MAE 545: Lecture 16 (11/17)
Mechanics of cell membranes
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Membrane deformations
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Energy cost for stretching and shearing
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(shearing can be interpreted
(lipid bilayer) (spectrin network) as anisotropic stretching)
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Strain tensor for deformation of membranes

undeformed membrane deformed membrane
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Membrane deformations
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Bending energy for deformation of membranes

undeformed membrane

deformed membrane
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bending strain tensor
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Energy cost of bending
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(local measure of deviation
from preferred curvature)



Bending energy
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bending rigidity ~ ~ 20kpT mean curvature H = 5 ( R1 + R2>
Gaussian Gaussian oo 2
bending rigidity ¢ ~ —U-8x curvature " RiRs
spontaneous
Co
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Example: bending energy for a sphere

E =47 (2k + kg) ~ 300kgT

bending energy is independent
of the sphere radius!




Gauss-Bonet theorem

For closed surfaces the integral
over Gaussian curvature only /
depends on the surface topology!

dA
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It is hard to experimentally measure
the Gaussian bending rigidity for
cells, because cell deformations

don’t change the topology!




Small vesicles are used for
cellular transport of molecules

transport of neurotransmitters
In neuron cells
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Vesicles are changing
membrane topology!

clathrin coat

lysosome
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Membrane fusion

Fusion of small vesicles with the membrane
Is energetically favorable, but the initial
merging provides a large energy barrier!

T
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E ~ —|—300kBT E ~ +5OOI€BT
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In eukaryotic cells SNARE proteins accelerate membrane
fusion by bringing vesicles closer to the membrane!
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Viral entry to cell via receptor
mediated membrane fusion
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Example of viruses with viral envelope (lipid bilayer):
HIV, influenza, hepatitis B virus, herpes viruses, ...

Wikipedia
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Lipid vesicles can be used for
administration of drugs and nutrients

Protective layer against
immune destruction

peptides bind
to receptors
Homing
peptide €Xpressed on
the surface of
target cells

! Lipid-soluble

Drug crystallized -SOIL
drug in bilayer

in aqueous fluid
Lipid
bilayer
Wikipedia
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Membrane budding

Creation of new vesicles costs energy!
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Creation of new cargo vesicles is assisted with
receptor mediated coating of proteins (clathrin, COPI)
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Viral entry to cell via receptor
mediated endocytosis

(density n;) (density ng)

ligand receptor envelope
protein
viral capsid imi
Eirﬁﬁm < " ol (similar
deltvery process l_nay
} help during
l Budding bUdding of
enveloped
viruses)

lipid bilayer

Bending energy cost and loss of entropy for receptors is
compensated by the binding energy between cell
receptors and ligands on the surface of viral capsid.

G. Bao and X.R. Bao,

i PNAS 102, 9997 (2005)



Viral entry to cell via receptor

mediated endocytosis

H. Gao et al., PNAS

ng, ~ 5000pum = 102, 9469 (2005)
density of ligands
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no ~ 50-500um 2
density of receptors

receptor-ligand
binding energy

Uy ~ 15kgT
’ b AFE ~ 8tk — 47 R*n . Ug + 41t R*kgTnr, In(nr/ng)
bending rigidity o
K ~ 20kpT membrane  binding
bending energy of
energy receptors

loss of entropy

total number of ligands for receptors

N; = 47 R°n;

Endocytosis occurs !. 2K
when AE < 0: S > \/nL (Ug — kT In(ng, /ng)) ~ S0nm

- How fast is this process?



Viral entry to cell via receptor

ny, ~ 5000um 2
density of ligands

2R

\4

e X

no ~ 50-500um 2
density of receptors

receptor-ligand  pending rigidity

mediated endocytosis

H. Gao et al., PNAS
102, 9469 (2005)

binding energy Kk~ 20kpT
Uy ~ 15kpT
total number diffusion of > (
of ligands receptors L

2K

~ 30nm

U — kT In(ng/ng))

Np =4rR*n;, D ~ 10*nm?/s

Need to recruit N. receptors
from circular region of ~
radius L via diffusion

N = nwl*ng = 47 R*ng
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Use of magnetic nanoparticles for
diagnostic and treatment of tumors

Receptors for LHRH hormone are over-expressed
in breast, ovarian, and prostate cancer cells

LHRH hormone M t. t. | i | n r "
PEG coating agnetic particles enter only cancer cells

magnetic core Vi@ LHRH-receptor mediated endocytosis

PEG coating shields nanoparticles
from immune system and prevents
macro-clustering of nanoparticles.

Cancer cells containing magnetic
nanoparticles can be detected with MRI
(magnetic resonance imaging). Then b P T o
magnetic particles can be heated via I BN E ameon
magnetic field to destroys cancer cells. T
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oboyejo et al.
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