
MAE 545: Lecture 13 (10/29)

Elastic deformation energy for 
beams and thin filaments
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Deformations of macroscopic beams

L
t

undeformed beam beam
cross-section

beam made of 
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Young’s modulus
E0
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stretching
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2

twisting

�

angle of twist
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2
C / E0t

4

Bending and twisting is much easier than 
stretching for long and narrow beams!
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Energy cost of deformationsrotation rate of
material frame
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⇤

R1 = ⌦�1
1 R2 = ⌦�1

2

p = 2⇡⌦�1
3

bending around twisting aroundbending around e2e1 e3

Bending and twisting represented as 
rotations of material frame

undeformed beam deformed beam

s

d~ei
ds

= ~⌦⇥ ~ei
~⌦ = ⌦1~e1 + ⌦2~e2 + ⌦3~e3

~e1 ~e1
~e2 ~e2

~e3
~e3
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Energy cost of deformationsrotation rate of
material frame
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⇤

Bending and twisting represented as 
rotations of material frame

undeformed beam deformed beam

s

d~ei
ds

= ~⌦⇥ ~ei
~⌦ = ⌦1~e1 + ⌦2~e2 + ⌦3~e3

~e1 ~e1
~e2 ~e2

~e3
~e3

Bending and twisting modes are coupled,
because successive rotations do not commute!
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plectonemes



5

Elastic energy of deformations 
in the general form

Energy density for a deformed filament can be Taylor 
expanded around the minimum energy ground state

E =

Z L

0

ds

2


A11⌦

2
1 +A22⌦

2
2 + C⌦2

3 + 2A12⌦1⌦2 +2A13⌦1⌦3 + 2A23⌦2⌦3

twist-bend coupling

+k✏2 +2D1✏⌦1 + 2D2✏⌦2 + 2D3✏⌦3

�

twist-stretch
coupling

bend-stretch
coupling

Energy density is positive 
definitive functional!
A11, A22, A33, k > 0

A2
ij < AiiAjj

D2
i < kAii

In principle 10 elastic constants, 
but symmetries of filament shape 
determine how many independent 

elastic constants are allowed!
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Beams with uniform cross-
section along the long axis

~e1
~e2

~e3

beam
cross-section

Beam has mirror symmetry through 
a plane perpendicular to    . ~e3

Two beam deformations that are mirror images of 
each other must have the same energy cost!
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Beams with uniform cross-
section along the long axis

~e1
~e2

~e3

beam
cross-section

E =

Z L

0

ds

2


A11⌦

2
1 +A22⌦

2
2 + C⌦2

3+2A12⌦1⌦2 �

Twist is decoupled from bending and stretching!

+k✏2 + 2D1✏⌦1 + 2D2✏⌦2

Beam has mirror symmetry through 
a plane perpendicular to    . ~e3

A13 = A23 = D3 = 0
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Blades of propellers and turbines are chiral, therefore 
there is coupling between twist and bend deformations!

Twist-bend coupling in propellers and turbines
wind turbine airplane propeller

ship propeller
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Beams with isosceles triangle cross-section

~e1
~e2

~e3

beam
cross-section

~e1

~e2

~e3�

Beam has 2-fold rotational 
symmetry around axis    . ~e2

Note: n-fold rotational 
symmetry is symmetry 

due to rotation by 
angle           .2⇡/n

Beam has mirror symmetry through 
a plane perpendicular to    . ~e3

Beam has mirror symmetry through 
a plane perpendicular to    . ~e1
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bending around ~e1 bending around ~e2 twisting around 

How mirroring around      
affects bending and twisting?

⌦1 ⌦2
⌦3

⌦1 �⌦3

Note: mirroring doesn’t 
affect stretching

mirror
image mirror

image
mirror
image

~e1
~e2

~e3

beam
cross-section

~e1

~e2

~e3�

~e1

�⌦2

~e3

A12 = A13 = D2 = D3 = 0
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bending around ~e1 bending around ~e2 twisting around 

How rotation by    around      
affects bending and twisting?

⌦1 ⌦2
⌦3

⌦1

Note: rotation doesn’t 
affect stretching

rotation

~e1
~e2

~e3

beam
cross-section

~e1

~e2

~e3�

�⌦2

~e3

⇡ ~e2

rotation rotation

A12 = A23 = D2 = 0
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Elastic energy for beams of various cross-sections
beam

cross-section
E =

Z L

0

ds
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
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2
1 +A22⌦

2
2 + C⌦2

3+2A12⌦1⌦2 �

E =

Z L

0

ds
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2
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2
2 + C⌦2

3

+k✏2 + 2D1✏⌦1

�

+k✏2 + 2D1✏⌦1 + 2D2✏⌦2
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Beams with rectangular cross-section

~e1
~e2

~e3

beam
cross-section

~e1

~e2

~e3�

Beam has 2-fold rotational 
symmetry around axis    . ~e2

Beam has mirror symmetry through 
a plane perpendicular to    . ~e3

Beam has mirror symmetry through 
a plane perpendicular to    . ~e1

Beam has mirror symmetry through 
a plane perpendicular to    . ~e2

Beam has 2-fold rotational 
symmetry around axis    . ~e3
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bending around ~e1 bending around ~e2 twisting around 

How mirroring around      
affects bending and twisting?

⌦1 ⌦2
⌦3

�⌦3

Note: mirroring doesn’t 
affect stretching

mirror
image mirror

image
mirror
image

~e1

~e2

~e3�

~e3

~e2

~e1
~e2

~e3

beam
cross-section

�⌦1

A12 = A23 = D1 = D3 = 0
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bending around ~e1 bending around ~e2 twisting around 

How rotation by    around      
affects bending and twisting?

⌦2

Note: rotation doesn’t 
affect stretching

rotation

�⌦2

~e3

⇡

rotation rotation

~e3

~e1

~e2

~e3�

~e1
~e2

~e3

beam
cross-section

⌦1 ⌦3

A13 = A23 = D1 = D2 = 0
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Elastic energy for beams of various cross-sections
beam

cross-section
E =

Z L

0

ds

2
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2
1 +A22⌦

2
2 + C⌦2
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0
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2
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2
2 + C⌦2

3

+k✏2 + 2D1✏⌦1

�

+k✏2 + 2D1✏⌦1 + 2D2✏⌦2

E =

Z L

0
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2
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3 + k✏2
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Beams with square cross-section

~e1
~e2

~e3

beam
cross-section

~e1

~e2

~e3�

Beam has 2-fold rotational 
symmetry around axis    . ~e2

Beam has mirror symmetry through 
a plane perpendicular to    . ~e3

Beam has mirror symmetry through 
a plane perpendicular to    . ~e1

Beam has mirror symmetry through 
a plane perpendicular to    . ~e2

Beam has 4-fold rotational 
symmetry around axis    . ~e3
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bending around ~e1 bending around ~e2 twisting around 

How rotation by       around      
affects bending and twisting?

⌦2

Note: rotation doesn’t 
affect stretching

rotation

~e3

rotation rotation

~e3

~e1

~e2

~e3�

beam
cross-section

⌦1 ⌦3

⇡/2

~e1
~e2

~e3

⌦2

A11 = A22, A12 = D1 = D2 = 0
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Elastic energy for beams of various cross-sections
beam

cross-section

E =

Z L

0

ds

2


A11⌦

2
1 +A22⌦

2
2 + C⌦2

3+2A12⌦1⌦2�

E =

Z L

0

ds

2


A11⌦

2
1 +A22⌦

2
2 + C⌦2

3

+k✏2 + 2D1✏⌦1

�

+k✏2 + 2D1✏⌦1 + 2D2✏⌦2

E =

Z L

0

ds

2


A11⌦

2
1 +A22⌦

2
2 + C⌦2

3 + k✏2
�

E =

Z L

0

ds

2


A
�
⌦2

1 + ⌦2
2

�
+ C⌦2

3 + k✏2
�

+2A12(s)⌦1(s)⌦2(s) + 2A13(s)⌦1(s)⌦3(s) + 2A23(s)⌦2(s)⌦3(s)

E =

Z L

0

ds

2


A11(s)⌦

2
1(s) +A22(s)⌦

2
2(s) + C(s)⌦2

3(s)

+k(s)✏(s)2 + 2D1(s)✏(s)⌦1(s) + 2D2(s)✏(s)⌦2(s) + 2D3(s)✏(s)⌦3(s)

�



20

DNA

9
8
2
 

M
ar

k
o
 a

n
d

 S
ig

gi
a 

M
ac

ro
m

ol
ec

ul
es

, 
V

o
l.

 2
7
, N

o
. 
4,
 1

9
9
4
 

V
 

F
ig

u
re

 1
. 

S
ch

em
at

ic
 d

ia
gr

am
 o

f 
th

e 
B

-D
N

A
 m

ol
ec

ul
e.

 
T

h
e 

m
ol

ec
ul

ar
 d

ia
m

et
er

 is
 d

 =
 2

0 
A

, t
h

e 
he

lic
al

 r
ep

ea
t l

en
gt

h 
is

 1
 =

 
27

r/
w

0 
=

 3
4
 A

, c
or

re
sp

on
di

ng
 to

 a
 s

ta
ck

 of
 a

b
o
u
t 1

0
.5

 n
uc

le
ic

 a
ci

d 
b
as

es
. 

T
h
e 

nu
cl

eo
ti
de

s 
ar

e 
bo

un
d 

be
tw

ee
n 

th
e 

su
ga

r-
ph

os
ph

at
e 

ba
ck

bo
ne

 h
el

ic
es

: 
w

e 
no

te
 t

h
e 

ar
ro

w
s 

on
 t

h
e 

si
de

 v
ie

w
 (

u
p
p
er

 
p

o
rt

io
n

 o
f 

fi
g
u
re

),
 w

hi
ch

 i
n
d
ic

at
e 

th
e 

op
po

si
te

 d
ir

ec
te

d
n
es

s o
f 

th
e 

tw
o 

he
lic

es
. 

T
h
e 

w
id

e 
m

aj
or

 g
ro

ov
e 

is
 m

ar
ke

d 
“
M
”
,
 

w
hi

le
 th

e 
na

rr
ow

er
 m

in
or

 g
ro

ov
e 

is
 m

ar
ke

d 
“m

”.
 
T

h
e 

lo
w

er
 p

ar
t 

of
 t

h
e 

fi
g

u
re

 s
ho

w
s t

h
e 

en
d 

vi
ew

 o
f 

B
-D

N
A

, w
it

h
 ta

n
g
en

t t
 d

ir
ec

te
d
 o

ut
 

of
 t

h
e 

p
ag

e.
 

11
. 

E
la

st
ic

 F
re

e
 E

n
e

rg
y

 o
f 
D
N
A
 

A
. 

S
y

m
m

e
tr

y
 A

n
a
ly

si
s.

 B
-D

N
A

 m
o

le
cu

le
s2

 a
re

 ri
g

h
t-

 
h

an
d

ed
 c

h
ir

al
 r

o
d

s 
of

 c
ro

ss
-s

ec
ti

o
n

al
 d

ia
m

et
er

 d
 =

 2
1

 A
. 

A
s 
sc

h
em

at
ic

al
ly

 sh
o

w
n

 in
 F

ig
u

re
 1

, t
h

e
 p

ai
rs

 o
f 
n

u
cl

eo
ti

d
es

 
(o

cc
u

p
y

in
g

 th
e
 m

aj
o

r 
g
ro

o
v
e 

re
g

io
n

, d
en

o
te

d
 M

 i
n

 F
ig

u
re

 
1
) a

re
 a

rr
an

g
ed

 i
n

 a
 h

el
ix

 w
it

h
 a

 p
it

ch
 o

f 
ab

o
u

t 
1 

=
 3

4
 A

 
co

rr
es

p
o

n
d

in
g

 t
o

 a
 h

el
ic

al
 r

ep
ea

t 
ev

er
y

 1
0
.5

 b
as

e 
p

ai
rs

 
(b

p
).

 
W

e 
d

ef
in

e 
th

e
 m

o
le

cu
la

r 
ax

is
 (

th
e
 c

en
te

r 
of

 
th

e
 

m
o

le
cu

le
) 
to

 b
e 

d
es

cr
ib

ed
 b

y
 t

h
e
 s

p
ac

e 
cu

rv
e 

r(
s
),

 w
it

h
 s

 
b

ei
n

g
 a

rc
le

n
g

th
. 

T
h

e
 t

an
g

en
t 

t 
1
 d

r/
d

s 
th

u
s 

h
as

 u
n

it
 

le
n

g
th

. 

A
t 

an
y

 s
, 

co
n

si
d

er
 t

h
e

 p
la

n
e 

p
er

p
en

d
ic

u
la

r 
to

 t
. 

T
h

e
 

tw
o
 s

u
g

ar
-p

h
o

sp
h

at
e 

b
ac

k
b

o
n

es
 (

th
e
 tw

o
 h

el
ic

es
, d

ra
w

n
 

w
it

h
 o

p
p

o
si

n
g

 a
rr

o
w

s 
in

 F
ig

u
re

 1
) i

n
te

rs
ec

t 
th

is
 p

la
n

e 
a

t 
tw

o
 p

o
in

ts
 R

 a
n

d
 S

. 
W

e 
d

ef
in

e 
u
 t

o
 b

e 
th

e
 u

n
it

 v
ec

to
r 

in
 

th
is

 p
la

n
e 

th
a

t 
p

o
in

ts
 f

ro
m

 t
h

e
 m

o
le

cu
la

r 
ax

is
 t

o
 t

h
e
 

m
id

p
o

in
t 

of
 E

. 
A

 f
in

al
 u

n
it

 v
ec

to
r 

v
 i

s 
d

ef
in

ed
 b

y 
v
 =

 
t 

X
 
u
 s

o
 t

h
a

t 
th

e
 s

e
t 
(
u
,
 v
, 

t)
 f

o
rm

s 
a 

ri
g

h
t-

h
an

d
ed

 
co

o
rd

in
at

e 
sy

st
em

 a
t 

ea
ch

 p
o

in
t 

s.
 

It
 w

il
l 

b
e 

h
el

p
fu

l 
to

 
te

m
p

o
ra

ri
ly

 u
se

 i
n

d
ex

ed
 v

ec
to

rs
 e

(l
) 
u,
 e

(2
) =

 v
, a

n
d

 e
(3

) 

= 
t.

 

A
 g

en
er

al
 d

ef
o

rm
at

io
n

 o
f 

th
e
 m

o
le

cu
le

 t
h

a
t 

m
ai

n
ta

in
s 

t2
 =
 1

 m
ay

 b
e 

d
es

cr
ib

ed
 b

y
 i

n
fi

n
it

es
im

al
 r

o
ta

ti
o

n
s 

Q
(s

) 
of

 
th

e
 c

o
o

rd
in

at
e 

 ax
e^

:^
^^

 

d
e“

’ 

d
s 

--
 -

 
+ 

il
l 

x
 e

“
’ 

w
h

er
e 
00
 
=

 2
*/

1
=

 
0
.1

8
5
 A

-l 
d

et
er

m
in

es
 t

h
e
 h

el
ic

al
 r

ep
ea

t 
le

n
g

th
 i

n
 t

h
e
 a

b
se

n
ce

 o
f 

d
ef

o
rm

at
io

n
s.

 
W

e 
m

ay
 t

h
in

k
 o

f 
th

e
 c

o
m

p
o

n
en

ts
 O

i 
= 

il
.e

ci
) 

as
 “

st
ra

in
s”

 w
h
ic

h
 
lo

ca
ll

y
 

g
en

er
at

e 
ro

ta
ti

o
n

s 
of

 t
h

e
 c

o
o

rd
in

at
es

 a
ro

u
n

d
 e

(’
).

 If
 Q
 =

 
0

, t
h

e
 m

o
le

cu
le

 ta
k

es
 i

ts
 u

n
d

is
to

rt
ed

 c
o

n
fi

g
u

ra
ti

o
n

 s
h

o
w

n
 

in
 F

ig
u
re

 1
. 

T
h

e
 m

o
le

cu
la

r a
x

is
 r

(s
) i

s 
o

b
ta

in
ed

 f
o
r 
g

en
er

al
 

Q
 b

y
 i

n
te

g
ra

ti
n

g
 t

h
e
 t

an
g

en
t 

eq
u

at
io

n
 d

r/
d

s 
=

 e
(3

).
 

T
h

e
 i
n

te
g

ra
l 

T
w

 =
 L

/1
 +

 J 
d

s 
Q

3
/(

2
r

) is
 d

ef
in

ed
 t

o
 b

e 
th

e
 d

o
u

b
le

 h
el

ix
 “

tw
is

t”
3

 w
h

er
e 

L
 i

s 
th

e
 m

o
le

cu
le

 l
en

g
th

, 
a
n

d
 w

h
er

e 
th

e
 i

n
te

g
ra

l 
is

 f
ro

m
 s

 =
 0

 t
o

 s
 =

 L
. 

F
o

r 
a
n

 
u

n
d

is
to

rt
ed

 m
o

le
cu

le
, T

w
 =

 L
/1
, an

d
 T

w
 ju

st
 c

o
u

n
ts

 t
h

e
 

n
u

m
b

er
 o

f 
h

el
ic

al
 t

u
rn

s 
of

 l
en

g
th

 1
 a

lo
n

g
 t

h
e
 c

h
ai

n
. 

F
o

r 
a 

d
is

to
rt

ed
 c

h
ai

n
, t

h
e
 e

xc
es

s 
tw

is
t 

p
er

 h
el

ix
 r

ep
ea

t 
is

 (
T

w
 

-
 L
/l
)/
(L
/l
) 

=
 (

 Q
3

)
/

~
0

,
 

w
h

er
e 

w
e 

u
se

 t
h

e
 n

o
ta

ti
o

n
 (

Q
3

)
 
= 

L
-’J

; 
d

s 
Q

3
(
s
)
 to

 d
en

o
te

 a
n

 a
v

er
ag

e 
al

o
n

g
 t

h
e
 c

h
ai

n
 o

f 
le

n
g

th
 L

 >
> 

1.
 

S
in

ce
 w

e 
as

su
m

e 
th

a
t 
th

e
 Q

 =
 0

 s
ta

te
 is

 e
q

u
il

ib
ri

u
m

, w
e 

m
ay

 w
ri

te
 t

h
e
 f

re
e 

en
er

g
y

 f
o

r 
sm

al
l 

st
ra

in
s 

as
 a

 T
ay

lo
r 

ex
p

an
si

o
n

 i
n

 a
 a

n
d

 i
ts

 s
 d

er
iv

at
iv

es
.1

0
 T

h
e
 l
o

w
es

t 
o

rd
er

 

te
rm

s 
ar

e 

(2
) 

w
h

er
e 

w
e 

h
av

e 
in

tr
o

d
u

ce
d

 t
h

e
 m

at
ri

ce
s 

A
ij 

a
n

d
 A

ij
k
, w

h
ic

h
 

ar
e 

sy
m

m
et

ri
c 

u
n

d
er

 a
ll

 p
er

m
u

ta
ti

o
n

s 
of

 
th

ei
r 

in
d

ic
es

, 
an

d
 w

h
er

e 
th

e
 i

n
te

g
ra

l 
ru

n
s 

o
v
er

 t
h

e
 m

o
le

cu
la

r 
ax

is
 o

f 
le

n
g

th
 L

. 
If

 w
e 

ig
n

o
re

 n
u

cl
eo

ti
d

e-
se

q
u

en
ce

 d
ep

en
d

en
ce

 
of

 t
h

e
 e

la
st

ic
 p

ro
p

er
ti

es
 o

f 
th

e
 m

o
le

cu
le

 (
o

r 
if 

w
e 

re
st

ri
ct

 
o

u
r 

at
te

n
ti

o
n

 t
o

 s
y

m
m

et
ri

c 
re

p
ea

ts
 s

u
ch

 a
s 
($

i)
N

 
th

e
n

 t
h

e
 

A
 m

at
ri

ce
s 

h
av

e 
n

o
 s

 d
ep

en
d

en
ce

, 
si

n
ce

 i
n

 t
h

es
e 

co
o

rd
i-

 
n

at
es

, 
ev

er
y

 p
o

in
t 

al
o

n
g

 t
h

e
 m

o
le

cu
le

 i
n

 t
h

e
 u

n
d

is
to

rt
ed

 
st

a
te

 is
 e

q
u

iv
al

en
t.

 
W

e 
w

il
l r

ef
er

 t
o

 th
es

e 
m

at
ri

ce
s 

as
 th

e
 

“e
la

st
ic

 c
o

n
st

an
ts

”:
 t

h
ey

 m
ay

 d
ep

en
d

 o
n

 e
n

v
ir

o
n

m
en

ta
l 

fa
ct

o
rs

 (
te

m
p

er
at

u
re

, 
io

n
ic

 s
tr

en
g

th
, 

p
H

, 
et

c.
).

 
W

e 
w

il
l 

ig
n

o
re

 t
h

e
 c

o
n

st
an

t 
fr

ee
 e

n
er

g
y

 A
0
 
fo

r 
th

e
 r

em
ai

n
d

er
 o

f 
th

is
 p

ap
er

. 

T
h

e
 s

e
c

o
n

d
-o

rd
e

r 
m

a
tr

ix
 h

a
s 

si
x

 i
n

d
e

p
e

n
d

e
n

t 
co

m
p

o
n

en
ts

: 
A

l
l
, 

A
22

, 
A

3
3
, 

A
1
2
, 

A
13

9 
a
n

d
 A

2
3
. 

W
e 

no
w

 
sh

o
w

 h
ow

 s
y

m
m

et
ri

es
 m

ak
e 

so
m

e 
of

 t
h

es
e 

co
m

p
o

n
en

ts
 

v
an

is
h

. 
N

o
te

 t
h

a
t 

ro
ta

ti
o

n
 b

y
 1

80
’ 

ar
o

u
n

d
 t

h
e
 v

ec
to

r 
u
 

is
 a

 s
y

m
m

et
ry

 o
f 

th
e
 u

n
d

is
to

rt
ed

 m
o

le
cu

le
 (

se
e 

F
ig

u
re

 1
).

 
N

ow
 c

o
n

si
d

er
 a

n
 in

fi
n

it
es

im
al

 s
eg

m
en

t 
of

 l
en

g
th

 d
s 

fr
o

m
 

s 
=

 -
d

s/
2

 
to

 d
s/

2
, 

w
it

h
 u

n
if

o
rm

 s
tr

ai
n

 Q
 =

 (
0
1
,
 
02
, O

S
).

 
R

o
ta

ti
o

n
 o

f 
th

is
 s

eg
m

en
t 

b
y

 1
80

’ 
ar

o
u

n
d

 u
(s

 =
 0

) 
y

ie
ld

s 
p

re
ci

se
ly

 t
h

e
 s

eg
m

en
t 

co
n

fi
g

u
ra

ti
o

n
 w

it
h

 u
n

if
o

rm
 s

tr
ai

n
 

il’
 =

 (
4

1
,

 Qz
, O

3
).

 
T

h
er

ef
o

re
 c

o
n

fi
g

u
ra

ti
o

n
s 
D
 a

n
d

 D
’ h

av
e 

th
e
 s

am
e 

fr
ee

 e
n

er
g

y
, 

in
d

ic
at

in
g

 t
h

a
t 

A
12

 
=

 A
1
3
 
=

 0
.l

’ 

W
e 

n
o

te
 t

h
a

t 
ro

ta
ti

o
n

s 
b

y
 1

80
’ 

ar
o

u
n

d
 e

it
h

er
 t

(0
) 

o
r 

v
(0

) 
d

o
 n

o
t 

ta
k

e
 o

u
r 

in
fi

n
it

es
im

al
 d

is
to

rt
ed

 s
eg

m
en

t 
to

 a
 

co
n

fi
g

u
ra

ti
o

n
 w

it
h

 tr
an

sf
o

rm
ed

 D
 b

ec
au

se
 th

es
e 

o
p

er
at

io
n

s 
a
re

 n
o

t s
y

m
m

et
ri

es
 o

f 
th

e
 u

n
d

is
to

rt
ed

 m
o
le

cu
le

. 
T

h
e
 la

ck
 

of
 s

y
m

m
et

ry
 u

n
d

er
 t

h
es

e 
o

p
er

at
io

n
s 

is
 d

u
e
 to

 th
e
 e

x
is

te
n

ce
 

of
 t

w
o

 d
is

ti
n

ct
 r
eg

io
n

s 
of

 t
h

e
 D

N
A

 s
u

rf
ac

e 
b

o
u

n
d

ed
 b

y
 t
h

e
 

tw
o

 h
el

ic
es

, m
ar

k
ed

 “
M

” a
n

d
 “

m
” 

in
 F

ig
u

re
 1

. 
T

h
es

e 
tw

o
 

re
g
io

n
s 
ar

e 
re

fe
rr

ed
 t
o

 a
s t

h
e
 ”

m
aj

o
r g

ro
o
v
e”

 a
n

d
 th

e
 “

m
in

o
r 

g
ro

o
v

e”
, r

es
p

ec
ti

v
el

y
. 

T
h

e
 m

in
o

r 
g
ro

o
v
e 

is
 n

ar
ro

w
, w

h
il

e 
th

e
 m

aj
o

r 
g
ro

o
v
e 

is
 w

id
er

, 
fi

ll
ed

 u
p

 b
y
 t

h
e
 n

u
cl

eo
ti

d
es

 
w

h
ic

h
 a

re
 b

o
u

n
d

 b
et

w
ee

n
 th

e
 b

ac
k

b
o

n
es

. 
T

h
e
 tw

o
 g

ro
o
v
es

 
ar

e 
al

so
 d

is
ti

n
g

u
is

h
ed

 b
y

 t
h

e
 o

p
p

o
si

te
 d

ir
ec

te
d

n
es

s 
of

 t
h

e
 

su
g

ar
-p

h
o

sp
h

at
e 

b
ac

k
b

o
n

es
 o

n
 t

h
ei

r 
b

o
u

n
d

ar
ie

s.
 

A
 r

o
- 

ta
ti

o
n

 o
f 

th
e
 u

n
d

is
to

rt
ed

 m
o

le
cu

le
 a

ro
u

n
d

 e
it

h
er

 t
 o

r 
v
 b

y
 

1
8
0
” 

ex
ch

an
g

es
 t

h
e
 m

aj
o

r 
an

d
 m

in
o

r 
g
ro

o
v
es

. 

C
h

ir
al

 p
o

ly
m

er
s 

w
it

h
o

u
t 

th
is

 p
ar

ti
cu

la
r 

b
ro

k
en

 s
y
m

- 
m

et
ry

 (
e.

g
. a

 d
o

u
b

le
-h

el
ix

 p
o

ly
m

er
 w

it
h

 i
n

d
is

ti
n

g
u

is
h

ab
le

 
b

ac
k

b
o

n
es

, a
n

d
 th

er
ef

o
re

 in
v

ar
ia

n
t u

n
d

er
 r

o
ta

ti
o

n
 b

y 
18

0’
 

ab
o

u
t 
t)

 w
il

l 
h

av
e 

A
2
3
 
=

 0
. 

F
in

al
ly

, 
o

n
e 

sh
o

u
ld

 n
o

te
 t

h
a

t 
re

fl
ec

ti
o

n
s 

(u
se

fu
l 

in
 d

er
iv

at
io

n
 o

f 
th

e
 e

la
st

ic
 e

n
er

g
y

 o
f 

th
in

 r
o

d
s 

w
it

h
 r

ef
le

ct
io

n
 s

y
m

m
et

ri
es

lO
 c
an

n
o

t 
b

e 
u

se
d

 t
o

 
an

al
y

ze
 a

 c
h

ir
al

 r
o

d
 s

u
ch

 a
s 

D
N

A
. 

T
h

u
s,

 th
e
 n

o
n

ze
ro

 e
le

m
en

ts
 o

f 
th

e
n

 =
 2

 e
la

st
ic

 c
o

n
st

an
t 

m
at

ri
x

 a
re

 A
ll

, A
2
2
, 
A

3
3
, 
a
n

d
 A

2
3
. 

P
h

y
si

ca
ll

y
, A

1
1
 
an

d
 A

2
2
 

ar
e 

(d
is

ti
n

ct
) 

b
en

d
in

g
 c

o
n

st
an

ts
 a

ss
o

ci
at

ed
 w

it
h

 b
en

d
s 

lo
ca

ll
y 

in
 th

e
 p

la
n

es
 p

er
p

en
d

ic
u

la
r 

to
 u
 a

n
d

 v
, r

es
p

ec
ti

v
el

y
. 

W
e 

ex
p

ec
t 

th
es

e 
co

n
st

an
ts

 t
o

 b
e 

ap
p

ro
x

im
at

el
y

 e
q

u
al

 t
o

 
th

e
 b

en
d

 p
er

si
st

en
ce

 l
en

g
th

 ~
5

0
0

 
A

.4
 T

h
e
 c

o
n

st
an

t A
3
3
 i

s 
ju

st
 t

h
e

 t
w

is
t 

ri
g

id
it

y
, 

a
n

d
 i

s 
ro

u
g

h
ly

 e
q

u
al

 t
o

 t
h

e
 t

w
is

t 
p

er
si

st
en

ce
 l

en
g

th
 2

5
0

0
 A

.4
 

In
 a

d
d

it
io

n
 t

o
 t
h

e
 b

en
d

in
g

 r
ig

id
it

ie
s 

a
n

d
 t
w

is
t 

ri
g

id
it

y
, 

w
e 

h
av

e 
a 

co
u

p
li

n
g

 A
2
3
 o

f 
b

en
d

s 
ab

o
u

t 
th

e
 lo

ca
l v

 a
x

is
 a

n
d

 
th

e
 tw

is
t 
in

 th
e
 q

u
ad

ra
ti

c 
(O

(Q
2

))
 

el
as

ti
c 

th
eo

ry
. 

It
s 

o
v

er
al

l 
m

ag
n

it
u

d
e 

sh
o

u
ld

 a
ls

o
 b

e 
co

n
tr

o
ll

ed
 b

y
 th

e
 d

eg
re

e 
b
y
 w

h
ic

h
 

ro
ta

ti
o

n
s 

o
f 

th
e
 m

o
le

cu
le

 b
y
 1
80
° 

ab
o

u
t 

v
 a

n
d

 t
 a

re
 n

o
t 

sy
m

m
et

ri
es

. 
F

o
r 

D
N

A
, 

th
es

e 
o

p
er

at
io

n
s 

es
se

n
ti

al
ly

 e
x
- 

ch
an

g
e 

th
e
 m

aj
o

r a
n

d
 m

in
o

r g
ro

o
v
es

 o
f t

h
e

 m
o

le
cu

le
, w

h
ic

h
 

ar
e 

ra
th

e
r 
d

if
fe

re
n

t 
in

 s
tr

u
ct

u
re

: 
w

e 
th

u
s 

ex
p

ec
t A

2
3
 =

A
i,

. 

~e3
~e1

~e2

982 Marko and Siggia Macromolecules, Vol. 27, No. 4, 1994 

V 

Figure 1. Schematic diagram of the B-DNA molecule. The 
molecular diameter is d = 20 A, the helical repeat length is 1 = 
27r/w0 = 34 A, corresponding to a stack of about 10.5 nucleic acid 
bases. The nucleotides are bound between the sugar-phosphate 
backbone helices: we note the arrows on the side view (upper 
portion of figure), which indicate the opposite directedness of 
the two helices. The wide major groove is marked “M”, while the 
narrower minor groove is marked “m”. The lower part of the 
figure shows the end view of B-DNA, with tangent t directed out 
of the page. 

11. Elastic Free Energy of DNA 

A. Symmetry Analysis. B-DNA molecules2 are right- 
handed chiral rods of cross-sectional diameter d = 21 A. 
As schematically shown in Figure 1, the pairs of nucleotides 
(occupying the major groove region, denoted M in Figure 
1) are arranged in a helix with a pitch of about 1 = 34 A 
corresponding to a helical repeat every 10.5 base pairs 
(bp). We define the molecular axis (the center of the 
molecule) to be described by the space curve r(s), with s 
being arclength. The tangent t 1 dr/ds thus has unit 
length. 

At  any s, consider the plane perpendicular to t. The 
two sugar-phosphate backbones (the two helices, drawn 
with opposing arrows in Figure 1) intersect this plane at  
two points R and S. We define u to be the unit vector in 
this plane that points from the molecular axis to the 

midpoint of E. A final unit vector v is defined by v = 
t X u so that the set (u, v, t) forms a right-handed 
coordinate system at  each point s. It will be helpful to 
temporarily use indexed vectors e(l) u, e(2) = v, and e(3) 

= t. 
A general deformation of the molecule that maintains 

t2 = 1 may be described by infinitesimal rotations Q(s)  of 
the coordinate  axe^:^^^ 

de“’ 

ds 
-- - + ill x e“’ 

where 00 = 2* /1= 0.185 A-l determines the helical repeat 
length in the absence of deformations. We may think of 
the components Oi = il.eci) as “strains” which locally 
generate rotations of the coordinates around e(’). If Q = 
0, the molecule takes its undistorted configuration shown 
in Figure 1. The molecular axis r(s) is obtained for general 
Q by integrating the tangent equation dr/ds = e(3). 

The integral T w  = L/1 + J ds Q 3 / ( 2 r )  is defined to be 
the double helix “twist”3 where L is the molecule length, 
and where the integral is from s = 0 to s = L. For an 
undistorted molecule, T w  = L/1, and Tw just counts the 
number of helical turns of length 1 along the chain. For 
a distorted chain, the excess twist per helix repeat is (Tw 
- L/l)/(L/l) = ( Q 3 ) / ~ 0 ,  where we use the notation ( Q 3 )  = 
L-’J; ds Q3(s) to denote an average along the chain of 
length L >> 1. 

Since we assume that the Q = 0 state is equilibrium, we 
may write the free energy for small strains as a Taylor 
expansion in a and its s derivatives.10 The lowest order 

terms are 

(2) 

where we have introduced the matrices Aij and Aijk, which 
are symmetric under all permutations of their indices, 
and where the integral runs over the molecular axis of 
length L. If we ignore nucleotide-sequence dependence 
of the elastic properties of the molecule (or if we restrict 
our attention to symmetric repeats such as ($i)N then the 
A matrices have no s dependence, since in these coordi- 
nates, every point along the molecule in the undistorted 
state is equivalent. We will refer to these matrices as the 
“elastic constants”: they may depend on environmental 
factors (temperature, ionic strength, pH, etc.). We will 
ignore the constant free energy A0 for the remainder of 
this paper. 

The  second-order matrix has six independent 
components: All ,  A22, A33, A12, A139 and A23. We now 
show how symmetries make some of these components 
vanish. Note that rotation by 180’ around the vector u 
is a symmetry of the undistorted molecule (see Figure 1). 
Now consider an infinitesimal segment of length ds from 
s = -ds/2 to ds/2, with uniform strain Q = (01, 02, OS).  
Rotation of this segment by 180’ around u(s = 0) yields 
precisely the segment configuration with uniform strain 
il’ = ( 4 1 ,  Qz, O3). Therefore configurations D and D’ have 
the same free energy, indicating that A12 = A13 = 0.l’ 

We note that rotations by 180’ around either t(0) or 
v(0) do not take our infinitesimal distorted segment to a 
configuration with transformed D because these operations 
are not symmetries of the undistorted molecule. The lack 
of symmetry under these operations is due to the existence 
of two distinct regions of the DNA surface bounded by the 
two helices, marked “M” and “m” in Figure 1. These two 
regions are referred to as the ”major groove” and the “minor 
groove”, respectively. The minor groove is narrow, while 
the major groove is wider, filled up by the nucleotides 
which are bound between the backbones. The two grooves 
are also distinguished by the opposite directedness of the 
sugar-phosphate backbones on their boundaries. A ro- 
tation of the undistorted molecule around either t or v by 
180” exchanges the major and minor grooves. 

Chiral polymers without this particular broken sym- 
metry (e.g. a double-helix polymer with indistinguishable 
backbones, and therefore invariant under rotation by 180’ 
about t) will have A23 = 0. Finally, one should note that 
reflections (useful in derivation of the elastic energy of 
thin rods with reflection symmetrieslO cannot be used to 
analyze a chiral rod such as DNA. 

Thus, the nonzero elements of then = 2 elastic constant 
matrix are All ,  A22, A33, and A23. Physically, A11 and A22 

are (distinct) bending constants associated with bends 
locally in the planes perpendicular to u and v, respectively. 
We expect these constants to be approximately equal to 
the bend persistence length ~ 5 0 0  A.4 The constant A33 is 
just the twist rigidity, and is roughly equal to the twist 
persistence length 2500 A.4 

In addition to the bending rigidities and twist rigidity, 
we have a coupling A23 of bends about the local v axis and 
the twist in the quadratic (O(Q2)) elastic theory. Its overall 
magnitude should also be controlled by the degree by which 
rotations of the molecule by 180° about v and t are not 
symmetries. For DNA, these operations essentially ex- 
change the major and minor grooves of the molecule, which 
are rather different in structure: we thus expect A23 =Ai,. 
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For simplicity we ignore 
DNA sequence dependence 
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Figure 1. Schematic diagram of the B-DNA molecule. The 
molecular diameter is d = 20 A, the helical repeat length is 1 = 
27r/w0 = 34 A, corresponding to a stack of about 10.5 nucleic acid 
bases. The nucleotides are bound between the sugar-phosphate 
backbone helices: we note the arrows on the side view (upper 
portion of figure), which indicate the opposite directedness of 
the two helices. The wide major groove is marked “M”, while the 
narrower minor groove is marked “m”. The lower part of the 
figure shows the end view of B-DNA, with tangent t directed out 
of the page. 

11. Elastic Free Energy of DNA 

A. Symmetry Analysis. B-DNA molecules2 are right- 
handed chiral rods of cross-sectional diameter d = 21 A. 
As schematically shown in Figure 1, the pairs of nucleotides 
(occupying the major groove region, denoted M in Figure 
1) are arranged in a helix with a pitch of about 1 = 34 A 
corresponding to a helical repeat every 10.5 base pairs 
(bp). We define the molecular axis (the center of the 
molecule) to be described by the space curve r(s), with s 
being arclength. The tangent t 1 dr/ds thus has unit 
length. 

At  any s, consider the plane perpendicular to t. The 
two sugar-phosphate backbones (the two helices, drawn 
with opposing arrows in Figure 1) intersect this plane at  
two points R and S. We define u to be the unit vector in 
this plane that points from the molecular axis to the 

midpoint of E. A final unit vector v is defined by v = 
t X u so that the set (u, v, t) forms a right-handed 
coordinate system at  each point s. It will be helpful to 
temporarily use indexed vectors e(l) u, e(2) = v, and e(3) 

= t. 
A general deformation of the molecule that maintains 

t2 = 1 may be described by infinitesimal rotations Q(s)  of 
the coordinate  axe^:^^^ 

de“’ 

ds 
-- - + ill x e“’ 

where 00 = 2* /1= 0.185 A-l determines the helical repeat 
length in the absence of deformations. We may think of 
the components Oi = il.eci) as “strains” which locally 
generate rotations of the coordinates around e(’). If Q = 
0, the molecule takes its undistorted configuration shown 
in Figure 1. The molecular axis r(s) is obtained for general 
Q by integrating the tangent equation dr/ds = e(3). 

The integral T w  = L/1 + J ds Q 3 / ( 2 r )  is defined to be 
the double helix “twist”3 where L is the molecule length, 
and where the integral is from s = 0 to s = L. For an 
undistorted molecule, T w  = L/1, and Tw just counts the 
number of helical turns of length 1 along the chain. For 
a distorted chain, the excess twist per helix repeat is (Tw 
- L/l)/(L/l) = ( Q 3 ) / ~ 0 ,  where we use the notation ( Q 3 )  = 
L-’J; ds Q3(s) to denote an average along the chain of 
length L >> 1. 

Since we assume that the Q = 0 state is equilibrium, we 
may write the free energy for small strains as a Taylor 
expansion in a and its s derivatives.10 The lowest order 

terms are 

(2) 

where we have introduced the matrices Aij and Aijk, which 
are symmetric under all permutations of their indices, 
and where the integral runs over the molecular axis of 
length L. If we ignore nucleotide-sequence dependence 
of the elastic properties of the molecule (or if we restrict 
our attention to symmetric repeats such as ($i)N then the 
A matrices have no s dependence, since in these coordi- 
nates, every point along the molecule in the undistorted 
state is equivalent. We will refer to these matrices as the 
“elastic constants”: they may depend on environmental 
factors (temperature, ionic strength, pH, etc.). We will 
ignore the constant free energy A0 for the remainder of 
this paper. 

The  second-order matrix has six independent 
components: All ,  A22, A33, A12, A139 and A23. We now 
show how symmetries make some of these components 
vanish. Note that rotation by 180’ around the vector u 
is a symmetry of the undistorted molecule (see Figure 1). 
Now consider an infinitesimal segment of length ds from 
s = -ds/2 to ds/2, with uniform strain Q = (01, 02, OS).  
Rotation of this segment by 180’ around u(s = 0) yields 
precisely the segment configuration with uniform strain 
il’ = ( 4 1 ,  Qz, O3). Therefore configurations D and D’ have 
the same free energy, indicating that A12 = A13 = 0.l’ 

We note that rotations by 180’ around either t(0) or 
v(0) do not take our infinitesimal distorted segment to a 
configuration with transformed D because these operations 
are not symmetries of the undistorted molecule. The lack 
of symmetry under these operations is due to the existence 
of two distinct regions of the DNA surface bounded by the 
two helices, marked “M” and “m” in Figure 1. These two 
regions are referred to as the ”major groove” and the “minor 
groove”, respectively. The minor groove is narrow, while 
the major groove is wider, filled up by the nucleotides 
which are bound between the backbones. The two grooves 
are also distinguished by the opposite directedness of the 
sugar-phosphate backbones on their boundaries. A ro- 
tation of the undistorted molecule around either t or v by 
180” exchanges the major and minor grooves. 

Chiral polymers without this particular broken sym- 
metry (e.g. a double-helix polymer with indistinguishable 
backbones, and therefore invariant under rotation by 180’ 
about t) will have A23 = 0. Finally, one should note that 
reflections (useful in derivation of the elastic energy of 
thin rods with reflection symmetrieslO cannot be used to 
analyze a chiral rod such as DNA. 

Thus, the nonzero elements of then = 2 elastic constant 
matrix are All ,  A22, A33, and A23. Physically, A11 and A22 

are (distinct) bending constants associated with bends 
locally in the planes perpendicular to u and v, respectively. 
We expect these constants to be approximately equal to 
the bend persistence length ~ 5 0 0  A.4 The constant A33 is 
just the twist rigidity, and is roughly equal to the twist 
persistence length 2500 A.4 

In addition to the bending rigidities and twist rigidity, 
we have a coupling A23 of bends about the local v axis and 
the twist in the quadratic (O(Q2)) elastic theory. Its overall 
magnitude should also be controlled by the degree by which 
rotations of the molecule by 180° about v and t are not 
symmetries. For DNA, these operations essentially ex- 
change the major and minor grooves of the molecule, which 
are rather different in structure: we thus expect A23 =Ai,. 
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Magnetic tweezers
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Twist-stretch coupling

attachment points at both ends suitable for MTs torque mea-
surements by annealing two complementary single strands that
carry multiple biotin or digoxigenin labels at their respective 5′
ends (Fig. 1 C and D and Materials and Methods). The function-
alized single-stranded constructs were generated by carrying out
initial in vitro transcription reactions that incorporated labeled
nucleotides and stalled at a missing fourth nucleotide (Fig. 1 C and
D). After purification, transcription reactions were restarted and
completed in the presence of all four unlabeled nucleotides. The
final annealed 4.2-kbp dsRNA constructs can be tethered between
an anti-digoxigenin–coated flow cell surface and streptavidin-
coated magnetic beads for manipulation in the MTs (Fig. 1E).

Force–Extension Response of dsRNA. Using the ability of MTs to
exert precisely calibrated stretching forces (18, 19) (Materials and
Methods and SI Appendix, Fig. S1), we first probed the force–
extension response of dsRNA. The stretching behavior of
torsionally relaxed dsRNA at low forces (F < 5 pN) is well-
described by the (inextensible) worm-like chain (WLC) model
(20, 21) (SI Appendix, Fig. S2A). From fits of the WLC model, we
determined the contour length LC = 1.15 ± 0.02 μm and the
bending persistence length ARNA = 57 ± 2 nm in the presence of
100 mM monovalent salt (SI Appendix, Fig. S2A), in good

agreement with the expected length (1.16 μm, assuming 0.28 nm
per bp) (22, 23) and previous single-molecule stretching experi-
ments (15, 16). ARNA decreases with increasing ionic strength
(16) (SI Appendix, Fig. S1), in a manner well-described by models
that partition it into an electrostatic and a salt-independent
component (SI Appendix, Fig. S1K). Taking into account the salt
dependence, ARNA is consistently ∼20% larger than ADNA at the
same ionic strength (SI Appendix, Fig. S1).
Stretching dsRNA at forces >10 pN, we observed elastic

stretching that can be fit by the extensible WLCmodel (21, 24) up
to∼40 pN (SI Appendix, Fig. S2B) and an overstretching transition
for torsionally unconstrainedmolecules (SI Appendix, Fig. S2C), in
agreement with previous single-molecule studies (16, 17). From
fits of the extensibleWLCmodel, we found SRNA = 350 ± 100 pN,
about threefold lower than SDNA (SI Appendix, Fig. S1G and Table
S1). Our value for the SRNA is in reasonable agreement with, al-
though slightly lower than, the value of SRNA∼500 pN determined
in single-molecule optical tweezers measurements (25), possibly
due to subtle differences between magnetic and optical tweezers
experiments. For torsionally unconstrained molecules, the over-
stretching transition is marked by a rapid increase in extension to
1.8 ± 0.1 times the crystallographic length over a narrow force
range at F = 54 ± 5 pN (SI Appendix, Fig. S2C). In contrast, using
our torsionally constrained dsRNA, we observed enthalpic
stretching beyond the contour length but no sharp overstretching
transition up to F = 75 pN (SI Appendix, Fig. S2D). The increased
resistance to overstretching for torsionally constrained dsRNA
compared with torsionally unconstrained dsRNA is qualitatively
similar to the behavior of dsDNA (26–28) (SI Appendix, Fig. S1H
and I). The dependence of the overstretching transition for
dsRNA on torsional constraint and on salt (SI Appendix, Fig. S2C
and D) suggests that it might involve melting as well as a tran-
sition to a previously unidentified conformation that we name
“S-RNA,” in analogy to S-DNA (SI Appendix, Fig. S1).

Twist Response of dsRNA. We used the ability of MTs to control
the rotation of the magnetic beads (18) to map out the response
of dsRNA upon over- and underwinding at constant stretching
forces. Starting with a torsionally relaxed molecule (corresponding
to zero turns in Fig. 2), the tether extension remains initially ap-
proximately constant upon overwinding (corresponding to in-
creasing linking number) until the molecule reaches a buckling
point (Fig. 2A, dashed lines and SI Appendix, Fig. S3). Further
overwinding beyond the buckling point leads to a rapid linear de-
crease of the tether extension with an increasing number of turns,
due to the formation of plectonemes. The critical supercoiling
density σbuck for buckling increases with stretching force and agrees
within experimental error with the values found for DNA and with
a mechanical model originally developed for supercoiled DNA (9)
(Fig. 2B and SI Appendix,Materials and Methods). The decrease in
extension per added turn in the plectonemic regime provides
a measure for the size of the plectonemes and decreases with in-
creasing stretching force (Fig. 2C). The extension vs. turns slopes
for dsRNA are within experimental error of those for dsDNA, and
are in approximate agreement with the mechanical model for
supercoiling (Fig. 2C). Underwinding the dsRNA tether at
stretching forces F < 1 pN gives rise to a buckling response similar
to what is observed upon overwinding and the formation of neg-
atively supercoiled plectonemes. In contrast, for F > 1 pN, the
over- and underwinding response is asymmetric and the tether
extension remains approximately constant upon underwinding
(Fig. 2A), likely due to melting of the double helix, as has been
observed for DNA (29) (SI Appendix, Fig. S3 K and L).
If unwinding at F > 1 pN is continued for several hundred

turns, we eventually observe another structural transition marked
by an abrupt change in the extension vs. turns response at a
supercoiling density of σ ∼ –1.9 (Fig. 2D). We term this previously
unidentified highly underwound and left-handed RNA confor-
mation with a helicity of –12.6 bp per turn “L-RNA,” in analogy to
what has been observed for highly underwound DNA (11) (SI
Appendix, Fig. S3L). We note that the helicity and elongation that

Fig. 1. Construction of a torsionally constrained double-stranded RNA for
magnetic tweezers measurements. (A) Comparison of A-form dsRNA [Protein
Data Bank (PDB) ID code 1RNA (57)] and B-form dsDNA [PDB ID code 2BNA
(58)]. (B) Cartoon of the elastic deformations of dsRNA: bending, stretching, and
twisting. (C) Schematic of the protocol to generate double-stranded RNA
molecules with multiple attachment points at both ends. Initial transcription
reactions incorporate multiple biotinylated adenosine (green circles) or digoxi-
genated uracil (yellow squares) bases and stall at a fourth nucleotide. After
purification, transcription reactions are restarted and complete the 4.2-kbp
transcripts. In the final step, thepurifiedRNA strands are annealed to yield dsRNA
with chemical modifications at each end. (D) Schematic of the two DNA tem-
plates used to generate dsRNA with multiple labels at both ends. (E) Cartoon of
a magnetic tweezers experiment on dsRNA (not to scale). A streptavidin-coated
magnetic bead is tethered to an anti-digoxigenin–coated surface by a dsRNA
molecule with multiple attachment points at both ends. A surface-attached ref-
erence bead is tracked simultaneously for drift correction. Permanent magnets
above the flow cell are used to exert a stretching force F and to control the ro-
tation of themagnetic bead via its preferred axism0. N, north pole; S, south pole.

Lipfert et al. PNAS | October 28, 2014 | vol. 111 | no. 43 | 15409

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

J. Lipfert et al., PNAS 111, 15408 (2014)

We determined the effective twist persistence length CRNA
from the slopes in the linear torque–response regime, where
the torque after N turns is 2π·N·kBT·CRNA/LC (where kB is
Boltzmann’s constant and T is the absolute temperature; Fig. 3C,
solid colored lines). CRNA increases with increasing force and
is 99 ± 5 nm at F = 6.5 pN. Compared with dsDNA, CRNA is
similar to but slightly lower than CDNA, and both quantities
exhibit similar force dependence, in qualitative agreement
with a model valid in the high force limit (37) (Fig. 3F and SI
Appendix, Materials and Methods). Combining the results from
stretching and torque measurements at different forces, we de-
lineate the phase diagram for dsRNA as a function of applied
force and torque (Fig. 3G).

Twist–Stretch Coupling. The linear elastic rod model has a fourth
parameter, D, that describes the coupling between twist and
stretch. We measured the twist–stretch coupling for dsRNA by
monitoring changes in the extension upon over- and under-
winding while holding the molecule at constant stretching forces
that are large enough to suppress bending and writhe fluctua-
tions (38, 39) (Fig. 4A). We found that for small deformations (in
the range –0.02 < σ < 0.025, which excludes the melting, buck-
ling, and A-to-P–form transitions) dsRNA shortens upon over-
winding, with a slope of (d∆L/dN)RNA = –0.85 ± 0.04 nm per
turn, independent of stretching force in the range F = 4–8 pN
(Fig. 4 B and C). This is in stark contrast to dsDNA, which
we observed to lengthen upon overwinding by (d∆L/dN)DNA =
+0.44 ± 0.1 nm per turn (Fig. 4 B and C), in good agreement
with previous measurements (38–41). Our measurements suggest
that dsRNA has a positive twist–stretch coupling equal to DRNA =
–SRNA·(d∆L/dN)RNA/(2π·kBT) = +11.5 ± 3.3 (assuming SRNA = 350
pN; SI Appendix,Materials and Methods), in contrast to the negative
twist–stretch coupling of dsDNA (38–41), DDNA = –17 ± 5.

Dynamics at the Buckling Transition. Next, we investigated the dy-
namics at the buckling transition. When a dsRNA was twisted
close to the critical supercoiling density, we observed jumps in the
extension traces, corresponding to transitions between the pre-
and postbuckling states (Fig. 5A). Recording extension traces at
a fixed number of applied turns, the population of the post-
buckling state increases whereas the population of the prebuck-
ling state decreases with an increasing number of applied turns
(Fig. 5A). After selecting a threshold to separate the pre- and
postbuckling states (SI Appendix, Fig. S5 A–D), the pre- and
postbuckling populations and dwell time distributions can be
quantified. The dependence of the postbuckling population on
the number of applied turns is well-described by a two-state
model (42) (Fig. 5B and SI Appendix,Materials and Methods) from
which we determined the number of turns converted from twist to
writhe during the buckling transition ΔNb ∼4 turns (SI Appendix,
Fig. S5L). The dwell times in the pre- and postbuckling state are
exponentially distributed (SI Appendix, Fig. S5 E–G), and their
mean residence times depend exponentially on the number of
applied turns (Fig. 5C). We determined the overall characteristic
buckling times τbuck, that is, the dwell times at the point where the
pre- and postbuckling states are equally populated, from fits of
the exponential dependence of the mean residence times on the
number of applied turns (Fig. 5C and SI Appendix, Materials and
Methods). τbuck increases with increasing salt concentration and
stretching force (Fig. 5E). The force dependence of τbuck is well-
described by an exponential model (solid lines in Fig. 5E), τbuck =
τbuck,0·exp(d·F/kBT); from the fit we obtain the buckling time at
zero force τbuck,0 = 13 and 52 ms and the distance to the transition
state along the reaction coordinate d = 5.1 and 5.5 nm for the 100
and 320 mM monovalent salt data, respectively.
Interestingly, comparing τbuck for dsRNA with dsDNA of

similar length under otherwise identical conditions (Fig. 5 D and
E), we found that the buckling dynamics of dsRNA are much
slower than those of dsDNA, with the characteristic buckling
times differing by at least two orders of magnitude. For example,

we found τbuck = 10.1 ± 3.7 s for dsRNA compared with ∼0.05 s
for dsDNA at F = 4 pN and 320 mM salt (Fig. 5E).

Discussion
Our experiments are consistent with dsRNA behaving as a linear
elastic rod for small deformations from the A-form helix, and
allow us to empirically determine all four elastic constants of
the model: A, S, C, and D (SI Appendix, Table S1). To go beyond
the isotropic rod model, toward a microscopic interpretation
of the results, we describe a “knowledge-based” base pair-level
model that considers the six base-step parameters slide, shift,
rise, twist, roll, and tilt (SI Appendix, Fig. S6 and Materials and
Methods; a full description of modeling for a blind prediction
challenge is given in ref. 43). Average values and elastic cou-
plings of the base-step parameters for dsRNA and dsDNA from
a database of nucleic acid crystal structures are used in a Monte
Carlo protocol to simulate stretching and twisting experiments (SI
Appendix, Materials and Methods). This base pair-level model
correctly predicts the bending persistence length for dsRNA to be
slightly larger than for dsDNA, SRNA to be at least a factor of two
smaller than SDNA, and C to be of similar magnitude for dsRNA
and dsDNA (SI Appendix, Table S2). The significant difference in
stretch modulus S between dsRNA and dsDNA can be explained
from the “spring-like” path of the RNA base pairs’ center axis,
compared with dsDNA (SI Appendix, Fig. S6B). Beyond the
agreement with experiment in terms of ratios of dsRNA and
dsDNA properties, the absolute values ofA, S, andC all fall within
a factor of two of our experimental results for both molecules.
Whereas the values for A, S, and C are fairly similar for

dsRNA and dsDNA, our experiments revealed an unexpected
difference in the sign of the twist–stretch coupling D for dsRNA
and dsDNA. The twist–stretch coupling has important biological

Fig. 4. Double-stranded RNA has a positive twist–stretch coupling. (A) Time
traces of the extension of a dsRNA tether held at F = 7 pN and underwound by
−6 or overwound by 12 turns. Raw traces (120 Hz) are in red and filtered data
(10 Hz) are in gray. The data demonstrate that dsRNA shortens when over-
wound. (B) Changes in tether extension upon over- and underwinding at F = 7
pN of a 4.2-kbp dsRNA and a 3.4-kbp dsDNA tether. Linear fits to the data
(lines) indicate that the dsDNA lengthens by ∼0.5 nm per turn, whereas the
dsRNA shortens by ∼0.8 nm per turn upon overwinding. Symbols denote the
mean and standard deviation for four measurements on the same molecule.
(C) Slopes upon overwinding of dsRNA and dsDNA tethers as a function of F
(mean and SEM of at least four molecules in TE + 100 mM NaCl buffer). Data
of Lionnet et al. (38) are shown as a black line with the uncertainty indicated
in gray; data from Gore et al. (39) are shown as a black square. The red line is
the average over all dsRNA data. (D) Models of oppositely twisting 50-bp
segments of dsDNA (Left) and dsRNA (Right) under 0 and 40 pN stretching
forces, derived from base pair-level models consistent with experimental
measurements (SI Appendix, Table S6 and Materials and Methods). The or-
ange bars represent the long axis of the terminal base pair.
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Response of DNA to external forces and torques
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Response of DNA to external forces and torques
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Tension and torque along DNA backbone
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J. Lipfert et al., PNAS 111, 15408 (2014)

We determined the effective twist persistence length CRNA
from the slopes in the linear torque–response regime, where
the torque after N turns is 2π·N·kBT·CRNA/LC (where kB is
Boltzmann’s constant and T is the absolute temperature; Fig. 3C,
solid colored lines). CRNA increases with increasing force and
is 99 ± 5 nm at F = 6.5 pN. Compared with dsDNA, CRNA is
similar to but slightly lower than CDNA, and both quantities
exhibit similar force dependence, in qualitative agreement
with a model valid in the high force limit (37) (Fig. 3F and SI
Appendix, Materials and Methods). Combining the results from
stretching and torque measurements at different forces, we de-
lineate the phase diagram for dsRNA as a function of applied
force and torque (Fig. 3G).

Twist–Stretch Coupling. The linear elastic rod model has a fourth
parameter, D, that describes the coupling between twist and
stretch. We measured the twist–stretch coupling for dsRNA by
monitoring changes in the extension upon over- and under-
winding while holding the molecule at constant stretching forces
that are large enough to suppress bending and writhe fluctua-
tions (38, 39) (Fig. 4A). We found that for small deformations (in
the range –0.02 < σ < 0.025, which excludes the melting, buck-
ling, and A-to-P–form transitions) dsRNA shortens upon over-
winding, with a slope of (d∆L/dN)RNA = –0.85 ± 0.04 nm per
turn, independent of stretching force in the range F = 4–8 pN
(Fig. 4 B and C). This is in stark contrast to dsDNA, which
we observed to lengthen upon overwinding by (d∆L/dN)DNA =
+0.44 ± 0.1 nm per turn (Fig. 4 B and C), in good agreement
with previous measurements (38–41). Our measurements suggest
that dsRNA has a positive twist–stretch coupling equal to DRNA =
–SRNA·(d∆L/dN)RNA/(2π·kBT) = +11.5 ± 3.3 (assuming SRNA = 350
pN; SI Appendix,Materials and Methods), in contrast to the negative
twist–stretch coupling of dsDNA (38–41), DDNA = –17 ± 5.

Dynamics at the Buckling Transition. Next, we investigated the dy-
namics at the buckling transition. When a dsRNA was twisted
close to the critical supercoiling density, we observed jumps in the
extension traces, corresponding to transitions between the pre-
and postbuckling states (Fig. 5A). Recording extension traces at
a fixed number of applied turns, the population of the post-
buckling state increases whereas the population of the prebuck-
ling state decreases with an increasing number of applied turns
(Fig. 5A). After selecting a threshold to separate the pre- and
postbuckling states (SI Appendix, Fig. S5 A–D), the pre- and
postbuckling populations and dwell time distributions can be
quantified. The dependence of the postbuckling population on
the number of applied turns is well-described by a two-state
model (42) (Fig. 5B and SI Appendix,Materials and Methods) from
which we determined the number of turns converted from twist to
writhe during the buckling transition ΔNb ∼4 turns (SI Appendix,
Fig. S5L). The dwell times in the pre- and postbuckling state are
exponentially distributed (SI Appendix, Fig. S5 E–G), and their
mean residence times depend exponentially on the number of
applied turns (Fig. 5C). We determined the overall characteristic
buckling times τbuck, that is, the dwell times at the point where the
pre- and postbuckling states are equally populated, from fits of
the exponential dependence of the mean residence times on the
number of applied turns (Fig. 5C and SI Appendix, Materials and
Methods). τbuck increases with increasing salt concentration and
stretching force (Fig. 5E). The force dependence of τbuck is well-
described by an exponential model (solid lines in Fig. 5E), τbuck =
τbuck,0·exp(d·F/kBT); from the fit we obtain the buckling time at
zero force τbuck,0 = 13 and 52 ms and the distance to the transition
state along the reaction coordinate d = 5.1 and 5.5 nm for the 100
and 320 mM monovalent salt data, respectively.
Interestingly, comparing τbuck for dsRNA with dsDNA of

similar length under otherwise identical conditions (Fig. 5 D and
E), we found that the buckling dynamics of dsRNA are much
slower than those of dsDNA, with the characteristic buckling
times differing by at least two orders of magnitude. For example,

we found τbuck = 10.1 ± 3.7 s for dsRNA compared with ∼0.05 s
for dsDNA at F = 4 pN and 320 mM salt (Fig. 5E).

Discussion
Our experiments are consistent with dsRNA behaving as a linear
elastic rod for small deformations from the A-form helix, and
allow us to empirically determine all four elastic constants of
the model: A, S, C, and D (SI Appendix, Table S1). To go beyond
the isotropic rod model, toward a microscopic interpretation
of the results, we describe a “knowledge-based” base pair-level
model that considers the six base-step parameters slide, shift,
rise, twist, roll, and tilt (SI Appendix, Fig. S6 and Materials and
Methods; a full description of modeling for a blind prediction
challenge is given in ref. 43). Average values and elastic cou-
plings of the base-step parameters for dsRNA and dsDNA from
a database of nucleic acid crystal structures are used in a Monte
Carlo protocol to simulate stretching and twisting experiments (SI
Appendix, Materials and Methods). This base pair-level model
correctly predicts the bending persistence length for dsRNA to be
slightly larger than for dsDNA, SRNA to be at least a factor of two
smaller than SDNA, and C to be of similar magnitude for dsRNA
and dsDNA (SI Appendix, Table S2). The significant difference in
stretch modulus S between dsRNA and dsDNA can be explained
from the “spring-like” path of the RNA base pairs’ center axis,
compared with dsDNA (SI Appendix, Fig. S6B). Beyond the
agreement with experiment in terms of ratios of dsRNA and
dsDNA properties, the absolute values ofA, S, andC all fall within
a factor of two of our experimental results for both molecules.
Whereas the values for A, S, and C are fairly similar for

dsRNA and dsDNA, our experiments revealed an unexpected
difference in the sign of the twist–stretch coupling D for dsRNA
and dsDNA. The twist–stretch coupling has important biological

Fig. 4. Double-stranded RNA has a positive twist–stretch coupling. (A) Time
traces of the extension of a dsRNA tether held at F = 7 pN and underwound by
−6 or overwound by 12 turns. Raw traces (120 Hz) are in red and filtered data
(10 Hz) are in gray. The data demonstrate that dsRNA shortens when over-
wound. (B) Changes in tether extension upon over- and underwinding at F = 7
pN of a 4.2-kbp dsRNA and a 3.4-kbp dsDNA tether. Linear fits to the data
(lines) indicate that the dsDNA lengthens by ∼0.5 nm per turn, whereas the
dsRNA shortens by ∼0.8 nm per turn upon overwinding. Symbols denote the
mean and standard deviation for four measurements on the same molecule.
(C) Slopes upon overwinding of dsRNA and dsDNA tethers as a function of F
(mean and SEM of at least four molecules in TE + 100 mM NaCl buffer). Data
of Lionnet et al. (38) are shown as a black line with the uncertainty indicated
in gray; data from Gore et al. (39) are shown as a black square. The red line is
the average over all dsRNA data. (D) Models of oppositely twisting 50-bp
segments of dsDNA (Left) and dsRNA (Right) under 0 and 40 pN stretching
forces, derived from base pair-level models consistent with experimental
measurements (SI Appendix, Table S6 and Materials and Methods). The or-
ange bars represent the long axis of the terminal base pair.

Lipfert et al. PNAS | October 28, 2014 | vol. 111 | no. 43 | 15411

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

�5 0 5 10

�15

�10

�5

0

5

turns

�
L

[n
m
]

Twist-stretch coupling has 
opposite sign for double 
stranded RNA and DNA!

F = 7pN bead is 
turned with 
a magnet

L
+
�
L

k✏(s) +D3⌦3(s) = ~F · ~e3(s)

⌦3 = 2⇡Nturns/L

�L = L✏ =
FL

k
� 2⇡D3

k
Nturns



28

force

F < Fcr

force

F > Fcrẑ
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implications, such as for how mutations affect binding sites, be-
cause a base pair deletion or insertion changes not only the
length but also the twist of the target sequence, changes that
need to be compensated by distortions of the nucleic acid upon
protein binding (39). Nevertheless, accounting for the twist–
stretch coupling D in a model of nucleic acid elasticity appears
to be challenging. Previous elastic models originally developed
for dsDNA (44, 45) predict a positive twist–stretch coupling
for dsRNA, in agreement with our measurements for DRNA al-
though at odds with the results for dsDNA (SI Appendix, Mate-
rials and Methods). In contrast, elastic models that consider a stiff
backbone wrapped around a softer core give negative D pre-
dictions for both dsRNA and dsDNA (39, 46). Likewise, the base
pair-level Monte Carlo model yields a negative twist–stretch cou-
pling for both dsDNA and dsRNA, disagreeing with the positive
sign we observe for DRNA (SI Appendix, Table S2), although we
note that relatively modest changes to the base-step parameters
can reproduce the experimentally observed value for DRNA
(Fig. 4D and SI Appendix, Materials and Methods). Interestingly,
an all-atom, implicit-solvent model of dsDNA homopolymers
found A-form dsDNA to unwind upon stretching whereas B-form
dsDNA overwound when stretched close to its equilibrium con-
formation (47). Although these simulation results are in qualitative
agreement with our findings for A-form dsRNA and B-form
dsDNA, their simulation predicts un- and overwinding, respectively,
by ∼3° per 0.1 nm, which corresponds to values of jDj ∼50, namely

a factor of three to five larger in magnitude than the experimen-
tally observed values forDRNA andDDNA. In summary, a complete
microscopic understanding of the twist–stretch coupling for both
dsRNA and dsDNA may require higher-resolution (all-atom,
explicit-solvent) models and novel experimental methods.
A second surprising contrast between dsRNA and dsDNA is

the much slower buckling dynamics for dsRNA. The two orders
of magnitude difference in τbuck is particularly astonishing, be-
cause the parameters that characterize the end points of the
buckling transitions and the difference between them, such as
σbuck (Fig. 2B), Γbuck (Fig. 3E), the extension jump (SI Appendix,
Fig. S5I), and ΔNb (SI Appendix, Fig. S5L), are all similar (within
at most 20–30% relative difference) for dsRNA and dsDNA.
Several models that describe the buckling transition in an elastic
rod framework (characterized by A and C) find reasonable agree-
ment between experimental results for dsDNA and the parame-
ters that characterize the end points of the buckling transition (42,
48–50). In contrast, there is currently no fully quantitative model
for the buckling dynamics. A recent effort to model the timescale
of the buckling transition for dsDNA found submillisecond
buckling times, much faster than what is experimentally observed,
suggesting that the viscous drag of the micrometer-sized beads or
particles used in the experiments might considerably slow down
the observed buckling dynamics for dsDNA (48).
The observed difference in τbuck suggests that the transition

state and energy barrier for buckling are different for dsRNA and
dsDNA. We speculate that because the transition state might
involve sharp local bending of the helix (on a length scale of ∼5
nm, suggested by the fit to the force dependence; Fig. 5E), the
observed difference might possibly be due to high flexibility of
dsDNA on short length scales, which would lower the energetic
cost of creating sharp transient bends. An anomalous flexibility of
dsDNA on short length scales is hotly debated (51), and has been
suggested by different experiments, including cyclization assays in
bulk using ligase (52) or at the single-molecule level using FRET
(53), small-angle X-ray scattering measurements on gold-labeled
samples (54), and atomic force microscopy imaging of surface-
immobilized DNA (55), even though the evidence remains con-
troversial (51). If the observed difference in τbuck between
dsDNA and dsRNA is indeed due to an anomalous flexibility of
dsDNA on short length scales, a clear prediction is that similar
experiments for dsRNA should fail to observe a corresponding
level of flexibility. In addition, this striking, unpredicted differ-
ence between dsDNA and dsRNA again exposes a critical gap in
current modeling of nucleic acids.
In conclusion, we have probed the elastic responses and struc-

tural transitions of dsRNA under applied forces and torques. We
find the bending and twist persistence lengths and the force–tor-
que phase diagram of dsRNA to be similar to dsDNA and the
stretch modulus of dsRNA to be threefold lower than that of
dsDNA, in agreement with base pair-level model predictions.
Surprisingly, however, we observed dsRNA to have a positive
twist–stretch coupling, in agreement with naïve expectations but in
contrast to dsDNA and to base pair-level modeling. In addition,
we observe a striking difference of the buckling dynamics for
dsRNA, for which the characteristic buckling transition time is two
orders of magnitude slower than that of dsDNA. Our results
provide a benchmark and challenge for quantitative models of
nucleic acid mechanics and a comprehensive experimental foun-
dation for modeling complex RNAs in vitro and in vivo. In addi-
tion, we envision our assay to enable a new class of quantitative
single-molecule experiments to probe the proposed roles of twist
and torque in RNA–protein interactions and processing (4, 56).

Materials and Methods
See SI Appendix, Materials and Methods for details. In brief, the double-
stranded RNA constructs for magnetic tweezers experiments were generated
by annealing two 4,218-kb complementary single-stranded RNA molecules that
carry multiple biotin or digoxigenin labels at their respective 5′ ends (Fig. 1C).
The product of the annealing reaction is a 4,218-bp (55.6% GC content) fully
double-stranded RNA construct with multiple biotin labels at one end and

Fig. 5. Slow buckling transition for dsRNA. (A) Time traces of the extension
of a 4.2-kbp dsRNA tether for varying numbers of applied turns (indicated on
the far right) at the buckling transition for F = 2 pN in 320 mM NaCl. (Right)
Extension histograms (in gray) fitted by double Gaussians (brown lines). Raw
data were acquired at 120 Hz (gray) and data were filtered at 20 Hz (red).
(Inset) Schematic of the buckling transition. (B) Fraction of the time spent in
the postbuckling state vs. applied turns for the data in A and fit of a two-state
model (black line; SI Appendix, Materials and Methods). (C) Mean residence
times in the pre- and postbuckling state vs. applied turns for the data in A
and fits of an exponential model (lines; SI Appendix, Materials and Meth-
ods). (D) Extension vs. time traces for dsRNA (red) and dsDNA (blue) both at
F = 4 pN in TE buffer with 320 mM NaCl added. Note the different timescales
for dsRNA and dsDNA. (E) Characteristic buckling times for 4.2-kbp dsRNA in
TE buffer with 100 mM (red points) and 320 mM (orange points) NaCl added
(mean and SEM of at least four independent molecules). Solid lines are fits of
an exponential model. Measurements with 3.4-kbp dsDNA tethers in 320 mM
NaCl at F = 4 pN yielded characteristic buckling times of ∼50 ms (horizontal
dashed line); however, this value represents only an upper limit, because our
time resolution for these fast transitions is biased by the acquisition frequency
of the CCD camera (120 Hz). For comparison, we show data for 10.9- and 1.9-
kbp DNA (upper and lower triangles, respectively) from ref. 42.
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