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Poisson-Boltzmann equation
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Dissociation of charge from a plate
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Debye-Hückel approximation
Let’s assume that electrostatic energy due to the mean 

field electric potential is small compared to kBT.
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Debye-Hückel approximation
Charge density of mobile ions

Poisson equation

r2�(~r ) = �4⇡

✏
[⇢

macroions

(~r ) + ⇢
mobile ions

(~r )]

r2�(~r ) = �4⇡

✏
⇢
macroions

(~r ) +
�(~r )

�2

D

Debye screening length

Electric potential for a 
point charge

⇢
macroions

(~r ) = ze
0

�(~r )

Electrostatic interaction between macroions

�(~r) =
ze0
✏r

e�r/�D

�(~r) =
X

m

zme0
✏|~r � ~rm|e

�|~r�~rm|/�D

⇢
macroions

(~r ) =
X

m

zme
0

�(~r � ~rm)

⇢
mobile ions

(~r ) ⇡ �e2
0

�(~r )

kBT

X

↵

z2↵n↵ = �`B✏�(~r )
X

↵

z2↵n↵

��2
D = 4⇡`B

X

↵

z2↵n↵

E
interactions

kBT
=

X

n

1

2

zne0�(~rn)

kBT
=

X

m<n

zmzn`B
|~rm � ~rn|

e�|~rm�~rn|/�D



6

Bending of charged rod

Negative unit charges separated 
by distance b along the rod.

What is the energy cost 
associated with bending the 

charged rod due to 
electrostatic interactions?
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Bending of charged rod

Negative unit charges separated 
by distance b along the rod.
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Bending of charged rod

Negative unit charges separated 
by distance b along the rod.
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Bending of charged rod

Negative unit charges separated 
by distance b along the rod.
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constrained to adopt a close-packed local order, most probably
with some degree of local hexagonal packing.

In a previous work aimed at elucidating the structure of the
φ29 motor in actively packaging particles, Simpson et al.

(2000) used ATP-γS to block active DNA packaging motors.
Cryo-electron microscopy was then used to obtain three-
dimensional reconstructions of the particles with a partial
genome contained in the capsids. The interior of the capsids had

Fig. 5. Images of partially packaged genomes. Shown here are representative images of particles projected at different orientations, with (top to bottom) 0%, 32%,
51%, 78%, and 100% of the genome packaged. For all partially packaged particles, we see an isotropic grey density distribution filling the interior of the capsids,
indicating that the DNA occupies all the available volume. One quite faint, outermost layer starts to appear in top views of some of the particles with 78% of the
genome packaged (leftmost image in the 78% row).

273L.R. Comolli et al. / Virology 371 (2008) 267–277
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moved farther apart. For trivalent and tetravalent ions the
physics is quite different. In this regime there is an attractive
interaction with a preferred spacing d0 between the strands,
and the measurements are well fit by

GintðL; dsÞ ¼
ffiffiffi
3

p
F0L ðc2 1 cdsÞ exp

d0 $ ds

c

" #$

$ðc2 1 cd0Þ $
1

2
ðd2

0 $ d2

s Þ
%
; (10)

where c¼ 0.14 nm and d0¼ 2.8 nm, for example, in the case
of cobalt hexamine as the condensing agent. For ds , d0 the
interaction is strongly repulsive and for ds . d0 it is
attractive. This expression is a good representation of the free
energy of interactions between the DNA molecules for
spacings ds less than or equal to the preferred value d0 (Rau
and Parsegian, 1992). In viral packaging we encounter
interaxial spacings in exactly this range and hence we will
use this free energy to study the effects of repulsive-attractive
interactions on encapsidated DNA.
It is important to note that in the experiments of Rau et al.

(1984) and Rau and Parsegian (1992) DNA was confined in
the same way (except for the lack of bending) as it is within
a phage capsid. This means that the free energy Gint obtained
from their measurements accounts for multiple effects, in-
cluding electrostatics, entropy of the DNA (Odijk, 1983) and
counterions, and any hydration phenomena (Strey et al., 1997).
Given that we have now examined the separate contribu-

tions arising from DNA bending, entropy, and interaction
terms, we now write the free energy of the encapsidated
DNA in the repulsive regime,

GtotðL; dsÞ ¼
2pjpkBTffiffiffi

3
p

ds
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Interaction

: (11)

An analogous formula holds for the repulsive-attractive
regime. Note that this expression reports the free energy of
the inverse spool configurations when a length L has been
packaged by relating R to L via Eq. 7. We will now show that
the spacing between the strands varies in a systematic way
during the packing process, reflecting the competition be-
tween bending and interaction terms.

DNA spacing in packed capsids

Our model makes a concrete prediction for the free energy
Gtot of packaged DNA in any phage and for a wide range of
solution conditions. To find Gtot for a particular phage, we
minimize Eq. 11 by varying ds, under the constraint that
L given by Eq. 7 is equal to the length of DNA already
packaged. The expressions for N(R9) will differ for different
capsid geometries. Most capsids are icosahedral and we
idealize them as spheres. Some capsids, e.g., f29, have
a waist. We idealize them as cylinders with hemispherical
caps. Eventually, we will find that the geometry does not
affect the overall free energy of packing as long as the
internal volume of the idealization is the same for each
geometry, once again reflecting the importance of the
parameter rpack, introduced earlier. Before we specialize to
particular geometries (see Fig. 3) we observe that
NðR9Þ ¼ ðzðR9Þ=dsÞ where z(R9) is the height of a column
of hoops of DNA situated at radius R9. Using this fact and
differentiating Eq. 7 with respect to ds, while holding L
constant, gives usðdR=ddsÞ ¼ $ð

ffiffiffi
3

p
Lds=2pRzðRÞÞ. Mini-

mizing Gtot with respect to the interstrand spacing ds gives
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s
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dR9
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R
R9zðR9ÞdR9

: (12)

This equation represents a balance between the bending
energy terms and the interaction terms. Note that if the size
of the capsid is fixed then longer lengths of packed DNA
imply smaller radii of curvature for the hoops since the
strands want to be as far away as possible from each other for

FIGURE 3 Idealized geometries of viral capsids.

Phage Packaging and Ejection Forces 857

Biophysical Journal 88(2) 851–866
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DNA packaging in bacteriophage viruses

moved farther apart. For trivalent and tetravalent ions the
physics is quite different. In this regime there is an attractive
interaction with a preferred spacing d0 between the strands,
and the measurements are well fit by
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where c¼ 0.14 nm and d0¼ 2.8 nm, for example, in the case
of cobalt hexamine as the condensing agent. For ds , d0 the
interaction is strongly repulsive and for ds . d0 it is
attractive. This expression is a good representation of the free
energy of interactions between the DNA molecules for
spacings ds less than or equal to the preferred value d0 (Rau
and Parsegian, 1992). In viral packaging we encounter
interaxial spacings in exactly this range and hence we will
use this free energy to study the effects of repulsive-attractive
interactions on encapsidated DNA.
It is important to note that in the experiments of Rau et al.

(1984) and Rau and Parsegian (1992) DNA was confined in
the same way (except for the lack of bending) as it is within
a phage capsid. This means that the free energy Gint obtained
from their measurements accounts for multiple effects, in-
cluding electrostatics, entropy of the DNA (Odijk, 1983) and
counterions, and any hydration phenomena (Strey et al., 1997).
Given that we have now examined the separate contribu-

tions arising from DNA bending, entropy, and interaction
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DNA in the repulsive regime,
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An analogous formula holds for the repulsive-attractive
regime. Note that this expression reports the free energy of
the inverse spool configurations when a length L has been
packaged by relating R to L via Eq. 7. We will now show that
the spacing between the strands varies in a systematic way
during the packing process, reflecting the competition be-
tween bending and interaction terms.

DNA spacing in packed capsids

Our model makes a concrete prediction for the free energy
Gtot of packaged DNA in any phage and for a wide range of
solution conditions. To find Gtot for a particular phage, we
minimize Eq. 11 by varying ds, under the constraint that
L given by Eq. 7 is equal to the length of DNA already
packaged. The expressions for N(R9) will differ for different
capsid geometries. Most capsids are icosahedral and we
idealize them as spheres. Some capsids, e.g., f29, have
a waist. We idealize them as cylinders with hemispherical
caps. Eventually, we will find that the geometry does not
affect the overall free energy of packing as long as the
internal volume of the idealization is the same for each
geometry, once again reflecting the importance of the
parameter rpack, introduced earlier. Before we specialize to
particular geometries (see Fig. 3) we observe that
NðR9Þ ¼ ðzðR9Þ=dsÞ where z(R9) is the height of a column
of hoops of DNA situated at radius R9. Using this fact and
differentiating Eq. 7 with respect to ds, while holding L
constant, gives usðdR=ddsÞ ¼ $ð
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This equation represents a balance between the bending
energy terms and the interaction terms. Note that if the size
of the capsid is fixed then longer lengths of packed DNA
imply smaller radii of curvature for the hoops since the
strands want to be as far away as possible from each other for
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DNA packaging in bacteriophage viruses

moved farther apart. For trivalent and tetravalent ions the
physics is quite different. In this regime there is an attractive
interaction with a preferred spacing d0 between the strands,
and the measurements are well fit by
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ffiffiffi
3

p
F0L ðc2 1 cdsÞ exp

d0 $ ds

c

" #$

$ðc2 1 cd0Þ $
1

2
ðd2

0 $ d2

s Þ
%
; (10)

where c¼ 0.14 nm and d0¼ 2.8 nm, for example, in the case
of cobalt hexamine as the condensing agent. For ds , d0 the
interaction is strongly repulsive and for ds . d0 it is
attractive. This expression is a good representation of the free
energy of interactions between the DNA molecules for
spacings ds less than or equal to the preferred value d0 (Rau
and Parsegian, 1992). In viral packaging we encounter
interaxial spacings in exactly this range and hence we will
use this free energy to study the effects of repulsive-attractive
interactions on encapsidated DNA.
It is important to note that in the experiments of Rau et al.

(1984) and Rau and Parsegian (1992) DNA was confined in
the same way (except for the lack of bending) as it is within
a phage capsid. This means that the free energy Gint obtained
from their measurements accounts for multiple effects, in-
cluding electrostatics, entropy of the DNA (Odijk, 1983) and
counterions, and any hydration phenomena (Strey et al., 1997).
Given that we have now examined the separate contribu-

tions arising from DNA bending, entropy, and interaction
terms, we now write the free energy of the encapsidated
DNA in the repulsive regime,
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An analogous formula holds for the repulsive-attractive
regime. Note that this expression reports the free energy of
the inverse spool configurations when a length L has been
packaged by relating R to L via Eq. 7. We will now show that
the spacing between the strands varies in a systematic way
during the packing process, reflecting the competition be-
tween bending and interaction terms.

DNA spacing in packed capsids

Our model makes a concrete prediction for the free energy
Gtot of packaged DNA in any phage and for a wide range of
solution conditions. To find Gtot for a particular phage, we
minimize Eq. 11 by varying ds, under the constraint that
L given by Eq. 7 is equal to the length of DNA already
packaged. The expressions for N(R9) will differ for different
capsid geometries. Most capsids are icosahedral and we
idealize them as spheres. Some capsids, e.g., f29, have
a waist. We idealize them as cylinders with hemispherical
caps. Eventually, we will find that the geometry does not
affect the overall free energy of packing as long as the
internal volume of the idealization is the same for each
geometry, once again reflecting the importance of the
parameter rpack, introduced earlier. Before we specialize to
particular geometries (see Fig. 3) we observe that
NðR9Þ ¼ ðzðR9Þ=dsÞ where z(R9) is the height of a column
of hoops of DNA situated at radius R9. Using this fact and
differentiating Eq. 7 with respect to ds, while holding L
constant, gives usðdR=ddsÞ ¼ $ð
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This equation represents a balance between the bending
energy terms and the interaction terms. Note that if the size
of the capsid is fixed then longer lengths of packed DNA
imply smaller radii of curvature for the hoops since the
strands want to be as far away as possible from each other for

FIGURE 3 Idealized geometries of viral capsids.
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DNA packaging in bacteriophage viruses

moved farther apart. For trivalent and tetravalent ions the
physics is quite different. In this regime there is an attractive
interaction with a preferred spacing d0 between the strands,
and the measurements are well fit by

GintðL; dsÞ ¼
ffiffiffi
3

p
F0L ðc2 1 cdsÞ exp

d0 $ ds

c

" #$

$ðc2 1 cd0Þ $
1

2
ðd2

0 $ d2

s Þ
%
; (10)

where c¼ 0.14 nm and d0¼ 2.8 nm, for example, in the case
of cobalt hexamine as the condensing agent. For ds , d0 the
interaction is strongly repulsive and for ds . d0 it is
attractive. This expression is a good representation of the free
energy of interactions between the DNA molecules for
spacings ds less than or equal to the preferred value d0 (Rau
and Parsegian, 1992). In viral packaging we encounter
interaxial spacings in exactly this range and hence we will
use this free energy to study the effects of repulsive-attractive
interactions on encapsidated DNA.
It is important to note that in the experiments of Rau et al.

(1984) and Rau and Parsegian (1992) DNA was confined in
the same way (except for the lack of bending) as it is within
a phage capsid. This means that the free energy Gint obtained
from their measurements accounts for multiple effects, in-
cluding electrostatics, entropy of the DNA (Odijk, 1983) and
counterions, and any hydration phenomena (Strey et al., 1997).
Given that we have now examined the separate contribu-

tions arising from DNA bending, entropy, and interaction
terms, we now write the free energy of the encapsidated
DNA in the repulsive regime,

GtotðL; dsÞ ¼
2pjpkBTffiffiffi

3
p

ds

Z Rout

R

NðR9Þ
R9

dR9
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Interaction

: (11)

An analogous formula holds for the repulsive-attractive
regime. Note that this expression reports the free energy of
the inverse spool configurations when a length L has been
packaged by relating R to L via Eq. 7. We will now show that
the spacing between the strands varies in a systematic way
during the packing process, reflecting the competition be-
tween bending and interaction terms.

DNA spacing in packed capsids

Our model makes a concrete prediction for the free energy
Gtot of packaged DNA in any phage and for a wide range of
solution conditions. To find Gtot for a particular phage, we
minimize Eq. 11 by varying ds, under the constraint that
L given by Eq. 7 is equal to the length of DNA already
packaged. The expressions for N(R9) will differ for different
capsid geometries. Most capsids are icosahedral and we
idealize them as spheres. Some capsids, e.g., f29, have
a waist. We idealize them as cylinders with hemispherical
caps. Eventually, we will find that the geometry does not
affect the overall free energy of packing as long as the
internal volume of the idealization is the same for each
geometry, once again reflecting the importance of the
parameter rpack, introduced earlier. Before we specialize to
particular geometries (see Fig. 3) we observe that
NðR9Þ ¼ ðzðR9Þ=dsÞ where z(R9) is the height of a column
of hoops of DNA situated at radius R9. Using this fact and
differentiating Eq. 7 with respect to ds, while holding L
constant, gives usðdR=ddsÞ ¼ $ð

ffiffiffi
3

p
Lds=2pRzðRÞÞ. Mini-

mizing Gtot with respect to the interstrand spacing ds gives

ffiffiffi
3

p
F0 expð$ds=cÞ ¼

jpkBT

R2d2

s

$
jpkBT

d2

s

R Rout

R

zðR9Þ
R9
dR9

R Rout

R
R9zðR9ÞdR9

: (12)

This equation represents a balance between the bending
energy terms and the interaction terms. Note that if the size
of the capsid is fixed then longer lengths of packed DNA
imply smaller radii of curvature for the hoops since the
strands want to be as far away as possible from each other for

FIGURE 3 Idealized geometries of viral capsids.
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moved farther apart. For trivalent and tetravalent ions the
physics is quite different. In this regime there is an attractive
interaction with a preferred spacing d0 between the strands,
and the measurements are well fit by
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where c¼ 0.14 nm and d0¼ 2.8 nm, for example, in the case
of cobalt hexamine as the condensing agent. For ds , d0 the
interaction is strongly repulsive and for ds . d0 it is
attractive. This expression is a good representation of the free
energy of interactions between the DNA molecules for
spacings ds less than or equal to the preferred value d0 (Rau
and Parsegian, 1992). In viral packaging we encounter
interaxial spacings in exactly this range and hence we will
use this free energy to study the effects of repulsive-attractive
interactions on encapsidated DNA.
It is important to note that in the experiments of Rau et al.

(1984) and Rau and Parsegian (1992) DNA was confined in
the same way (except for the lack of bending) as it is within
a phage capsid. This means that the free energy Gint obtained
from their measurements accounts for multiple effects, in-
cluding electrostatics, entropy of the DNA (Odijk, 1983) and
counterions, and any hydration phenomena (Strey et al., 1997).
Given that we have now examined the separate contribu-

tions arising from DNA bending, entropy, and interaction
terms, we now write the free energy of the encapsidated
DNA in the repulsive regime,

GtotðL; dsÞ ¼
2pjpkBTffiffiffi
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An analogous formula holds for the repulsive-attractive
regime. Note that this expression reports the free energy of
the inverse spool configurations when a length L has been
packaged by relating R to L via Eq. 7. We will now show that
the spacing between the strands varies in a systematic way
during the packing process, reflecting the competition be-
tween bending and interaction terms.

DNA spacing in packed capsids

Our model makes a concrete prediction for the free energy
Gtot of packaged DNA in any phage and for a wide range of
solution conditions. To find Gtot for a particular phage, we
minimize Eq. 11 by varying ds, under the constraint that
L given by Eq. 7 is equal to the length of DNA already
packaged. The expressions for N(R9) will differ for different
capsid geometries. Most capsids are icosahedral and we
idealize them as spheres. Some capsids, e.g., f29, have
a waist. We idealize them as cylinders with hemispherical
caps. Eventually, we will find that the geometry does not
affect the overall free energy of packing as long as the
internal volume of the idealization is the same for each
geometry, once again reflecting the importance of the
parameter rpack, introduced earlier. Before we specialize to
particular geometries (see Fig. 3) we observe that
NðR9Þ ¼ ðzðR9Þ=dsÞ where z(R9) is the height of a column
of hoops of DNA situated at radius R9. Using this fact and
differentiating Eq. 7 with respect to ds, while holding L
constant, gives usðdR=ddsÞ ¼ $ð

ffiffiffi
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mizing Gtot with respect to the interstrand spacing ds gives
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This equation represents a balance between the bending
energy terms and the interaction terms. Note that if the size
of the capsid is fixed then longer lengths of packed DNA
imply smaller radii of curvature for the hoops since the
strands want to be as far away as possible from each other for
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Deformations of macroscopic beams

L
t

undeformed beam beam
cross-section

beam made of 
material with 

Young’s modulus
E0

L(1 + ✏)

stretching

✏strain

Es

L
=

k✏2

2

k / E0t
2

twisting

�

angle of twist
� = ⌦L

Et

L
=

C⌦2

2
C / E0t

4

Bending and twisting is much easier than 
stretching for long and narrow beams!

R R

radius of 
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A / E0t
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L
=

A

2R2



16

Energy cost of deformationsrotation rate of
material frame

ẑ
x̂

ŷ

E =
Z

ds

2
⇥
A1⌦2

1 + A2⌦2
2 + C⌦2

3

⇤

R1 = ⌦�1
1 R2 = ⌦�1

2

p = 2⇡⌦�1
3

bending around twisting aroundbending around e2e1 e3

Bending and twisting represented as 
rotations of material frame

undeformed beam deformed beam

s

d~ei
ds

= ~⌦⇥ ~ei
~⌦ = ⌦1~e1 + ⌦2~e2 + ⌦3~e3

~e1 ~e1
~e2 ~e2

~e3
~e3
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Deformations of microscopic filaments

Deformations of microscopic filaments can still be 
described with stretching, bending and twisting.
Elastic constants (k, A, C) can be extracted from 

deformation energies of bonds and are in general not 
related to the microscopic thickness of filaments! 

Couplings between stretching, bending and twisting deformations 
may also be allowed by symmetries of filament shapes.

DNA

actin

microtubule

carbon 
nanotubes
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Elastic energy of deformations 
in the general form

Energy density for a deformed filament can be Taylor 
expanded around the minimum energy ground state

E =

Z L

0

ds

2


A11⌦

2
1 +A22⌦

2
2 + C⌦2

3 + 2A12⌦1⌦2 +2A13⌦1⌦3 + 2A23⌦2⌦3

twist-bend coupling

+k✏2 +2D1✏⌦1 + 2D2✏⌦2 + 2D3✏⌦3

�

twist-stretch
coupling

bend-stretch
coupling

Energy density is positive 
definitive functional!
A11, A22, A33, k > 0

A2
ij < AiiAjj

D2
i < kAii

In principle 10 elastic constants, 
but symmetries of filament shape 
determine how many independent 

elastic constants are allowed!
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Beams with uniform cross-
section along the long axis

~e1
~e2

~e3

beam
cross-section

Beam has mirror symmetry through 
a plane perpendicular to    . ~e3

Two beam deformations that are mirror images of 
each other must have the same energy cost!
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bending around

~e1
~e2

~e3

beam
cross-section

~e1 bending around ~e2 twisting around ~e3

How mirroring around      
affects bending and twisting?

~e3

⌦1 ⌦2
⌦3

⌦1 ⌦2 �⌦3

Note: mirroring doesn’t 
affect stretching

mirror
image mirror

image
mirror
image
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E =

Z L

0

ds

2


A11⌦

2
1 +A22⌦

2
2 + C⌦2

3

+2A12⌦1⌦2+2A13⌦1⌦3 + 2A23⌦2⌦3 �

E =

Z L

0

ds

2


A11⌦

2
1 +A22⌦

2
2 + C⌦2

3

+2A12⌦1⌦2 �
�2A13⌦1⌦3 � 2A23⌦2⌦3

mirror
image ⌦3 ! �⌦3

A13 = A23 = D3 = 0Two mirror configurations 
have the same energy cost:

+k✏2 + 2D1✏⌦1 + 2D2✏⌦2

+k✏2 + 2D1✏⌦1 + 2D2✏⌦2

+2D3✏⌦3

�2D3✏⌦3

Beams with uniform cross-
section along the long axis
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Beams with uniform cross-
section along the long axis

~e1
~e2

~e3

beam
cross-section

E =

Z L

0

ds

2


A11⌦

2
1 +A22⌦

2
2 + C⌦2

3+2A12⌦1⌦2 �

Twist is decoupled from bending and stretching!

+k✏2 + 2D1✏⌦1 + 2D2✏⌦2

Beam has mirror symmetry through 
a plane perpendicular to    . ~e3
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Blades of propellers and turbines are chiral, therefore 
there is coupling between twist and bend deformations!

Twist-bend coupling in propellers and turbines
wind turbine airplane propeller

ship propeller


