MAE 545: Lecture 18 (12/1)

Shapes of Wrinkled
simple cells surfaces




Energy cost for stretching and shearing
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Strain tensor for deformation of membranes

undeformed membrane deformed membrane
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strain tensor Energy cost for
' : ’ stretching/compressing
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inverse metric tensor - T
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Strain tensor for deformation of flat membranes

deformed membrane

undeformed membrane
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Bending energy for deformation of membranes

undeformed membrane

deformed membrane

—

Ky =3 0 (7 5o
o I ik OxkOxI

bending strain tensor

1

(local measure of deviation
from preferred curvature)

)

Kij= (97 (ﬁ’. o )
o I ik Oxk Oz

k

Energy cost of bending

1
E = /\/§d$1d$2 [5/43 tr(bij)2 + Kg det(bz’j)]

For solid plate of thickness d
l K, KGq ~ Emdg‘
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Bending energy

k [ 1 1 > ko Helfrich
E= [dA|Z | Cy ) A
/ 2 (R1 Ro 0) R.R, || free energy

: g 1/1 1
bending rigidity ~ ~ 20kpT mean curvature H = 5 ( R1 + R2>
Gaussian Gaussian oo 2
bending rigidity ¢ ~ —U-8x curvature " RiRs
spontaneous
Co
curvature

Example: bending energy for a sphere

E =47 (2k + kg) ~ 300kgT

bending energy is independent
of the sphere radius!




Osmotic pressure

Cin > Cout
A The radius of swollen cell can be
estimated by minimizing the free energy.
o'y A = AT R? 2
- A R3 poaZ (24) _ ApAV
=— 2 A
| E = 8tBAR? — 4t R*ApAR
Water flows in the cell l
until the mechanical AR RAp
equilibrium is reached. — = T
Cin = Cout R 4B
A
Membrane tension
e AA =8TRAR
< AV = 47 R?2AR AA 2AR  RA
N ' r=p=f _p—/ 2t 7P
; A R 2
N
(Young-Laplace equation)

Ap = T(l/Rl —+ 1/R2)



Osmotic pressure

Cin < Cout

Total concentration of
molecules inside a cell (vesicle)

N
Cin — V
Preferred cell (vesicle) volume
N
Vo =
Water flows out of the Cout
cell until concentrations cp
become equal. Energy cost for modifying the volume
1%

Cin = Cout




Area difference between lipid layers

Length difference for 2D example on the left

out Al =l —lin = (R+wp/2)p — (R —wy/2)¢

%ﬂﬂﬂﬁ AL = wop = wot
%ggggyﬁf R

Area difference between lipid layers in 3D

1 1
AA = A, — A = dA |
t oo / <R1 Rs )

Lipids can move within a given layer, but
flipping between layers is unlikely. This
sets a preferred area difference AAjy.

Non-local k,
bending energy b= 2 Aw (A4 = AAO)

k, ~ 3k ~ 60kgT

10



Total elastic energy for cells (vesicles)

_ _ this term is
Shape of cells (vesicles) can be obtained by constant for a
minimizing the total elastic energy given topology

: 7T

1 1 1 > ko
E—= [dA B — | Cy| A
/ 2( :u)um T :uu + = (Rl R2 O) R1R2

k. 1 V—Vo\°
| AA— AA “kpTcon,
2 Agw? ( 0)” 3 BEE Vo < Vo )

Energetically it is very costly to change the cell volume V,
and the membrane area Ao (large bulk modulus B)!

Introduce dimensionless quantities that would be equal to 1 for sphere

dimensionless

definition for ' ' imensionl imensionl . dimensionless

sphere radius e ot carvature. . area difference  AMele
between layers 9y

Ry=+1/22 a= =1 v= co =CoRy Aa — o —

Ar  ATR2 4T R3/3 8mwoRo 8Tk



Minimal model: minimization of
bending energy for lipid vesicles

Find the shape of vesicles that ] | 1\ 2
minimize bending energy by I < | )
constraining the volume to w1. A\

25 -
Minimum energy configurations

stomatocytes oblates prolates

OO®|coc= B@@

(V) 0.05 0.3 0.591 0.592 0.651 0.652 0.8 0.95

U. Seifert et al., PRA S. Svetina and B. Zeks,

44, 1182 (1991) i Anat. Rec. 268, 215 (2002)



Bilayer couple model of vesicles

1 1 >k,
e:/da + — —Cp —I—k—(Aa—Aa0)2

4 \r1 19 K

Phase diagram of vesicle
shapes that minimize the free
energy for ¢y =0, k./k — 0.
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S. Svetina and B. Zeks,

y Anat. Rec. 268, 215 (2002)



Shape of red blood cells
In the usual environment red blood cells

environment can induce different shapes. v

have discocyte shape. Modifying cell

cationic amphipaths, low salt, anionic amphipaths, high salt,
low pH, cholesterol depletion high pH, cholesterol enrichment
experiments simulations v = 0.950

ACLO = —0.858
ACLO = 1.717
& @
& g
o T
= Aag = —0.358 2 Aag = 1.788
£ -
e
O T
) ((})
) Aap = 0.072 Aag = 2.003

y G. Lim et al, PNAS 99, 16766 (2002)



Sickle-cell disease (anaemia)

Abnormal, sickled, red blood cells

(sickle cells)
) Normal red blood cells

Normal
red blood

Sickle cells

Sticky sickle cells

RBCs flow freely
within blood vessel

Abnormal
hemoglobin
form strands
that cause
sickle shapa)

In low oxygen environment
hemoglobin proteins inside sickle cells
polymerize and form long strands.

Sickle cells are much stiffer and
cannot deform in order to pass
through small capillaries.

15 Wikipedia



Protein aggregation and diseases

R. Phillips et al., Physical

(A) In dilute solution misfolded proteins
Biology of the Cell

refold back into their native state.

hydrophilic

(A)
@ . . @@ amino acids
denaturation refolding in
dilute solution hydrophobic
® amino acids
refolding n17
concentrated
% solution

(B) In concentrated solution misfolded proteins tend to form aggregates.

aggregation

Cells have special proteins called chaperons, which assist proteins
folding into their native state and thus prevent aggregation.

Protein aggregation is a cause of many
diseases (Alzheimer’s, Parkinson’s, ...)

16



What happens In the presence of
thermal fluctuations?

flat phase crumpled phase

low temperature phase high temperature phase

IICBTSJK} kBTzlﬂ

T* ~ r/kp ~ 6000K

This phase hasn’t been observed
experimentally, because membranes
melt before reaching this temperature!

17



Flickering of cells
red blood cells giant lipid vesicles

J

https://www.youtube.com/watch?v=VwhNLaRCD-4 A. F. Loftus et al., Langmuir 29, 14588 (2013)
For flat membranes

amplitude of height ~ knT In bacteria thermal
a2 B :
fluctuations at low ’ (Cl )’ ~ >4 P fluctuations are
temperatures ARl 471G 1) suppressed due to the
surface tension
frequency of () ~ (5|q]* + 7]q]?) generated by large
oscillations 0 internal pressure!
Fourier h(Z) = Z e'@¥j () membrane | mass density surface _
modes z area 13 per unit area tension


https://www.youtube.com/watch?v=VwhNLaRCD-4

Why do we get wrinkled surfaces?

Fingers after being exposed
to water for some time

Old apple




Compression of stiff thin membranes
on liquid and soft elastic substrates

air

> liquid or —
soft substrate

Liquid substrate Elastic substrate Ls < B,

compression

) =4 L / . . L' -_.'_ kf | .: -1.1:' Mt '} .
10 ym thin sheet of ~10 ym thin PDMS (stiffer) sheet
polyester on water on PDMS (softer) substrate

L

)\0 ~ 1.6cm )\() ~ 70,LLII1

L. Pocivavsek et al., Science 320, 912 (2008) ,, F. Brau et al., Soft Matter 9, 8177 (2013)



Compression of stiff thin
membranes on liquid substrates

dY A

I

<

>
L
compression energy of thin membrane

U.~AXE, dx ¢

membrane

liquid
membrane 3D Young’s strain density
ared modulus A
A=WL Er, ‘=7 P

L
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assumed profile

h(s) = hgcos(2ms/\)

Compression of stiff thin

membranes on liquid substrates
4

2ho §

<

L

projected length assuming that membrane doesn’t stretch

b [La/ TR [ o < (1)

amplitude of
wrinkles

bending energy of
stiff membrane

potential energy
of liquid

minimize total
energy (Un+Up)
with respect to )\
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Uy, U, ~ Ae\/ E,,d3pg




Compression of stiff thin
membranes on liquid substrates

j > €

wrinkles are
stable above the
critical strain

wavelength of
wrinkles

amplitude of
wrinkles at the
critical strain

23

U.~AX E, dXx ¢

Uy, U, ~ Aey/ E,,d3pg




2ho §

dv

Compression of stiff thin
membranes on liquid substrates

scaling analysis
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exact result
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Latex-Water [78]
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PS-Water [67]
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In(x/pg)

F. Brau et al., Soft Matter 9, 8177 (2013)



