MAE 545: Lecture 13 (10/29)

Elastic deformation energy for
beams and thin filaments




Deformations of macroscopic beams

beam beam made of
undeformed beam cross-section material with
Young’s modulus
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Bending and twisting is much easier than

stretching for long and narrow beams!
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Bending and twisting represented as
rotations of material frame

A undeformed beam deformed beam

€9
*el W‘
€3
rotatlon rate of
material frame

Energy cost of deformations
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bending around e; bending around e; twisting around es




Bending and twisting represented as
rotations of material frame

% undeformed beam deformed beam
. € & .
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rotation rate of
material frame
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()= Qqe1 + Qses + Q3€3 2

Energy cost of deformations

Bending and twisting modes are coupled,
because successive rotations do not commute!
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Elastic energy of deformations
in the general form

P

Energy density for a deformed filament can be Taylor
expanded around the minimum energy ground state

L
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twist-bend coupling

24120109 +2A41501 Q3 + 24530503

+ke* +2D1e€Qq + 2Dy + 2D3€Qgi|

bend-stretch
coupling

twist-stretch
coupling

Energy density is positive

definitive functional!

A1, Ao, Azz, k>0
Ay < AuAy;

In principle 10 elastic constants,
but symmetries of fillament shape
determine how many independent

5

elastic constants are allowed!




Beams with uniform cross-
section along the long axis

= /

beam
cross-section

y
Beam has mirror symmetry through
a plane perpendicular to es.

Two beam deformations that are mirror images of
each other must have the same energy cost!
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Beams with uniform cross-
section along the long axis

ya
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Beam has mirror symmetry through
a plane perpendicular to es.
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Twist is decoupled from bending and stretching!
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Twist-bend coupling in propellers and turbines

wind turbine airplane propeller

Blades of propellers and turbines are chiral, therefore
there is coupling between twist and bend deformations!
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Beams with isosceles triangle cross-section

beam

s / cross-section
E €2
' @63
Beam has mirror symmetry through
a plane perpendicular to ;.
Beam has mirror symmetry through
a plane perpendicular to €.
_ Note: n-fold rotational

symmetry around axis €-. due to rotation by
angle 27/n.



How mirroring around ¢
affects bending and twisting?

g, beam
cross -section ¢,
b TT* 2
®es
bending around ¢; bending around ¢> twisting around €3

{ mirror ! mirror
¥ image l :
{ image
() - ! —
1 —0s
Note: mirroring doesn’t l Ao

affect stretching 0



How rotation by m around e-
affects bending and twisting?

g, beam
cross -section ¢,
b TT* 2
®es
bending around ¢; bending around ¢> twisting around €3

(2o

Note: rotation doesn’t
affect stretching
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Elastic energy for beams of various cross-sections

beam

cross-section L.

E:/ 2 [AllﬂQ—l—AQQQ —I—CQ +2A4190:25
“ ! : 0
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Lds
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Beams with rectangular cross-section

beam
€2 g, cross-section
5 €5
gl EECRCEELLEE ]- ‘ .
: —> €1
: @63

Beam has mirror symmetry through Beam has mirror symmetry through

a plane perpendicular to €. a plane perpendicular to €.
Beam has mirror symmetry through Beam has 2-fold rotational
a plane perpendicular to €. symmetry around axis €s.

Beam has 2-fold rotational
symmetry around axis €.
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How mirroring around e-
affects bending and twisting?

beam
cross-section ¢,

= ] .
5 €1

“es
bending around ¢; bending around ¢> twisting around €3

() 0,
| mirror | mirror
¢ mage l image

—Q, e

Note: mirroring doesn’t I Ajy = Agz =
affect stretching
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How rotation by 7 around es
affects bending and twisting?

€5 - beam
! cross-section ¢,
I ----- ] ‘ S
: —> €]
. @63
bending around ¢; bending around ¢> twisting around €3

{2

Note: rotation doesn’t
affect stretching
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Elastic energy for beams of various cross-sections

beam
cross-section

L
ds [AHQQ 4 Agp Q2 + ON2424:50:
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0
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Beams with square cross-section

° o beam
€1 cross-section
5 €5
L’ 51
: @63

Beam has mirror symmetry through Beam has mirror symmetry through

a plane perpendicular to €. a plane perpendicular to ¢o.
Beam has mirror symmetry through Beam has 4-fold rotational
a plane perpendicular to €. symmetry around axis €s.

Beam has 2-fold rotational
symmetry around axis €.

17



How rotation by /2 around €3
affects bending and twisting?

—

2 - beam
€1

cross-section ¢,

E T—>é'1

OLE!

bending around ¢; bending around ¢> twisting around €3

Qz

rotatlon

—Ql QS

Note: rotation doesn’t A1 = Ao, Ao =Dy =Dy =

affect stretching 8



Elastic energy for beams of various cross-sections

beam
cross-section

L
d
— [\ PG A0+ 40+ 00f2400.0,
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DNA is chiral and has
right-handed helical
structure

hydrogen bonds

p ~ 3.4nm

Adenine (A)

R Thymine (T)

For simplicity we ignore
DNA sequence dependence
of elastic constants!
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cross section

€1 F}'%
s

€2
In the undeformed state

DNA has spontaneous twist

wo =27/p~1.8nm ™ *

Twist strain (23 is
measured relative to the
spontaneous twist

de;
ds

— (ﬁ —+ wogg) X é;




DNA

€3 cross section
€1 R ... DNA has 2-fold rotational
< & et 3" symmetry around axis €.

S Ao =A13=D1 =0

Elastic energy for deforming DNA
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L
d
E = /O ?S {AHQ% -+ AQQQS + CQ% + 2455025025
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Twist strain ()3 is

measured relative to the A1 /kpT =~ Agy /kpT = £, ~ 50nm
spontaneous twist C/kgT ~ 100nm
dé; . , . k ~ 1000pN
ds (Q i “063) * € D3 /kpT ~ —20

Aoz, Dy ~ 0
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Magnetic tweezers

Torque on magnetic bead can be
produced by rotating the magnet.

Force on magnetic bead is
proportional to the gradient / \

of magnetic field and can be S N_| S \ N
adjusted by raising or \ __//magnets

lowering the magnet

field lines | .
magnetic
bead

studied
molecule

ace

22



Twist-stretch coupling

F=1pN1%

bead is Twist-stretch coupling has
N turned with opposite sign for double
> a magnet stranded RNA and DNA!
_|_
~

04.2 kbp RNA
0 3.4 kbp DNA

0 H 10
turns

J. Lipfert et al., PNAS 111, 15408 (2014)
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Response of DNA to external forces and torques

—

L
d L -
FE = /0 78 [A11Q% -+ AQQQ% -+ CQ% -+ k€2 -+ 2D3€Qg] —F- ”I"(L) —M - ¢(L)

work due to external
DNA end to end distance force and torque

L d’F L
(L) = / ds — = / ds e3(1 + €)
0 ds 0

rotation of DNA end

L g L
- do -
L) = ds — = ds ()
gb( ) /o ’ ds 0 ’
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Response of DNA to external forces and torques

—

L
1 _ =
E — ; dS (5 [A11Q% —|— AQQQ% —|— CQ% —|— k62 —|— 2D3€Qg] — F . 53(1 —|— 6) — M . Q)

L

E = ds g(€7Q17Q27Q3)
0

The configuration of DNA that minimizes energy
Is described by Euler-Lagrange equations

) ] i) B
~ ds \ O(de/ds) Oe ~ ds \ 9(dg;/ds) 0P,

25 O = do/ds




Tension and torque along DNA backbone

—

L
1 . .
E: /O dS <§ [A]_]_Q%—I_AQQQS—'_CQg—I_kGQ—i_QDBGQS —F€3(1—|—€) —MQ)

Euler-Lagrange equations tension along DNA

d 0g d0g
V= s <c‘9(de/ds)> e
A11Q1(8)€1 (S) —+ AQQQQ(S)@Q(S)

d dg
=
ds <a(d¢i/ds)> +[CQ3(s) + Dse(s)] €3(s) = M

Q; = do/ds Euler-Lagrange equations thus describe
o6 local force and torque balance!

ke(s) + D3Qs(s) = F - &5(s)

torque along DNA




Twist-stretch coupling

F=1pN1%

bead is Twist-stretch coupling has
N turned with opposite sign for double
> a magnet stranded RNA and DNA!
_l_
~

0 4.2 kbp RNA
O 3.4 kbp DNA

k k -5 0 5 10

turns

J. Lipfert et al., PNAS 111, 15408 (2014)
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¢ Euler buckling instability

F < F, F > b

Analyze the stability of flat configuration by investigating
the energy cost of slightly deformed profile with

(s) = (0,y(s), 2(s))

Assume the very thin beam (filament) limit with ¢ — 0

i b= VT o) = [ /T

Oy = = (0,y/,2) =
Bending strain
N\ 2
0?2 1 (d27‘) :y,,Q_I_Z,,z: {/2

ds
T R? ds?



Euler buckling instability

F < F,, F > F

> force > force

z(L) z(L)

L L 12
A Ay
E= [ ds=Q0+Fz(L)= | d F\/1—y?
/O s 0+ F2(L) /O 3[2(1_y,2)+ V1—y

Assume small deformations around the flat configuration

Lorr e 1,
Ez/ ds [—Ay” — T —I—F]
0 2 2

analyze with Buckled configurations
Fourier modes have lover energy for

y(s) =2 _e"ila) |
E~+4+FL+ Z% (Aq4 — Fq2) 15(s)|?

q Note: buckling direction corresponds
29 to the lower value of bending rigidity A

F > FCI‘ — Aqr2n1n




Euler buckling instability

clamped
boundaries

412 A
— Iy = 73
= y(L) =y/(L) =0
min = 27T/L
one end clamped
the other free
A

<_Fcr:

y(0) = y'(0) = y"(L) =y"" (L) =0
Qmin = T/2L

412 FoTA 1
E%/ ds [5y112(1_|_y/2)_|_F(1__y/2_|__y/4
0
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hinged boundaries

The amplitudes of buckled modes are

determined by the 4th order terms in
energy functional that we ignored

1
2 8

)



Torsional instability

M < M., M > M,

> torque

> torque

plectoneme

critical torque for number of turns
clamped boundaries that lead to torsional instability
A Ly LM, A
Mer 29 L turns 27 2nC C
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Twist, Writhe and Linking nhumbers

Ln=Tw+Wr linking number: total number of turns of a particular end
Tw = fOLds (U3(s)/2m  twist: number of turns due to twisting the beam
Wr writhe: number of crossings when curve is projected on a plane

i =§360° i 5 EC
|=,L_| Twist = -1, Writhe = 0. l_.i. —l Twist = +1, Writhe = 0.
: c

'Q—I Twist = 0, Writhe = -1. ';@ Twist = 0, Writhe = +1.

i J’720° i 3'720"
ly:/~i/—_-4-| Twist = -2, Writhe = 0. l_-x-z.\_.-L«;q Twist = +2, Writhe = 0.
: -

|@ =((')> g IB') g Twist = 0, Writhe = -2. l‘-@@| F@l Twist = 0, Writhe = +2.

Toroidal Plectonemic Toroidal Plectonemic

32



Torsional instability

M > M.,
torque

plectoneme

Pulling force

suppresses
: o (1 instability.
P CL[Q;TLH] P 27 ( 2n — Wr)] B4 FAL

Torsional instability occurs, because part of the twisting
energy can be released by bending and forming a plectoneme.
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Stochastic switching between two
states near instability for twisting RNA

puling force /' = 2pN
Al |

Turns

s
|

N~
N o
Fraction (J
t-buckli
pos ém ing
o

§ =
|
% 7.9 0
= 76 78 8 8.2
*E 8.0 C Turns
i 8.1~ _10
L)
g 1
0 200 400 0 2 4 =
Time (s) kCounts 20.14 & 4 pre-buckiing
- © post-buckling
probability of observing a plectoneme 76 78 8 8.2

Turns

(N ) e_Eplectoneme(Nturns)/kBT
pplectoneme turns) — e—Estraight (Nturns)/kB T—|—e_Eplectoneme (Nturns) kBT

J. Lipfert et al., PNAS 111, 15408 (2014)
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