MAE 545: Lecture 19 (12/2) Wrinkled surfaces

Liquid substrate

2

10 μ m thin sheet of polyester on water

 $\lambda_0 \sim 1.6 \mathrm{cm}$

L. Pocivavsek et al., Science 320, 912 (2008)

compression

~10 µm thin PDMS (stiffer) sheet on PDMS (softer) substrate

 $\lambda_0 \sim 70 \mu \mathrm{m}$

Compression of stiff thin membranes on liquid substrates

Compression of stiff thin membranes on liquid substrates

4

scaling analysis

exact result

Compression of stiff thin membranes on liquid substrates

How to go beyond the simple scaling analysis to determine the nonlinear post-buckling behavior?

Find shape profile h(s) that minimizes total energy

$$U_b + U_p = W \int_0^L \frac{ds}{2} \left[\frac{\kappa h''^2}{(1+h'^2)^3} + \rho g h^2 \sqrt{1-h'^2} \right]$$

subject to constraint

$$L - \Delta = \int_0^L ds \sqrt{1 - h'^2}$$
5 F. Brau et a

Compression of stiff thin membranes on liquid substrates

Comparison between theory (infinite membrane) and experiment

L. Pocivavsek et al., Science 320, 912 (2008)

assumed profile

 $h(s) = h_0 \cos(2\pi s/\lambda)$

amplitude of wrinkles

$$h_0 = \frac{\lambda}{\pi} \sqrt{\frac{\Delta}{L}} = \frac{\lambda\sqrt{\epsilon}}{\pi}$$

deformation of the soft substrate decays exponentially away from the surface

$$h(s,y) \approx h_0 \cos(2\pi s/\lambda) e^{-y/\lambda}$$

 $U_b, U_s \sim Ad\epsilon \left(E_s^2 E_m \right)^{1/3}$

bending energy of stiff membrane

deformation energy of soft substrate

$$U_b \sim A \times \kappa \times \frac{1}{R^2} \sim A \times E_m d^3 \times \frac{h_0^2}{\lambda^4} \sim \frac{AE_m d^3 \epsilon}{\lambda^2}$$
$$U_s \sim V \times E_s \times \epsilon_s^2 \sim A\lambda \times E_s \times \frac{h_0^2}{\lambda^2} \sim AE_s \lambda \epsilon$$

minimize total energy (U_b+U_s) with respect to λ

8

 $\lambda \sim d \left(\frac{E_m}{E_s}\right)^{1/3}$

1

11

In order to explain period doubling (quadrupling, ...) one has to take into account the full nonlinear strain tensor of the soft substrate

$$2u_{ij}^s = \left(\partial_i u_j^s + \partial_j u_i^s\right) + \sum_k \partial_i u_k^s \partial_j u_k^s$$

 $i,j,k\in x,y,z$

S. Cai et al., J. Mech. Phys. Solids 59, 1094 (2011)

Compressionesine for the radiation of th

14

Spherical shells are compressed by reducing internal pressure

R/d

Phase diagram

N. Stoop et al., Nat. Materials 14, 337 (2015)

Compression of stiff thin membranes on a spherical soft substrates

Phase diagram

D. Breid and A.J. Crosby, Soft Matter 9, 3624 (2013)

Modifying radius *R*

Modifying membrane thickness d

Modifying swelling strain ϵ

How are villi formed in guts?

Villi increase internal surface area of intestine for faster absorption of digested nutrients.

Lumen patterns in chick embryo

DAPI marks cell nuclei aSMA marks smooth muscle actin EX: age of chick embryo in days

Stiff muscles grow slower than softer mesenchyme and endoderm layers

radial compression due to differential growth produces striped wrinkles

endoderm mesenchyme muscle

17 A. Shyer et al., Science 342, 212 (2013)

Lumen patterns in chick embryo

E8 - E12 Ridges

up until E6

Smooth

E13-E15

Zigzags

18 A. Shyer et al., Science 342, 212 (2013)

E16 onward

Villi

Lumen patterns in chick embryo

Villi start forming at E16 because of the faster growth in valleys

Zigzag Twisting Bulges

The same mechanism for villi formation also works in other organisms!

19 A. Shyer et al., Science 342, 212 (2013)

Why are guts shaped like that?

© 2003 Encyclopædia Britannica, Inc.

Guts in chick embryo

Surgically removed guts from chick embryo

Tube straightens after separation from mesentery

Tube grows faster than mesentery sheet!

21

T. Savin et al., Nature 476, 57 (2011)

Synthetic analog of guts

Rubber model of guts

Chick guts at E12

What is the wavelength of this oscillations?

Compression of stiff tube on soft elastic mesentery sheet

$$2h_0 \ddagger$$

assumed profile $h(s) = h_0 \cos(2\pi s/\lambda)$

deformation of the soft mesentery decays exponentially away from the surface

y

 $2r_0$

w

 $2r_i$

amplitude of wrinkles

$$h_0 = \frac{\lambda}{\pi} \sqrt{\frac{\Delta}{L}} = \frac{\lambda\sqrt{\epsilon}}{\pi}$$

 $h(s,y) \approx h_0 \cos(2\pi s/\lambda) e^{-y/\lambda}$

bending energy of stiff tube

$$U_b \sim L \times \kappa_t \times \frac{1}{R^2} \sim L \times E_t I_t \times \frac{h_0^2}{\lambda^4} \sim \frac{L E_t I_t \epsilon}{\lambda^2}$$

deformation energy of soft mesentery

$$U_m \sim A \times E_m d \times \epsilon_m^2 \sim L\lambda \times E_m d \times \frac{h_0^2}{\lambda^2} \sim LE_m d\lambda \epsilon$$

minimize total energy (U_b+U_m) with respect to λ

$$\lambda \sim \left(\frac{E_t I_t}{E_m d}\right)^{1/3}$$

bending stiffness of tube $\kappa_t = E_t I_t$ $\kappa_t \propto E_t (r_0^4 - r_i^4)$

Wavelength of oscillations in guts

24

 $E_{\rm m}$

T. Savin et al., Nature 476, 57 (2011)

Compre

erial

When soft elastic material is compressed by more than 35% surface forms sharp creases. This is effect of nonlinear elasticity!

arm of an infant

rising dough

Swelling of thin membranes on elastic substrates

26 T. Tallinen et al., PNAS 111, 12667 (2014)

Gyri and Sulci of Brains

Migration of neurons to the cortex leads to swelling of gray matter!

Brains for various organisms

28 T. Tallinen et al., PNAS 111, 12667 (2014)

K. Zhang and T.J. Sejnowski, PNAS 97, 5621 (2000)

Brain malformations

lissencephaly pachygyria (small number of larger gyri)

Reduced neuronal migration to cortex

Gray matter is thicker and it swells less!

polymicrogyria

(large number of smaller gyri)

Typically gray matter has only four rather than six layers in the affected areas.