MAE 545: Lecture 12 (10/27)

Electrostatic Elastic deformation
energy for energy for beams and
bending DNA thin filaments




Poisson-Boltzmann equation
Let’s assume some mean-field electric potential ¢ (7 ) throughout the cell.

Local density of mobile ions
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For a given distribution of macroions Poisson-Boltzmann equation
must be solved self-consistently for the electric potential ¢(7).
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Dissociation of charge from a plate

?z density of positive counterions
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Debye-Huckel approximation

Let’s assume that electrostatic energy due to the mean
field electric potential is small compared to ksT.

Local density of mobile ions
carrying charge z.¢o .
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Debye-Huckel approximation

Charge density of mobile ions
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Bending of charged rod

What is the energy cost

Negative unit charges separated associated with bending the
by distance b along the rod.

charged rod due to
electrostatic interactions?

Change in distance between charges
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Bending of charged rod

Negative unit charges separated
by distance b along the rod.

Electrostatic energy
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Bending of charged rod

Negative unit charges separated Electrostatic energy
by distance b along the rod.
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Bending of charged rod

Negative unit charges separated Electrostatic energy
by distance b along the rod. knT LY 1 kL
5‘/;301:% ~ QBf(b/)‘):_ 2
24 R 2 R

Bending rigidity due to
electrostatic energy

kT
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How this compares to measured
Ity / bending rigidity for DNA?
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DNA packaging in bacteriophage viruses

typical DNA is packaged
bacteriophage by a motor The whole DNA is
packaged in 2-5 min.

Velocity of DNA packing
is ~50-200 nm/s.

Packaging motors
produce force ~60 pN.

DNA is tightly packed
inside the capsid:
VDNA/Vcap > 0.5

schematic of
packaged DNA in
bacteriophage ¢$29




DNA packaging in bacteriophage viruses

2r = 42nm
“ — Packaging of DNA iIn
bacteriophage ©29 requires ~10° kgT.
= - Bending energy
- |
= ~ o pksltp 2
_:: g E, L2r2 L 53 4 x 10°kgT

Loss of entropy

DNA length TAS = kpTIn {2
L = 6.8pm Estimate the entropy outside capsid with
distance between ideal chain made of Nx Kuhn segments
neighboring chains O~ gNe Ny = L/20, ~ 70
d ~ 2.3nm
DNA persistence TAS ~ NykgTlng ~ 10%kgT
length

¢, ~ 50nm
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DNA packaging in bacteriophage viruses

Debye-Huckel electrostatic energy

2r = 42nm
> > between charges on DNA
knT/V /g ~ 0.7Tnm
= V(S) — BS = e/ A~ 1lnm
E 7 Electrostatic energy between two
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DNA packaging in bacteriophage viruses

Electrostatic energy between two

2r = 42 . .
< e neighboring charged loops
number of
= charges per loop p I {p =~ 0.7nm
g - N 2mr A~ 1lnm
- | b el
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> Electrostatic energy IS exponentlally
DNA length small for charges that are far apart.
L = 6.8um Consider only charges in the range
: 6| < d/r, such that s(0) ~ d.
distance between , N
neighboring chains X V. ~ 21"k TlB « 2d o &
d ~ 2.3nm - 5\ " kb2T€ L d
I nr
DNA persistence Vi~ bﬁ Zem /A
length

¢, ~ 50nm \/d2 (27 sin(0/2))?
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DNA packaging in bacteriophage viruses

9% — 49mm Electrostatic energy between two

« > neighboring charged loops
x number of
= charges per loop I {5 ~ 0.7nm
'g ~ N — @ A~ Inm
— | b "
= I b=~ 0.17nm
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b2

DNA length Electrostatic energy between all loops
L = 6.8um V ~ i x V. assuming only one
distance between 2mr level of loops
neighboring chains 27/
d ~ 2.3nm V ~ kT b2B e~ WA 3 x 10%kgT

DNA persistence
length (more accurate calculation would

/-~ 50nm get even closer to 10° kgT)
p R
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Deformations of macroscopic beams

beam beam made of
undeformed beam cross-section material with
Young’s modulus
¢ AN 9
L g Lo
stretching bending twisting

L(1+ : .

strain ¢ radius of & angle of twist
curvature ° d = QL
E, ke’ E, A E, CQ?
L 2 L 2R? L 2
k oc Eot? A x Eyt? C x Eyt*

Bending and twisting is much easier than

stretching for long and narrow beams!
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Bending and twisting represented as
rotations of material frame

A undeformed beam deformed beam

€9
*el W‘
€3
rotatlon rate of
material frame

Energy cost of deformations

dei _ O« & ds

ds o E = / A1+ A5 + CO3]
Q= Q8] + Doy + Qaés 2
bending around e; bending around e; twisting around es




Deformations of microscopic filaments

carbon
nanotubes

Deformations of microscopic filaments can still be
described with stretching, bending and twisting.

Elastic constants (k, A, C) can be extracted from
deformation energies of bonds and are in general not
related to the microscopic thickness of filaments!

Couplings between stretching, bending and twisting deformations
may also be allowed by symmetries of filament shapes.
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Elastic energy of deformations
in the general form

P

Energy density for a deformed filament can be Taylor
expanded around the minimum energy ground state

L
ds
E— /O ?{AHQ% A0y 22

CQ?2

twist-bend coupling
241201805 4241301 Q3 + 24232523

+ke* +2D1e€Qq + 2Dy + 2D3€Qgi|

bend-stretch
coupling

twist-stretch
coupling

Energy density is positive

definitive functional!

A1, Ao, Az, k>0
Ay < AuAy;

In principle 10 elastic constants,
but symmetries of fillament shape
determine how many independent

elastic constants are allowed!
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Beams with uniform cross-
section along the long axis

= /

beam
cross-section

y
Beam has mirror symmetry through
a plane perpendicular to es.

Two beam deformations that are mirror images of
each other must have the same energy cost!

A m
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How mirroring around e3
affects bending and twisting?

/

oy 7! beam
61 ( l .
I i | ) cross-section
/
I /
k
bending around €3 bending around €> twisting around €3

()
mirror 2

i ‘ - I mirror
& image | |_11|rror | image
{ image

(

Note: mirroring doesn’t

affect stretching 20



Beams with uniform cross-
section along the long axis

Lds
— [AHQ% + A5 + CQ3

E- /
0 2
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iImage «
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Two mirror configurations
g _ A3 = A3 =D3 =0
have the same energy cost:
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Beams with uniform cross-
section along the long axis

ya

/7 |

— B / |
2 | beam
|
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{ cross-section
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| /
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Beam has mirror symmetry through
a plane perpendicular to es.

L
d
E = '/O ?S [Allﬂ% —+ AQQQ% -+ CQ%-FZAlgﬂlﬂg
—|—]€€2 -+ 2D1€Ql -+ 2D2€QQ

Twist is decoupled from bending and stretching!
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Twist-bend coupling in propellers and turbines

wind turbine airplane propeller

Blades of propellers and turbines are chiral, therefore
there is coupling between twist and bend deformations!
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