macroions}}(\vec{r}) + \rho_{\text{mobile ions}}(\vec{r}) \right]$$

$$\nabla^2 \phi(\vec{r}) = -\frac{4\pi}{\epsilon} \rho_{\text{macroions}}(\vec{r}) + \frac{\phi(\vec{r})}{\lambda_D^2}$$

Debye screening length

$$\lambda_D^{-2} = 4\pi \ell_B \sum_{\alpha} z_{\alpha}^2 \overline{n}_{\alpha}$$

Electric potential for a point charge

$$p_{\rm macroions}(\vec{r}) = z e_0 \delta(\vec{r})$$

$$\phi(\vec{r}) = \frac{ze_0}{\epsilon r} e^{-r/\lambda_D}$$

Electrostatic interaction between macroions

$$\rho_{\text{macroions}}(\vec{r}) = \sum_{m} z_{m} e_{0} \delta(\vec{r} - \vec{r}_{m})$$

$$\phi(\vec{r}) = \sum_{m} \frac{z_{m} e_{0}}{\epsilon |\vec{r} - \vec{r}_{m}|} e^{-|\vec{r} - \vec{r}_{m}|/\lambda_{D}}$$

$$\frac{E_{\text{interactions}}}{k_{B}T} = \ell_{B} \sum_{m < n} \frac{z_{m} z_{n}}{|\vec{r}_{m} - \vec{r}_{n}|} e^{-|\vec{r}_{m} - \vec{r}_{n}|/\lambda_{D}}$$