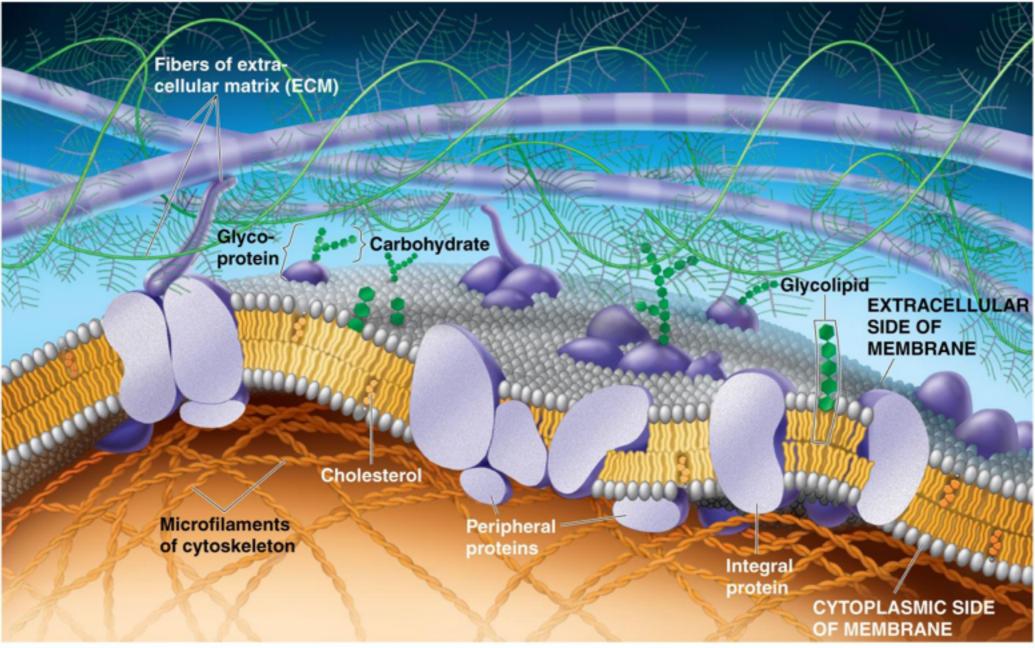
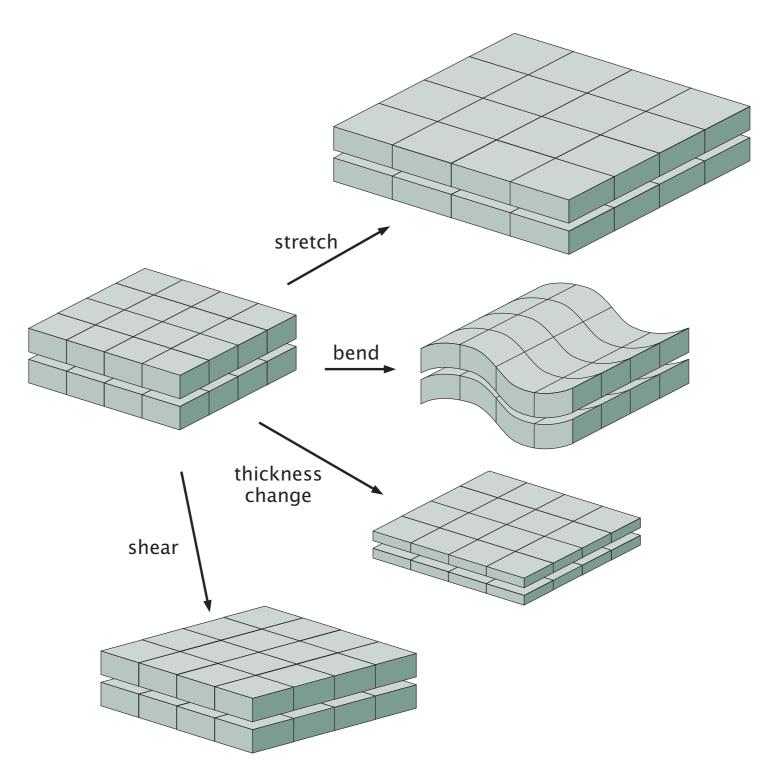
MAE 545: Lecture 15 (11/12) Mechanics of cell membranes



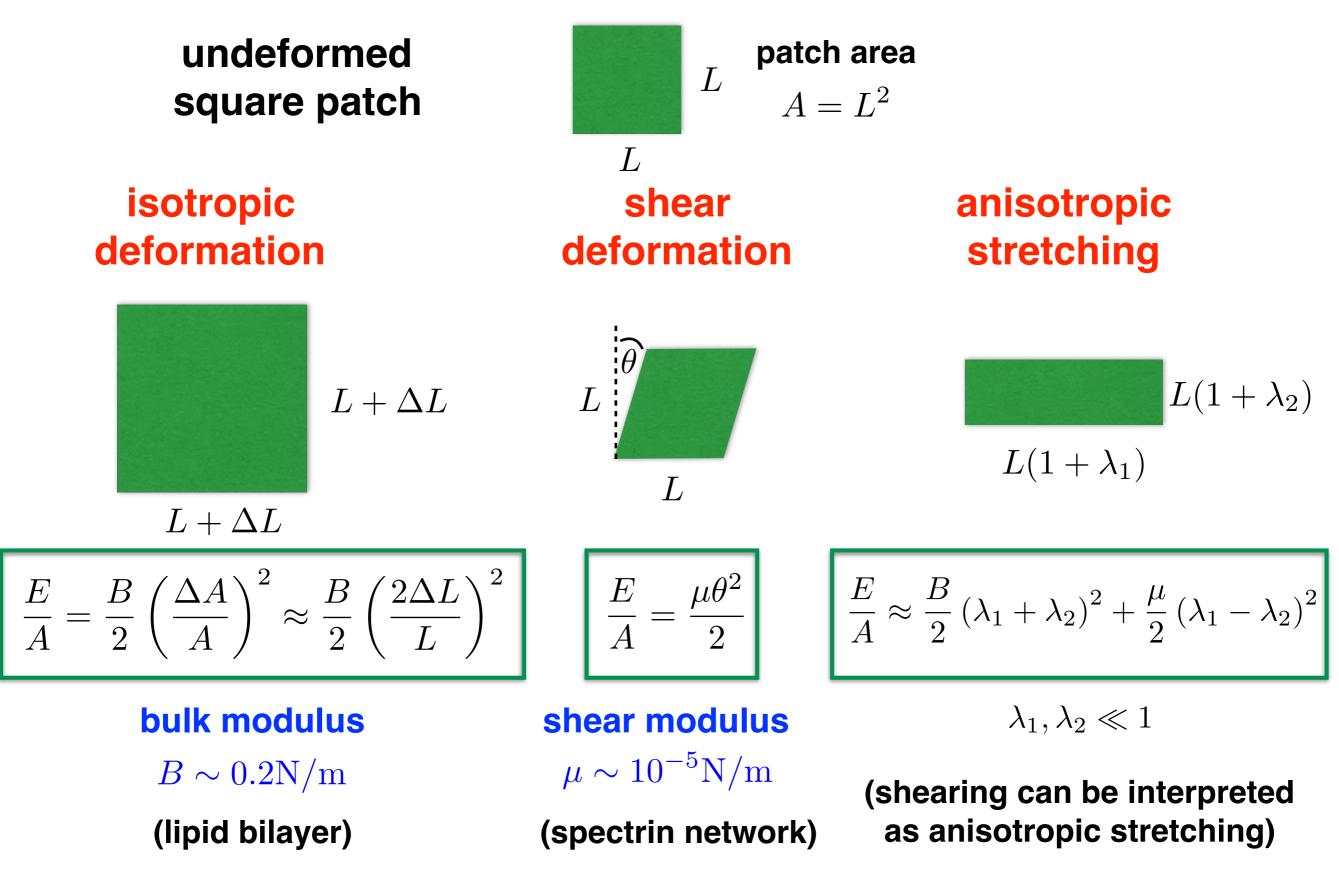
© 2011 Pearson Education, Inc.

Membrane deformations

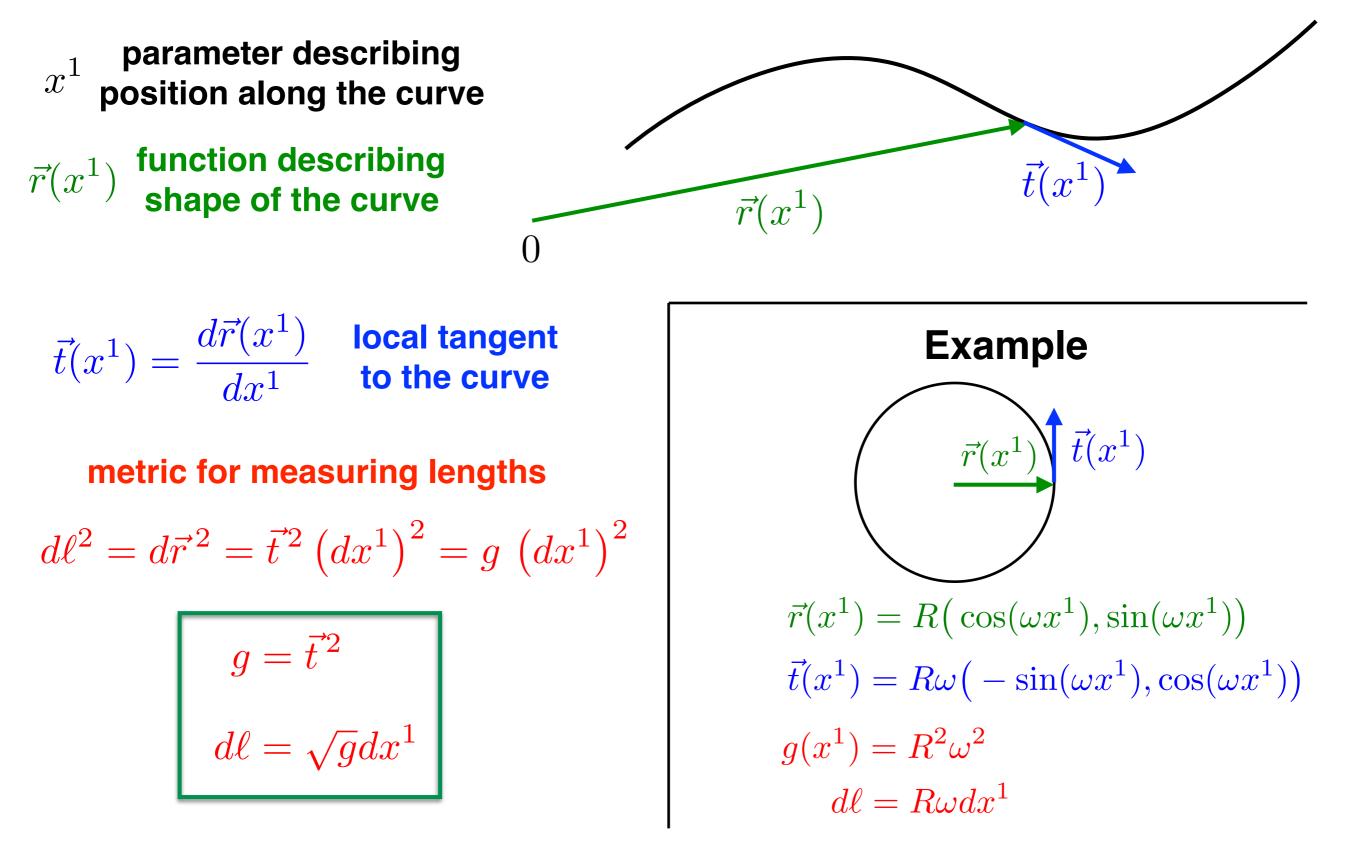


R. Phillips et al., Physical Biology of the Cell

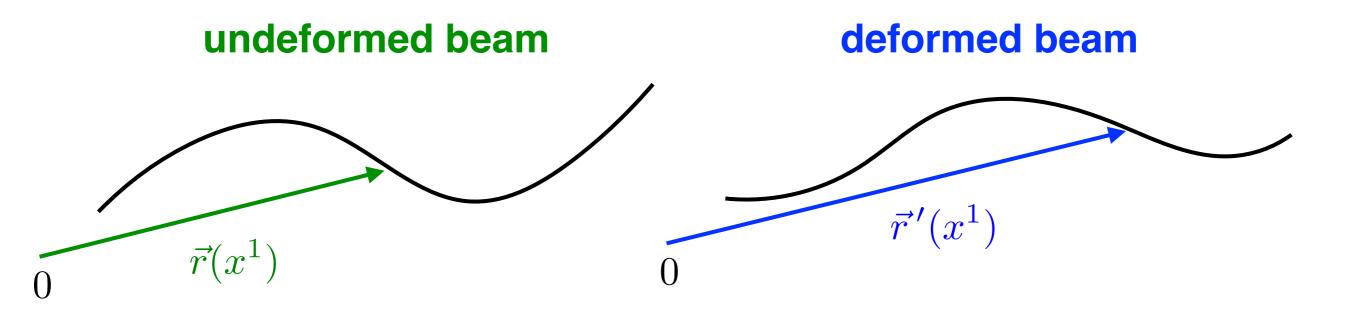
Energy cost for stretching and shearing



Metric for measuring distances along curves



Strain for deformation of beams



$$g = \left(d\vec{r}/dx^1\right)^2$$
$$d\ell = \sqrt{g}dx^1$$

 $g' = \left(\frac{d\vec{r}'}{dx^1}\right)^2$ $d\ell' = \sqrt{g'}dx^1 = d\ell(1+\epsilon)$

strain

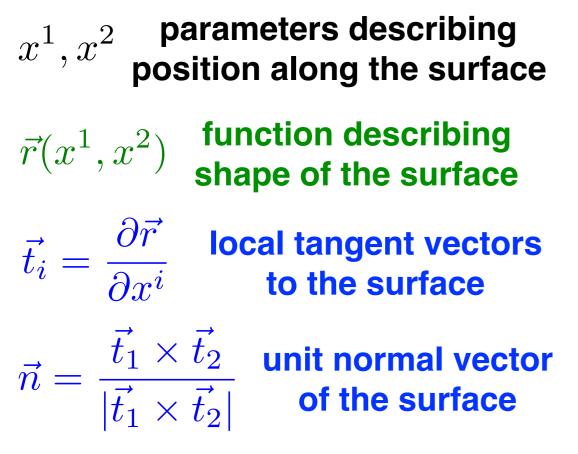
 $d\ell'^2 - d\ell^2 = (2\epsilon + \epsilon^2)d\ell^2 \approx 2\epsilon \, d\ell^2$

$$\epsilon = \frac{d\ell'^2 - d\ell^2}{2d\ell^2} = \frac{1}{2}g^{-1}(g' - g)$$

Energy cost for stretching/compressing

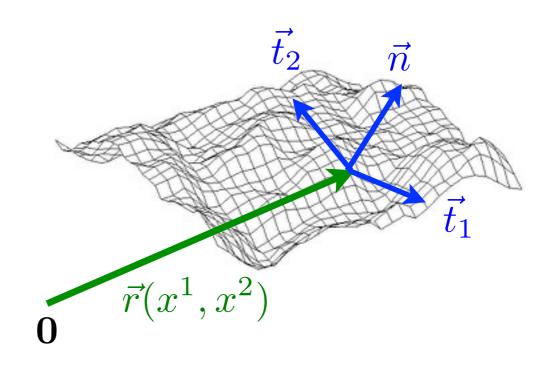
$$E = \int \left(\sqrt{g}dx^1\right) \ \frac{1}{2}k\epsilon^2$$

Metric tensor for measuring distances on surfaces

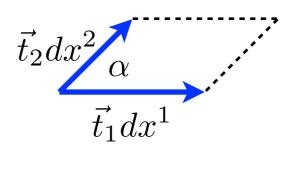


metric tensor for measuring lengths

$$d\ell^2 = d\vec{r}^2 = \sum_{i,j} \vec{t}_i \cdot \vec{t}_j dx^i dx^j = \sum_{i,j} g_{ij} dx^i dx^j$$
$$g_{ij} = \vec{t}_i \cdot \vec{t}_j = \begin{pmatrix} \vec{t}_1 \cdot \vec{t}_1, & \vec{t}_1 \cdot \vec{t}_2 \\ \vec{t}_2 \cdot \vec{t}_1 & \vec{t}_2 \cdot \vec{t}_2 \end{pmatrix}$$
$$g = \det(g_{ij}) = |\vec{t}_1 \times \vec{t}_2|^2$$



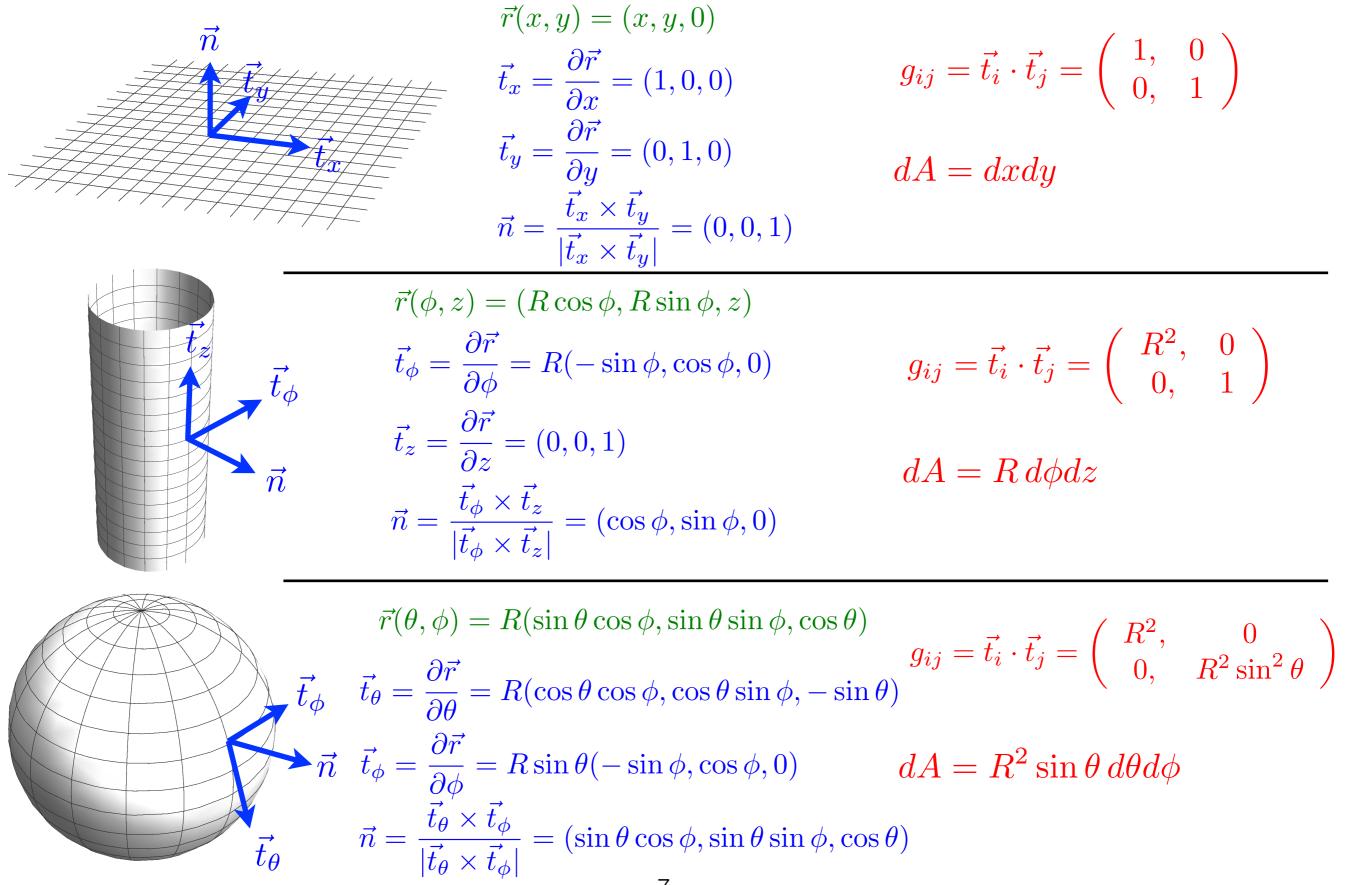
area element



$$dA = |\vec{t_1}| |\vec{t_2}| \sin \alpha dx^1 dx^2$$

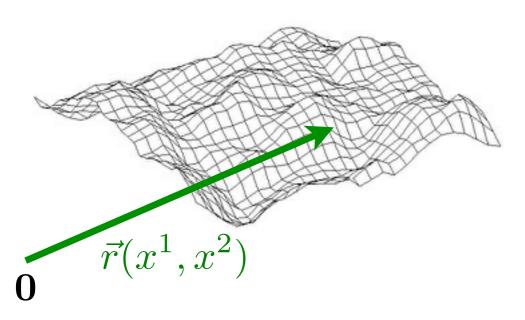
$$dA = \sqrt{g} \, dx^1 dx^2$$

Examples



Strain tensor for deformation of membranes

undeformed membrane



$$g_{ij} = \frac{\partial \vec{r}}{\partial x^{i}} \cdot \frac{\partial \vec{r}}{\partial x^{j}}$$
$$d\ell^{2} = \sum_{i,j} g_{ij} dx^{i} dx^{j}$$
$$strain tensor$$

$$u_{ij} = \frac{1}{2} \sum_{k} (g^{-1})_{ik} (g'_{kj} - g_{kj})$$

inverse metric tensor

$$\sum_{k} (g^{-1})_{ik} g_{kj} = \sum_{k} g_{ik} (g^{-1})_{kj} = \delta_{ij}$$

deformed membrane

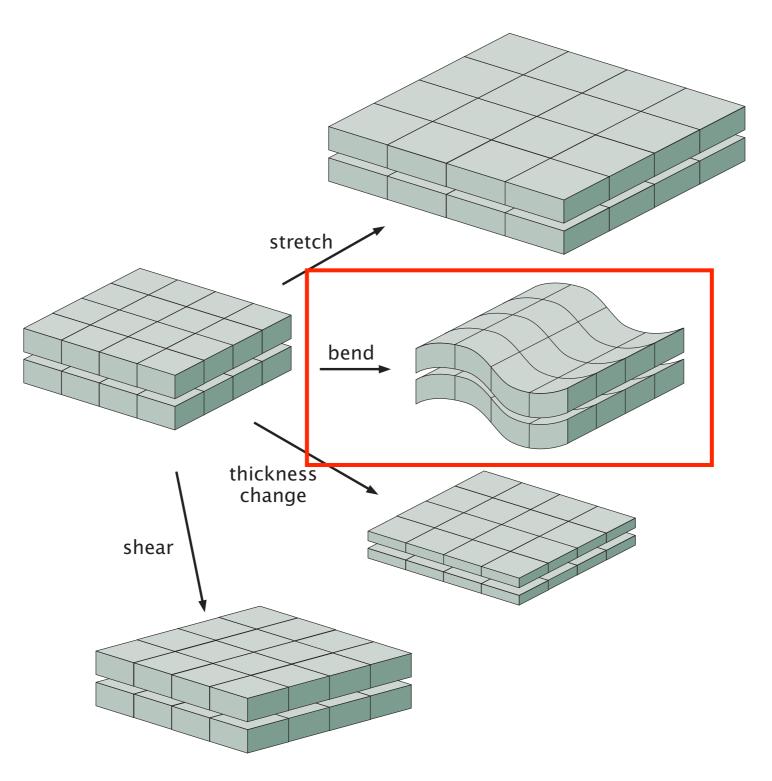


 $g'_{ij} = \frac{\partial \vec{r}'}{\partial x^i} \cdot \frac{\partial \vec{r}'}{\partial x^j}$ $d\ell'^2 = \sum_{i,j} g'_{ij} dx^i dx^j$ Energy cost for stretching/compressing $E = \int \sqrt{g} dx^1 dx^2 \frac{1}{2} \left[(B - \mu) (\sum_i u_{ii})^2 + 2\mu \sum_{i,j} u_{ij}^2 \right]$

$$g = \det(g_{ij})$$

8

Membrane deformations

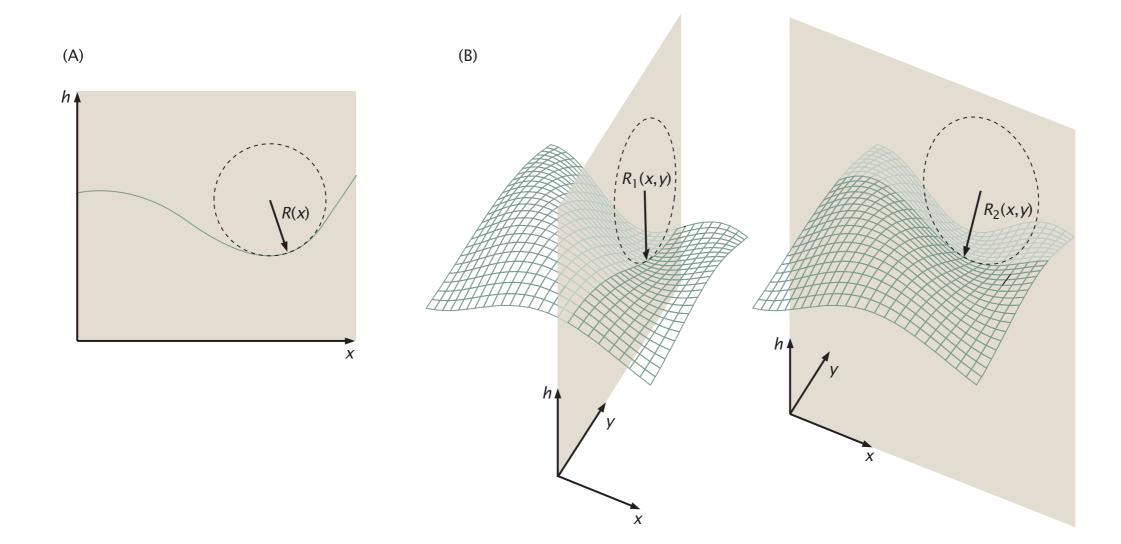


R. Phillips et al., Physical Biology of the Cell

Curvature of surfaces

curvature for space curves

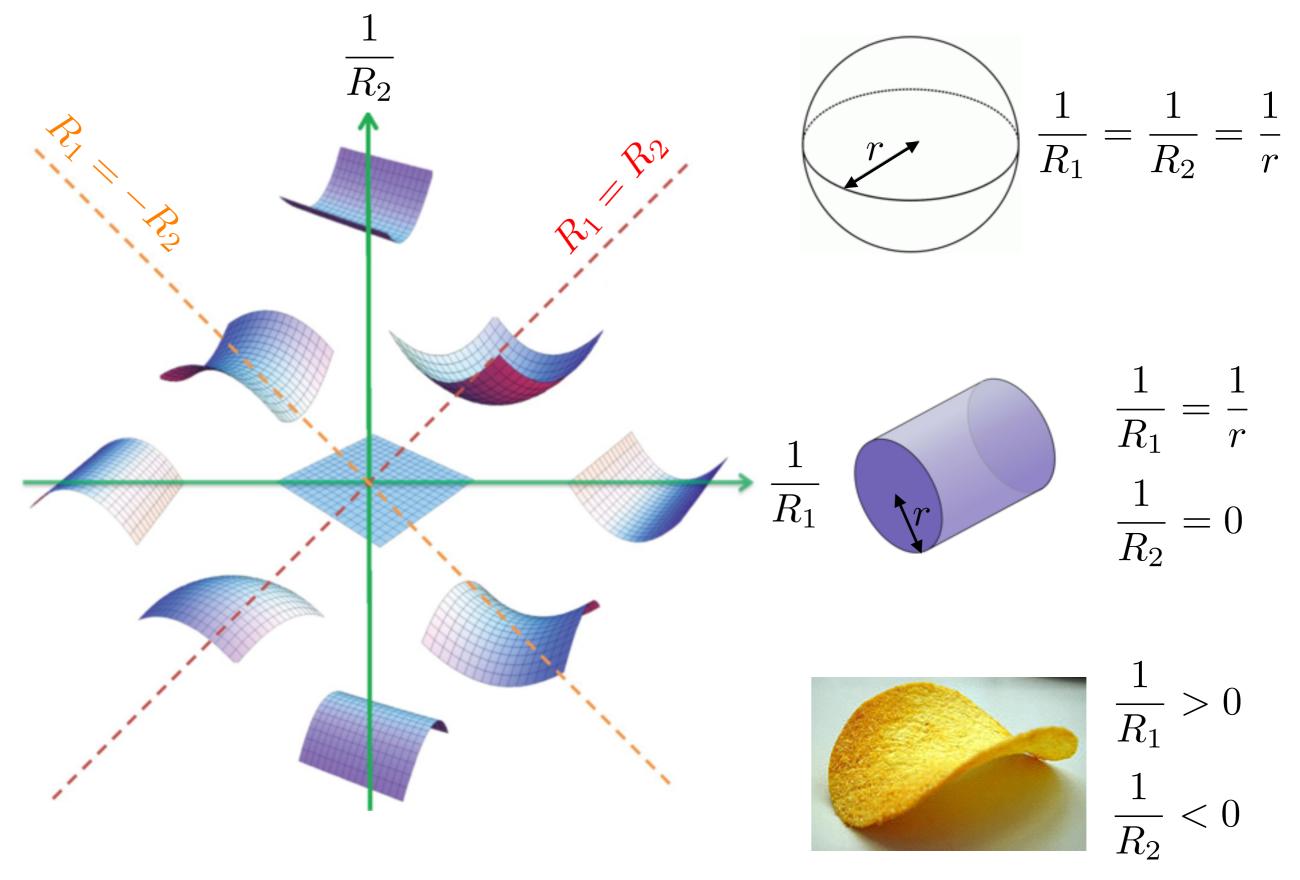
curvature for surfaces depends on the orientation



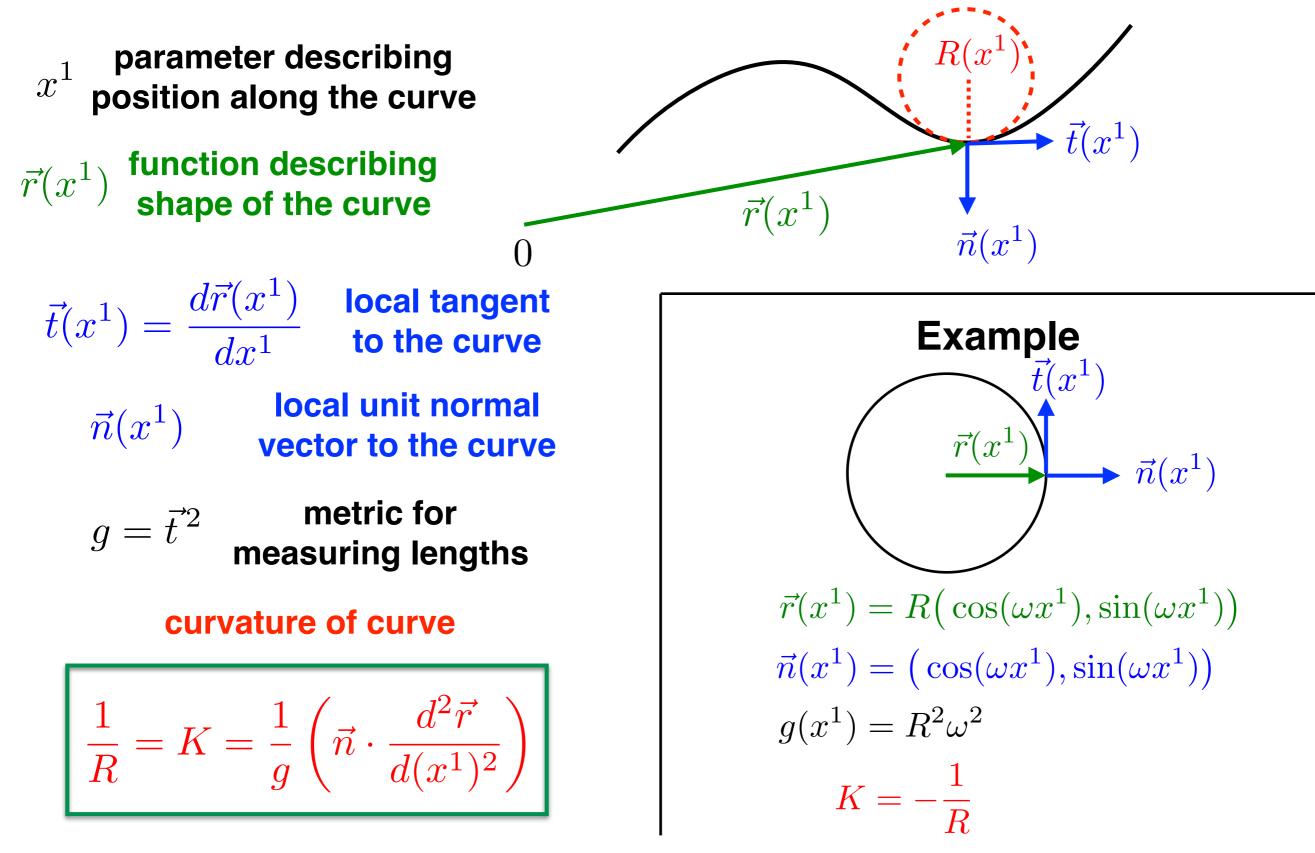
maximal and minimal curvatures are called principal curvatures and they appear in orthogonal directions

R. Phillips et al., Physical Biology of the Cell

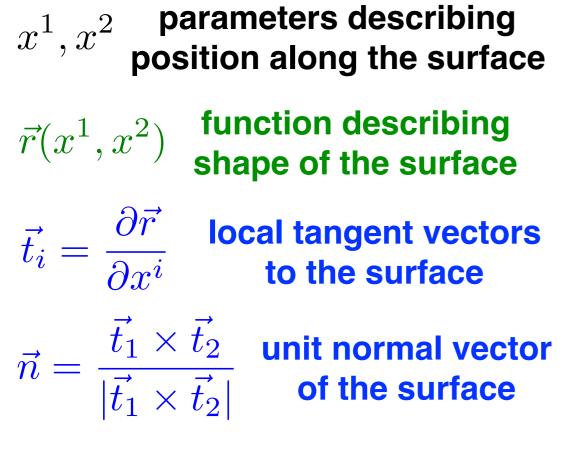
Surfaces of various principal curvatures



Curvature of curves



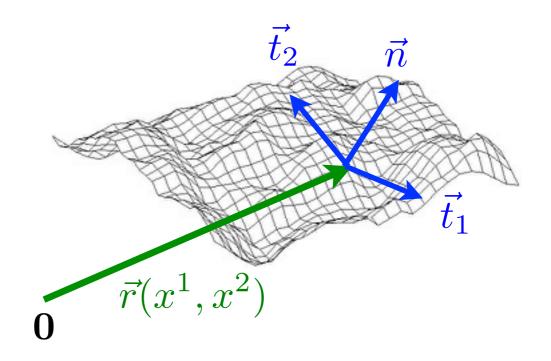
Curvature tensor for surfaces



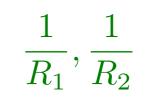
 $g_{ij} = \vec{t}_i \cdot \vec{t}_j$ metric tensor for measuring lengths

curvature tensor for surfaces

$$K_{ij} = \sum_{k} \left(g^{-1} \right)_{ik} \left(\vec{n} \cdot \frac{\partial^2 \vec{r}}{\partial x^k \partial x^j} \right)$$



principal curvatures correspond to the eigenvalues of curvature tensor



mean curvature

$$\frac{1}{2}\left(\frac{1}{R_1} + \frac{1}{R_2}\right) = \frac{1}{2}\sum_i K_{ii} = \frac{1}{2}\operatorname{tr}(K_{ij})$$

Gaussian curvature

$$\frac{1}{R_1 R_2} = \det(K_{ij})$$

Examples

 $\vec{r}(x,y) = (x,y,0)$

 $\vec{t}_x = \frac{\partial \vec{r}}{\partial x} = (1, 0, 0)$

$$K_{ij} = \sum_{k} \left(g^{-1} \right)_{ik} \left(\vec{n} \cdot \frac{\partial^2 \vec{r}}{\partial x^k \partial x^j} \right)$$

$$g_{ij} = \vec{t}_i \cdot \vec{t}_j = \begin{pmatrix} 1, & 0 \\ 0, & 1 \end{pmatrix}$$
$$K_{ij} = \begin{pmatrix} 0, & 0 \\ 0, & 0 \end{pmatrix}$$

 \vec{t}_{θ}

 \vec{n}

$$\vec{t}_{y} = \frac{\partial \vec{r}}{\partial y} = (0, 1, 0)$$

$$\vec{t}_{y} = \frac{\partial \vec{r}}{\partial y} = (0, 1, 0)$$

$$\vec{n} = \frac{\vec{t}_{x} \times \vec{t}_{y}}{|\vec{t}_{x} \times \vec{t}_{y}|} = (0, 0, 1)$$

$$\vec{r}(\phi, z) = (R \cos \phi, R \sin \phi, z)$$

$$\vec{t}_{\phi} = \frac{\partial \vec{r}}{\partial \phi} = R(-\sin \phi, \cos \phi, 0)$$

$$g_{ij} = \vec{t}_{i} \cdot \vec{t}_{j} = \begin{pmatrix} R^{2}, & 0 \\ 0, & 1 \end{pmatrix}$$

$$\vec{t}_{z} = \frac{\partial \vec{r}}{\partial z} = (0, 0, 1)$$

$$\vec{n} = \frac{\vec{t}_{\phi} \times \vec{t}_{z}}{|\vec{t}_{\phi} \times \vec{t}_{z}|} = (\cos \phi, \sin \phi, 0)$$

$$K_{ij} = \begin{pmatrix} -\frac{1}{R}, & 0 \\ 0, & 0 \end{pmatrix}$$

$$\vec{r}(\theta,\phi) = R(\sin\theta\cos\phi,\sin\theta\sin\phi,\cos\theta)$$

$$\vec{t}_{\phi} \quad \vec{t}_{\theta} = \frac{\partial\vec{r}}{\partial\theta} = R(\cos\theta\cos\phi,\cos\theta\sin\phi,-\sin\theta)$$

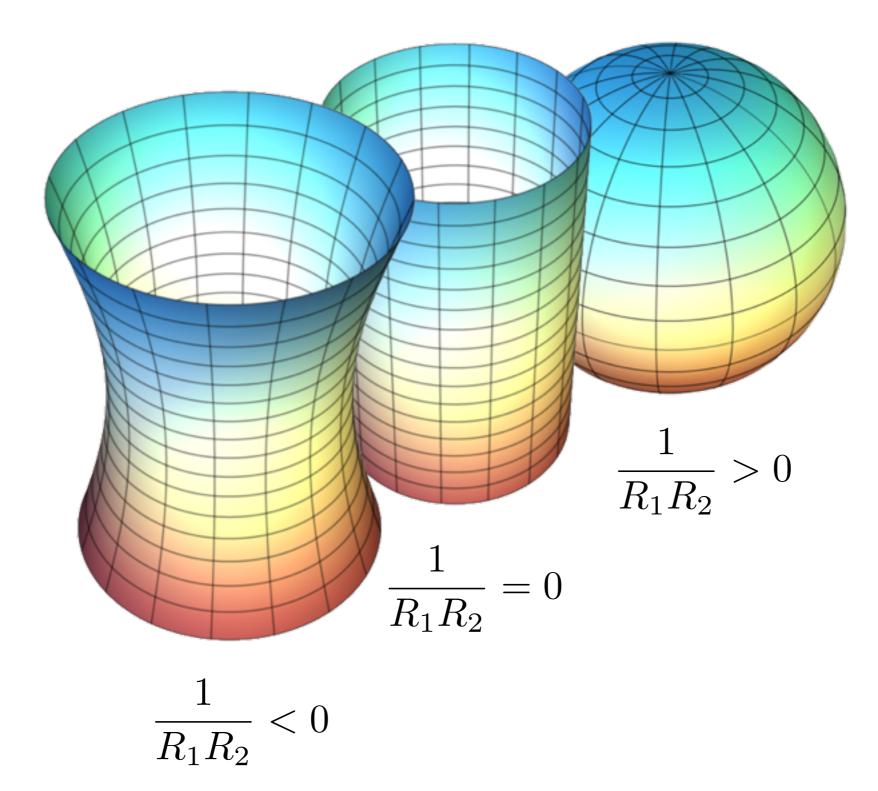
$$g_{ij} = \vec{t}_i \cdot \vec{t}_j = \begin{pmatrix} R^2, & 0 \\ 0, & R^2\sin^2\theta \end{pmatrix}$$

$$\vec{t}_{\phi} = \frac{\partial\vec{r}}{\partial\phi} = R\sin\theta(-\sin\phi,\cos\phi,0)$$

$$K_{ij} = \begin{pmatrix} -\frac{1}{R}, & 0 \\ 0, & -\frac{1}{R} \end{pmatrix}$$

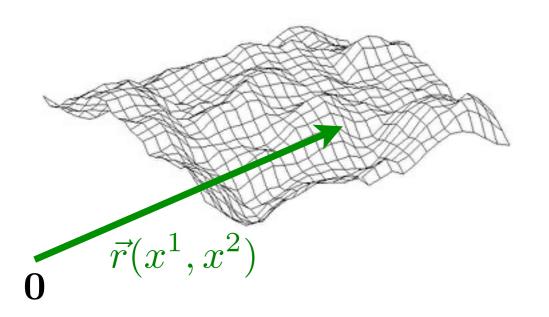
$$\vec{n} = \frac{\vec{t}_{\theta} \times \vec{t}_{\phi}}{|\vec{t}_{\theta} \times \vec{t}_{\phi}|} = (\sin\theta\cos\phi,\sin\theta\sin\phi,\cos\theta)$$

Examples for Gaussian curvature

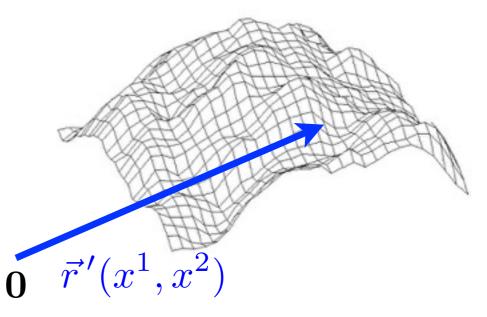


Bending energy for deformation of membranes

undeformed membrane



deformed membrane



$$K_{ij} = \sum_{k} \left(g^{-1} \right)_{ik} \left(\vec{n} \cdot \frac{\partial^2 \vec{r}}{\partial x^k \partial x^j} \right)$$

bending strain tensor

$$b_{ij} = K'_{ij} - K_{ij}$$

(local measure of deviation from preferred curvature)

$$K_{ij}' = \sum_{k} \left(g'^{-1} \right)_{ik} \left(\vec{n}' \cdot \frac{\partial^2 \vec{r}'}{\partial x^k \partial x^j} \right)$$

Energy cost of bending

$$E = \int \sqrt{g} dx^1 dx^2 \left[\frac{1}{2} \kappa \operatorname{tr}(b_{ij})^2 + \kappa_G \det(b_{ij}) \right]$$

Bending energy

$$E = \int dA \begin{bmatrix} \kappa \\ \frac{1}{2} \left(\frac{1}{R_1} + \frac{1}{R_2} - C_0 \right)^2 + \frac{\kappa_G}{R_1 R_2} \end{bmatrix}$$
Helfrich
free energy
bending rigidity $\kappa \sim 20k_BT$ mean curvature $H = \frac{1}{2} \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$
Gaussian
bending rigidity $\kappa_G \sim -0.8\kappa$ Gaussian
curvature $G = \frac{1}{R_1 R_2}$
spontaneous
curvature C_0
Example: bending energy for a sphere
 $\frac{1}{R_1} = \frac{1}{R_2} = \frac{1}{r}$
 $C_0 = 0$ $E = 4\pi (2\kappa + \kappa_G) \sim 300k_BT$
bending energy is independent
of the sphere radius!

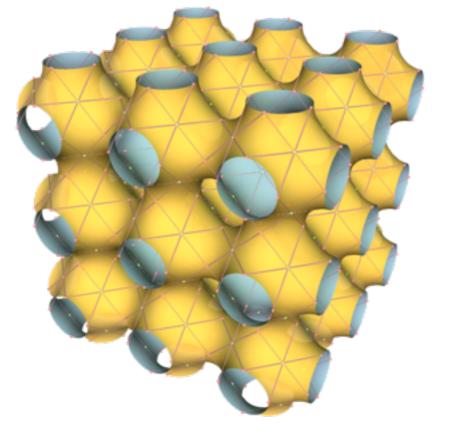
Bending energy

$$E = \int dA \left[\frac{\kappa}{2} \left(\frac{1}{R_1} + \frac{1}{R_2} - C_0 \right)^2 + \frac{\kappa_G}{R_1 R_2} \right]$$

Gaussian bending rigidity κ_G has to be negative for stability of membranes

Schwarz minimal surface

Such surfaces would be preferred for positive Gaussian bending rigidity, when *C*₀=0.

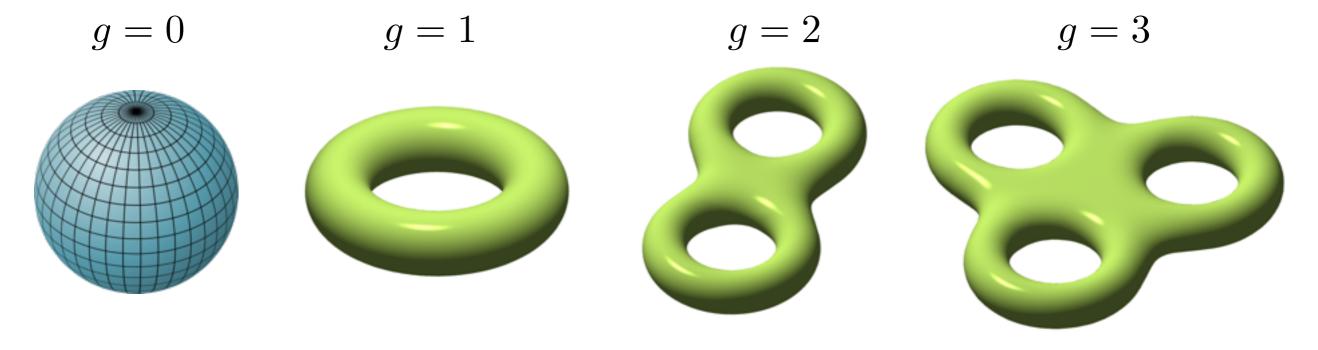


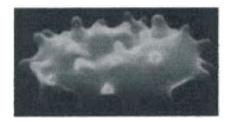
 $\frac{1}{R_1} + \frac{1}{R_2} = 0$ $\frac{1}{R_1 R_2} < 0$

Gauss-Bonet theorem

For closed surfaces the integral over Gaussian curvature only depends on the surface topology!

$$\int \frac{dA}{R_1 R_2} = 4\pi \left(1 - g\right)$$





It is hard to experimentally measure the Gaussian bending rigidity for cells, because cell deformations don't change the topology!