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In thermodynamic equilibrium 
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Charge dissociation in solution

�+

binding energy

example
NaCl salt

�Eb

entropy
kB ln v0

�+

interaction energy
⇡ 0

entropy
kB ln(V/N)

some 
characteristic 

volume

volume of the 
whole system

number of 
dissociated pairs

Free energy change for charge dissociation

�G = �E � T�S = Eb � kBT ln(V/Nv0)

In thermodynamic equilibrium �G = 0

c =
N

V
=

1

v0
e�Eb/kBT

Entropy is the reason why 
many molecules dissociate 

and ionize in solution!concentration of dissociated ions
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Free energy of dilute solutions

Figure from R. Phillips et al., 
Physical Biology of the Cell
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6.2.2 Free Energy of Dilute Solutions

One of the central ideas about entropy in this book is that there are
a few basic implementations of Boltzmann’s assertion that S = kB ln W
that arise over and over in carrying out statistical mechanical reason-
ing. The ideal gas illustrates the way in which kinetic energy may
be shared among a bunch of different molecules. The other crowning
example in which we can simply calculate the entropy is embodied in
the formula

W(N,!) = !!
N !(!−N)!

, (6.77)

which instructs us about the configurational entropy associated with
rearranging N objects amongst ! boxes. How can this simple formula
help us think about the free energy of solutions? In Section 5.5.2
(p. 225), we showed that two subsystems are in chemical equilib-
rium when their chemical potentials are equal. If we are to consider
an aqueous solution with some dilute population of molecules, or
alternatively, if we are to think about the interactions of gene regu-
latory proteins and DNA in solution, how are we to write the chemical
potentials of the various species of interest?

(A)

(B)

(C)

solvent
(water) solute

Figure 6.21: Idealization of a dilute
solution as a system on a lattice.
(A) Cartoon of the actual solution in
which the species of interest is dilute
and wanders around freely in solution.
(B) Three-dimensional and (C)
two-dimensional lattice idealization of
the situation in (A) in which the
molecules of interest are restricted to
visit sites on a lattice.

The Chemical Potential of a Dilute Solution Is a Simple Logarithmic
Function of the Concentration

To make progress on the question of how to write the chemical poten-
tials for dilute solutions like those described above, we appeal to
lattice models. Lattice models have been used to great advantage
as a discretization trick that allows for the performance of combina-
toric arguments in a way that is analytically tractable. For our present
purposes, we imagine our system (water + solute) as being built up as
a series of lattice sites as shown in Figure 6.21. These lattice models
were introduced in Section 6.1.1 (p. 241) and illustrated in Figure 6.1
(p. 238). By restricting the set of allowed positions for the molecules
of interest to the sites of a lattice, we have a countable set of distinct
states that can be enumerated explicitly.

We write the number of water molecules as NH2O, while the num-
ber of solute molecules is given by Ns. Our objective is to write the
total free energy of this system and then to obtain the solute chemical
potential through the relation

µsolute =
(
∂Gtot

∂Ns

)

T ,p
. (6.78)

Intuitively, the chemical potential really tells us the free energy cost
associated with changing the number of solute molecules in solution
by 1 as

µsolute = Gtot(Ns + 1)−Gtot(Ns). (6.79)

The reader is invited to explore this more deeply as well as the con-
nection to the partition function in the problems at the end of the
chapter. We argue that the free energy is given by

Gtot = NH2Oµ0
H2O

water free energy

+ Nsεs

solute energy

− TSmix

mixing entropy

. (6.80)

262 Chapter 6 ENTROPY RULES!

Ideal solution: interactions between 
solute particles are negligible

G = NH2Oµ
0
H2O +Ns✏s � TSmix

Gibbs free energy of ideal solution

water free 
energy

solute
energy

mixing 
entropy
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6.2.2 Free Energy of Dilute Solutions

One of the central ideas about entropy in this book is that there are
a few basic implementations of Boltzmann’s assertion that S = kB ln W
that arise over and over in carrying out statistical mechanical reason-
ing. The ideal gas illustrates the way in which kinetic energy may
be shared among a bunch of different molecules. The other crowning
example in which we can simply calculate the entropy is embodied in
the formula

W(N,!) = !!
N !(!−N)!

, (6.77)

which instructs us about the configurational entropy associated with
rearranging N objects amongst ! boxes. How can this simple formula
help us think about the free energy of solutions? In Section 5.5.2
(p. 225), we showed that two subsystems are in chemical equilib-
rium when their chemical potentials are equal. If we are to consider
an aqueous solution with some dilute population of molecules, or
alternatively, if we are to think about the interactions of gene regu-
latory proteins and DNA in solution, how are we to write the chemical
potentials of the various species of interest?

(A)

(B)

(C)

solvent
(water) solute

Figure 6.21: Idealization of a dilute
solution as a system on a lattice.
(A) Cartoon of the actual solution in
which the species of interest is dilute
and wanders around freely in solution.
(B) Three-dimensional and (C)
two-dimensional lattice idealization of
the situation in (A) in which the
molecules of interest are restricted to
visit sites on a lattice.

The Chemical Potential of a Dilute Solution Is a Simple Logarithmic
Function of the Concentration

To make progress on the question of how to write the chemical poten-
tials for dilute solutions like those described above, we appeal to
lattice models. Lattice models have been used to great advantage
as a discretization trick that allows for the performance of combina-
toric arguments in a way that is analytically tractable. For our present
purposes, we imagine our system (water + solute) as being built up as
a series of lattice sites as shown in Figure 6.21. These lattice models
were introduced in Section 6.1.1 (p. 241) and illustrated in Figure 6.1
(p. 238). By restricting the set of allowed positions for the molecules
of interest to the sites of a lattice, we have a countable set of distinct
states that can be enumerated explicitly.

We write the number of water molecules as NH2O, while the num-
ber of solute molecules is given by Ns. Our objective is to write the
total free energy of this system and then to obtain the solute chemical
potential through the relation

µsolute =
(
∂Gtot

∂Ns

)

T ,p
. (6.78)

Intuitively, the chemical potential really tells us the free energy cost
associated with changing the number of solute molecules in solution
by 1 as

µsolute = Gtot(Ns + 1)−Gtot(Ns). (6.79)

The reader is invited to explore this more deeply as well as the con-
nection to the partition function in the problems at the end of the
chapter. We argue that the free energy is given by

Gtot = NH2Oµ0
H2O

water free energy

+ Nsεs

solute energy

− TSmix

mixing entropy

. (6.80)

262 Chapter 6 ENTROPY RULES!

Let’s divide volume in small 
boxes each containing one water 
molecule or one solute molecule.

How many different 
configurations of water and 

solute molecules are possible? 

Mixing entropy of dilute solutions

⌦ =

✓
NH2O +Ns

Ns

◆
=

(NH2O +Ns)!

NH2O!Ns!

S
mix

= kB ln⌦

Stirling approximation
lnN ! ⇡ N lnN

Smix ⇡ kB


NH2O ln

✓
NH2O +Ns

NH2O

◆
+Ns ln

✓
NH2O +Ns

Ns

◆�

Small number of 
solute particles Ns ⌧ NH2O

Smix ⇡ kB


Ns �Ns ln

✓
Ns

NH2O

◆�
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Chemical potentials in dilute solution
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6.2.2 Free Energy of Dilute Solutions

One of the central ideas about entropy in this book is that there are
a few basic implementations of Boltzmann’s assertion that S = kB ln W
that arise over and over in carrying out statistical mechanical reason-
ing. The ideal gas illustrates the way in which kinetic energy may
be shared among a bunch of different molecules. The other crowning
example in which we can simply calculate the entropy is embodied in
the formula

W(N,!) = !!
N !(!−N)!

, (6.77)

which instructs us about the configurational entropy associated with
rearranging N objects amongst ! boxes. How can this simple formula
help us think about the free energy of solutions? In Section 5.5.2
(p. 225), we showed that two subsystems are in chemical equilib-
rium when their chemical potentials are equal. If we are to consider
an aqueous solution with some dilute population of molecules, or
alternatively, if we are to think about the interactions of gene regu-
latory proteins and DNA in solution, how are we to write the chemical
potentials of the various species of interest?

(A)

(B)

(C)

solvent
(water) solute

Figure 6.21: Idealization of a dilute
solution as a system on a lattice.
(A) Cartoon of the actual solution in
which the species of interest is dilute
and wanders around freely in solution.
(B) Three-dimensional and (C)
two-dimensional lattice idealization of
the situation in (A) in which the
molecules of interest are restricted to
visit sites on a lattice.

The Chemical Potential of a Dilute Solution Is a Simple Logarithmic
Function of the Concentration

To make progress on the question of how to write the chemical poten-
tials for dilute solutions like those described above, we appeal to
lattice models. Lattice models have been used to great advantage
as a discretization trick that allows for the performance of combina-
toric arguments in a way that is analytically tractable. For our present
purposes, we imagine our system (water + solute) as being built up as
a series of lattice sites as shown in Figure 6.21. These lattice models
were introduced in Section 6.1.1 (p. 241) and illustrated in Figure 6.1
(p. 238). By restricting the set of allowed positions for the molecules
of interest to the sites of a lattice, we have a countable set of distinct
states that can be enumerated explicitly.

We write the number of water molecules as NH2O, while the num-
ber of solute molecules is given by Ns. Our objective is to write the
total free energy of this system and then to obtain the solute chemical
potential through the relation

µsolute =
(
∂Gtot

∂Ns

)

T ,p
. (6.78)

Intuitively, the chemical potential really tells us the free energy cost
associated with changing the number of solute molecules in solution
by 1 as

µsolute = Gtot(Ns + 1)−Gtot(Ns). (6.79)

The reader is invited to explore this more deeply as well as the con-
nection to the partition function in the problems at the end of the
chapter. We argue that the free energy is given by

Gtot = NH2Oµ0
H2O

water free energy

+ Nsεs

solute energy

− TSmix

mixing entropy

. (6.80)
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G = NH2Oµ
0
H2O +Ns✏s � TSmix

Chemical potential of solute

solute concentration
volume occupied by 
one water molecule

cs = Ns/V

v = V/NH2O

Chemical potential of water

µs =
@G

@Ns
= ✏s + kBT ln

✓
Ns

NH2O

◆

µH2O =
@G

@NH2O
= µ0

H2O � kBT
Ns

NH2O

µH2O(T, p, cs) = µ0
H2O(T, p)� kBTcsv

µs(T, p, cs) = ✏s(T, p) + kBT ln(csv)

G ⇡ NH2Oµ
0
H2O +Ns✏s + kBT


Ns ln

✓
Ns

NH2O

◆
�Ns

�
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Osmotic pressure
Figure from R. Phillips 
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this section, we will explore a simple mathematical formulation of the
idea of osmotic pressure.

An immediate and important biological application of our analysis
of dilute solutions is to the problem of osmotic pressure. The basic
idea behind the emergence of osmotic pressure is that the presence of
a semipermeable membrane can result in the rearrangement of those
molecules to which the membrane is permeable and the setting up
of an attendant pressure. To see this, consider the model geometry
shown in Figure 6.22, which shows a container with an internal mem-
brane that is permeable to water but not to the solute molecules of
interest. As a result of the permeability of the membrane to water, the
equilibrium state is characterized by equality of chemical potentials
for the water molecules on both sides of the container. (Revisit Sec-
tion 5.5.2 (p. 225) to see how entropy maximization implies equality
of chemical potentials.)

semipermeable
membrane

H2O
molecules

solution of 
macromolecules

in H2O

Figure 6.22: Schematic of a
container with a semipermeable
membrane with molecules in solution
in one side of the container and pure
solvent in the other.

The chemical potential of the water molecules on the side of the
membrane with the dilute concentration of solute molecules can be
derived by appealing to Equation 6.85 and in particular by evaluating
µH2O(T , p) = ∂Gtot/∂NH2O. Note that here we make explicit the depen-
dence of the chemical potential on the pressure and the temperature.
The resulting expression is

µH2O(T , p) = µ0
H2O(T , p)− Ns

NH2O
kBT . (6.89)

The equilibrium between the two sides may now be expressed via the
equation

µH2O0(T , p1)

solute-free side

= µ0
H2O(T , p2)− Ns

NH2O
kBT

side with solutes

. (6.90)

Note that we have already asserted that there will be a pressure dif-
ference between the two sides by introducing the notation p1 for the
pressure on the pure water side of the container and p2 for the pres-
sure on the side containing the solute molecules. We now expand the
chemical potential on the right-hand side around p1 as

µ0
H2O(T , p2) ≈ µ0

H2O(T , p1) +
(
∂µ0

H2O

∂p

)

(p2 − p1). (6.91)

As a result of the thermodynamic relation ∂µ/∂p = v, where v is the
volume per molecule, this equation can be transformed into

p2 − p1 = Ns

V
kBT , (6.92)

where V = NH2Ov is, to a very good approximation, equal to the total
volume on the solute side of the semipermeable membrane. This
relation is known as the van’t Hoff formula and it gives the osmotic
pressure as a function of the concentration of the solute.

Viruses, Membrane-Bound Organelles, and Cells Are Subject to
Osmotic Pressure

Osmotic pressure arises in many different contexts. From a biologi-
cal point of view, the existence of osmotic pressure can give rise to
mechanical insults that cells and viruses must find ways to endure.
In particular, cell membranes and viral capsids are permeable to

ON BEING IDEAL 265

Small water molecules can 
pass through a semipermeable 
membrane, which blocks large  

solute macromolecules.

In thermodynamic equilibrium the Gibbs free energy G is 
minimized, which means that chemical potentials of water are 

the same on both sides of the semipermeable membrane!

µH2O(T, p1, 0) = µH2O(T, p2, cs)

G = N1µH2O(T, p1, 0) +N2µH2O(T, p2, cs) +Nsµs(T, p2, cs)
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Osmotic pressure
Figure from R. Phillips 

et al., Physical 
Biology of the Cell
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this section, we will explore a simple mathematical formulation of the
idea of osmotic pressure.

An immediate and important biological application of our analysis
of dilute solutions is to the problem of osmotic pressure. The basic
idea behind the emergence of osmotic pressure is that the presence of
a semipermeable membrane can result in the rearrangement of those
molecules to which the membrane is permeable and the setting up
of an attendant pressure. To see this, consider the model geometry
shown in Figure 6.22, which shows a container with an internal mem-
brane that is permeable to water but not to the solute molecules of
interest. As a result of the permeability of the membrane to water, the
equilibrium state is characterized by equality of chemical potentials
for the water molecules on both sides of the container. (Revisit Sec-
tion 5.5.2 (p. 225) to see how entropy maximization implies equality
of chemical potentials.)

semipermeable
membrane

H2O
molecules

solution of 
macromolecules

in H2O

Figure 6.22: Schematic of a
container with a semipermeable
membrane with molecules in solution
in one side of the container and pure
solvent in the other.

The chemical potential of the water molecules on the side of the
membrane with the dilute concentration of solute molecules can be
derived by appealing to Equation 6.85 and in particular by evaluating
µH2O(T , p) = ∂Gtot/∂NH2O. Note that here we make explicit the depen-
dence of the chemical potential on the pressure and the temperature.
The resulting expression is

µH2O(T , p) = µ0
H2O(T , p)− Ns

NH2O
kBT . (6.89)

The equilibrium between the two sides may now be expressed via the
equation

µH2O0(T , p1)

solute-free side

= µ0
H2O(T , p2)− Ns

NH2O
kBT

side with solutes

. (6.90)

Note that we have already asserted that there will be a pressure dif-
ference between the two sides by introducing the notation p1 for the
pressure on the pure water side of the container and p2 for the pres-
sure on the side containing the solute molecules. We now expand the
chemical potential on the right-hand side around p1 as

µ0
H2O(T , p2) ≈ µ0

H2O(T , p1) +
(
∂µ0

H2O

∂p

)

(p2 − p1). (6.91)

As a result of the thermodynamic relation ∂µ/∂p = v, where v is the
volume per molecule, this equation can be transformed into

p2 − p1 = Ns

V
kBT , (6.92)

where V = NH2Ov is, to a very good approximation, equal to the total
volume on the solute side of the semipermeable membrane. This
relation is known as the van’t Hoff formula and it gives the osmotic
pressure as a function of the concentration of the solute.

Viruses, Membrane-Bound Organelles, and Cells Are Subject to
Osmotic Pressure

Osmotic pressure arises in many different contexts. From a biologi-
cal point of view, the existence of osmotic pressure can give rise to
mechanical insults that cells and viruses must find ways to endure.
In particular, cell membranes and viral capsids are permeable to

ON BEING IDEAL 265

µH2O(T, p1, 0) = µH2O(T, p2, cs)

µH2O(T, p2, cs) = µ0
H2O(T, p2)� kBTcsv

Water flows from region of low 
concentration of macromolecules to 
region of large concentrations. This 
additional water increases pressure 

and the water stops flowing once 
the osmotic pressure is reached.

µH2O(T, p2, cs) ⇡ µ0
H2O(T, p1) +

✓
@µ0

H2O

@p

◆
(p2 � p1)� kBTcsv

⇧ = p2 � p1 = kBT�cs

Osmotic pressure depends only on temperature and 
concentration difference across the membrane!

v
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Osmotic pressure in cells

hypotonic
solution

isotonic
solution

hypertonic
solution

If extracellular solution has 
different concentration of ions 
from the interior of cells, then 
the resulting flow of water can 

cause the cell to shrink or 
swell and even burst.

cs,out ⌧ cs,in cs,out � cs,incs,out ⇠ cs,in

Cells use ion channels and ion pumps 
to regulate concentration of ions and 

therefore also the cell volume.

(Note: cell membrane is impermeable 
for charged particles)
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Osmotic pressure in bacteria

Bacteria have strong cell wall 
that can support large osmotic 

pressure (Turgor pressure).

⇧ ⇠ 105Pa ⇠ 1bar

Antibiotics cause damage to cell 
wall and as a result cells rupture 

due to large Turgor pressure.
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Energetics of ATP hydrolysis

ATP ADP Pi+

Chemical potentials are typically defined 
relative to concentration c0 ~ 1 M.

�G = µADP + µP � µATP

�G = µ0
ADP + µ0

P � µ0
ATP + kBT ln

✓
[ADP][Pi]

[ATP]c0

◆

�12.5kBT

}
Under physiological conditions: 

([ATP], [ADP], [Pi] ⇠ 1mM)
�G ⇠ �20kBT

How much energy is released during ATP hydrolysis?

µs(cs) = µs(c0) + kBT ln(cs/c0)
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Law of mass action

A B AB+

k
on

k
o↵

In thermodynamic equilibrium
�G = µAB � µA � µB = 0

Chemical potentials are typically defined 
relative to concentration c0 ~ 1 M.

example
Na+ +Cl�  ! NaCl
H+ +Cl�  ! HCl

Na+ +OH�  ! NaOH
H+ +OH�  ! H2O

µs(cs) = µs(c0) + kBT ln(cs/c0)

[A][B]

[AB]
= c

0

e�(µ
0
A+µ0

B�µ0
AB)/kBT = K

eq

(T, p) =
k
o↵

k
on

For general chemical reaction
a1R1 + a2R2 + · · · ! b1P1 + b2P2 + · · ·

Q
i [Ri]

ai

Q
j [Pj ]bj

= c
(
P

i ai�
P

j bj)
0 e

�
⇣P

i aiµ
0
Ri

�
P

j bjµ
0
Pj

⌘
/kBT

= Keq(T, p)
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pH value of solutions
[H+][OH�]

c20
=

[H2O]Keq(T, p)

c20
⇡ 10�14

c0 = 1M

pH = � log10
�
[H+]/c0

�

pOH = � log10
�
[OH�]/c0

�
⇡ 14� pH

at room 
temperature

How much free energy is changed when H+ 
goes to environment with different pH?

pH1 pH2

H+

Nernst electric potential E

µ2 � µ1 = kBT ln
�
[H+]2/[H

+]1
�

E =
µ2 � µ1

e0
⇡ �2.3026 kBT

e0
(pH2 � pH1)
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Charge environment of the cell

membrane

�
�

�
�
�
�
�
�
�
�
�
�
�
�
�heads of lipid 

molecules are 
negatively 
charged

DNA

� �
�
�
�

�
�
�

�
����

proteins

�

+
+
+

+

� �

�
��

macroions

+

+

+

+

+

++

+

+

+

+

+

+
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+

�
�

�

�

�

�
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�

�
+
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+

�

+

+

+

�

cloud of 
mobile ions

+

in water some salts 
completely dissociate

+ �
cations anions

Na+

K+

Ca2+

Mg2+

Cl�

Cl�

2Cl�

2Cl�

besides salt ions 
there are also other 

mobile ions (H+, 
electrons, 

phosphates, …)

Mobile ions screen 
electrostatic interactions 

between macroions!

+
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Electrostatic energy

�+
r

+z+e0

Coulomb’s law

Gaussian units SI units

water dielectric constant
✏0 = 8.85⇥ 10�12As/Vm

vacuum permittivity

✏ ⇡ 81

Bjerrum length

`B =
e20

kBT ✏

Bjerrum length
in water at room T
`B ⇡ 0.7nm

Electrostatic interaction is 
small for large separation

Ec =
q1q2

4⇡✏0✏r
=

z+z�e20
4⇡✏0✏r

Ec

kBT
=

z+z�`B
r

�|z�|e0

Ec =
q1q2
✏r

=
z+z�e20

✏r
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Poisson-Boltzmann equation
Let’s assume some mean-field electric potential          throughout the cell.�(~r )

n↵(~r ) = n↵e
�z↵e0�(~r )/kBT

Z
d3~r n↵e

�z↵e0�(~r )/kBT = N↵

Charge density of mobile ions

⇢
mobile ions

(~r ) =
X

↵

z↵e0n↵e
�z↵e0�(~r )/kBT

Poisson equation

r2�(~r ) = �4⇡

✏
⇢(~r )

Poisson-Boltzmann equation

r2�(~r ) = �4⇡

✏

"
⇢
macroions

(~r ) +
X

↵

z↵e0n↵e
�z↵e0�(~r )/kBT

#

For a given distribution of macroions Poisson-Boltzmann equation 
must be solved self-consistently for the electric potential        . �(~r )

Local density of mobile ions
carrying charge         .z↵e0
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Debye-Hückel approximation
Let’s assume that electrostatic energy due to the mean 

field electric potential is small compared to kBT.

n↵(~r ) = n↵e
�z↵e0�(~r )/kBT

Z
d3~r n↵e

�z↵e0�(~r )/kBT = N↵

Charge density of mobile ions

⇢
mobile ions

(~r ) =
X

↵

z↵e0n↵e
�z↵e0�(~r )/kBT

n↵(~r ) ⇡ n↵

✓
1� z↵e0�(~r )

kBT

◆
n↵ ⇡ N↵/V

Charge neutralityX

↵

z↵n↵ = 0

⇢
mobile ions

(~r ) ⇡ �e2
0

�(~r )

kBT

X

↵

z2↵n↵ = �`B✏�(~r )
X

↵

z2↵n↵

Local density of mobile ions
carrying charge         .z↵e0
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Debye-Hückel approximation
Charge density of mobile ions

Poisson equation

r2�(~r ) = �4⇡

✏
[⇢

macroions

(~r ) + ⇢
mobile ions

(~r )]

r2�(~r ) = �4⇡

✏
⇢
macroions

(~r ) +
�(~r )

�2

D

Debye screening length

Electric potential for a 
point charge

⇢
macroions

(~r ) = ze
0

�(~r )

Electrostatic interaction between macroions

�(~r) =
ze0
✏r

e�r/�D

�(~r) =
X

m

zme0
✏|~r � ~rm|e

�|~r�~rm|/�D

⇢
macroions

(~r ) =
X

m

zme
0

�(~r � ~rm)

E
interactions

kBT
= `B

X

m<n

zmzn
|~rm � ~rn|

e�|~rm�~rn|/�D

⇢
mobile ions

(~r ) ⇡ �e2
0

�(~r )

kBT

X

↵

z2↵n↵ = �`B✏�(~r )
X

↵

z2↵n↵

��2
D = 4⇡`B

X

↵

z2↵n↵


