MAE 545: Lecture 14 (11/10) Mechanics of cell membranes

© 2011 Pearson Education, Inc.

Cell membranes

Eukaryotic cells

E. Coli

R. Phillips et al., Physical Biology of the Cell

Cell membrane

@ 2011 Pearson Education, Inc.

Lipid membrane behaves like fluid

Lipid molecules and proteins can move around!

Flipping of lipid molecules between the layer is unlikely.

Membrane attached spectrin network provides solid-like behavior

Spectrin network provides structural stability for cells

Alberts et al., Molecular Biology of the Cell

Lipid membrane

In water solution lipid molecules spontaneously aggregate to prevent undesirable interactions between water and hydrophobic tails.

Flat lipid bilayers vs lipid vesicles

Large vesicles have lower energy cost then flat bilayers!

Shape of lipid molecules can induce spontaneous curvature of structures

R. Phillips et al., Physical Biology of the Cell

inverted

micelle

Membrane proteins can induce spontaneous curvature

binding of rigid curved proteins

interactions between coat proteins bend the membrane

insertions of protein parts between lipid molecules on one side of the layer

Membrane deformations

R. Phillips et al., Physical Biology of the Cell

Energy cost for stretching and shearing

