
MAE 545: Lecture 19 (12/2)

Wrinkled surfaces

curvature, and themagnitude of the applied swelling stress. The
presence of curvature introduces several advantages. First, the
magnitude of the curvature can be a control parameter to
dictate the wrinkle morphology independent of other experi-
mental conditions (Fig. 1a). Second, the connement of the
curved surfaces leads to improved ordering of hexagonal
dimples. Finally, wrinkled curved structures are inherently
hierarchical, a key advantage for the design of many specialty
and biomimetic structured materials.

Background

In 2008, Cao and colleagues25,26 identied four dimensionless
parameters which can describe wrinkling on spherical surfaces
comprised of a lm of uniform thickness, t, supported on a so

elastic substrate with radius of curvature, R: the ratio R/t of
curvature to lm thickness, the modulus mismatch Ef/Es (where
the subscripts f and s refer to the lm and substrate, respec-
tively), the applied overstress, dened as the ratio of the applied
stress to the critical wrinkling stress (s/sc), and the aspect ratio
of the axes of the spheroid. Following Cai, et al.,24 the rst two
parameters may be combined into a single dimensionless
curvature parameter given by:

U ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"
1" nf 2

#q
ðt=RÞðE"f=3E

"
sÞ2=3 (1)

where !E represents the plane strain modulus E/(1 " n2) with n

equal to the Poisson's ratio of the material. For wrinkling
spheres at small overstress, Cao, et al. reported26 formation of
dimple features at large U, while small U values tended to form
ridge-based labyrinthine patterns. They also showed that the
applied overstress affects the amplitude of wrinkling and plays a
strong role in determining the selection between ridges and
dimples, holding everything else constant.

Furthermore, the level of overstress is inherently related to
the curvature. This dependence stems from the relationship
between radial displacement of the shell and the stretching
energy incurred in the shell. The introduction of curvature
changes this dependence from a quadratic to a linear relation-
ship,28 which in turn impacts the critical wrinkling stress. Thus,
when curvature is present, the stretching energy makes a rela-
tively larger contribution to the overall energy. For this reason,
the overstress most relevant to curved surface buckling is s/sRc ,
the ratio of the applied stress to the critical stress of a spherical
surface with radius of curvature R. The denition of the curved
critical stress sRc was presented by Cai et al.24 following the
approach of Hutchinson29 for buckling of hollow spherical
shells. In brief, similar to the case of understanding instabilities
in a at system, critical deformation modes of the following
form were considered:

w ¼ xtcos(b1kx1)cos(b2kx2) (2)

where w is the vertical displacement of the lm, x is the
amplitude of the deection, and k ¼ t"1(3!Es/!Ef)1/3. b1 and b2
represent free variables relating to the periodicity of the solu-
tions, and all modes which satisfy b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1

2 þ b2
2

p
are critical

modes. The associated critical buckling stress for these critical
deformation modes is given by:24

sR
c ¼ 1

3

"
b2 þ 2b"1 þ 3U2b"2

#
sflat
c

"
subject to b4 " b" 3U2 ¼ 0

# (3)

where

sflat
c ¼ E

"
f

4
ð3E"s=E

"
fÞ2=3 (4)

In the limit where the wrinkle wavelength, l ¼ 2p/k, is much
smaller than R, the critical stress may be approximated by24

sR
c

sflat
c

z1þ U2 (5)

Fig. 1 Dimple–ridge transitions effected through independent control of various
system parameters. (a) Varying radius at constant UVO time (60 min) and ethanol
concentration (100%). (b) Varying UVO treatment time at constant radius (381
mm) and ethanol concentration (100%). (c) Varying ethanol concentration at
constant UVO time (60 min) and cap radius (522 mm). All scale bars 250 mm.
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Compression of stiff thin membranes 
on liquid and soft elastic substrates

for applications in optics,37 microuidics,38 stretchable elec-
tronics39–42 or for metrology in nanometric lms.43–47

Most of the aforementioned natural systems can be idealized
as being composed of a thin and stiff membrane attached to a
thick and so material. However, these systems are oen
characterized by a complex geometry. In order to study carefully
the properties of the emerging structures, we focus on bilayer
systems compressed uniaxially in the plane of the rigid
membrane that have been intensively studied.48–63 Notice,
however, that more complex geometries have already been
studied by considering biaxial/radial stresses (with or without
substrate) or curved substrates64–71 where wrinkle to fold tran-
sitions can also be observed for large enough deformations of
the systems.72–74

Here we consider the case of a sufficiently strong adhesion
between layers to avoid delamination75–77 and discuss in detail
the uniaxial compression of a rigid membrane resting either on
a liquid foundation78,79 or on an elastic solid substrate.80 Before
starting this discussion, let us recall qualitatively the basic steps
of the system deformation.

For small enough connement, compressed sheets stay
planar and preserve the system symmetry. As it is much easier to
bend a thin sheet than to stretch or compress it, there exists
some connement threshold beyond which the membrane
buckles to release the stored compression energy. The
membrane undulates out of its initial plane breaking sponta-
neously the system symmetry. The foundation is then also
deformed following the undulations of the sheet. The bending

energy of the sheet, being proportional to the square of the
curvature, favors the emergence of large length-scales such as
the system size. However, the surface deformation energy of the
bulk substrate favors vanishing length-scales. The total energy
is thus minimized for some intermediate length-scale, l0,
independent of the system size. This behavior is observed for
both liquid and elastic foundations.

For larger connement, the evolution of the membrane
morphology differs strongly according to the nature of the
substrate.

! For a liquid foundation, the amplitude of the initial wrin-
kles rst grows uniformly across the sheet. Further connement
leads to the formation of a single fold where all of the defor-
mation is focused within a narrow region of the sheet (see Fig. 1
le panels). The folding can appear downward, i.e. toward the
substrate, or upward. The system is thus characterized by an
up–down symmetry which is broken spontaneously by the
emergence of the instability.

! For an elastic foundation, the amplitude of the initial
wrinkles also rst grows uniformly across the sheet. However,
beyond a second threshold for the connement, a dramatic
change in the morphology is observed: one wrinkle grows in
amplitude at the expense of its neighbors leading to a period-
doubling instability with the emergence of a subharmonic
mode characterized by a wavelength 2l0 (see Fig. 1 right panels).
The periodic folding appears always downward and never
upward. Consequently the up–down symmetry is broken
explicitly by the system.

Fig. 1 Qualitative comparison between the evolution with respect to confinement of the morphology of compressed sheets resting on a liquid78 (left panels,
l0 " 1.6 cm) and on an elastic foundation (right panels, l0 " 70 mm). The confinement increases from panels a to panels c.
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3 Liquid substrate

When the substrate is a liquid the effective stiffness is given by
K¼ rg where r is the liquid mass density and g the gravitational
acceleration. From eqn (10) with a ¼ 0 and K ¼ !K ¼ rg, we
obtain

l0 ¼ 2p

!
B

rg

"1=4

: (11)

This relation is in very good agreement with available experi-
mental data found in ref. 67 and 78 and gathered in Fig. 3.
Consequently, eqn (7) governing the membrane morphology,
obtained from an expansion at the lowest order of the
Lagrangian (2), captures well the physics of this system near the
buckling threshold. This length-scale l0 emerges as soon as the
applied load reaches the critical value P0 ¼ P(2p/l0) whose
expression is obtained from eqn (8)

P0 ¼ 2(Brg)1/2. (12)

To describe the subsequent evolution of the membrane
morphology, we need to derive the complete nonlinear equation
from the Lagrangian (2) with the full expression for the defor-
mation energy of the substrate us ¼ y2cos q. We consider the
ideal case of an innitely long sheet L/Nwith y¼ q¼ _q¼ 0 for
s / "N. As shown below, this approximation gives a satis-
factory description of this system and allows us to obtain an
explicit exact solution. The Euler–Lagrange eqn (4) gives the
following system of equations

Bq€þ K

2
y2sin qþ Psin qþQcos q ¼ 0 (13)

Kycos q $ _Q ¼ 0. (14)

Differentiating (13) with respect to s and using eqn (14) to
eliminate _Q together with _y ¼ sin q, we obtain

Bq
.
þ Kyþ K

2
y2 _qcos qþ P _qcos q$Q _qsin q ¼ 0 (15)

Since the Lagrangian L has no explicit dependence on
the independent variable s, the Hamiltonian, H, is a constant
(dH/ds ¼ 0). The expression of the Hamiltonian is given by

H ¼
P
i

_qi
vL
v _qi

$ L

¼ B

2
_q2 $ K

2
y2cos qþ Pð1$ cos qÞ þQsin q ¼ 0; (16)

where the constant has been set to 0 to satisfy the boundary
conditions at s / "N. The Lagrange multiplier Q is nally
eliminated by multiplying the expression (16) of H by _q and
adding the result to eqn (15):

Bq
.
þ B

2
_q
3 þ P _qþ Ky ¼ 0: (17)

Eqn (17) coincides with Euler's elastica problem. It expresses
the balance of normal forces on an innitesimal section of
the sheet. The last term, which usually corresponds to an
external normal force,83 arises here from hydrostatic pressure.
Differentiation of eqn (17) leads to an equation depending
only on q:

Bqzþ 3B

2
_q
2
q€þ Pq€þ Ksin q ¼ 0: (18)

Notice that this equation, or the equivalent one written in
terms of y and its derivatives,84 is invariant against the change
y / $y. This system is thus characterized by an up–down
symmetry meaning that the folding takes place either toward
the substrate or upward. Indeed, any deformation or its
symmetric one obtained from y / $y is equivalent for the
sheet. Pulling out the liquid from its initial equilibrium state or
pushing it down in a symmetric way is also energetically
equivalent.

At rst glance, it seems unlikely that this nonlinear eqn (18)
possesses explicit exact solutions. However, as indicated in ref.
79, it is characterized by a high level of symmetry. Simple
algebraic manipulations allow us to obtain the value of y and
all its derivatives at s ¼ 0 which hints that the problem may be
integrable. Moreover, this equation can be derived from the
integrable physical-pendulum equation, €q + k2sin q ¼ 0, which
is another indication that exact solutions may exist. From this
relation between these two seemingly unrelated systems, one
can show that the following solution of the pendulum
equation

!q(a,k;s) ¼ 4tan$1(ae"iks) (19)

Fig. 3 Circular and triangular symbols correspond to data for liquid foundations
from ref. 67 and 78 with K ¼ rg. PE stands for polyester and PS stands for poly-
styrene. Square and diamond symbols correspond to data for elastic substrates
from ref. 39, 88 and 89 with K ¼ Es/3. PMMA stands for polymethyl methacrylate
and Si stands for silicon. Experiments using PVDF thin sheets of thickness 9 and 25
mm and partially cross-linked PDMS substrate have been performed to extend the
spanned experimental domain (E¼ 2.5" 0.5 GPa and s¼ 0.35 for PVDF90 and E¼
25 " 5 kPa and s ¼ 0.5 for PDMS). The bending modulus B of polystyrene sheets
used in ref. 67 has been computed using E ¼ 3 " 1 GPa and s ¼ 0.35.81,82 When
not displayed, error bars have sizes similar to symbol sizes. SI units are used for l0
and the ratio B/K.

8180 | Soft Matter, 2013, 9, 8177–8186 This journal is ª The Royal Society of Chemistry 2013

Soft Matter Review

Pu
bl

is
he

d 
on

 0
5 

Ju
ly

 2
01

3.
 D

ow
nl

oa
de

d 
by

 P
rin

ce
to

n 
U

ni
ve

rs
ity

 o
n 

25
/1

1/
20

15
 1

5:
19

:2
7.

 

View Article Online

ln(/⇢g)

ln(�)scaling analysis

exact result

� = 2⇡

✓


⇢g

◆1/4



5

Compression of stiff thin 
membranes on liquid substrates
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for applications in optics,37 microuidics,38 stretchable elec-
tronics39–42 or for metrology in nanometric lms.43–47

Most of the aforementioned natural systems can be idealized
as being composed of a thin and stiff membrane attached to a
thick and so material. However, these systems are oen
characterized by a complex geometry. In order to study carefully
the properties of the emerging structures, we focus on bilayer
systems compressed uniaxially in the plane of the rigid
membrane that have been intensively studied.48–63 Notice,
however, that more complex geometries have already been
studied by considering biaxial/radial stresses (with or without
substrate) or curved substrates64–71 where wrinkle to fold tran-
sitions can also be observed for large enough deformations of
the systems.72–74

Here we consider the case of a sufficiently strong adhesion
between layers to avoid delamination75–77 and discuss in detail
the uniaxial compression of a rigid membrane resting either on
a liquid foundation78,79 or on an elastic solid substrate.80 Before
starting this discussion, let us recall qualitatively the basic steps
of the system deformation.

For small enough connement, compressed sheets stay
planar and preserve the system symmetry. As it is much easier to
bend a thin sheet than to stretch or compress it, there exists
some connement threshold beyond which the membrane
buckles to release the stored compression energy. The
membrane undulates out of its initial plane breaking sponta-
neously the system symmetry. The foundation is then also
deformed following the undulations of the sheet. The bending

energy of the sheet, being proportional to the square of the
curvature, favors the emergence of large length-scales such as
the system size. However, the surface deformation energy of the
bulk substrate favors vanishing length-scales. The total energy
is thus minimized for some intermediate length-scale, l0,
independent of the system size. This behavior is observed for
both liquid and elastic foundations.

For larger connement, the evolution of the membrane
morphology differs strongly according to the nature of the
substrate.

! For a liquid foundation, the amplitude of the initial wrin-
kles rst grows uniformly across the sheet. Further connement
leads to the formation of a single fold where all of the defor-
mation is focused within a narrow region of the sheet (see Fig. 1
le panels). The folding can appear downward, i.e. toward the
substrate, or upward. The system is thus characterized by an
up–down symmetry which is broken spontaneously by the
emergence of the instability.

! For an elastic foundation, the amplitude of the initial
wrinkles also rst grows uniformly across the sheet. However,
beyond a second threshold for the connement, a dramatic
change in the morphology is observed: one wrinkle grows in
amplitude at the expense of its neighbors leading to a period-
doubling instability with the emergence of a subharmonic
mode characterized by a wavelength 2l0 (see Fig. 1 right panels).
The periodic folding appears always downward and never
upward. Consequently the up–down symmetry is broken
explicitly by the system.

Fig. 1 Qualitative comparison between the evolution with respect to confinement of the morphology of compressed sheets resting on a liquid78 (left panels,
l0 " 1.6 cm) and on an elastic foundation (right panels, l0 " 70 mm). The confinement increases from panels a to panels c.
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is also a solution of eqn (18) provided P ¼ Bk2 + Kk"2 for any a.
Consequently, eqn (19) gives complex solutions for eqn (18),
with the complex wave vectors

k ¼ #kþ # ik"; k# ¼ 1

2

!
K

B

"1=4!
2# Pffiffiffiffiffiffiffiffi

BK
p

"1=2

: (20)

Real exact solutions can, however, be constructed using
these complex expressions. The equation to solve being
nonlinear, linear combinations of the complex solutions are no
longer solutions. Nevertheless eqn (18) is the third member of
the stationary-sine–Gordon-modied-Korteweg–de Vries hier-
archy where the sine–Gordon and the physical-pendulum are
the two rst ones.85 Knowing three solutions, !q0, !q1, !q2, of the
pendulum equation, one can construct another solution, q,
using the following nonlinear combination:86 tan[(q " !q0)/4] ¼
[(k1 + k2)/(k1 " k2)]tan[(!q1 " !q2)/4]. These three solutions are
obtained from eqn (19) by using the relation (20) between k
and P, which connects the pendulum equation to eqn (18),
and by xing the appropriate value for the arbitrary amplitude
a. Choosing !q0(a0 ¼ 0,k0;s) ¼ 0, !q1(a1 ¼ 1,k1 ¼ k+ " ik";s) and
!q2(a2 ¼ 1,k2 ¼ "k+ " ik";s) we obtain

q ¼ 4 tan"1

"
k"sinðkþsÞ
kþcoshðk"sÞ

#

(21)

corresponding to an even prole for the membrane.† Substi-
tution of this function into eqn (18) conrms that it indeed
solves it exactly. The expression (21) together with the denition
of k# (20) give the evolution of the shape of the membrane with
respect to the applied load P. The applied load can be related to
the connement D using eqn (1) with L / N:

D ¼ 8

!
B

K

"1=2

k" ¼ 2l0
p

!
2" Pffiffiffiffiffiffiffiffi

BK
p

"1=2

; (22)

whereweused eqn (11) to introduce l0. Consequently the applied
load evolves with the connement following a quadratic law,

Pffiffiffiffiffiffiffiffi
BK

p ¼ 2" p2

4

!
D

l0

"2

; (23)

which coincides perfectly with numerical calculations per-
formed for a nite system in ref. 78.

Even if this exact solution has been obtained in the ideal case
of an innitely long sheet, folding is a localized deformation
which should be rather independent of the system size. This is
illustrated in Fig. 4 where the experimental evolution of two
wrinkle amplitudes, A0 and A1, for nite sheets78 is compared to
the evolution predicted by the exact solution obtained
for innite sheets. When the folding of the sheet is signicant
(D/l0 T 0.3), the agreement is remarkable. Fig. 5 shows a
comparison between experimental and theoretical proles
conrming that the innite sheet approximation gives a satis-
factory description of nite sheet morphology especially for
large enough connement.

4 Elastic substrate

When the substrate is an elastomer the normal force induced by
the foundation on the membrane is given by !KH ( _y(s)) for small
connement with

!K ¼ 2Es(1 " ss)/(1 + ss)(3 " 4ss), (24)

where Es and ss are the Young's modulus and the Poisson's ratio
of the substrate respectively.80 This expression is valid for an
arbitrary shape of the membrane, y. The operator H is the
Hilbert transform.87‡ For a periodic deformation characterized
by a wavenumber k, the effective stiffness is thus given by !Kk.
From eqn (10) with a ¼ 1, we obtain

l0 ¼ 2p

!
2B
!K

"1=3

¼ 2p

!
3B

Es

"1=3

; (25)

Fig. 4 (a) Definitions of the amplitudes A0 and A1. (b) Comparison between the
experimental evolutionofA0 andA1 (rescaledby l0)with the confinement forfinite
sheets78 and the evolution predicted by the exact solution (21) obtained for an
infinite sheet. Inset: representative membrane profiles for various values of D/l0.

Fig. 5 Comparison between experimental78 and theoretical profiles for D/l0 ¼
0.15 (a), 0.30 (b) and 0.80 (c).

† An energetically equivalent odd prole is obtained by choosing !q0 ¼ 0, !q1(i,k+ "
ik";s) and !q2(i,"k+ " ik";s).

‡ The action of this linear operator on trigonometric functions is quite simple:
H (cos(kx)) ¼ sin(kx) and H (sin(kx)) ¼ "cos(kx).

This journal is ª The Royal Society of Chemistry 2013 Soft Matter, 2013, 9, 8177–8186 | 8181
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predicted to grow continuously in amplitude as
ffiffiffi

D
p

, which is in agreement with our observations.
The total energy for a wrinkled state scales as

U ~ (BK)
1=2D and is distributed across the entire

undulating surface. The specific energyU/L has a
finite value for a given applied external strain D/L
independent of the system size. Furthermore, a
constant pressure is necessary to confine a film
in a wrinkled state p = ∂DU ~ (BK)

1=2 (where
∂DU is the derivative of the energy with respect
to the horizontal displacement), independent of
the amount of lateral displacement so long as
the system size is large (20). Thus, the conclu-
sions from the linear analysis are that once a
wrinkled surface appears, it is the stationary
solution. Further confinement leads to a simple
increase in amplitude that gives rise to an in-
crease in energy for the system.

Whereas the above linear analysis explains
the wrinkled state, it does not provide insight into
the wrinkle-to-fold transition. To examine the
transition into the strongly confined state where
fold localization begins, we experimentally
studied a thin polyester film on water and nu-
merically analyzed the lowest energy solutions
to the energy functional defined earlier. The
insets in Fig. 3, A and C, show profiles of the
physical and numerical sheets as compression
is increased. N = L/l and d = D/l are the only
dimensionless parameters in the problem (here,
N is the number of wrinkles, and d is the di-
mensionless lateral displacement). A1 is chosen
as the amplitude of the wrinkle that decays and
A0 as the amplitude of the one that grows (Fig.
2A). Both the physical and numerical systems
show divergence of the amplitudes from the
square root dependence on displacement seen
in uniform wrinkles beyond a certain confine-
ment (Fig. 2B). Notably, around d = D/l ≈ 0.3
(i.e., D ≈ l/3), A0 begins to increase linearly, and
the buttressing wrinkle amplitude A1 begins to
decay. This is the hallmark of the wrinkle-to-fold
transition.

The amplitude data also bring forth an emer-
gent size independence within the folding regime.
The wrinkle amplitude derived above depends on
strain (D/L); however, the fold amplitude depends
only on D. The fact that the wrinkle-to-fold tran-
sition occurs at d ≈ 0.3 thus gives rise to the in-
creased scatter in the data for d < 0.3 and a
collapse of the data onto linear curves beyond
this critical point (Fig. 2B).

To avoid the finite size effect at low com-
pression, one can look at the ratio of the two
amplitudes, A0/A1, that acts as an effective order
parameter for the transition. For a uniformly
wrinkled state, the order parameter should fluc-
tuate around one. However, as confinement in-
creases above a critical point, the order parameter
must diverge. Figure 3A shows the overlay of
physical (circles) and numerical (solid blue line)
data for the order parameter. When d < 0.3, both
sets lie on the line A0/A1 ≈ 1. As compression is
increased beyond this point, there is a seemingly
asymptotic divergence.

The theoretical data in Fig. 3A represent an
upper bound to the data for the order parameter,
which can be explained by considering the final
fold shape. In the numerical analysis, up/down as
well as S and anti-S folds are seen as final states
(Fig. 3B). However, in the polyester experiments,
S and anti-S folds eventually relax toward an
up/down geometry upon further compression
(22). In Figs. 2B and 3A, the data are divided
between membranes that formed intermediate S
and anti-S folds (gray symbols) and those that
did not (black symbols). The untwisting is driven
by line tension at the polyester/water/air inter-
face, not accounted for in the numerical analysis,
and occurs at higher values of d; thus, some
physical data are slightly shifted to the right as
shown in Fig. 3A (gray circles).

The correspondence between the numerical
and physical data attests that the essential
physics of the phenomenon is captured in the
simulation. Both experiments show that a
wrinkled surface should be stable against further
confinement by a third of its wavelength (l/3),
beyond which the surface geometry becomes
unstable toward the new localized folded state.
The fold eventually collapses as two nonad-
jacent parts of the surfacemake self-contact, and

confinement approaches the initial wrinkle
wavelength.

We now provide a physical interpretation
of the transition in the original unscaled var-
iables. For a fold with a maximum curvature at
its tip ḟmax, the energy is localized inside a pe-
rimeter of l ∼ 1=ḟmax so that the bending en-
ergy of the fold scales as UB ~ B/l. The height
of the fold is proportional to the applied dis-
placement D; hence, the potential energy must
scale as UK ~ K lD2. We have not considered
the nonlinear effect due to the factor cosf in the
potential energy. This term represents the pro-
jection of the fold shape along the horizontal
direction. Writing the inextensibility constraint
as the sum of linear and nonlinear terms, we

obtain ∫
L

0

dlð1 − cosfÞ ¼ D. The potential energy

can similarly be divided, UK ¼ ðK=2Þ∫
L

0

dly2 −

ðK=2Þ∫
L

0

dlð1 − cos fÞy2. This yields the scaling

UK ∼ KlD2 − KD2∫
L

0

dlð1− cosfÞ ∼ KlD2 −KD3:

The size of the fold l is obtained by
minimizing the total energy ∂l (UB + UK) = 0,
giving l ~ (B/K)

1=2(1/D), which is confirmed by
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Fig. 2. (A) The figure defines A0 and A1 and the geometrical parameters describing a confined
sheet. The deformation can be described by using a two-dimensional coordinate system. Here t and
n are the tangent and normal to the surface, respectively. f gives the position of the tangent with
respect to the horizontal direction. (B) Experimental results for polyester on water for A0 (squares)
and A1 (circles). Experimental data were taken for several membrane sizes, including when N = 3.5,
4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, and 8.0. Dark solid lines show numerical results for a sheet
with L = 3.5l. Both the physical polyester and numerical data are made dimensionless. A1, A0, and
D are scaled to l. (Inset) A1 versus horizontal displacement for several numerical systems of
different sizes (solid blue lines). The dashed line is the theoretical curve A = [(

ffiffiffi

2
p

)/p]l
ffiffiffiffiffiffiffiffiffiffiffiffiffi

(d/3:5)p
(20)

that follows the numerical curve for N = 3.5 and d << 1. In both numerical and physical cases, the
data are more scattered for d < 0.3 and then collapse onto more compact (perfectly so in nu-
merical case) curves past this point. This behavior is indicative of the size-dependent behavior in
the wrinkling (d < 0.3) regime and size-independent behavior in the folding (d > 0.3) regime.

16 MAY 2008 VOL 320 SCIENCE www.sciencemag.org914

REPORTS

is also a solution of eqn (18) provided P ¼ Bk2 + Kk"2 for any a.
Consequently, eqn (19) gives complex solutions for eqn (18),
with the complex wave vectors

k ¼ #kþ # ik"; k# ¼ 1

2

!
K

B

"1=4!
2# Pffiffiffiffiffiffiffiffi

BK
p

"1=2

: (20)

Real exact solutions can, however, be constructed using
these complex expressions. The equation to solve being
nonlinear, linear combinations of the complex solutions are no
longer solutions. Nevertheless eqn (18) is the third member of
the stationary-sine–Gordon-modied-Korteweg–de Vries hier-
archy where the sine–Gordon and the physical-pendulum are
the two rst ones.85 Knowing three solutions, !q0, !q1, !q2, of the
pendulum equation, one can construct another solution, q,
using the following nonlinear combination:86 tan[(q " !q0)/4] ¼
[(k1 + k2)/(k1 " k2)]tan[(!q1 " !q2)/4]. These three solutions are
obtained from eqn (19) by using the relation (20) between k
and P, which connects the pendulum equation to eqn (18),
and by xing the appropriate value for the arbitrary amplitude
a. Choosing !q0(a0 ¼ 0,k0;s) ¼ 0, !q1(a1 ¼ 1,k1 ¼ k+ " ik";s) and
!q2(a2 ¼ 1,k2 ¼ "k+ " ik";s) we obtain

q ¼ 4 tan"1

"
k"sinðkþsÞ
kþcoshðk"sÞ

#

(21)

corresponding to an even prole for the membrane.† Substi-
tution of this function into eqn (18) conrms that it indeed
solves it exactly. The expression (21) together with the denition
of k# (20) give the evolution of the shape of the membrane with
respect to the applied load P. The applied load can be related to
the connement D using eqn (1) with L / N:

D ¼ 8

!
B

K

"1=2

k" ¼ 2l0
p

!
2" Pffiffiffiffiffiffiffiffi

BK
p

"1=2

; (22)

whereweused eqn (11) to introduce l0. Consequently the applied
load evolves with the connement following a quadratic law,

Pffiffiffiffiffiffiffiffi
BK

p ¼ 2" p2

4

!
D

l0

"2

; (23)

which coincides perfectly with numerical calculations per-
formed for a nite system in ref. 78.

Even if this exact solution has been obtained in the ideal case
of an innitely long sheet, folding is a localized deformation
which should be rather independent of the system size. This is
illustrated in Fig. 4 where the experimental evolution of two
wrinkle amplitudes, A0 and A1, for nite sheets78 is compared to
the evolution predicted by the exact solution obtained
for innite sheets. When the folding of the sheet is signicant
(D/l0 T 0.3), the agreement is remarkable. Fig. 5 shows a
comparison between experimental and theoretical proles
conrming that the innite sheet approximation gives a satis-
factory description of nite sheet morphology especially for
large enough connement.

4 Elastic substrate

When the substrate is an elastomer the normal force induced by
the foundation on the membrane is given by !KH ( _y(s)) for small
connement with

!K ¼ 2Es(1 " ss)/(1 + ss)(3 " 4ss), (24)

where Es and ss are the Young's modulus and the Poisson's ratio
of the substrate respectively.80 This expression is valid for an
arbitrary shape of the membrane, y. The operator H is the
Hilbert transform.87‡ For a periodic deformation characterized
by a wavenumber k, the effective stiffness is thus given by !Kk.
From eqn (10) with a ¼ 1, we obtain

l0 ¼ 2p

!
2B
!K

"1=3

¼ 2p

!
3B

Es

"1=3

; (25)

Fig. 4 (a) Definitions of the amplitudes A0 and A1. (b) Comparison between the
experimental evolutionofA0 andA1 (rescaledby l0)with the confinement forfinite
sheets78 and the evolution predicted by the exact solution (21) obtained for an
infinite sheet. Inset: representative membrane profiles for various values of D/l0.

Fig. 5 Comparison between experimental78 and theoretical profiles for D/l0 ¼
0.15 (a), 0.30 (b) and 0.80 (c).

† An energetically equivalent odd prole is obtained by choosing !q0 ¼ 0, !q1(i,k+ "
ik";s) and !q2(i,"k+ " ik";s).

‡ The action of this linear operator on trigonometric functions is quite simple:
H (cos(kx)) ¼ sin(kx) and H (sin(kx)) ¼ "cos(kx).
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Real exact solutions can, however, be constructed using
these complex expressions. The equation to solve being
nonlinear, linear combinations of the complex solutions are no
longer solutions. Nevertheless eqn (18) is the third member of
the stationary-sine–Gordon-modied-Korteweg–de Vries hier-
archy where the sine–Gordon and the physical-pendulum are
the two rst ones.85 Knowing three solutions, !q0, !q1, !q2, of the
pendulum equation, one can construct another solution, q,
using the following nonlinear combination:86 tan[(q " !q0)/4] ¼
[(k1 + k2)/(k1 " k2)]tan[(!q1 " !q2)/4]. These three solutions are
obtained from eqn (19) by using the relation (20) between k
and P, which connects the pendulum equation to eqn (18),
and by xing the appropriate value for the arbitrary amplitude
a. Choosing !q0(a0 ¼ 0,k0;s) ¼ 0, !q1(a1 ¼ 1,k1 ¼ k+ " ik";s) and
!q2(a2 ¼ 1,k2 ¼ "k+ " ik";s) we obtain

q ¼ 4 tan"1
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(21)

corresponding to an even prole for the membrane.† Substi-
tution of this function into eqn (18) conrms that it indeed
solves it exactly. The expression (21) together with the denition
of k# (20) give the evolution of the shape of the membrane with
respect to the applied load P. The applied load can be related to
the connement D using eqn (1) with L / N:
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whereweused eqn (11) to introduce l0. Consequently the applied
load evolves with the connement following a quadratic law,
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which coincides perfectly with numerical calculations per-
formed for a nite system in ref. 78.

Even if this exact solution has been obtained in the ideal case
of an innitely long sheet, folding is a localized deformation
which should be rather independent of the system size. This is
illustrated in Fig. 4 where the experimental evolution of two
wrinkle amplitudes, A0 and A1, for nite sheets78 is compared to
the evolution predicted by the exact solution obtained
for innite sheets. When the folding of the sheet is signicant
(D/l0 T 0.3), the agreement is remarkable. Fig. 5 shows a
comparison between experimental and theoretical proles
conrming that the innite sheet approximation gives a satis-
factory description of nite sheet morphology especially for
large enough connement.

4 Elastic substrate

When the substrate is an elastomer the normal force induced by
the foundation on the membrane is given by !KH ( _y(s)) for small
connement with

!K ¼ 2Es(1 " ss)/(1 + ss)(3 " 4ss), (24)

where Es and ss are the Young's modulus and the Poisson's ratio
of the substrate respectively.80 This expression is valid for an
arbitrary shape of the membrane, y. The operator H is the
Hilbert transform.87‡ For a periodic deformation characterized
by a wavenumber k, the effective stiffness is thus given by !Kk.
From eqn (10) with a ¼ 1, we obtain

l0 ¼ 2p
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Fig. 4 (a) Definitions of the amplitudes A0 and A1. (b) Comparison between the
experimental evolutionofA0 andA1 (rescaledby l0)with the confinement forfinite
sheets78 and the evolution predicted by the exact solution (21) obtained for an
infinite sheet. Inset: representative membrane profiles for various values of D/l0.

Fig. 5 Comparison between experimental78 and theoretical profiles for D/l0 ¼
0.15 (a), 0.30 (b) and 0.80 (c).

† An energetically equivalent odd prole is obtained by choosing !q0 ¼ 0, !q1(i,k+ "
ik";s) and !q2(i,"k+ " ik";s).

‡ The action of this linear operator on trigonometric functions is quite simple:
H (cos(kx)) ¼ sin(kx) and H (sin(kx)) ¼ "cos(kx).
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3 Liquid substrate

When the substrate is a liquid the effective stiffness is given by
K¼ rg where r is the liquid mass density and g the gravitational
acceleration. From eqn (10) with a ¼ 0 and K ¼ !K ¼ rg, we
obtain

l0 ¼ 2p

!
B

rg

"1=4

: (11)

This relation is in very good agreement with available experi-
mental data found in ref. 67 and 78 and gathered in Fig. 3.
Consequently, eqn (7) governing the membrane morphology,
obtained from an expansion at the lowest order of the
Lagrangian (2), captures well the physics of this system near the
buckling threshold. This length-scale l0 emerges as soon as the
applied load reaches the critical value P0 ¼ P(2p/l0) whose
expression is obtained from eqn (8)

P0 ¼ 2(Brg)1/2. (12)

To describe the subsequent evolution of the membrane
morphology, we need to derive the complete nonlinear equation
from the Lagrangian (2) with the full expression for the defor-
mation energy of the substrate us ¼ y2cos q. We consider the
ideal case of an innitely long sheet L/Nwith y¼ q¼ _q¼ 0 for
s / "N. As shown below, this approximation gives a satis-
factory description of this system and allows us to obtain an
explicit exact solution. The Euler–Lagrange eqn (4) gives the
following system of equations

Bq€þ K

2
y2sin qþ Psin qþQcos q ¼ 0 (13)

Kycos q $ _Q ¼ 0. (14)

Differentiating (13) with respect to s and using eqn (14) to
eliminate _Q together with _y ¼ sin q, we obtain

Bq
.
þ Kyþ K

2
y2 _qcos qþ P _qcos q$Q _qsin q ¼ 0 (15)

Since the Lagrangian L has no explicit dependence on
the independent variable s, the Hamiltonian, H, is a constant
(dH/ds ¼ 0). The expression of the Hamiltonian is given by

H ¼
P
i

_qi
vL
v _qi

$ L

¼ B

2
_q2 $ K

2
y2cos qþ Pð1$ cos qÞ þQsin q ¼ 0; (16)

where the constant has been set to 0 to satisfy the boundary
conditions at s / "N. The Lagrange multiplier Q is nally
eliminated by multiplying the expression (16) of H by _q and
adding the result to eqn (15):

Bq
.
þ B

2
_q
3 þ P _qþ Ky ¼ 0: (17)

Eqn (17) coincides with Euler's elastica problem. It expresses
the balance of normal forces on an innitesimal section of
the sheet. The last term, which usually corresponds to an
external normal force,83 arises here from hydrostatic pressure.
Differentiation of eqn (17) leads to an equation depending
only on q:

Bqzþ 3B

2
_q
2
q€þ Pq€þ Ksin q ¼ 0: (18)

Notice that this equation, or the equivalent one written in
terms of y and its derivatives,84 is invariant against the change
y / $y. This system is thus characterized by an up–down
symmetry meaning that the folding takes place either toward
the substrate or upward. Indeed, any deformation or its
symmetric one obtained from y / $y is equivalent for the
sheet. Pulling out the liquid from its initial equilibrium state or
pushing it down in a symmetric way is also energetically
equivalent.

At rst glance, it seems unlikely that this nonlinear eqn (18)
possesses explicit exact solutions. However, as indicated in ref.
79, it is characterized by a high level of symmetry. Simple
algebraic manipulations allow us to obtain the value of y and
all its derivatives at s ¼ 0 which hints that the problem may be
integrable. Moreover, this equation can be derived from the
integrable physical-pendulum equation, €q + k2sin q ¼ 0, which
is another indication that exact solutions may exist. From this
relation between these two seemingly unrelated systems, one
can show that the following solution of the pendulum
equation

!q(a,k;s) ¼ 4tan$1(ae"iks) (19)

Fig. 3 Circular and triangular symbols correspond to data for liquid foundations
from ref. 67 and 78 with K ¼ rg. PE stands for polyester and PS stands for poly-
styrene. Square and diamond symbols correspond to data for elastic substrates
from ref. 39, 88 and 89 with K ¼ Es/3. PMMA stands for polymethyl methacrylate
and Si stands for silicon. Experiments using PVDF thin sheets of thickness 9 and 25
mm and partially cross-linked PDMS substrate have been performed to extend the
spanned experimental domain (E¼ 2.5" 0.5 GPa and s¼ 0.35 for PVDF90 and E¼
25 " 5 kPa and s ¼ 0.5 for PDMS). The bending modulus B of polystyrene sheets
used in ref. 67 has been computed using E ¼ 3 " 1 GPa and s ¼ 0.35.81,82 When
not displayed, error bars have sizes similar to symbol sizes. SI units are used for l0
and the ratio B/K.
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for applications in optics,37 microuidics,38 stretchable elec-
tronics39–42 or for metrology in nanometric lms.43–47

Most of the aforementioned natural systems can be idealized
as being composed of a thin and stiff membrane attached to a
thick and so material. However, these systems are oen
characterized by a complex geometry. In order to study carefully
the properties of the emerging structures, we focus on bilayer
systems compressed uniaxially in the plane of the rigid
membrane that have been intensively studied.48–63 Notice,
however, that more complex geometries have already been
studied by considering biaxial/radial stresses (with or without
substrate) or curved substrates64–71 where wrinkle to fold tran-
sitions can also be observed for large enough deformations of
the systems.72–74

Here we consider the case of a sufficiently strong adhesion
between layers to avoid delamination75–77 and discuss in detail
the uniaxial compression of a rigid membrane resting either on
a liquid foundation78,79 or on an elastic solid substrate.80 Before
starting this discussion, let us recall qualitatively the basic steps
of the system deformation.

For small enough connement, compressed sheets stay
planar and preserve the system symmetry. As it is much easier to
bend a thin sheet than to stretch or compress it, there exists
some connement threshold beyond which the membrane
buckles to release the stored compression energy. The
membrane undulates out of its initial plane breaking sponta-
neously the system symmetry. The foundation is then also
deformed following the undulations of the sheet. The bending

energy of the sheet, being proportional to the square of the
curvature, favors the emergence of large length-scales such as
the system size. However, the surface deformation energy of the
bulk substrate favors vanishing length-scales. The total energy
is thus minimized for some intermediate length-scale, l0,
independent of the system size. This behavior is observed for
both liquid and elastic foundations.

For larger connement, the evolution of the membrane
morphology differs strongly according to the nature of the
substrate.

! For a liquid foundation, the amplitude of the initial wrin-
kles rst grows uniformly across the sheet. Further connement
leads to the formation of a single fold where all of the defor-
mation is focused within a narrow region of the sheet (see Fig. 1
le panels). The folding can appear downward, i.e. toward the
substrate, or upward. The system is thus characterized by an
up–down symmetry which is broken spontaneously by the
emergence of the instability.

! For an elastic foundation, the amplitude of the initial
wrinkles also rst grows uniformly across the sheet. However,
beyond a second threshold for the connement, a dramatic
change in the morphology is observed: one wrinkle grows in
amplitude at the expense of its neighbors leading to a period-
doubling instability with the emergence of a subharmonic
mode characterized by a wavelength 2l0 (see Fig. 1 right panels).
The periodic folding appears always downward and never
upward. Consequently the up–down symmetry is broken
explicitly by the system.

Fig. 1 Qualitative comparison between the evolution with respect to confinement of the morphology of compressed sheets resting on a liquid78 (left panels,
l0 " 1.6 cm) and on an elastic foundation (right panels, l0 " 70 mm). The confinement increases from panels a to panels c.
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whereas beyond the critical connement, d2, the wrinkle
amplitude A0 grows at the expense of the amplitude A1 of its
neighbors. The shaded areas represent the region spanned by
varying the parameter !K2/!K from 0.25 to 0.27. This small vari-
ation has only a marginal effect on the evolution of the ampli-
tude before the emergence of the period-doubling instability
and cannot be seen in the graph.

5 Summary and discussions

When a rigid thin sheet resting on a liquid foundation is slightly
compressed in its plane, it develops wrinkles regularly spaced
by a distance l0 whose expression in terms of material proper-
ties is given by eqn (11). When the sheet is further compressed,
the amplitude of the wrinkles rst grows before decaying.
Finally, the sheet almost recovers its initial at state except in a
small region where all the deformation is concentrated into a
single fold where self-contact is eventually observed (see Fig. 5).
The single fold state takes place once the horizontal displace-
ment D reaches a value comparable to l0 independently of
the length, L, of the sheet (see Fig. 4). This means that
folding happens for a vanishingly small relative compression
d ¼ D/L x l0/L " 1 for long enough sheets. For such long
sheets, L [ l0, the wrinkle regime might not even be observ-
able. In the ideal case of an innitely long sheet, there is actually
no transition between wrinkle to fold states. The sheet prole is
always localized; the localization length diverges as the
connement vanishes. The sheet morphology evolves thus from
an initial at state to a folded state without undergoing any
secondary instability.

However, the deviation for small connement between the
evolution of the pattern amplitudes extracted from the exact

solution (21) valid for an innite sheet and the data, as seen in
Fig. 4, may hint that there is actually a secondary instability
once the sheet length is nite. Additional accurate measure-
ments of the evolution of the amplitude A near the buckling
threshold (D/l0 ( 0.2) are needed to detect a possible transi-
tion. For example if dA/dD diverges as D tends to 0, it may
suggest that the system undergoes a transition from a periodic
state to a localized state since for a periodic solution A # D1/2.

When a rigid thin sheet resting on an elastic foundation is
compressed, it adopts an undulated morphology similar to the
one observed with a liquid foundation for small enough
connement. The expression of the emerging length-scale, l0,
in terms of material properties is given by eqn (25). However, as
the connement increases, the morphology signicantly devi-
ates from homogeneous wrinkles. Beyond some critical
connement d2 (37) a secondary instability occurs. It takes the
form of a period-doubling instability leading to a transition of
the second order. The membrane displays a periodical folding
where the folds are distanced by 2lx 2l0(1$ d)80 whereas there
is only one fold in a small region of size l0 for a liquid foun-
dation. Because of this periodic folding, the number of folds
increases with the sheet length which can thus accommodate a
larger compression D. This behavior contrasts with the sheet on
liquid systems where the sheet cannot be compressed further
than D # l0 before self-contact occurs.

When the bilayer is further conned, period-quadrupling
can occur80 suggesting that a cascade of spatial period-doubling
bifurcations could be observed when a rigid thin sheet resting
on an elastic foundation is conned. Such a cascade is known to
lead to chaos aer several bifurcations.96,97 There is, however, a
geometric limitation due to the nite thickness of the sheet: the
evolution of the pattern saturates as soon as sharp folds appear
such that self-contact occurs. This prevents reaching high
connement. Nevertheless, it may be possible to go beyond
period-quadrupling (experimentally or at least numerically) and
to measure the values of the connement ratio dn at which each
transition occurs. A ratio like (dn$1 $ dn$2)/(dn $ dn$1) could
eventually converge to the Feigenbaum's constant as n
increases. Such a property would further relate this system to
nonlinear dynamical systems.

Finally, the period-doubling instability occurs because the
system exhibits an explicit up–down symmetry breaking. This
symmetry can be restored by considering a trilayer where a thin
rigid membrane is sandwiched in between two identical so
foundations. Fig. 8 shows the morphology adopted by a rigid
membrane in such a case for d x 0.23. The period-doubling
instability no longer emerges, even for larger compression,
instead the membrane develops a pattern similar to the one

Fig. 7 (a) Definitions of the amplitude A0 and A1. (b) Comparison between
experimental and theoretical evolutions of A0 and A1 (rescaled by l0) as a function
of the relative confinement d. Shaded areas represent the regions spanned by
varying the parameter !K2/!K from 0.25 to 0.27. Data:56 E¼ 0.5 MPa and s¼ 0.5 for
PDMS and E ¼ 3.2 GPa, s¼ 0.35, h ¼ 218 nm for polystyrene (PS). Data:57 E ¼ 130
GPa and s¼ 0.27 for silicon (Si), E¼ 1.8MPa and s¼ 0.48 for PDMS. Data from ref.
57 are plotted as a function of the relative compression, d, of the rigid sheet
instead of the relative prestretching, 3, of the PDMS: d ¼ 3/(1 + 3).

Fig. 8 Comparison between profiles of a compressed membrane resting in
between two identical soft PDMS foundations (trilayer, a) and a compressed
membrane bound to a soft PDMS foundation (bilayer, b) for a similar relative
compression d x 0.23.
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Uniform compression of stiff thin 
membranes on soft elastic substrates

S. Cai et al., J. Mech. Phys. Solids 59, 1094 (2011)

a distinct hexagonal pattern is evident with central regions of all the hexagons deflected into the substrate. For s0/sCZ1.7
the herringbone pattern is dominant with occasional defects. An exceptionally well organized herringbone pattern is
observed for the highest overstress shown, s0/sC=4.1, corresponding to the longest UVO treatment of 60 min.

The preference of our experimental system to assume the hexagonal mode at low overstress is overwhelming, despite
the fact that the square mode has been shown here and previously to have lower energy in this range when the film/
substrate system is flat. Furthermore, we have only observed hexagonal patterns for which the regions inside the hexagons
buckle into the substrate (e.g., Figs. 2–4), while the theory developed later in the paper for flat films/substrate systems
predicts that buckling of the hexagonal regions into or out of the substrate should be equally likely. One possible artifact of
our experimental system is the presence of low amplitude, laterally extensive curvature of the surface of the system that
exists initially or develops upon swelling in the ‘‘flat’’ UVO-PDMS samples. This clue has been pursued theoretically in the
paper. It will be seen that initial spherical curvature of the film is likely to explain the two experimental observations cited
above that are otherwise inexplicable when the films are taken to be flat.

As the applied overstress increases beyond the formation of the hexagonal mode, a transition point to more
energetically favorable herringbone patterns is observed. However, experimentally there is a tendency to maintain the
hexagonal lattice of the original pattern, perhaps due to kinetic considerations of forming an entirely new pattern with
different periodic wavelengths. The mechanism by which the hexagonal mode transitions to a more energy-minimizing
pattern is seen in Fig. 4. Starting from a pure hexagonal pattern, slight increases in the overstress cause isolated hexagons
to coalesce with neighbors producing an extended local groove. The coalescing of a pair of hexagons tends to also trigger
the coalescing of a neighboring pair. These triggered pairs are usually situated along a lattice line that is not parallel to that
of the original pair, in order to accommodate the local stress in an equi-biaxial manner. In some cases, these coalesced
grooves link to form even longer grooves, but in general they tend to remain the product of just 2–3 hexagons. The overall
result is a pattern that locally resembles a ‘‘segmented labyrinth’’, or a herringbone pattern with no global orientation,
analogous to the labyrinth pattern reported for homogeneously initiated wrinkling at high overstress (Huang et al., 2005;
Lin and Yang, 2007). In contrast, well-ordered herringbone patterns develop for systems that bypass the lower energy
buckling modes or ‘‘jump’’ to high overstress values.

The experimental observations noted here have motivated us to look for a theoretical explanation of why the square
mode is never observed for our experimental system even though under equi-biaxial stressing it has lower energy than the
hexagonal mode, assuming flat films. Moreover, a new triangular mode will be identified that has precisely the same
energy in the buckled state as the hexagonal mode, and this mode has not been observed either. We also wish to explain
why the hexagonal mode has always been observed to buckle with the hexagonal regions directed into the substrate, while
the theory suggests there should be no such preference. These discrepancies between theory and experiment have
motivated other avenues of exploration in the theory, including the roles of initial film curvature and nonlinearity of the
substrate. Embedded within the paper are several auxiliary findings: (i) The only modes whose nodal lines coincide with a
pattern formed by regular polygons are the equilateral triangle mode and square mode—the so-called ‘‘hexagonal mode’’
is formed from a mixture of hexagons and triangles in the manner of a Kagome pattern. (ii) Among all rectangular
checkerboard modes, the square mode has the lowest energy. (iii) The hexagonal mode and triangular mode have identical
energy in the buckled state, to the order obtained here, and a continuous transition exists from one to the other at constant
energy. (iv) Within the range of overstress considered in this paper, nonlinearity of the substrate has essentially no
influence on the buckling patterns. (v) A slight curvature of the film is likely to be playing a critical role in the mode
selection observed experimentally and in determining the sign of the hexagonal deflection.

Fig. 3. Progression of modes observed experimentally for the UVO-treated PDMS system with increasing overstress as described in the text. The UVO
treatment times from left to right are 10, 15, 20, 30, 45, and 60 min.

Fig. 4. A sequence of pictures depicting the transition of the hexagonal mode to a ‘‘segmented labyrinth’’ (disorganized herringbone) pattern with
increasing overstress.
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the herringbone pattern is dominant with occasional defects. An exceptionally well organized herringbone pattern is
observed for the highest overstress shown, s0/sC=4.1, corresponding to the longest UVO treatment of 60 min.

The preference of our experimental system to assume the hexagonal mode at low overstress is overwhelming, despite
the fact that the square mode has been shown here and previously to have lower energy in this range when the film/
substrate system is flat. Furthermore, we have only observed hexagonal patterns for which the regions inside the hexagons
buckle into the substrate (e.g., Figs. 2–4), while the theory developed later in the paper for flat films/substrate systems
predicts that buckling of the hexagonal regions into or out of the substrate should be equally likely. One possible artifact of
our experimental system is the presence of low amplitude, laterally extensive curvature of the surface of the system that
exists initially or develops upon swelling in the ‘‘flat’’ UVO-PDMS samples. This clue has been pursued theoretically in the
paper. It will be seen that initial spherical curvature of the film is likely to explain the two experimental observations cited
above that are otherwise inexplicable when the films are taken to be flat.

As the applied overstress increases beyond the formation of the hexagonal mode, a transition point to more
energetically favorable herringbone patterns is observed. However, experimentally there is a tendency to maintain the
hexagonal lattice of the original pattern, perhaps due to kinetic considerations of forming an entirely new pattern with
different periodic wavelengths. The mechanism by which the hexagonal mode transitions to a more energy-minimizing
pattern is seen in Fig. 4. Starting from a pure hexagonal pattern, slight increases in the overstress cause isolated hexagons
to coalesce with neighbors producing an extended local groove. The coalescing of a pair of hexagons tends to also trigger
the coalescing of a neighboring pair. These triggered pairs are usually situated along a lattice line that is not parallel to that
of the original pair, in order to accommodate the local stress in an equi-biaxial manner. In some cases, these coalesced
grooves link to form even longer grooves, but in general they tend to remain the product of just 2–3 hexagons. The overall
result is a pattern that locally resembles a ‘‘segmented labyrinth’’, or a herringbone pattern with no global orientation,
analogous to the labyrinth pattern reported for homogeneously initiated wrinkling at high overstress (Huang et al., 2005;
Lin and Yang, 2007). In contrast, well-ordered herringbone patterns develop for systems that bypass the lower energy
buckling modes or ‘‘jump’’ to high overstress values.

The experimental observations noted here have motivated us to look for a theoretical explanation of why the square
mode is never observed for our experimental system even though under equi-biaxial stressing it has lower energy than the
hexagonal mode, assuming flat films. Moreover, a new triangular mode will be identified that has precisely the same
energy in the buckled state as the hexagonal mode, and this mode has not been observed either. We also wish to explain
why the hexagonal mode has always been observed to buckle with the hexagonal regions directed into the substrate, while
the theory suggests there should be no such preference. These discrepancies between theory and experiment have
motivated other avenues of exploration in the theory, including the roles of initial film curvature and nonlinearity of the
substrate. Embedded within the paper are several auxiliary findings: (i) The only modes whose nodal lines coincide with a
pattern formed by regular polygons are the equilateral triangle mode and square mode—the so-called ‘‘hexagonal mode’’
is formed from a mixture of hexagons and triangles in the manner of a Kagome pattern. (ii) Among all rectangular
checkerboard modes, the square mode has the lowest energy. (iii) The hexagonal mode and triangular mode have identical
energy in the buckled state, to the order obtained here, and a continuous transition exists from one to the other at constant
energy. (iv) Within the range of overstress considered in this paper, nonlinearity of the substrate has essentially no
influence on the buckling patterns. (v) A slight curvature of the film is likely to be playing a critical role in the mode
selection observed experimentally and in determining the sign of the hexagonal deflection.

Fig. 3. Progression of modes observed experimentally for the UVO-treated PDMS system with increasing overstress as described in the text. The UVO
treatment times from left to right are 10, 15, 20, 30, 45, and 60 min.

Fig. 4. A sequence of pictures depicting the transition of the hexagonal mode to a ‘‘segmented labyrinth’’ (disorganized herringbone) pattern with
increasing overstress.
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a distinct hexagonal pattern is evident with central regions of all the hexagons deflected into the substrate. For s0/sCZ1.7
the herringbone pattern is dominant with occasional defects. An exceptionally well organized herringbone pattern is
observed for the highest overstress shown, s0/sC=4.1, corresponding to the longest UVO treatment of 60 min.

The preference of our experimental system to assume the hexagonal mode at low overstress is overwhelming, despite
the fact that the square mode has been shown here and previously to have lower energy in this range when the film/
substrate system is flat. Furthermore, we have only observed hexagonal patterns for which the regions inside the hexagons
buckle into the substrate (e.g., Figs. 2–4), while the theory developed later in the paper for flat films/substrate systems
predicts that buckling of the hexagonal regions into or out of the substrate should be equally likely. One possible artifact of
our experimental system is the presence of low amplitude, laterally extensive curvature of the surface of the system that
exists initially or develops upon swelling in the ‘‘flat’’ UVO-PDMS samples. This clue has been pursued theoretically in the
paper. It will be seen that initial spherical curvature of the film is likely to explain the two experimental observations cited
above that are otherwise inexplicable when the films are taken to be flat.

As the applied overstress increases beyond the formation of the hexagonal mode, a transition point to more
energetically favorable herringbone patterns is observed. However, experimentally there is a tendency to maintain the
hexagonal lattice of the original pattern, perhaps due to kinetic considerations of forming an entirely new pattern with
different periodic wavelengths. The mechanism by which the hexagonal mode transitions to a more energy-minimizing
pattern is seen in Fig. 4. Starting from a pure hexagonal pattern, slight increases in the overstress cause isolated hexagons
to coalesce with neighbors producing an extended local groove. The coalescing of a pair of hexagons tends to also trigger
the coalescing of a neighboring pair. These triggered pairs are usually situated along a lattice line that is not parallel to that
of the original pair, in order to accommodate the local stress in an equi-biaxial manner. In some cases, these coalesced
grooves link to form even longer grooves, but in general they tend to remain the product of just 2–3 hexagons. The overall
result is a pattern that locally resembles a ‘‘segmented labyrinth’’, or a herringbone pattern with no global orientation,
analogous to the labyrinth pattern reported for homogeneously initiated wrinkling at high overstress (Huang et al., 2005;
Lin and Yang, 2007). In contrast, well-ordered herringbone patterns develop for systems that bypass the lower energy
buckling modes or ‘‘jump’’ to high overstress values.

The experimental observations noted here have motivated us to look for a theoretical explanation of why the square
mode is never observed for our experimental system even though under equi-biaxial stressing it has lower energy than the
hexagonal mode, assuming flat films. Moreover, a new triangular mode will be identified that has precisely the same
energy in the buckled state as the hexagonal mode, and this mode has not been observed either. We also wish to explain
why the hexagonal mode has always been observed to buckle with the hexagonal regions directed into the substrate, while
the theory suggests there should be no such preference. These discrepancies between theory and experiment have
motivated other avenues of exploration in the theory, including the roles of initial film curvature and nonlinearity of the
substrate. Embedded within the paper are several auxiliary findings: (i) The only modes whose nodal lines coincide with a
pattern formed by regular polygons are the equilateral triangle mode and square mode—the so-called ‘‘hexagonal mode’’
is formed from a mixture of hexagons and triangles in the manner of a Kagome pattern. (ii) Among all rectangular
checkerboard modes, the square mode has the lowest energy. (iii) The hexagonal mode and triangular mode have identical
energy in the buckled state, to the order obtained here, and a continuous transition exists from one to the other at constant
energy. (iv) Within the range of overstress considered in this paper, nonlinearity of the substrate has essentially no
influence on the buckling patterns. (v) A slight curvature of the film is likely to be playing a critical role in the mode
selection observed experimentally and in determining the sign of the hexagonal deflection.

Fig. 3. Progression of modes observed experimentally for the UVO-treated PDMS system with increasing overstress as described in the text. The UVO
treatment times from left to right are 10, 15, 20, 30, 45, and 60 min.

Fig. 4. A sequence of pictures depicting the transition of the hexagonal mode to a ‘‘segmented labyrinth’’ (disorganized herringbone) pattern with
increasing overstress.
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the herringbone pattern is dominant with occasional defects. An exceptionally well organized herringbone pattern is
observed for the highest overstress shown, s0/sC=4.1, corresponding to the longest UVO treatment of 60 min.

The preference of our experimental system to assume the hexagonal mode at low overstress is overwhelming, despite
the fact that the square mode has been shown here and previously to have lower energy in this range when the film/
substrate system is flat. Furthermore, we have only observed hexagonal patterns for which the regions inside the hexagons
buckle into the substrate (e.g., Figs. 2–4), while the theory developed later in the paper for flat films/substrate systems
predicts that buckling of the hexagonal regions into or out of the substrate should be equally likely. One possible artifact of
our experimental system is the presence of low amplitude, laterally extensive curvature of the surface of the system that
exists initially or develops upon swelling in the ‘‘flat’’ UVO-PDMS samples. This clue has been pursued theoretically in the
paper. It will be seen that initial spherical curvature of the film is likely to explain the two experimental observations cited
above that are otherwise inexplicable when the films are taken to be flat.

As the applied overstress increases beyond the formation of the hexagonal mode, a transition point to more
energetically favorable herringbone patterns is observed. However, experimentally there is a tendency to maintain the
hexagonal lattice of the original pattern, perhaps due to kinetic considerations of forming an entirely new pattern with
different periodic wavelengths. The mechanism by which the hexagonal mode transitions to a more energy-minimizing
pattern is seen in Fig. 4. Starting from a pure hexagonal pattern, slight increases in the overstress cause isolated hexagons
to coalesce with neighbors producing an extended local groove. The coalescing of a pair of hexagons tends to also trigger
the coalescing of a neighboring pair. These triggered pairs are usually situated along a lattice line that is not parallel to that
of the original pair, in order to accommodate the local stress in an equi-biaxial manner. In some cases, these coalesced
grooves link to form even longer grooves, but in general they tend to remain the product of just 2–3 hexagons. The overall
result is a pattern that locally resembles a ‘‘segmented labyrinth’’, or a herringbone pattern with no global orientation,
analogous to the labyrinth pattern reported for homogeneously initiated wrinkling at high overstress (Huang et al., 2005;
Lin and Yang, 2007). In contrast, well-ordered herringbone patterns develop for systems that bypass the lower energy
buckling modes or ‘‘jump’’ to high overstress values.

The experimental observations noted here have motivated us to look for a theoretical explanation of why the square
mode is never observed for our experimental system even though under equi-biaxial stressing it has lower energy than the
hexagonal mode, assuming flat films. Moreover, a new triangular mode will be identified that has precisely the same
energy in the buckled state as the hexagonal mode, and this mode has not been observed either. We also wish to explain
why the hexagonal mode has always been observed to buckle with the hexagonal regions directed into the substrate, while
the theory suggests there should be no such preference. These discrepancies between theory and experiment have
motivated other avenues of exploration in the theory, including the roles of initial film curvature and nonlinearity of the
substrate. Embedded within the paper are several auxiliary findings: (i) The only modes whose nodal lines coincide with a
pattern formed by regular polygons are the equilateral triangle mode and square mode—the so-called ‘‘hexagonal mode’’
is formed from a mixture of hexagons and triangles in the manner of a Kagome pattern. (ii) Among all rectangular
checkerboard modes, the square mode has the lowest energy. (iii) The hexagonal mode and triangular mode have identical
energy in the buckled state, to the order obtained here, and a continuous transition exists from one to the other at constant
energy. (iv) Within the range of overstress considered in this paper, nonlinearity of the substrate has essentially no
influence on the buckling patterns. (v) A slight curvature of the film is likely to be playing a critical role in the mode
selection observed experimentally and in determining the sign of the hexagonal deflection.

Fig. 3. Progression of modes observed experimentally for the UVO-treated PDMS system with increasing overstress as described in the text. The UVO
treatment times from left to right are 10, 15, 20, 30, 45, and 60 min.

Fig. 4. A sequence of pictures depicting the transition of the hexagonal mode to a ‘‘segmented labyrinth’’ (disorganized herringbone) pattern with
increasing overstress.
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Compression of stiff thin membranes 
on a spherical soft substrates
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Figure 1 | Macroscopic and microscopic wrinkling morphologies of sti� thin films on spherically curved soft substrates. a–c, Theoretical predictions
based on numerical steady-state solutions of equation (1). Colour red (blue) signals inward (outward) wrinkles. Simulation parameters: (a) �0 =�0.029,
a=0.00162, c=0.0025; (b) �0 =�0.04, a=�1.26⇥ 10�6, c=0.002; (c) �0 =�0.02, a= 1.49⇥ 10�4, c=0.0025 (see Table 1). d–f, Experimentally
observed patterns confirm the transition from hexagonal (d) to labyrinth-like wrinkles (f) via a bistable region (e) when the radius-to-thickness ratio R/h
(see Fig. 2) is increased. Scale bars, 10 mm. Parameters: Ef =2,100 kPa, R=20 mm, ⌫ =0.5 and (d) Es =230 kPa, h=0.630 mm; (e) Es =29 kPa,
h=0.14 mm; (f) Es =63 kPa, h=0.10 mm. g–i, Oxide layers on microscopic PDMS hemispheres exhibit a similar transition from hexagonal to labyrinth
patterns when the excess film stress is increased through changes in the ambient ethanol concentration (indicated in per cent). Scale bars, 250 µm.
Micrographs courtesy of D. Breid and A. Crosby28.
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Figure 2 | Notation and experimental system. a, Schematic of a curved
thin film adhering to a soft spherical substrate of outer radius R. b, The film
(thickness h) is driven towards a wrinkling instability by the compressive
film stress � , leading to a wrinkling pattern with wavelength � and radial
displacement u. c, The experimental system consists of two merged
hemispherical caps. An air channel allows one to tune the film stress �

through the pressure di�erence 1p=pe �pi.

computational wrinkling studies26,27, their nonlinear tensorial
structure o�ers limited insight beyond linear stability analysis.
We found, however, that substantial analytical simplifications are
possible when a sti� film (Young modulus Ef) is adhered to a soft
substrate with Young modulus Es ⌧Ef.

As relevant to our experiments, which are described in detail
below, we consider a spherical geometry with radius R/h� 1 and

assume that film and substrate have the same Poisson ratio ⌫. The
generalization to non-spherical surfaces is obtained by replacing
the metric tensor appropriately (Supplementary Information).
Continuity across the film–substrate interface favours deformations
that are dominated by the radial displacement u (Fig. 2; from here
onwards all lengths are normalized by h). Neglecting secondary
lateral displacements, one can systematically expand the strain
energy, which contains the original Koiter shell energy density as
well as additional substrate coupling and overstress contributions,
in terms of the covariant surface derivative ru and powers of u
(Supplementary Information). Functional variation of the elastic
energy with respect to u then yields a nonlinear partial di�erential
equation for the wrinkled equilibrium state of the film. Assuming
overdamped relaxation dynamics, one thus obtains the following
GSH equation (Supplementary Information)

@t u = �01u��21
2u�au�bu2 �cu3

+�1
⇥
(ru)2 +2u1u

⇤+�2
⇥
u(ru)2 +u21u

⇤
(1)

Here, 1 denotes the Laplace–Beltrami operator, involving the
surface metric tensor of the sphere and Christo�el symbols of
the second kind, and 12 is the surface biharmonic operator35.
The (�0, �2) terms describe stress and bending, the (a, b, c)
terms comprise local film–substrate interactions and stretching
contributions, and the (�1, �2) terms account for higher-order
stretching forces. For �1 = �2 = 0, equation (1) reduces to the
standard Swift–Hohenberg equation, as originally derived in
the context of Rayleigh–Bénard convection10,36. The additional
(�1, �2) terms will prove crucial below when matching theory
and experiments. The generalization of equation (1) for arbitrary
surfaces is given in Supplementary Equation (34).

The detailed derivation (Supplementary Information), combined
with systematic asymptotic analysis of the planar limit R/h!1,
allows us to express the coe�cients in equation (1) in terms of
the standard material parameters: Poisson ratio of the film ⌫,
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Figure 1 | Macroscopic and microscopic wrinkling morphologies of sti� thin films on spherically curved soft substrates. a–c, Theoretical predictions
based on numerical steady-state solutions of equation (1). Colour red (blue) signals inward (outward) wrinkles. Simulation parameters: (a) �0 =�0.029,
a=0.00162, c=0.0025; (b) �0 =�0.04, a=�1.26⇥ 10�6, c=0.002; (c) �0 =�0.02, a= 1.49⇥ 10�4, c=0.0025 (see Table 1). d–f, Experimentally
observed patterns confirm the transition from hexagonal (d) to labyrinth-like wrinkles (f) via a bistable region (e) when the radius-to-thickness ratio R/h
(see Fig. 2) is increased. Scale bars, 10 mm. Parameters: Ef =2,100 kPa, R=20 mm, ⌫ =0.5 and (d) Es =230 kPa, h=0.630 mm; (e) Es =29 kPa,
h=0.14 mm; (f) Es =63 kPa, h=0.10 mm. g–i, Oxide layers on microscopic PDMS hemispheres exhibit a similar transition from hexagonal to labyrinth
patterns when the excess film stress is increased through changes in the ambient ethanol concentration (indicated in per cent). Scale bars, 250 µm.
Micrographs courtesy of D. Breid and A. Crosby28.
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Figure 2 | Notation and experimental system. a, Schematic of a curved
thin film adhering to a soft spherical substrate of outer radius R. b, The film
(thickness h) is driven towards a wrinkling instability by the compressive
film stress � , leading to a wrinkling pattern with wavelength � and radial
displacement u. c, The experimental system consists of two merged
hemispherical caps. An air channel allows one to tune the film stress �

through the pressure di�erence 1p=pe �pi.

computational wrinkling studies26,27, their nonlinear tensorial
structure o�ers limited insight beyond linear stability analysis.
We found, however, that substantial analytical simplifications are
possible when a sti� film (Young modulus Ef) is adhered to a soft
substrate with Young modulus Es ⌧Ef.

As relevant to our experiments, which are described in detail
below, we consider a spherical geometry with radius R/h� 1 and

assume that film and substrate have the same Poisson ratio ⌫. The
generalization to non-spherical surfaces is obtained by replacing
the metric tensor appropriately (Supplementary Information).
Continuity across the film–substrate interface favours deformations
that are dominated by the radial displacement u (Fig. 2; from here
onwards all lengths are normalized by h). Neglecting secondary
lateral displacements, one can systematically expand the strain
energy, which contains the original Koiter shell energy density as
well as additional substrate coupling and overstress contributions,
in terms of the covariant surface derivative ru and powers of u
(Supplementary Information). Functional variation of the elastic
energy with respect to u then yields a nonlinear partial di�erential
equation for the wrinkled equilibrium state of the film. Assuming
overdamped relaxation dynamics, one thus obtains the following
GSH equation (Supplementary Information)
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Here, 1 denotes the Laplace–Beltrami operator, involving the
surface metric tensor of the sphere and Christo�el symbols of
the second kind, and 12 is the surface biharmonic operator35.
The (�0, �2) terms describe stress and bending, the (a, b, c)
terms comprise local film–substrate interactions and stretching
contributions, and the (�1, �2) terms account for higher-order
stretching forces. For �1 = �2 = 0, equation (1) reduces to the
standard Swift–Hohenberg equation, as originally derived in
the context of Rayleigh–Bénard convection10,36. The additional
(�1, �2) terms will prove crucial below when matching theory
and experiments. The generalization of equation (1) for arbitrary
surfaces is given in Supplementary Equation (34).

The detailed derivation (Supplementary Information), combined
with systematic asymptotic analysis of the planar limit R/h!1,
allows us to express the coe�cients in equation (1) in terms of
the standard material parameters: Poisson ratio of the film ⌫,
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Figure 3 | Phase diagram of wrinkling morphologies. Experimental data
points for hexagonal (blue), bistable (yellow) and labyrinth (red) patterns
are shown for di�erent values of curvature radius R/h=�1 and excess film
stress ⌃e. Symbols indicate the elastic moduli ratio ⌘=3Es/Ef (square,
⌘=0.019; circle, ⌘=0.036; clubsuit, ⌘=0.041; downtriangle, ⌘=0.055;
diamond, ⌘=0.09; triangle, ⌘=0.328). The data suggest that phase
boundaries are independent of ⌘ in the experimentally tested range. Only
the largest vertical error bars are shown (standard deviation of 12 amplitude
measurements; see Methods). Horizontal error bars are smaller than the
symbol size. Solid lines are theoretically predicted phase boundaries,
obtained from equation (3) with parameter c1 =0.0188 (Table 1).

e�ective curvature  =h/R, Young ratio ⌘ = 3Es/Ef, and excess
stress ⌃e = (�/�c)�1 (Table 1). The theory contains only a single
fitting parameter, c1, related to the cubic stretching force term cu3.
Equation (1) predicts that the unbuckled solution u=0 is stable for
negative excess stresses⌃e <0, whereas wrinkling occurs for⌃e �0.
Linear stability analysis at⌃e =0 and  =0 reproduces the classical37
pattern-wavelength relation for planar wrinkling, �/h = 2⇡⌘�1/3

(Supplementary Information).
Numerical simulation of equation (1) is non-trivial owing to

the metric dependence of the biharmonic operator 12 (ref. 35). To
compute the stationary wrinkling patterns (Fig. 1a–c) predicted
by equation (1), we implemented a C1-continuous finite-element
algorithm specifically designed for covariant fourth-order
problems (Methods). A main benefit of equation (1), however,
is that it enables analytical prediction of the various pattern-
formation regimes.

Pattern selection
Pattern selection in the wrinkling regime ⌃e � 0 is a nonlinear
process and, therefore, cannot be inferred from linear stability
analysis. Numerical parameter scans of equation (1) yield a variety
of qualitatively di�erent stationary states that can be classified
as representatives of a hexagonal phase (Fig. 1a), labyrinth phase
(Fig. 1c) or intermediate coexistence phase (Fig. 1b). Qualitatively,
the transition from hexagons to labyrinths can be understood
through a symmetry argument: the (b,�1) terms in equation (1)
break the radial reflection invariance of its solutions under the
transformation u! �u, as also evident from the corresponding
energy functional that is given in Supplementary Equation (37). As
b and �1 are controlled by  =h/R (Table 1), we expect a curvature-
induced symmetry-breaking transition at some critical value of  .
Furthermore, recalling that the inclusion of similar symmetry-
breaking terms causes a transition from labyrinths to hexagonal

Table 1 | List of parameters for equation (1) in units h= 1, with
⌘=3Es/Ef, � 2 =1/12, ⌃e =(�/� c)�1 and  =h/R.

�0 =�⌘2/3

6
�


2(1+⌫)
⌘2/3 � 1

3

�
2

a= ⌘4/3

12
+ 6(1+⌫)�⌘2/3

3
2 +ã2⌃e

b=3(1+⌫)3

c= 2(1+⌫)⌘2/3

3
c1

�1 =
1+⌫

2


�2 = 1+⌫

2
2

ã2 =�⌘4/3(c+3|�0|�2)
48� 2

0

The only remaining fitting parameter of the model is c1 .

patterns in the classical Swift–Hohenberg model36, it is plausible to
expect a hexagonal phase at large curvatures  and labyrinths at
smaller values of  in our system.

To obtain a quantitative prediction for the phase boundaries,
we approximate equation (1) through a standard Swift–Hohenberg
equation and make use of established results from nonlinear
stability analysis38. Assuming plane-wave solutions with ampli-
tude A and wavevector k, the �1 term exerts an average
force �1h(ru)2 +2u1ui�=��1A2k2/2 per wavelength �. One
may therefore approximate the �1 term by an e�ective quadratic
force ��1k2u2, and similarly the �2 term by an e�ective cubic
force �2k2u3/2 (Supplementary Information). Inserting for k the
most unstable mode, k⇤ = p|�0|/(2�2), equation (1) can be
approximated by the standard Swift–Hohenberg equation

@t�=�21��12��A��B�2 ��3 (2)

where � = u/u⇤, u⇤ = |�0|/
p

(c/3)+�2|�0|, A = 3a/� 2
0 , and

B=u⇤ [(b/3)+2|�0|�1]/� 2
0 . Nonlinear stability analysis of

equation (2) yields the critical phase transition curves as functions
of A and B (ref. 38). Note that the coe�cients in equation (2) can be
directly traced back to geometric and material parameters, whereas
in many other pattern formation processes Swift–Hohenberg-type
equations have been applied only in a purely phenomenological
manner6. In terms of the original system parameters, one finds the
stability criteria (Supplementary Information)

Hexagonal phase: �2/(20c21 )<⌃e <2/c21

Bistable phase: 2/c21 <⌃e <42/c21 (3)

Labyrinth phase: 42/c21 <⌃e

where the parameter c1 sets the strength of the cubic stretching
force (Table 1). In the bistable coexistence phase, both hexagon and
labyrinth solutions are stable, suggesting a strong dependence on
initial conditions in this regime (Fig. 4).

Equation (3) confirms our qualitative symmetry argument and
implies, moreover, that the pattern-formation transitions can be
controlled not only by curvature, but also through the excess
film stress ⌃e, in agreement with recent experimental results28
(Fig. 1g–i).
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Compression of stiff thin membranes 
on a spherical soft substrates

D. Breid and A.J. Crosby, Soft Matter 9, 3624 (2013)

curvature, and themagnitude of the applied swelling stress. The
presence of curvature introduces several advantages. First, the
magnitude of the curvature can be a control parameter to
dictate the wrinkle morphology independent of other experi-
mental conditions (Fig. 1a). Second, the connement of the
curved surfaces leads to improved ordering of hexagonal
dimples. Finally, wrinkled curved structures are inherently
hierarchical, a key advantage for the design of many specialty
and biomimetic structured materials.

Background

In 2008, Cao and colleagues25,26 identied four dimensionless
parameters which can describe wrinkling on spherical surfaces
comprised of a lm of uniform thickness, t, supported on a so

elastic substrate with radius of curvature, R: the ratio R/t of
curvature to lm thickness, the modulus mismatch Ef/Es (where
the subscripts f and s refer to the lm and substrate, respec-
tively), the applied overstress, dened as the ratio of the applied
stress to the critical wrinkling stress (s/sc), and the aspect ratio
of the axes of the spheroid. Following Cai, et al.,24 the rst two
parameters may be combined into a single dimensionless
curvature parameter given by:

U ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"
1" nf 2

#q
ðt=RÞðE"f=3E

"
sÞ2=3 (1)

where !E represents the plane strain modulus E/(1 " n2) with n

equal to the Poisson's ratio of the material. For wrinkling
spheres at small overstress, Cao, et al. reported26 formation of
dimple features at large U, while small U values tended to form
ridge-based labyrinthine patterns. They also showed that the
applied overstress affects the amplitude of wrinkling and plays a
strong role in determining the selection between ridges and
dimples, holding everything else constant.

Furthermore, the level of overstress is inherently related to
the curvature. This dependence stems from the relationship
between radial displacement of the shell and the stretching
energy incurred in the shell. The introduction of curvature
changes this dependence from a quadratic to a linear relation-
ship,28 which in turn impacts the critical wrinkling stress. Thus,
when curvature is present, the stretching energy makes a rela-
tively larger contribution to the overall energy. For this reason,
the overstress most relevant to curved surface buckling is s/sRc ,
the ratio of the applied stress to the critical stress of a spherical
surface with radius of curvature R. The denition of the curved
critical stress sRc was presented by Cai et al.24 following the
approach of Hutchinson29 for buckling of hollow spherical
shells. In brief, similar to the case of understanding instabilities
in a at system, critical deformation modes of the following
form were considered:

w ¼ xtcos(b1kx1)cos(b2kx2) (2)

where w is the vertical displacement of the lm, x is the
amplitude of the deection, and k ¼ t"1(3!Es/!Ef)1/3. b1 and b2
represent free variables relating to the periodicity of the solu-
tions, and all modes which satisfy b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1

2 þ b2
2

p
are critical

modes. The associated critical buckling stress for these critical
deformation modes is given by:24

sR
c ¼ 1

3

"
b2 þ 2b"1 þ 3U2b"2

#
sflat
c

"
subject to b4 " b" 3U2 ¼ 0

# (3)

where

sflat
c ¼ E

"
f

4
ð3E"s=E

"
fÞ2=3 (4)

In the limit where the wrinkle wavelength, l ¼ 2p/k, is much
smaller than R, the critical stress may be approximated by24

sR
c

sflat
c

z1þ U2 (5)

Fig. 1 Dimple–ridge transitions effected through independent control of various
system parameters. (a) Varying radius at constant UVO time (60 min) and ethanol
concentration (100%). (b) Varying UVO treatment time at constant radius (381
mm) and ethanol concentration (100%). (c) Varying ethanol concentration at
constant UVO time (60 min) and cap radius (522 mm). All scale bars 250 mm.
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curvature, and themagnitude of the applied swelling stress. The
presence of curvature introduces several advantages. First, the
magnitude of the curvature can be a control parameter to
dictate the wrinkle morphology independent of other experi-
mental conditions (Fig. 1a). Second, the connement of the
curved surfaces leads to improved ordering of hexagonal
dimples. Finally, wrinkled curved structures are inherently
hierarchical, a key advantage for the design of many specialty
and biomimetic structured materials.

Background

In 2008, Cao and colleagues25,26 identied four dimensionless
parameters which can describe wrinkling on spherical surfaces
comprised of a lm of uniform thickness, t, supported on a so

elastic substrate with radius of curvature, R: the ratio R/t of
curvature to lm thickness, the modulus mismatch Ef/Es (where
the subscripts f and s refer to the lm and substrate, respec-
tively), the applied overstress, dened as the ratio of the applied
stress to the critical wrinkling stress (s/sc), and the aspect ratio
of the axes of the spheroid. Following Cai, et al.,24 the rst two
parameters may be combined into a single dimensionless
curvature parameter given by:

U ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"
1" nf 2

#q
ðt=RÞðE"f=3E

"
sÞ2=3 (1)

where !E represents the plane strain modulus E/(1 " n2) with n

equal to the Poisson's ratio of the material. For wrinkling
spheres at small overstress, Cao, et al. reported26 formation of
dimple features at large U, while small U values tended to form
ridge-based labyrinthine patterns. They also showed that the
applied overstress affects the amplitude of wrinkling and plays a
strong role in determining the selection between ridges and
dimples, holding everything else constant.

Furthermore, the level of overstress is inherently related to
the curvature. This dependence stems from the relationship
between radial displacement of the shell and the stretching
energy incurred in the shell. The introduction of curvature
changes this dependence from a quadratic to a linear relation-
ship,28 which in turn impacts the critical wrinkling stress. Thus,
when curvature is present, the stretching energy makes a rela-
tively larger contribution to the overall energy. For this reason,
the overstress most relevant to curved surface buckling is s/sRc ,
the ratio of the applied stress to the critical stress of a spherical
surface with radius of curvature R. The denition of the curved
critical stress sRc was presented by Cai et al.24 following the
approach of Hutchinson29 for buckling of hollow spherical
shells. In brief, similar to the case of understanding instabilities
in a at system, critical deformation modes of the following
form were considered:

w ¼ xtcos(b1kx1)cos(b2kx2) (2)

where w is the vertical displacement of the lm, x is the
amplitude of the deection, and k ¼ t"1(3!Es/!Ef)1/3. b1 and b2
represent free variables relating to the periodicity of the solu-
tions, and all modes which satisfy b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1

2 þ b2
2

p
are critical

modes. The associated critical buckling stress for these critical
deformation modes is given by:24

sR
c ¼ 1

3

"
b2 þ 2b"1 þ 3U2b"2

#
sflat
c

"
subject to b4 " b" 3U2 ¼ 0

# (3)

where

sflat
c ¼ E

"
f

4
ð3E"s=E

"
fÞ2=3 (4)

In the limit where the wrinkle wavelength, l ¼ 2p/k, is much
smaller than R, the critical stress may be approximated by24

sR
c

sflat
c

z1þ U2 (5)

Fig. 1 Dimple–ridge transitions effected through independent control of various
system parameters. (a) Varying radius at constant UVO time (60 min) and ethanol
concentration (100%). (b) Varying UVO treatment time at constant radius (381
mm) and ethanol concentration (100%). (c) Varying ethanol concentration at
constant UVO time (60 min) and cap radius (522 mm). All scale bars 250 mm.
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Figure 3 | Phase diagram of wrinkling morphologies. Experimental data
points for hexagonal (blue), bistable (yellow) and labyrinth (red) patterns
are shown for di�erent values of curvature radius R/h=�1 and excess film
stress ⌃e. Symbols indicate the elastic moduli ratio ⌘=3Es/Ef (square,
⌘=0.019; circle, ⌘=0.036; clubsuit, ⌘=0.041; downtriangle, ⌘=0.055;
diamond, ⌘=0.09; triangle, ⌘=0.328). The data suggest that phase
boundaries are independent of ⌘ in the experimentally tested range. Only
the largest vertical error bars are shown (standard deviation of 12 amplitude
measurements; see Methods). Horizontal error bars are smaller than the
symbol size. Solid lines are theoretically predicted phase boundaries,
obtained from equation (3) with parameter c1 =0.0188 (Table 1).

e�ective curvature  =h/R, Young ratio ⌘ = 3Es/Ef, and excess
stress ⌃e = (�/�c)�1 (Table 1). The theory contains only a single
fitting parameter, c1, related to the cubic stretching force term cu3.
Equation (1) predicts that the unbuckled solution u=0 is stable for
negative excess stresses⌃e <0, whereas wrinkling occurs for⌃e �0.
Linear stability analysis at⌃e =0 and  =0 reproduces the classical37
pattern-wavelength relation for planar wrinkling, �/h = 2⇡⌘�1/3

(Supplementary Information).
Numerical simulation of equation (1) is non-trivial owing to

the metric dependence of the biharmonic operator 12 (ref. 35). To
compute the stationary wrinkling patterns (Fig. 1a–c) predicted
by equation (1), we implemented a C1-continuous finite-element
algorithm specifically designed for covariant fourth-order
problems (Methods). A main benefit of equation (1), however,
is that it enables analytical prediction of the various pattern-
formation regimes.

Pattern selection
Pattern selection in the wrinkling regime ⌃e � 0 is a nonlinear
process and, therefore, cannot be inferred from linear stability
analysis. Numerical parameter scans of equation (1) yield a variety
of qualitatively di�erent stationary states that can be classified
as representatives of a hexagonal phase (Fig. 1a), labyrinth phase
(Fig. 1c) or intermediate coexistence phase (Fig. 1b). Qualitatively,
the transition from hexagons to labyrinths can be understood
through a symmetry argument: the (b,�1) terms in equation (1)
break the radial reflection invariance of its solutions under the
transformation u! �u, as also evident from the corresponding
energy functional that is given in Supplementary Equation (37). As
b and �1 are controlled by  =h/R (Table 1), we expect a curvature-
induced symmetry-breaking transition at some critical value of  .
Furthermore, recalling that the inclusion of similar symmetry-
breaking terms causes a transition from labyrinths to hexagonal

Table 1 | List of parameters for equation (1) in units h= 1, with
⌘=3Es/Ef, � 2 =1/12, ⌃e =(�/� c)�1 and  =h/R.

�0 =�⌘2/3

6
�


2(1+⌫)
⌘2/3 � 1

3

�
2

a= ⌘4/3

12
+ 6(1+⌫)�⌘2/3

3
2 +ã2⌃e

b=3(1+⌫)3

c= 2(1+⌫)⌘2/3

3
c1

�1 =
1+⌫

2


�2 = 1+⌫

2
2

ã2 =�⌘4/3(c+3|�0|�2)
48� 2

0

The only remaining fitting parameter of the model is c1 .

patterns in the classical Swift–Hohenberg model36, it is plausible to
expect a hexagonal phase at large curvatures  and labyrinths at
smaller values of  in our system.

To obtain a quantitative prediction for the phase boundaries,
we approximate equation (1) through a standard Swift–Hohenberg
equation and make use of established results from nonlinear
stability analysis38. Assuming plane-wave solutions with ampli-
tude A and wavevector k, the �1 term exerts an average
force �1h(ru)2 +2u1ui�=��1A2k2/2 per wavelength �. One
may therefore approximate the �1 term by an e�ective quadratic
force ��1k2u2, and similarly the �2 term by an e�ective cubic
force �2k2u3/2 (Supplementary Information). Inserting for k the
most unstable mode, k⇤ = p|�0|/(2�2), equation (1) can be
approximated by the standard Swift–Hohenberg equation

@t�=�21��12��A��B�2 ��3 (2)

where � = u/u⇤, u⇤ = |�0|/
p

(c/3)+�2|�0|, A = 3a/� 2
0 , and

B=u⇤ [(b/3)+2|�0|�1]/� 2
0 . Nonlinear stability analysis of

equation (2) yields the critical phase transition curves as functions
of A and B (ref. 38). Note that the coe�cients in equation (2) can be
directly traced back to geometric and material parameters, whereas
in many other pattern formation processes Swift–Hohenberg-type
equations have been applied only in a purely phenomenological
manner6. In terms of the original system parameters, one finds the
stability criteria (Supplementary Information)

Hexagonal phase: �2/(20c21 )<⌃e <2/c21

Bistable phase: 2/c21 <⌃e <42/c21 (3)

Labyrinth phase: 42/c21 <⌃e

where the parameter c1 sets the strength of the cubic stretching
force (Table 1). In the bistable coexistence phase, both hexagon and
labyrinth solutions are stable, suggesting a strong dependence on
initial conditions in this regime (Fig. 4).

Equation (3) confirms our qualitative symmetry argument and
implies, moreover, that the pattern-formation transitions can be
controlled not only by curvature, but also through the excess
film stress ⌃e, in agreement with recent experimental results28
(Fig. 1g–i).
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curvature, and themagnitude of the applied swelling stress. The
presence of curvature introduces several advantages. First, the
magnitude of the curvature can be a control parameter to
dictate the wrinkle morphology independent of other experi-
mental conditions (Fig. 1a). Second, the connement of the
curved surfaces leads to improved ordering of hexagonal
dimples. Finally, wrinkled curved structures are inherently
hierarchical, a key advantage for the design of many specialty
and biomimetic structured materials.

Background

In 2008, Cao and colleagues25,26 identied four dimensionless
parameters which can describe wrinkling on spherical surfaces
comprised of a lm of uniform thickness, t, supported on a so

elastic substrate with radius of curvature, R: the ratio R/t of
curvature to lm thickness, the modulus mismatch Ef/Es (where
the subscripts f and s refer to the lm and substrate, respec-
tively), the applied overstress, dened as the ratio of the applied
stress to the critical wrinkling stress (s/sc), and the aspect ratio
of the axes of the spheroid. Following Cai, et al.,24 the rst two
parameters may be combined into a single dimensionless
curvature parameter given by:

U ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"
1" nf 2

#q
ðt=RÞðE"f=3E

"
sÞ2=3 (1)

where !E represents the plane strain modulus E/(1 " n2) with n

equal to the Poisson's ratio of the material. For wrinkling
spheres at small overstress, Cao, et al. reported26 formation of
dimple features at large U, while small U values tended to form
ridge-based labyrinthine patterns. They also showed that the
applied overstress affects the amplitude of wrinkling and plays a
strong role in determining the selection between ridges and
dimples, holding everything else constant.

Furthermore, the level of overstress is inherently related to
the curvature. This dependence stems from the relationship
between radial displacement of the shell and the stretching
energy incurred in the shell. The introduction of curvature
changes this dependence from a quadratic to a linear relation-
ship,28 which in turn impacts the critical wrinkling stress. Thus,
when curvature is present, the stretching energy makes a rela-
tively larger contribution to the overall energy. For this reason,
the overstress most relevant to curved surface buckling is s/sRc ,
the ratio of the applied stress to the critical stress of a spherical
surface with radius of curvature R. The denition of the curved
critical stress sRc was presented by Cai et al.24 following the
approach of Hutchinson29 for buckling of hollow spherical
shells. In brief, similar to the case of understanding instabilities
in a at system, critical deformation modes of the following
form were considered:

w ¼ xtcos(b1kx1)cos(b2kx2) (2)

where w is the vertical displacement of the lm, x is the
amplitude of the deection, and k ¼ t"1(3!Es/!Ef)1/3. b1 and b2
represent free variables relating to the periodicity of the solu-
tions, and all modes which satisfy b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1

2 þ b2
2

p
are critical

modes. The associated critical buckling stress for these critical
deformation modes is given by:24

sR
c ¼ 1

3

"
b2 þ 2b"1 þ 3U2b"2

#
sflat
c

"
subject to b4 " b" 3U2 ¼ 0

# (3)

where

sflat
c ¼ E

"
f

4
ð3E"s=E

"
fÞ2=3 (4)

In the limit where the wrinkle wavelength, l ¼ 2p/k, is much
smaller than R, the critical stress may be approximated by24

sR
c

sflat
c

z1þ U2 (5)

Fig. 1 Dimple–ridge transitions effected through independent control of various
system parameters. (a) Varying radius at constant UVO time (60 min) and ethanol
concentration (100%). (b) Varying UVO treatment time at constant radius (381
mm) and ethanol concentration (100%). (c) Varying ethanol concentration at
constant UVO time (60 min) and cap radius (522 mm). All scale bars 250 mm.
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Modifying radius R

Modifying membrane thickness d

R = 381µm

Modifying swelling strain ✏
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How are villi formed in guts?

Villi increase internal surface area of intestine for 
faster absorption of digested nutrients.

villi

circular 
muscle layerlongitudinal 

muscle layer

lumen



17 A. Shyer et al., Science 342, 212 (2013)

Lumen patterns in chick embryo

Villification: How the Gut Gets Its Villi
Amy E. Shyer,1* Tuomas Tallinen,2,3* Nandan L. Nerurkar,1 Zhiyan Wei,2 Eun Seok Gil,4

David L. Kaplan,4 Clifford J. Tabin,1† L. Mahadevan2,5,6,7,8†

The villi of the human and chick gut are formed in similar stepwise progressions, wherein themesenchyme and
attached epithelium first fold into longitudinal ridges, then a zigzag pattern, and lastly individual villi. We
find that these steps of villification depend on the sequential differentiation of the distinct smooth muscle
layers of the gut, which restrict the expansion of the growing endoderm and mesenchyme, generating
compressive stresses that lead to their buckling and folding. A quantitative computationalmodel, incorporating
measured properties of the developing gut, recapitulates the morphological patterns seen during villification
in a variety of species. These results provide a mechanistic understanding of the formation of these
elaborations of the lining of the gut, essential for providing sufficient surface area for nutrient absorption.
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and an inner, luminal endoderm. As devel-

opment proceeds, distinct radial layers of smooth
muscle differentiate. In parallel, the luminal sur-
face of the gut transforms from a smooth surface
to a convoluted morphology. In humans, as well
as in mice and birds, this leads to an organized
array of fingerlike projections termed intestinal villi
(1, 2) although a variety of morphologies such as

ridges, zigzags, and honeycombs occur in other
species (3–5). Early work suggested a mechanical
basis for villus formation (6); however, systematic
biological or physical studies of this hypothesis
are lacking.

Morphogenesis and Differentiation of
the Chick Midgut
Until embryonic day 7 (E7), the gut tube, with its
inner endodermally derived epithelium and outer

mesenchymal layer, maintains a smooth luminal
surface (Fig. 1A). At E8, as the first layer of
circumferentially oriented smoothmuscle begins
to form, inward buckling of the tube leads to
longitudinal ridges that increase in number until
E13, when the differentiation of this layer is com-
plete (Fig. 1B). At this point, a second longitudi-
nally oriented layer of muscle differentiates just
exterior to the circular layer, while the previ-
ously formed ridges fold into parallel zigzags over
3 days (Fig. 1C). Last, at E16, as a third longitu-
dinally oriented muscle layer differentiates just in-
terior to the circular layer, bulges arise from the
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Fig. 1. Formation of luminal patterns in chick corresponds with dif-
ferentiation of smoothmuscle layers. (Left photos) Transverse sections of
developing chick guts immunostained for nuclei [4 ,́6-diamidino-2-phenylindole
(DAPI), blue] and smooth muscle actin (aSMA, green) during development.
(Middle) Close-ups of left photos, showing muscle layers. (Right) Whole-mount
images of corresponding gut lumen pattern; longitudinal axis runs top to bottom.
Scale bars indicate 100 mm; time is in days past fertilization (e.g., E6). (A) Lumen is
smooth beforemuscle layers form. A, anterior; P, posterior. (B) Longitudinal ridges
form as circularly oriented smooth muscle layer differentiates (arrowhead), and
ridge number increases as this layer develops. (C) Longitudinal muscle develops
exterior to the circular layer (arrowhead) coincident with the formation of zigzags whose periodicity is maintained but with increasing amplitude and compactness over
time. (D) A second longitudinal muscle layer forms, interior to the circular layer (arrowhead), coincident with the formation of villi. (E) Schematic illustrating the process
of muscle differentiation and luminal patterning over time.
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zigzag pattern that presage the formation of villi
(Fig. 1D). The coincident emergence of luminal
ridges, zigzags, and villi with the sequential forma-
tion of smooth muscle layers suggests that smooth
muscle differentiation and epithelial morphogenesis
might be linked.

Ridges Form Because of Muscle-
Constrained Azimuthal Growth of the
Endoderm-Mesenchyme Composite
The notion that differential growth of layered
tissues can lead to epithelial buckling is classical
(7, 8) and has been evoked, for example, to ex-
plain longitudinal ridge formation in healthy and
diseased adult trachea and esophagus (4, 9). To
investigate the tissue interactions that lead to
the ridge patterns in the embryonic gut, we sur-
gically separated the layers and observed the ef-
fects on their respective morphologies. When the
muscle was separated from the combined mesen-
chymal and epithelial layers at different stages
from E8, when the circular muscle layer first
forms, to E12 just before the first longitudinal
muscle layer forms, we found that the mesen-
chyme and attached epithelium unfold (Fig. 2A).
This indicates that relative growth of these layers
leads to reversible elastic compression when con-
strained within the muscle layer; indeed the ratio
of the inner circumference of the once-attached
muscle layer to the outer circumference of the
separated mesenchyme and endoderm, the cir-
cumferential stretch ratio, consistently averages
to 0.55 across the developmental stages from E8
to E12 (Fig. 2B). However, the separation of the
endoderm from the composite of mesenchyme
and muscle does not abolish ridge pattern in the
mesenchyme (Fig. 2C).

Taken together, these results support a model
that the circular muscle layer, once differentiated,
forms a stiff constraint mechanically preventing
the free azimuthal expansion of the mesenchyme
and endoderm; further growth of these tissues
relative to the muscle layer leads to azimuthal
compression and buckling. This suggests that
absent muscle differentiation, the gut tube would
expand freely radially without ridge formation.
To test this, we developed an in vitro culture sys-
tem for gut growth. When segments of E6 guts
with smooth lumens and no muscle layers were
cultured for 48 hours in vitro, they differentiated
to form a ring of circumferential smooth muscle
and parallel luminal folds, indistinguishable from
in ovo E8 guts (Fig. 2D). When E6 guts were
cultured in the presence of 10 mM AG1295 or
FK506, drugs known to block the differentiation
of smooth muscle but that act through distinct
signaling pathways (10, 11), they did not form a
smooth muscle layer and concomitantly did not
form luminal folds (Fig. 2D). Importantly, these
compounds did not influence proliferation or
lead to an increase in cell death when compared
with guts grown with the vehicle (dimethyl sulf-
oxide, DMSO) alone (fig. S1); indeed there was a
significant increase in the outer circumference of
guts lacking circular smooth muscle when com-

pared with control gut samples, confirming that
blocking smoothmuscle differentiation eliminates
circumferential restriction of the outward expan-
sion of the gut tube. As a control, gut segments
grown in vehicle alone developed a layer of cir-
cular smooth muscle and formed luminal folds.
Quantifying the constraint provided by the mus-
cle, we find that the ratio of inner circumference
of the muscle layer in the control samples to the
outer circumference of the gut segments cultured

with either compound to be 0.53 on average (Fig.
2D), a ratio that agrees closely with the stretch ratio
obtained from surgical separation of the layers, in-
dicating that tissue differentiation into smooth mus-
cle providesmost of the circumferential constraint.

Because smooth muscle begins active peri-
stalsis once it forms, the contractility of muscle
could drive epithelial buckling in addition to, or
instead of, functioning as a passive barrier to ex-
pansion. To test this, we cultured E6 gut segments

Fig. 2. Differentiation of circularly oriented smooth
muscle is necessary for maintenance and develop-
ment of ridges. (A) Transverse slices from E8, E10, and
E12 whole guts (left) are surgically separated along the
junction of the mesenchyme and the circular smooth

muscle (dotted line). When separated from themuscle, the luminal ridges in the mesenchyme and attached
endoderm unfold (middle) and expand, whereas the detached muscle remains invariant (right). The outer
circumference of the unfolded mesenchyme and endoderm (blue arrowhead) is larger than the inner
circumference of the separated muscle layer (green arrowhead). (B) Inner circumference of muscle layer
(green line) compared with outer circumference of mesenchyme and endoderm (blue line) over time, along
with the compression ratio (bar graph). (C) Surgical separation of endoderm frommesenchyme andmuscle
at E10 does not abolish ridge pattern. (D) (Top left) Experiment schematic of E6 gut cultured for 48 hours.
(Bottom) Transverse sections of a fresh E8 gut or E6 guts cultured in DMSO alone or with either 10 mm
AG1295 or 10 mm FK506 for 48 hours and labeled with DAPI (blue) and SMA (green). (Top right)
Quantification of compression from E8 muscle shows the ratio of the inner circumference of the circular
muscle at E8 (green arrowhead) to the resulting mesenchyme outer circumference (blue arrowhead). (E)
Transverse sections of guts labeled as in (D); culturing E6 guts in the presence of either SNP or motilin does
not affect ridge formation. (F) Transverse sections of guts labeled as in (D), cultured in silk tubes of 380-mm
inner diameter (top) or 300-mm inner diameter (middle) or cultured in 300 mm and extracted before
fixation (bottom). n > 3 for all culture experiments; error bars represent one SD. Scale bars = 100 mm.
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(1, 2) although a variety of morphologies such as

ridges, zigzags, and honeycombs occur in other
species (3–5). Early work suggested a mechanical
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inner endodermally derived epithelium and outer

mesenchymal layer, maintains a smooth luminal
surface (Fig. 1A). At E8, as the first layer of
circumferentially oriented smoothmuscle begins
to form, inward buckling of the tube leads to
longitudinal ridges that increase in number until
E13, when the differentiation of this layer is com-
plete (Fig. 1B). At this point, a second longitudi-
nally oriented layer of muscle differentiates just
exterior to the circular layer, while the previ-
ously formed ridges fold into parallel zigzags over
3 days (Fig. 1C). Last, at E16, as a third longitu-
dinally oriented muscle layer differentiates just in-
terior to the circular layer, bulges arise from the
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Fig. 1. Formation of luminal patterns in chick corresponds with dif-
ferentiation of smoothmuscle layers. (Left photos) Transverse sections of
developing chick guts immunostained for nuclei [4 ,́6-diamidino-2-phenylindole
(DAPI), blue] and smooth muscle actin (aSMA, green) during development.
(Middle) Close-ups of left photos, showing muscle layers. (Right) Whole-mount
images of corresponding gut lumen pattern; longitudinal axis runs top to bottom.
Scale bars indicate 100 mm; time is in days past fertilization (e.g., E6). (A) Lumen is
smooth beforemuscle layers form. A, anterior; P, posterior. (B) Longitudinal ridges
form as circularly oriented smooth muscle layer differentiates (arrowhead), and
ridge number increases as this layer develops. (C) Longitudinal muscle develops
exterior to the circular layer (arrowhead) coincident with the formation of zigzags whose periodicity is maintained but with increasing amplitude and compactness over
time. (D) A second longitudinal muscle layer forms, interior to the circular layer (arrowhead), coincident with the formation of villi. (E) Schematic illustrating the process
of muscle differentiation and luminal patterning over time.
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Fig. 1. Formation of luminal patterns in chick corresponds with dif-
ferentiation of smoothmuscle layers. (Left photos) Transverse sections of
developing chick guts immunostained for nuclei [4 ,́6-diamidino-2-phenylindole
(DAPI), blue] and smooth muscle actin (aSMA, green) during development.
(Middle) Close-ups of left photos, showing muscle layers. (Right) Whole-mount
images of corresponding gut lumen pattern; longitudinal axis runs top to bottom.
Scale bars indicate 100 mm; time is in days past fertilization (e.g., E6). (A) Lumen is
smooth beforemuscle layers form. A, anterior; P, posterior. (B) Longitudinal ridges
form as circularly oriented smooth muscle layer differentiates (arrowhead), and
ridge number increases as this layer develops. (C) Longitudinal muscle develops
exterior to the circular layer (arrowhead) coincident with the formation of zigzags whose periodicity is maintained but with increasing amplitude and compactness over
time. (D) A second longitudinal muscle layer forms, interior to the circular layer (arrowhead), coincident with the formation of villi. (E) Schematic illustrating the process
of muscle differentiation and luminal patterning over time.
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Figure S9: Localized growth of a zigzag pattern leads to twisting and bulging of arms. (A) 
A zigzag pattern resulting from uniform growth is shown top left. With additional longitudinal 
FRPSUHVVLRQ�WKH�]LJ]DJV�RQO\�VTXHH]H��SUHVHUYLQJ�WKH�XS�GRZQ�UHIOHFWLRQ�V\PPHWU\��7KH�FDVFDGH�
on bottom (top and side views) shows the twisting and up/down symmetry breaking due to 
enhanced growth of the valleys (parameterized time t = 0.5, 0.75, and 1 from left to right). The 
applied growth map is shown in C for t = 1. The growth map is based on the depth map of the 
original zigzag pattern (B) such that peak growth occurs at the zigzag pits. Purple areas in 
simulation snapshots have the highest expansion, corresponding to the maxima in the growth 
map and minima in the height map of the original untwisted pattern. 
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Villi start forming at E16 because 
of the faster growth in valleys

axial compression that mimics the role of the
longitudinal muscles at E13 and E14 when zig-
zags arise. With the geometrical parameters (full
details in the supplementary materials) and the
measured elastic moduli of the tissues (Fig. 4B
and figs. S3 to S6) that show that the endoderm is
about 10 times stiffer than the mesenchyme, our
simulations allow us to follow the evolution of
luminal patterning shown in Fig. 4C and movie
S1. We see that both ridge and zigzag patterns
arise as mechanical instabilities in the constrained
growing tissue that sequentially break circumfer-
ential and then longitudinal symmetry in the gut
with a wavelength and amplitude comparable to
the thickness of the endoderm-mesenchyme com-
posite (Fig. 4B).

Villification Also Requires Localized
Changes in Endodermal and Mesenchymal
Proliferation in Addition to Smooth
Muscle Differentiation
Although additional compression from the inner
longitudinal layer is necessary for the formation
of villi from zigzags, as shown in Fig. 3, lon-
gitudinal compression alone is not sufficient to
effect this transformation (fig. S9A).

Previous work in mouse has shown that, al-
though proliferating cells can be found uniformly
across themesenchyme and endoderm before villi
arise, as villi form, proliferating cells are found
only in the intervillous region (2). Similarly, in
chick guts, proliferating cells appear uniformly
within each tissue layer through the formation
of zigzags (Fig. 5 and fig. S8), but at E15, after
zigzags form and just before villi arise, proliferat-
ing cells are found predominantly in the valleys
between the raised zigzags (Fig. 5A). However,
once villi begin to form at E16, proliferation is no
longer restricted from the tips (Fig. 5A). Addition-
ally we find that in vitro 5-ethynyl-2′-deoxyuridine
(EdU) pulse labeling of E15 gut samples results
in labeled cells at the sides and tips of forming
villi, suggesting that these changes in proliferation
patterns may reflect a displacement of the dividing
cells upward from the valleys as the luminal to-
pography shifts from zigzags to villi. Specifically,
each “arm” of the zigzag twists out of the plane
and into the lumen, pinching off a region of the
zigzag arm near each “elbow,” delineating pockets
of mesenchyme surrounded by endoderm, each of
which becomes a villus (Fig. 5B).

To understand how the topographical changes
during zigzag twisting might relocate regions of
proliferation as villi form, we created a clay model
of zigzags. Labeling the proliferating regions of
our model zigzags and manually twisting them
mimics the twist observed in the E16 gut (Fig. 5C).
Furthermore, the resulting clay label localization
closely matches EdU staining for proliferation in
the sectioned E16 gut tissue (Fig. 5C), suggest-
ing that these tissue movements account for the
observed proliferation patterns as villi form.

To probe the effect of nonuniform growth in
our computational model, we set up a minimal
planar configuration of mesenchyme and endo-

derm (supplementary materials, fig. S9, and movie
S2). Initially, the endoderm and mesenchyme are
assumed to have nominal compression ratios of
0.5 and 0.6, respectively, in both lateral direc-
tions, as measured experimentally (Fig. 3A).
This results in a tightly packed zigzag pattern
(fig. S9A), with a spacing of twice the thickness
of the endoderm-mesenchyme composite in both
directions, in agreement with experiments. By
using our experimental observations of nonuni-
form proliferation as guides, we incorporate non-
uniform growth to this pattern by allowing the
growth of spots of the endoderm in the zigzag

valleys, centered at the deepest points of the
valleys, with lateral diameter six times the endo-
derm thickness. These spots are grown laterally
until their diameter doubles during the simula-
tion relative to areas of the endoderm outside the
spots. This pattern of growth causes the zigzags
to shift and twist so as to relocate the rapidly
growing regions to the arms, similar to our clay
model. As the spots relieve their growth strain at
the arms, they form previllous bulges (Fig. 5E).
Sliced plane views of this twisted pattern reveal
their similarity to the corresponding experimental
patterns (Fig. 5F); bulging peaks are rotated,

Fig. 5. The formation of villi from zigzags in-
volves nonuniformproliferation and a complex
change in topography. (A) Transverse sections of
guts labeled for 4 hours with EdU in ovo (red) guts
show patterns of proliferation over time. (B) Luminal
views of guts from E15 to E16 as villi form. The
“arm” of the zigzag rotates at the “elbow”; the circles

denote the resulting pockets of mesenchyme surrounded by endoderm that will each become a villus. (C)
Clay models; purple label represents proliferating regions. Clay model is twisted to mimic change in
topography seen in (B). (D) (Top) Labeled, twisted model of E16 gut is sliced with a razor blade to reveal
label localization. (Bottom) EdU label in longitudinal sections of E16 guts; arrowheads highlight sim-
ilarity of pattern. (E) (Top) A simulation that incorporates nonuniform proliferation along with measured
geometrical and biophysical parameters shows villi morphogenesis. (Bottom) Corresponding images of the
chick lumen (red color and stained puncta are due to antibody stain and should be disregarded). (F) (Top)
Sections of the simulations in (D). (Bottom) Corresponding sections in chick.
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longitudinal muscles at E13 and E14 when zig-
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and figs. S3 to S6) that show that the endoderm is
about 10 times stiffer than the mesenchyme, our
simulations allow us to follow the evolution of
luminal patterning shown in Fig. 4C and movie
S1. We see that both ridge and zigzag patterns
arise as mechanical instabilities in the constrained
growing tissue that sequentially break circumfer-
ential and then longitudinal symmetry in the gut
with a wavelength and amplitude comparable to
the thickness of the endoderm-mesenchyme com-
posite (Fig. 4B).
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Proliferation in Addition to Smooth
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Although additional compression from the inner
longitudinal layer is necessary for the formation
of villi from zigzags, as shown in Fig. 3, lon-
gitudinal compression alone is not sufficient to
effect this transformation (fig. S9A).

Previous work in mouse has shown that, al-
though proliferating cells can be found uniformly
across themesenchyme and endoderm before villi
arise, as villi form, proliferating cells are found
only in the intervillous region (2). Similarly, in
chick guts, proliferating cells appear uniformly
within each tissue layer through the formation
of zigzags (Fig. 5 and fig. S8), but at E15, after
zigzags form and just before villi arise, proliferat-
ing cells are found predominantly in the valleys
between the raised zigzags (Fig. 5A). However,
once villi begin to form at E16, proliferation is no
longer restricted from the tips (Fig. 5A). Addition-
ally we find that in vitro 5-ethynyl-2′-deoxyuridine
(EdU) pulse labeling of E15 gut samples results
in labeled cells at the sides and tips of forming
villi, suggesting that these changes in proliferation
patterns may reflect a displacement of the dividing
cells upward from the valleys as the luminal to-
pography shifts from zigzags to villi. Specifically,
each “arm” of the zigzag twists out of the plane
and into the lumen, pinching off a region of the
zigzag arm near each “elbow,” delineating pockets
of mesenchyme surrounded by endoderm, each of
which becomes a villus (Fig. 5B).

To understand how the topographical changes
during zigzag twisting might relocate regions of
proliferation as villi form, we created a clay model
of zigzags. Labeling the proliferating regions of
our model zigzags and manually twisting them
mimics the twist observed in the E16 gut (Fig. 5C).
Furthermore, the resulting clay label localization
closely matches EdU staining for proliferation in
the sectioned E16 gut tissue (Fig. 5C), suggest-
ing that these tissue movements account for the
observed proliferation patterns as villi form.

To probe the effect of nonuniform growth in
our computational model, we set up a minimal
planar configuration of mesenchyme and endo-

derm (supplementary materials, fig. S9, and movie
S2). Initially, the endoderm and mesenchyme are
assumed to have nominal compression ratios of
0.5 and 0.6, respectively, in both lateral direc-
tions, as measured experimentally (Fig. 3A).
This results in a tightly packed zigzag pattern
(fig. S9A), with a spacing of twice the thickness
of the endoderm-mesenchyme composite in both
directions, in agreement with experiments. By
using our experimental observations of nonuni-
form proliferation as guides, we incorporate non-
uniform growth to this pattern by allowing the
growth of spots of the endoderm in the zigzag

valleys, centered at the deepest points of the
valleys, with lateral diameter six times the endo-
derm thickness. These spots are grown laterally
until their diameter doubles during the simula-
tion relative to areas of the endoderm outside the
spots. This pattern of growth causes the zigzags
to shift and twist so as to relocate the rapidly
growing regions to the arms, similar to our clay
model. As the spots relieve their growth strain at
the arms, they form previllous bulges (Fig. 5E).
Sliced plane views of this twisted pattern reveal
their similarity to the corresponding experimental
patterns (Fig. 5F); bulging peaks are rotated,

Fig. 5. The formation of villi from zigzags in-
volves nonuniformproliferation and a complex
change in topography. (A) Transverse sections of
guts labeled for 4 hours with EdU in ovo (red) guts
show patterns of proliferation over time. (B) Luminal
views of guts from E15 to E16 as villi form. The
“arm” of the zigzag rotates at the “elbow”; the circles

denote the resulting pockets of mesenchyme surrounded by endoderm that will each become a villus. (C)
Clay models; purple label represents proliferating regions. Clay model is twisted to mimic change in
topography seen in (B). (D) (Top) Labeled, twisted model of E16 gut is sliced with a razor blade to reveal
label localization. (Bottom) EdU label in longitudinal sections of E16 guts; arrowheads highlight sim-
ilarity of pattern. (E) (Top) A simulation that incorporates nonuniform proliferation along with measured
geometrical and biophysical parameters shows villi morphogenesis. (Bottom) Corresponding images of the
chick lumen (red color and stained puncta are due to antibody stain and should be disregarded). (F) (Top)
Sections of the simulations in (D). (Bottom) Corresponding sections in chick.
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Zigzag Twisting Bulges

The same mechanism for 
villi formation also works 

in other organisms!
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Why are guts shaped like that?
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during the formation of the first loop at E5 (Fig. 1b) and later when
there were nine loops (E12) (Fig. 1b). We observed consistently
uniform proliferation with no significant differences along the
rostrocaudal axis of the gut tube, including at loop formation loca-
tions and between loops, as well as no observable azimuthal or radial
differences in proliferation rates at different cross-sections (Sup-
plementary Fig. 1), consistent with observations that the embryonic
gut tube cross-section remains circular along its length.

Because spatial constraints from the body cavity and the gut tube
alone cannot explain the reproducible looping, we instead considered
the dorsal mesentery, the webbed tissue that attaches the gut tube to

the embryo along its length. As looping morphogenesis is initiated,
the dorsal mesentery changes from a thick, asymmetric, multilayer
structure to a thin, double-epithelial sheet with no observable left–
right asymmetry (Supplementary Fig. 2).

To test whether the dorsal mesentery is integral to the intestinal
loops, we separated it from the gut surgically or enzymatically and
found that the intestine uncoils into a straight tube, indicating that it
was under compression. Simultaneously, the unconstrained dorsal
mesentery contracts when freed from the gut tube (Fig. 1c), indicating
that this tissue is under tension. Thus the gut–mesentery composite is
required to maintain the mature loops in the gut.

To find out whether the dorsal mesentery is also required for the
formation of the loops, we surgically separated a portion of the dorsal
mesentery from the gut in ovo, beginning immediately caudal to the
cranial (superior) mesenteric artery (SMA), at day E4, before loops
develop. Strikingly, where the mesentery and gut were separated, the
intestinal loops failed to form (Fig. 1d) even as normal loops formed in
locations rostral and caudal to it (Fig. 1d, green lines). Although we
were unable to cut the dorsal SMA in ovo during gut loop develop-
ment, once the loops had matured (E12), surgical dissection of the
SMA left the loops intact and in fact highlighted their periodic struc-
ture (Fig. 2c). This rules out any possible requirement for the SMA in
directing loop structure, and for the vasculature as well, as secondary
vessels develop only after the loops themselves have formed.

Although the gut grows uniformly, to investigate whether the
mesentery might grow inhomogeneously and thus force the gut to
loop at precise locations, we examined the proliferation rate of the
mesentery at E5 and at E12. There were no observed differences along
the rostrocaudal axis (Fig. 1b), suggesting that the growing mesentery
exerts uniform compression along the length of the gut, countered by
an equal and opposite tensile reaction on the mesentery from the gut.

Taken together, our observations suggest that uniform differential
growth between the gut and the mesentery could be at the origin of
loop formation. Because the gut tube is slender, with a length that is
much larger than its radius, it responds physically to the differential
strain-induced compression from the attached mesentery by bending
and looping, while remaining attached to the embryo rostrocaudally.
Most importantly, the fact that the gut relaxes to a straight configura-
tion whereas the mesentery relaxes to an almost flat configuration
implies that the tissues behave elastically, a fact that will allow us to
quantify the process simply.
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Figure 1 | Morphology of loops in the chick gut. a, Chick gut at embryonic
day 5 (E5), E8, E12 and E16 shows stereotypical looping pattern.
b, Proliferation in the E5 (left) and E12 (right) gut tubes (blue) and mesentery
(red). Each blue bar represents the average number of phospho-H3-positive
cells per unit surface in 40 (E5) or 50 (E12) 10-mm sections. Each red bar
represents the average number of phospho-H3-positive cells per unit surface
over six 10-mm sections (E5) or in specific regions demarcated by vasculature
along the mesentery (E12). The inset images of the chick guts align the
proliferation data with the locations of loops (all measurements were made in
three or more chick samples). Ant., anterior; post., posterior. Error bars, s.d.
c, The gut and mesentery before and after surgical separation at E14 show that
the mesentery shrinks while the gut tube straightens out almost completely.
d, The E12 chick gut under normal development with the mesentery (left) and
after in ovo surgical separation of the mesentery at E4 (right). The gut and
mesentery repair their attachment, leading to some regions of normal looping
(green). However, a portion of the gut lacks normal loops as a result of
disrupting the gut–mesentery interaction over the time these loops would
otherwise have developed.
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Figure 2 | Rubber simulacrum of gut looping morphogenesis. a, To
construct the rubber model of looping, a thin rubber sheet (mesentery) was
stretched uniformly along its length and then stitched to a straight, unstretched
rubber tube (gut) along its boundary; the differential strain mimics the
differential growth of the two tissues. The system was then allowed to relax, free
of any external forces. b, On relaxation, the composite rubber model deformed
into a structure very similar to the chick gut (here the thickness of the sheet is
1.3 mm and its Young’s modulus is 1.3 MPa, and the radius of the tube is
4.8 mm, its thickness is 2.4 mm and its Young’s modulus is 1.1 MPa; see
Supplementary Information for details). c, Chick gut at E12. The superior
mesenteric artery has been cut out (but not the mesentery), allowing the gut to
be displayed aligned without altering its loop pattern.
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Guts in chick embryo

T. Savin et al., Nature 476, 57 (2011)

Surgically removed guts from chick embryo

during the formation of the first loop at E5 (Fig. 1b) and later when
there were nine loops (E12) (Fig. 1b). We observed consistently
uniform proliferation with no significant differences along the
rostrocaudal axis of the gut tube, including at loop formation loca-
tions and between loops, as well as no observable azimuthal or radial
differences in proliferation rates at different cross-sections (Sup-
plementary Fig. 1), consistent with observations that the embryonic
gut tube cross-section remains circular along its length.

Because spatial constraints from the body cavity and the gut tube
alone cannot explain the reproducible looping, we instead considered
the dorsal mesentery, the webbed tissue that attaches the gut tube to

the embryo along its length. As looping morphogenesis is initiated,
the dorsal mesentery changes from a thick, asymmetric, multilayer
structure to a thin, double-epithelial sheet with no observable left–
right asymmetry (Supplementary Fig. 2).

To test whether the dorsal mesentery is integral to the intestinal
loops, we separated it from the gut surgically or enzymatically and
found that the intestine uncoils into a straight tube, indicating that it
was under compression. Simultaneously, the unconstrained dorsal
mesentery contracts when freed from the gut tube (Fig. 1c), indicating
that this tissue is under tension. Thus the gut–mesentery composite is
required to maintain the mature loops in the gut.

To find out whether the dorsal mesentery is also required for the
formation of the loops, we surgically separated a portion of the dorsal
mesentery from the gut in ovo, beginning immediately caudal to the
cranial (superior) mesenteric artery (SMA), at day E4, before loops
develop. Strikingly, where the mesentery and gut were separated, the
intestinal loops failed to form (Fig. 1d) even as normal loops formed in
locations rostral and caudal to it (Fig. 1d, green lines). Although we
were unable to cut the dorsal SMA in ovo during gut loop develop-
ment, once the loops had matured (E12), surgical dissection of the
SMA left the loops intact and in fact highlighted their periodic struc-
ture (Fig. 2c). This rules out any possible requirement for the SMA in
directing loop structure, and for the vasculature as well, as secondary
vessels develop only after the loops themselves have formed.

Although the gut grows uniformly, to investigate whether the
mesentery might grow inhomogeneously and thus force the gut to
loop at precise locations, we examined the proliferation rate of the
mesentery at E5 and at E12. There were no observed differences along
the rostrocaudal axis (Fig. 1b), suggesting that the growing mesentery
exerts uniform compression along the length of the gut, countered by
an equal and opposite tensile reaction on the mesentery from the gut.

Taken together, our observations suggest that uniform differential
growth between the gut and the mesentery could be at the origin of
loop formation. Because the gut tube is slender, with a length that is
much larger than its radius, it responds physically to the differential
strain-induced compression from the attached mesentery by bending
and looping, while remaining attached to the embryo rostrocaudally.
Most importantly, the fact that the gut relaxes to a straight configura-
tion whereas the mesentery relaxes to an almost flat configuration
implies that the tissues behave elastically, a fact that will allow us to
quantify the process simply.
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Figure 1 | Morphology of loops in the chick gut. a, Chick gut at embryonic
day 5 (E5), E8, E12 and E16 shows stereotypical looping pattern.
b, Proliferation in the E5 (left) and E12 (right) gut tubes (blue) and mesentery
(red). Each blue bar represents the average number of phospho-H3-positive
cells per unit surface in 40 (E5) or 50 (E12) 10-mm sections. Each red bar
represents the average number of phospho-H3-positive cells per unit surface
over six 10-mm sections (E5) or in specific regions demarcated by vasculature
along the mesentery (E12). The inset images of the chick guts align the
proliferation data with the locations of loops (all measurements were made in
three or more chick samples). Ant., anterior; post., posterior. Error bars, s.d.
c, The gut and mesentery before and after surgical separation at E14 show that
the mesentery shrinks while the gut tube straightens out almost completely.
d, The E12 chick gut under normal development with the mesentery (left) and
after in ovo surgical separation of the mesentery at E4 (right). The gut and
mesentery repair their attachment, leading to some regions of normal looping
(green). However, a portion of the gut lacks normal loops as a result of
disrupting the gut–mesentery interaction over the time these loops would
otherwise have developed.
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Figure 2 | Rubber simulacrum of gut looping morphogenesis. a, To
construct the rubber model of looping, a thin rubber sheet (mesentery) was
stretched uniformly along its length and then stitched to a straight, unstretched
rubber tube (gut) along its boundary; the differential strain mimics the
differential growth of the two tissues. The system was then allowed to relax, free
of any external forces. b, On relaxation, the composite rubber model deformed
into a structure very similar to the chick gut (here the thickness of the sheet is
1.3 mm and its Young’s modulus is 1.3 MPa, and the radius of the tube is
4.8 mm, its thickness is 2.4 mm and its Young’s modulus is 1.1 MPa; see
Supplementary Information for details). c, Chick gut at E12. The superior
mesenteric artery has been cut out (but not the mesentery), allowing the gut to
be displayed aligned without altering its loop pattern.
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Tube straightens after 
separation from mesentery

mesenterytube

Tube grows faster than 
mesentery sheet!

Physical model of gut looping
To investigate the physical origins of this looping pattern, we
developed a simple simulacrum of the gut–mesentery composite
using a silicone rubber tube (mimicking the gut) and a thin latex sheet
(mimicking the mesentery; see Supplementary Information). The dif-
ferential strain induced by relative growth between the gut and the
mesentery is simulated by extending the latex sheet along its length
and stitching it to the wall of the naturally straight, unstretched rubber
tube along the edge parallel to the direction of membrane stretching
(Fig. 2a). On removing all external loads from the composite system,
we observe the spontaneous formation of loops in the tube very similar
in shape to the looping patterns seen in ovo (Fig. 2b). Varying the
differential strain, the thickness of the latex sheet, the radius of the
rubber tube and their material properties (Supplementary Informa-
tion) shows that the wavelength and amplitude of the repeating loops
depend only on these measurable parameters.

Scaling laws for loop period, radius and number
We now quantify the simple physical picture for looping sketched
above to derive expressions for the size of a loop, characterized by
the contour length, l, and mean radius of curvature, R, of a single
period (Fig. 3a). The geometry of the growing gut is characterized by
the gut’s inner and outer radii, ri and ro, which are much smaller than
its increasing length, whereas that of the mesentery is described by its
homogeneous thickness, h, which is much smaller than its other two
dimensions. Because the gut tube and mesentery relax to nearly
straight, flat states once they are surgically separated, we can model
the gut as a one-dimensional elastic filament growing relative to a thin
two-dimensional elastic sheet (the mesentery). As the gut length
becomes longer than the perimeter of the mesentery to which it is
attached, there is a differential strain, e, that compresses the tube axially
while extending the periphery of the sheet. When the growth strain is

larger than a critical value, e!, the straight tube buckles, taking on a
wavy shape of characteristic amplitude A and period l?A. At the
onset of buckling, the extensional strain energy of the sheet per wave-
length of the pattern is Um!Eme2

!hl2, where Em is the Young’s modu-
lus of the mesentery sheet. The bending energy of the tube per
wavelength is Ut!EtItk

2l, where k / A/l2 is the tube curvature,
It!r4

o{r4
i is the moment of inertia of the tube and Et is the Young’s

modulus of the tube. Using the condition that the in-plane strain in the
sheet is e!!A=l and minimizing the sum of the two energies with
respect to l then yields a scaling law for the wavelength of the loop:

l!
EtIt

Emh

! "1=3

ð1Þ

The above theory is valid only at the onset of looping and cannot predict
the amplitude or radius of a loop. Far from the onset of the instability, at a
strain e~e0?e!, we use a torque balance argument to determine the
finite radius of the loop. To deform the gut into a loop of radius R, the
elastic torque required is Tt / EtIt/R and must balance the torque
exerted by the membrane with strain e0 over a width w and a length R,
that is, Tm / Emhwe0R. The width of this strip is the radial distance from
the tube over which the peripheral membrane stretching strain is relaxed,
and is determined by the relation e0 / w/(R 2 w). Balancing the torques,
by equating Tt with Tm, and assuming that e0 , 1, yields the scaling law

R!
EtIt

Emhe2
0

! "1=3

ð2Þ

Quantitative geometry and biomechanics of chick gut
looping
A comparison of the results of our predictions with quantitative
experiments requires the measurement of the geometry of the tissues,
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Figure 3 | Geometric and mechanical measurements of chick gut.
a, Parameters involved in the physical model. b, Inner (ri, light blue) and outer
(ro, dark blue) tube diameters. Measurements are extracted from DAPI-stained
tube cross-section shown in inset. c, Tube (length Lt, blue) and mesentery
(length Lm, red) differential growth. Inset, length measurement of one isolated
loop. d, Stress versus strain for the mesentery at E8, E12 and E16. For

physiological strains, we use the linearization shown by the black lines, to
extract the effective Young’s modulus, Em, and the effective strain, e0. e, Stress
versus strain for the gut tube at E8, E12 and E16. f, Mesentery and tube Young’s
moduli, Em (red) and Et (blue), at E8, E12 and E16. g, Effective differential
growth strain, e0, at E8, E12 and E16. Error bars, s.d.
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during the formation of the first loop at E5 (Fig. 1b) and later when
there were nine loops (E12) (Fig. 1b). We observed consistently
uniform proliferation with no significant differences along the
rostrocaudal axis of the gut tube, including at loop formation loca-
tions and between loops, as well as no observable azimuthal or radial
differences in proliferation rates at different cross-sections (Sup-
plementary Fig. 1), consistent with observations that the embryonic
gut tube cross-section remains circular along its length.

Because spatial constraints from the body cavity and the gut tube
alone cannot explain the reproducible looping, we instead considered
the dorsal mesentery, the webbed tissue that attaches the gut tube to

the embryo along its length. As looping morphogenesis is initiated,
the dorsal mesentery changes from a thick, asymmetric, multilayer
structure to a thin, double-epithelial sheet with no observable left–
right asymmetry (Supplementary Fig. 2).

To test whether the dorsal mesentery is integral to the intestinal
loops, we separated it from the gut surgically or enzymatically and
found that the intestine uncoils into a straight tube, indicating that it
was under compression. Simultaneously, the unconstrained dorsal
mesentery contracts when freed from the gut tube (Fig. 1c), indicating
that this tissue is under tension. Thus the gut–mesentery composite is
required to maintain the mature loops in the gut.

To find out whether the dorsal mesentery is also required for the
formation of the loops, we surgically separated a portion of the dorsal
mesentery from the gut in ovo, beginning immediately caudal to the
cranial (superior) mesenteric artery (SMA), at day E4, before loops
develop. Strikingly, where the mesentery and gut were separated, the
intestinal loops failed to form (Fig. 1d) even as normal loops formed in
locations rostral and caudal to it (Fig. 1d, green lines). Although we
were unable to cut the dorsal SMA in ovo during gut loop develop-
ment, once the loops had matured (E12), surgical dissection of the
SMA left the loops intact and in fact highlighted their periodic struc-
ture (Fig. 2c). This rules out any possible requirement for the SMA in
directing loop structure, and for the vasculature as well, as secondary
vessels develop only after the loops themselves have formed.

Although the gut grows uniformly, to investigate whether the
mesentery might grow inhomogeneously and thus force the gut to
loop at precise locations, we examined the proliferation rate of the
mesentery at E5 and at E12. There were no observed differences along
the rostrocaudal axis (Fig. 1b), suggesting that the growing mesentery
exerts uniform compression along the length of the gut, countered by
an equal and opposite tensile reaction on the mesentery from the gut.

Taken together, our observations suggest that uniform differential
growth between the gut and the mesentery could be at the origin of
loop formation. Because the gut tube is slender, with a length that is
much larger than its radius, it responds physically to the differential
strain-induced compression from the attached mesentery by bending
and looping, while remaining attached to the embryo rostrocaudally.
Most importantly, the fact that the gut relaxes to a straight configura-
tion whereas the mesentery relaxes to an almost flat configuration
implies that the tissues behave elastically, a fact that will allow us to
quantify the process simply.
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Figure 1 | Morphology of loops in the chick gut. a, Chick gut at embryonic
day 5 (E5), E8, E12 and E16 shows stereotypical looping pattern.
b, Proliferation in the E5 (left) and E12 (right) gut tubes (blue) and mesentery
(red). Each blue bar represents the average number of phospho-H3-positive
cells per unit surface in 40 (E5) or 50 (E12) 10-mm sections. Each red bar
represents the average number of phospho-H3-positive cells per unit surface
over six 10-mm sections (E5) or in specific regions demarcated by vasculature
along the mesentery (E12). The inset images of the chick guts align the
proliferation data with the locations of loops (all measurements were made in
three or more chick samples). Ant., anterior; post., posterior. Error bars, s.d.
c, The gut and mesentery before and after surgical separation at E14 show that
the mesentery shrinks while the gut tube straightens out almost completely.
d, The E12 chick gut under normal development with the mesentery (left) and
after in ovo surgical separation of the mesentery at E4 (right). The gut and
mesentery repair their attachment, leading to some regions of normal looping
(green). However, a portion of the gut lacks normal loops as a result of
disrupting the gut–mesentery interaction over the time these loops would
otherwise have developed.
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Figure 2 | Rubber simulacrum of gut looping morphogenesis. a, To
construct the rubber model of looping, a thin rubber sheet (mesentery) was
stretched uniformly along its length and then stitched to a straight, unstretched
rubber tube (gut) along its boundary; the differential strain mimics the
differential growth of the two tissues. The system was then allowed to relax, free
of any external forces. b, On relaxation, the composite rubber model deformed
into a structure very similar to the chick gut (here the thickness of the sheet is
1.3 mm and its Young’s modulus is 1.3 MPa, and the radius of the tube is
4.8 mm, its thickness is 2.4 mm and its Young’s modulus is 1.1 MPa; see
Supplementary Information for details). c, Chick gut at E12. The superior
mesenteric artery has been cut out (but not the mesentery), allowing the gut to
be displayed aligned without altering its loop pattern.
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Synthetic analog of guts

T. Savin et al., Nature 476, 57 (2011)

during the formation of the first loop at E5 (Fig. 1b) and later when
there were nine loops (E12) (Fig. 1b). We observed consistently
uniform proliferation with no significant differences along the
rostrocaudal axis of the gut tube, including at loop formation loca-
tions and between loops, as well as no observable azimuthal or radial
differences in proliferation rates at different cross-sections (Sup-
plementary Fig. 1), consistent with observations that the embryonic
gut tube cross-section remains circular along its length.

Because spatial constraints from the body cavity and the gut tube
alone cannot explain the reproducible looping, we instead considered
the dorsal mesentery, the webbed tissue that attaches the gut tube to

the embryo along its length. As looping morphogenesis is initiated,
the dorsal mesentery changes from a thick, asymmetric, multilayer
structure to a thin, double-epithelial sheet with no observable left–
right asymmetry (Supplementary Fig. 2).

To test whether the dorsal mesentery is integral to the intestinal
loops, we separated it from the gut surgically or enzymatically and
found that the intestine uncoils into a straight tube, indicating that it
was under compression. Simultaneously, the unconstrained dorsal
mesentery contracts when freed from the gut tube (Fig. 1c), indicating
that this tissue is under tension. Thus the gut–mesentery composite is
required to maintain the mature loops in the gut.

To find out whether the dorsal mesentery is also required for the
formation of the loops, we surgically separated a portion of the dorsal
mesentery from the gut in ovo, beginning immediately caudal to the
cranial (superior) mesenteric artery (SMA), at day E4, before loops
develop. Strikingly, where the mesentery and gut were separated, the
intestinal loops failed to form (Fig. 1d) even as normal loops formed in
locations rostral and caudal to it (Fig. 1d, green lines). Although we
were unable to cut the dorsal SMA in ovo during gut loop develop-
ment, once the loops had matured (E12), surgical dissection of the
SMA left the loops intact and in fact highlighted their periodic struc-
ture (Fig. 2c). This rules out any possible requirement for the SMA in
directing loop structure, and for the vasculature as well, as secondary
vessels develop only after the loops themselves have formed.

Although the gut grows uniformly, to investigate whether the
mesentery might grow inhomogeneously and thus force the gut to
loop at precise locations, we examined the proliferation rate of the
mesentery at E5 and at E12. There were no observed differences along
the rostrocaudal axis (Fig. 1b), suggesting that the growing mesentery
exerts uniform compression along the length of the gut, countered by
an equal and opposite tensile reaction on the mesentery from the gut.

Taken together, our observations suggest that uniform differential
growth between the gut and the mesentery could be at the origin of
loop formation. Because the gut tube is slender, with a length that is
much larger than its radius, it responds physically to the differential
strain-induced compression from the attached mesentery by bending
and looping, while remaining attached to the embryo rostrocaudally.
Most importantly, the fact that the gut relaxes to a straight configura-
tion whereas the mesentery relaxes to an almost flat configuration
implies that the tissues behave elastically, a fact that will allow us to
quantify the process simply.
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Figure 1 | Morphology of loops in the chick gut. a, Chick gut at embryonic
day 5 (E5), E8, E12 and E16 shows stereotypical looping pattern.
b, Proliferation in the E5 (left) and E12 (right) gut tubes (blue) and mesentery
(red). Each blue bar represents the average number of phospho-H3-positive
cells per unit surface in 40 (E5) or 50 (E12) 10-mm sections. Each red bar
represents the average number of phospho-H3-positive cells per unit surface
over six 10-mm sections (E5) or in specific regions demarcated by vasculature
along the mesentery (E12). The inset images of the chick guts align the
proliferation data with the locations of loops (all measurements were made in
three or more chick samples). Ant., anterior; post., posterior. Error bars, s.d.
c, The gut and mesentery before and after surgical separation at E14 show that
the mesentery shrinks while the gut tube straightens out almost completely.
d, The E12 chick gut under normal development with the mesentery (left) and
after in ovo surgical separation of the mesentery at E4 (right). The gut and
mesentery repair their attachment, leading to some regions of normal looping
(green). However, a portion of the gut lacks normal loops as a result of
disrupting the gut–mesentery interaction over the time these loops would
otherwise have developed.
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Figure 2 | Rubber simulacrum of gut looping morphogenesis. a, To
construct the rubber model of looping, a thin rubber sheet (mesentery) was
stretched uniformly along its length and then stitched to a straight, unstretched
rubber tube (gut) along its boundary; the differential strain mimics the
differential growth of the two tissues. The system was then allowed to relax, free
of any external forces. b, On relaxation, the composite rubber model deformed
into a structure very similar to the chick gut (here the thickness of the sheet is
1.3 mm and its Young’s modulus is 1.3 MPa, and the radius of the tube is
4.8 mm, its thickness is 2.4 mm and its Young’s modulus is 1.1 MPa; see
Supplementary Information for details). c, Chick gut at E12. The superior
mesenteric artery has been cut out (but not the mesentery), allowing the gut to
be displayed aligned without altering its loop pattern.
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during the formation of the first loop at E5 (Fig. 1b) and later when
there were nine loops (E12) (Fig. 1b). We observed consistently
uniform proliferation with no significant differences along the
rostrocaudal axis of the gut tube, including at loop formation loca-
tions and between loops, as well as no observable azimuthal or radial
differences in proliferation rates at different cross-sections (Sup-
plementary Fig. 1), consistent with observations that the embryonic
gut tube cross-section remains circular along its length.

Because spatial constraints from the body cavity and the gut tube
alone cannot explain the reproducible looping, we instead considered
the dorsal mesentery, the webbed tissue that attaches the gut tube to

the embryo along its length. As looping morphogenesis is initiated,
the dorsal mesentery changes from a thick, asymmetric, multilayer
structure to a thin, double-epithelial sheet with no observable left–
right asymmetry (Supplementary Fig. 2).

To test whether the dorsal mesentery is integral to the intestinal
loops, we separated it from the gut surgically or enzymatically and
found that the intestine uncoils into a straight tube, indicating that it
was under compression. Simultaneously, the unconstrained dorsal
mesentery contracts when freed from the gut tube (Fig. 1c), indicating
that this tissue is under tension. Thus the gut–mesentery composite is
required to maintain the mature loops in the gut.

To find out whether the dorsal mesentery is also required for the
formation of the loops, we surgically separated a portion of the dorsal
mesentery from the gut in ovo, beginning immediately caudal to the
cranial (superior) mesenteric artery (SMA), at day E4, before loops
develop. Strikingly, where the mesentery and gut were separated, the
intestinal loops failed to form (Fig. 1d) even as normal loops formed in
locations rostral and caudal to it (Fig. 1d, green lines). Although we
were unable to cut the dorsal SMA in ovo during gut loop develop-
ment, once the loops had matured (E12), surgical dissection of the
SMA left the loops intact and in fact highlighted their periodic struc-
ture (Fig. 2c). This rules out any possible requirement for the SMA in
directing loop structure, and for the vasculature as well, as secondary
vessels develop only after the loops themselves have formed.

Although the gut grows uniformly, to investigate whether the
mesentery might grow inhomogeneously and thus force the gut to
loop at precise locations, we examined the proliferation rate of the
mesentery at E5 and at E12. There were no observed differences along
the rostrocaudal axis (Fig. 1b), suggesting that the growing mesentery
exerts uniform compression along the length of the gut, countered by
an equal and opposite tensile reaction on the mesentery from the gut.

Taken together, our observations suggest that uniform differential
growth between the gut and the mesentery could be at the origin of
loop formation. Because the gut tube is slender, with a length that is
much larger than its radius, it responds physically to the differential
strain-induced compression from the attached mesentery by bending
and looping, while remaining attached to the embryo rostrocaudally.
Most importantly, the fact that the gut relaxes to a straight configura-
tion whereas the mesentery relaxes to an almost flat configuration
implies that the tissues behave elastically, a fact that will allow us to
quantify the process simply.
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Figure 1 | Morphology of loops in the chick gut. a, Chick gut at embryonic
day 5 (E5), E8, E12 and E16 shows stereotypical looping pattern.
b, Proliferation in the E5 (left) and E12 (right) gut tubes (blue) and mesentery
(red). Each blue bar represents the average number of phospho-H3-positive
cells per unit surface in 40 (E5) or 50 (E12) 10-mm sections. Each red bar
represents the average number of phospho-H3-positive cells per unit surface
over six 10-mm sections (E5) or in specific regions demarcated by vasculature
along the mesentery (E12). The inset images of the chick guts align the
proliferation data with the locations of loops (all measurements were made in
three or more chick samples). Ant., anterior; post., posterior. Error bars, s.d.
c, The gut and mesentery before and after surgical separation at E14 show that
the mesentery shrinks while the gut tube straightens out almost completely.
d, The E12 chick gut under normal development with the mesentery (left) and
after in ovo surgical separation of the mesentery at E4 (right). The gut and
mesentery repair their attachment, leading to some regions of normal looping
(green). However, a portion of the gut lacks normal loops as a result of
disrupting the gut–mesentery interaction over the time these loops would
otherwise have developed.
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Figure 2 | Rubber simulacrum of gut looping morphogenesis. a, To
construct the rubber model of looping, a thin rubber sheet (mesentery) was
stretched uniformly along its length and then stitched to a straight, unstretched
rubber tube (gut) along its boundary; the differential strain mimics the
differential growth of the two tissues. The system was then allowed to relax, free
of any external forces. b, On relaxation, the composite rubber model deformed
into a structure very similar to the chick gut (here the thickness of the sheet is
1.3 mm and its Young’s modulus is 1.3 MPa, and the radius of the tube is
4.8 mm, its thickness is 2.4 mm and its Young’s modulus is 1.1 MPa; see
Supplementary Information for details). c, Chick gut at E12. The superior
mesenteric artery has been cut out (but not the mesentery), allowing the gut to
be displayed aligned without altering its loop pattern.
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Chick guts at E12

Rubber model of guts
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Wavelength of oscillations in guts

We compared the gut looping patterns of the chick with those of the
closely related (but differently sized) quail and those of a songbird, the
zebra finch. In Fig. 5a, we see that, as previously described18,19, the guts
of the chick and the quail are organized almost identically but on
different scales, and that the digestive tracts of songbirds and chickens
are markedly different. To make the comparison quantitative, we
repeated the morphometric and mechanical measurements (Sup-
plementary Information) and used them to generate predictions from
our scaling theory and computational model. In all cases, the pre-
dicted values of l, R and n are again in excellent agreement with those
observed in embryonic guts of the appropriate species (Fig. 5b, c and
Table 2). For instance, we find that although growth strains, ep, are
similar between the chick and the quail, the quail mesentery has a
tension, Emhe0, approximately five times greater than that in the chick
mesentery. Qualitatively, this greater elastic force produces a smaller
loop, hence inducing more loops per length and, thus, the same
number of loops in the smaller bird. By contrast, most of the geomet-
rical and physical parameters characterizing the developing gut and
mesentery in the chick and the zebra finch are different and lead to
different looping parameters.

Finally, to test our theoretical model with a non-avian example, we
performed a similar set of measurements throughout the course of gut
development in mouse embryos. In agreement with our findings from
birds, the geometrical and biophysical properties of the developing
gut and dorsal mesentery suffice to predict accurately the stereotypical
patterns of the mature intestinal loops in mouse embryos (Fig. 5 and

Table 2). The mouse gut is notably characterized by softer tissues and
higher mismatch strain, producing tightly coiled loops, as seen in
Fig. 5a. The physiological stresses in the mesentery fall in the same
range (Supplementary Information) in all the species investigated in
this study, suggesting that both growth and the properties of tissues
might be regulated by mechanical feedback.

Discussion
The developing intestine is a simple, elongated, tubular structure that
is stereotypically and reproducibly folded into a compact organ
through the process of looping morphogenesis. Using a combination
of quantitative experiments, computations and scaling arguments, we
have shown that the associated looping patterns are quantitatively
determined by the differential growth between the gut tube and the
dorsal mesentery and by their geometric and elastic properties, both
within individual organisms and across species. We thus bring a
quantitative biomechanical perspective to the mostly metaphoric
arguments in On Growth and Form2.

The simplicity of the mechanical origin in the diversity in gut loop-
ing patterns, long associated with the adaptive significance of the
distinct diets and gut residence times of different animals18, also sug-
gests that because it is sufficient to modulate the uniform tissue
growth rates, tissue geometry and elasticity of the gut–mesentery
system to change these patterns, this is the minimal set of properties
on which selection has acted to achieve the looping patterns found in
nature.

Identification of the relevant cellular parameters influencing gut
morphogenesis opens the door to future studies of the genes involved
in controlling cell proliferation and matrix formation in space and
time, and sets the stage to understanding the processes by which
biochemical and biophysical events across scales conspire to drive
the developmental regulation of growing tissues.

METHODS SUMMARY
Embryos. Fertile chick eggs (White Leghorn eggs) were obtained from commercial
sources. Fertile zebra finch eggs were provided by the laboratory of T. Gardner
at Boston University. Fertile Japanese quail eggs were obtained from Strickland
Game Bird. All eggs were incubated at 37.5 uC and staged following ref. 20.
Mouse embryos were collected from staged pregnant females (Charles River
Laboratories).
Immunohistochemistry and histology. Small intestines were collected from
chick embryos at desired stages and fixed in 4% paraformaldehyde in PBS and
embedded in paraffin wax. Immunohistochemistry and histology was performed
on 10-mm transverse sections of the gut tube.
In ovo gut surgeries. The gut tube and the dorsal mesentery were separated in ovo
at stage 23–25 by using a pulled glass needle to cut the connection between the
two tissues. Embryos were re-incubated until E12, when they were collected to
examine the resulting looping pattern.
Mechanical properties of gut and mesentery tissue. The force, F(d), between a
permanent magnet (The Magnet Source) and millimetre-size steel balls (New
England Miniature Ball Corp.), separated by a distance d, was calculated from
the damped motion of the ball rising in glycerol with the magnet lowered from
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Figure 5 | Comparative predictions for looping parameters across species.
a, Gut looping patterns in the chick, quail, finch and mouse (to scale) show
qualitative similarities in the shape of the loops, although the size and number
of loops vary substantially. b, Comparison of the scaled loop contour length,
l/ro, with the equivalently scaled expression from equation (3) shows that our
results are consistent with the scaling law in equation (1) across species. Black
symbols are for the animals shown in a, other symbols are the same as in Fig. 4b.
c, Comparison of the scaled loop radius, R/ro, with the equivalently scaled
expression from equation (4) shows that our results are consistent with the
scaling law in equation (2) across species (symbols are as in b). In b and c, points
are reported for chick at E8, E12 and E16; quail at E12 and E15; finch at E10 and
E13; and mouse at E14.5 and E16.5. Error bars, s.d.

Table 2 | Morphometry of quail, finch and mouse gut looping pat-
terns
Species and stage n l (mm) R (mm)

Quail E12 Experimental observation 9.0 6 0.7 4.6 6 0.4 1.2 6 0.1
Computational model* 10.0 6 1.3 4.1 6 1.0 1.2 6 0.3

Finch E13 Experimental observation 5.5 6 0.5 3.6 6 0.5 0.6 6 0.3
Computational model{ 5.3 6 0.8 3.7 6 0.9 0.9 6 0.2

Mouse E16.5 Experimental observation 6.0 6 0.5 6.0 6 0.7 0.7 6 0.1
Computational model{ 5.6 6 0.8 6.4 6 1.5 1.0 6 0.1

The observed number of loops, loop wavelength and radius for the quail, finch and mouse, for given
geometrical and physical parameters associated with the gut and the mesentery, show that the model
predictions are quantitatively consistent with observations.
*Lt 5 41.3 6 0.4 mm, h 5 14.9 6 1.6 mm, ro 5 248 6 13 mm, ri 5 154 6 12 mm, Em 5 515 6 206 kPa,
Et 5 4.4 6 1.3 kPa, ep 5 110 6 13% and e0 5 23 6 5%.
{Lt 5 19.7 6 0.8 mm, h 5 6.0 6 0.6mm, ro 5 227 6 14 mm, ri 5 120 6 13 mm, Em 5 802 6 321 kPa,
Et 5 2.6 6 0.8 kPa, ep 5 110 6 11% and e0 5 32 6 5%.
{Lt 5 35.9 6 0.9 mm, h 5 12.3 6 1.6 mm, ro 5 270 6 16 mm, ri 5 178 6 14 mm, Em 5 94 6 37 kPa,
Et 5 1.9 6 0.9 kPa, ep 5 200 6 13% and e0 5 64 6 5%.

ARTICLE RESEARCH

4 A U G U S T 2 0 1 1 | V O L 4 7 6 | N A T U R E | 6 1

Macmillan Publishers Limited. All rights reserved©2011

36

r0

✓
EtIt
Emd

◆1/3

We compared the gut looping patterns of the chick with those of the
closely related (but differently sized) quail and those of a songbird, the
zebra finch. In Fig. 5a, we see that, as previously described18,19, the guts
of the chick and the quail are organized almost identically but on
different scales, and that the digestive tracts of songbirds and chickens
are markedly different. To make the comparison quantitative, we
repeated the morphometric and mechanical measurements (Sup-
plementary Information) and used them to generate predictions from
our scaling theory and computational model. In all cases, the pre-
dicted values of l, R and n are again in excellent agreement with those
observed in embryonic guts of the appropriate species (Fig. 5b, c and
Table 2). For instance, we find that although growth strains, ep, are
similar between the chick and the quail, the quail mesentery has a
tension, Emhe0, approximately five times greater than that in the chick
mesentery. Qualitatively, this greater elastic force produces a smaller
loop, hence inducing more loops per length and, thus, the same
number of loops in the smaller bird. By contrast, most of the geomet-
rical and physical parameters characterizing the developing gut and
mesentery in the chick and the zebra finch are different and lead to
different looping parameters.

Finally, to test our theoretical model with a non-avian example, we
performed a similar set of measurements throughout the course of gut
development in mouse embryos. In agreement with our findings from
birds, the geometrical and biophysical properties of the developing
gut and dorsal mesentery suffice to predict accurately the stereotypical
patterns of the mature intestinal loops in mouse embryos (Fig. 5 and

Table 2). The mouse gut is notably characterized by softer tissues and
higher mismatch strain, producing tightly coiled loops, as seen in
Fig. 5a. The physiological stresses in the mesentery fall in the same
range (Supplementary Information) in all the species investigated in
this study, suggesting that both growth and the properties of tissues
might be regulated by mechanical feedback.

Discussion
The developing intestine is a simple, elongated, tubular structure that
is stereotypically and reproducibly folded into a compact organ
through the process of looping morphogenesis. Using a combination
of quantitative experiments, computations and scaling arguments, we
have shown that the associated looping patterns are quantitatively
determined by the differential growth between the gut tube and the
dorsal mesentery and by their geometric and elastic properties, both
within individual organisms and across species. We thus bring a
quantitative biomechanical perspective to the mostly metaphoric
arguments in On Growth and Form2.

The simplicity of the mechanical origin in the diversity in gut loop-
ing patterns, long associated with the adaptive significance of the
distinct diets and gut residence times of different animals18, also sug-
gests that because it is sufficient to modulate the uniform tissue
growth rates, tissue geometry and elasticity of the gut–mesentery
system to change these patterns, this is the minimal set of properties
on which selection has acted to achieve the looping patterns found in
nature.

Identification of the relevant cellular parameters influencing gut
morphogenesis opens the door to future studies of the genes involved
in controlling cell proliferation and matrix formation in space and
time, and sets the stage to understanding the processes by which
biochemical and biophysical events across scales conspire to drive
the developmental regulation of growing tissues.

METHODS SUMMARY
Embryos. Fertile chick eggs (White Leghorn eggs) were obtained from commercial
sources. Fertile zebra finch eggs were provided by the laboratory of T. Gardner
at Boston University. Fertile Japanese quail eggs were obtained from Strickland
Game Bird. All eggs were incubated at 37.5 uC and staged following ref. 20.
Mouse embryos were collected from staged pregnant females (Charles River
Laboratories).
Immunohistochemistry and histology. Small intestines were collected from
chick embryos at desired stages and fixed in 4% paraformaldehyde in PBS and
embedded in paraffin wax. Immunohistochemistry and histology was performed
on 10-mm transverse sections of the gut tube.
In ovo gut surgeries. The gut tube and the dorsal mesentery were separated in ovo
at stage 23–25 by using a pulled glass needle to cut the connection between the
two tissues. Embryos were re-incubated until E12, when they were collected to
examine the resulting looping pattern.
Mechanical properties of gut and mesentery tissue. The force, F(d), between a
permanent magnet (The Magnet Source) and millimetre-size steel balls (New
England Miniature Ball Corp.), separated by a distance d, was calculated from
the damped motion of the ball rising in glycerol with the magnet lowered from
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Figure 5 | Comparative predictions for looping parameters across species.
a, Gut looping patterns in the chick, quail, finch and mouse (to scale) show
qualitative similarities in the shape of the loops, although the size and number
of loops vary substantially. b, Comparison of the scaled loop contour length,
l/ro, with the equivalently scaled expression from equation (3) shows that our
results are consistent with the scaling law in equation (1) across species. Black
symbols are for the animals shown in a, other symbols are the same as in Fig. 4b.
c, Comparison of the scaled loop radius, R/ro, with the equivalently scaled
expression from equation (4) shows that our results are consistent with the
scaling law in equation (2) across species (symbols are as in b). In b and c, points
are reported for chick at E8, E12 and E16; quail at E12 and E15; finch at E10 and
E13; and mouse at E14.5 and E16.5. Error bars, s.d.

Table 2 | Morphometry of quail, finch and mouse gut looping pat-
terns
Species and stage n l (mm) R (mm)

Quail E12 Experimental observation 9.0 6 0.7 4.6 6 0.4 1.2 6 0.1
Computational model* 10.0 6 1.3 4.1 6 1.0 1.2 6 0.3

Finch E13 Experimental observation 5.5 6 0.5 3.6 6 0.5 0.6 6 0.3
Computational model{ 5.3 6 0.8 3.7 6 0.9 0.9 6 0.2

Mouse E16.5 Experimental observation 6.0 6 0.5 6.0 6 0.7 0.7 6 0.1
Computational model{ 5.6 6 0.8 6.4 6 1.5 1.0 6 0.1

The observed number of loops, loop wavelength and radius for the quail, finch and mouse, for given
geometrical and physical parameters associated with the gut and the mesentery, show that the model
predictions are quantitatively consistent with observations.
*Lt 5 41.3 6 0.4 mm, h 5 14.9 6 1.6 mm, ro 5 248 6 13 mm, ri 5 154 6 12 mm, Em 5 515 6 206 kPa,
Et 5 4.4 6 1.3 kPa, ep 5 110 6 13% and e0 5 23 6 5%.
{Lt 5 19.7 6 0.8 mm, h 5 6.0 6 0.6mm, ro 5 227 6 14 mm, ri 5 120 6 13 mm, Em 5 802 6 321 kPa,
Et 5 2.6 6 0.8 kPa, ep 5 110 6 11% and e0 5 32 6 5%.
{Lt 5 35.9 6 0.9 mm, h 5 12.3 6 1.6 mm, ro 5 270 6 16 mm, ri 5 178 6 14 mm, Em 5 94 6 37 kPa,
Et 5 1.9 6 0.9 kPa, ep 5 200 6 13% and e0 5 64 6 5%.
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Physical model of gut looping
To investigate the physical origins of this looping pattern, we
developed a simple simulacrum of the gut–mesentery composite
using a silicone rubber tube (mimicking the gut) and a thin latex sheet
(mimicking the mesentery; see Supplementary Information). The dif-
ferential strain induced by relative growth between the gut and the
mesentery is simulated by extending the latex sheet along its length
and stitching it to the wall of the naturally straight, unstretched rubber
tube along the edge parallel to the direction of membrane stretching
(Fig. 2a). On removing all external loads from the composite system,
we observe the spontaneous formation of loops in the tube very similar
in shape to the looping patterns seen in ovo (Fig. 2b). Varying the
differential strain, the thickness of the latex sheet, the radius of the
rubber tube and their material properties (Supplementary Informa-
tion) shows that the wavelength and amplitude of the repeating loops
depend only on these measurable parameters.

Scaling laws for loop period, radius and number
We now quantify the simple physical picture for looping sketched
above to derive expressions for the size of a loop, characterized by
the contour length, l, and mean radius of curvature, R, of a single
period (Fig. 3a). The geometry of the growing gut is characterized by
the gut’s inner and outer radii, ri and ro, which are much smaller than
its increasing length, whereas that of the mesentery is described by its
homogeneous thickness, h, which is much smaller than its other two
dimensions. Because the gut tube and mesentery relax to nearly
straight, flat states once they are surgically separated, we can model
the gut as a one-dimensional elastic filament growing relative to a thin
two-dimensional elastic sheet (the mesentery). As the gut length
becomes longer than the perimeter of the mesentery to which it is
attached, there is a differential strain, e, that compresses the tube axially
while extending the periphery of the sheet. When the growth strain is

larger than a critical value, e!, the straight tube buckles, taking on a
wavy shape of characteristic amplitude A and period l?A. At the
onset of buckling, the extensional strain energy of the sheet per wave-
length of the pattern is Um!Eme2

!hl2, where Em is the Young’s modu-
lus of the mesentery sheet. The bending energy of the tube per
wavelength is Ut!EtItk

2l, where k / A/l2 is the tube curvature,
It!r4

o{r4
i is the moment of inertia of the tube and Et is the Young’s

modulus of the tube. Using the condition that the in-plane strain in the
sheet is e!!A=l and minimizing the sum of the two energies with
respect to l then yields a scaling law for the wavelength of the loop:

l!
EtIt

Emh

! "1=3

ð1Þ

The above theory is valid only at the onset of looping and cannot predict
the amplitude or radius of a loop. Far from the onset of the instability, at a
strain e~e0?e!, we use a torque balance argument to determine the
finite radius of the loop. To deform the gut into a loop of radius R, the
elastic torque required is Tt / EtIt/R and must balance the torque
exerted by the membrane with strain e0 over a width w and a length R,
that is, Tm / Emhwe0R. The width of this strip is the radial distance from
the tube over which the peripheral membrane stretching strain is relaxed,
and is determined by the relation e0 / w/(R 2 w). Balancing the torques,
by equating Tt with Tm, and assuming that e0 , 1, yields the scaling law

R!
EtIt

Emhe2
0

! "1=3

ð2Þ

Quantitative geometry and biomechanics of chick gut
looping
A comparison of the results of our predictions with quantitative
experiments requires the measurement of the geometry of the tissues,
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Figure 3 | Geometric and mechanical measurements of chick gut.
a, Parameters involved in the physical model. b, Inner (ri, light blue) and outer
(ro, dark blue) tube diameters. Measurements are extracted from DAPI-stained
tube cross-section shown in inset. c, Tube (length Lt, blue) and mesentery
(length Lm, red) differential growth. Inset, length measurement of one isolated
loop. d, Stress versus strain for the mesentery at E8, E12 and E16. For

physiological strains, we use the linearization shown by the black lines, to
extract the effective Young’s modulus, Em, and the effective strain, e0. e, Stress
versus strain for the gut tube at E8, E12 and E16. f, Mesentery and tube Young’s
moduli, Em (red) and Et (blue), at E8, E12 and E16. g, Effective differential
growth strain, e0, at E8, E12 and E16. Error bars, s.d.
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Compression of soft elastic material
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Figure 1.3  Crease instability. (a) Crease of Liangfen, a starch gel, due to bending [107]. (b) Creases of 
rising dough due to the constraint of the bowl [108]. (c) Creases of a swelling gel due to the constraint 

of the substrate [112]. (d) Cross-section view of creases [113]. 
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 Surface energy adds a barrier to the nucleation of creases, and makes nucleation 

defect-sensitive [119, 138]. When the loading is an electric field, either creases or wrinkles 

may form depending on the value of the elastocapillary number [132]. For a layer of finite 
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When soft elastic material is compressed by more than 35% 
surface forms sharp creases. This is effect of nonlinear elasticity!Physics 4, 19 (2011)
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Folds on the surface of soft materials are shown to be a consequence of a nonlinear instability.
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Unfolding the Sulcus

Evan Hohlfeld and L. Mahadevan
Phys. Rev. Lett. 106, 105702 (2011) – Published March 7, 2011

Even as we probe physics on ever-smaller scales, ma-
terials that can be held and manipulated with our hands
often still resist our understanding. Elastic materials,
in particular, still confound because of the nonlinear re-
lationship between strain and the displacement of the
material needed to maintain the rotational invariance
of the elastic energy. The effects of these nonlineari-
ties are often more pronounced at free surfaces, where
strain can be alleviated by a large rotation of the sur-
face. When a slab of an elastic material such as rubber
is compressed, it develops a sulcus—a sharp furrow in
its surface that plunges into the material. First reported
for photographic gelatin films over one hundred years
ago, they are not just a laboratory curiosity. Sulci cre-
ate large strains that can lead to material failure. They
are also a common motif in the morphogenesis of many
organs, most famously in the characteristic folds on the
surface of the human brain or, say, the arm of an infant
[see Fig. 1(a) and (b)]. Though a mechanism for the for-
mation of a sulcus was proposed almost fifty years ago
[1], a complete understanding has remained elusive [2–
6]. Now, in a paper appearing in Physical Review Letters,
Evan Hohlfeld from Harvard University and Lawrence
Berkeley National Laboratory and L. Mahadevan from
Harvard University have proposed that the formation of
a sulcus is controlled by a new type of instability dom-
inated by nonlinearities in the elastic energy [7]. Their
case is bolstered both by detailed numerics and by ex-
periments. Moreover, they suggest that similar nonlin-
ear instabilities may be lurking behind the formation of
many other singular structures found in materials.

In the calculation of Biot, a free surface of a com-
pressed elastic material becomes unstable at a critical
strain of 45.6% [1]. Indeed, experiments show that a
compressed slab forms sharp furrows above some crit-
ical strain. Rather than develop as an instability, how-
ever, the sulci in experiments nucleate and grow later-
ally as fully formed furrows. Moreover, this often oc-
curs at a lower strain of 35% [2–4], noticeably smaller

FIG. 1: Localized folds, called sulci, induced on soft materials
due to compressive stresses are ubiquitous in nature: (a) the
arm of an infant, (b) a primate brain. (c) Schematic illustra-
tion of a bifurcation diagram showing the scaled height h of a
sulcus plotted against the applied strain. A sulcus nucleates
at a critical strain e

c

due to a spontaneous breaking of scale
symmetry. (Credit: (a),(b) E. Hohlfield and L. Mahadevan [7])

than the location of the Biot instability. The observed
behavior suggests that an energy barrier exists between
a material with a smooth surface and one with a sharp
furrow, leading to a first-order transition to a sulcus of
finite depth.

Hohlfeld and Mahadevan have performed both nu-
merical simulations and experiments to better under-
stand how sulci develop [7, 8]. In their simulations, they
consider an incompressible elastic material with a free
surface. Since the formation of a sulcus involves length

DOI: 10.1103/Physics.4.19
URL: http://link.aps.org/doi/10.1103/Physics.4.19

c� 2011 American Physical Society
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Swelling of thin membranes on elastic substrates

T. Tallinen et al., PNAS 111, 12667 (2014)

instability discussed earlier, and can lead to an emergent pattern
very reminiscent of sulci and gyri in the brain.

Results
A physical experiment to mimic these patterns can be easily created
using a hemispherical polydimethylsiloxane (PDMS) gel coated
with a layer of PDMS that can swell by absorbing a solvent such
as hexanes (Materials and Methods). By varying cross-linking den-
sities we can prepare samples with different ratios of the moduli of
the two layers and capture both the wrinkled morphology shown in
Fig. 1D (when the outer layer is stiffer) and the sulcified mor-
phology shown in Fig. 1E (when the outer layer is softer). In par-
ticular, we see the appearance of brainlike morphologies with deep
sulci when the modulus ratio is close to unity (Fig. 1F).
To study gyrification quantitatively, we first construct a nu-

merical model in two dimensions. We start with a rectangular
domain consisting of a layer of gray matter on top of a deep layer
of white matter, both having the same uniform shear modulus μ.
The material is assumed to be neo-Hookean with volumetric
strain energy density

W =
μ
2

h
Tr

!
FFT" J−2=3 − 3

i
+

K
2
ðJ − 1Þ2; [1]

where F is the deformation gradient, J = det(F), and the bulk
modulus K = 103μ makes the tissues almost incompressible. To
model growth of the gray matter relative to the white matter, we
apply a tangential growth profile,

gðyÞ= 1+
α

1+ e10ðy=T−1Þ
; [2]

so that g = 1 in the white matter and g = 1+ α in the gray matter,
with a smoothed step at the interface (Fig. S1). Here, y is dis-
tance from the top surface in material coordinates, T is the un-
deformed thickness of the gray matter, and α controls the
magnitude of expansion. Later on we denote g ≡ 1 + α ≈ g(0).
We use a custom finite element method to minimize the elastic
energy (details Please select the in Materials and Methods). Our
2D plane-strain calculations also include constrained expansion in

the z direction, although folding can only occur in the x – y plane;
we find that when transversely isotropic tangential expansion
exceeds g = gx = gz ≈ 1.29 sulcification of the gray matter becomes
energetically favorable over a smooth surface, and the gray matter
forms cusped folds largely internal to the gray matter and remi-
niscent of the folds in lightly sulcified brains such as the porcupine
(Fig. 2A). As gx is increased further (for simplicity gz = 1.29 was
fixed) the gray matter folds down into the white matter forming
a big cusped sulcus and smooth gyrus, reminiscent of the sulci and
gyri found in more folded brains such as a cat (Fig. 2B). Our plots
also indicate regions of compressive and tensile stress, which agree
with observations in developing ferret brains (11).
We plot the geometric characteristics of the sulcus, such as

depth and width, as a function of gx in Fig. 2C, which allow us to
establish several nontrivial similarities between our geometry
and actual brains (Fig. S2). After the transition from smooth to

A B C

D E F

Fig. 1. Wrinkling and sulcification in a layered material subject to differ-
ential growth. (A) If the growing gray matter is much stiffer than the white
matter it will wrinkle in a smooth sinusoidal way. (B) If the gray matter is
much softer than the white matter its surface will invaginate to form cusped
folds. (C) If the two layers have similar moduli the gray matter will both
wrinkle and cusp giving gyri and sulci. Physical realizations of A, B, and C,
based on differential swelling of a bilayer gel (Materials and Methods),
confirm this picture and are shown in D, E, and F, respectively.

A

B

C

Fig. 2. Formation of a minimal sulcus. The 2D sulci with tangential expansion
ratio of (A) g = 1.30 and (B) g = 2.25 of the gray matter (Eq. 2 and Fig. S1).
Coloring shows radial and circumferential tensile stress in the left and right sulci,
respectively. The stress is compressive in the noncolored areas. Grid lines corre-
spond to every 20 rows or columns of the numerical discretization with nodes.
The width W, depth D, and thickness of the gray matter in the sulcus (Ts) and
gyrus (Tg) are indicated in B. For comparison with observations of brains, we also
show sections of porcupine and cat brains, taken from www.brainmuseum.org.
(C) Scaled dimensions of the simulated sulcus (solid lines) as a function of g
compared with those in porcupine (triangles), cat (dots), and human (squares)
show that our model can capture the basic observed geometry.Width and depth
are given relative to the undeformed thickness T of the gray matter (for details
of the measurements and error bars, see Fig. S2).
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Fig. 1D (when the outer layer is stiffer) and the sulcified mor-
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we find that when transversely isotropic tangential expansion
exceeds g = gx = gz ≈ 1.29 sulcification of the gray matter becomes
energetically favorable over a smooth surface, and the gray matter
forms cusped folds largely internal to the gray matter and remi-
niscent of the folds in lightly sulcified brains such as the porcupine
(Fig. 2A). As gx is increased further (for simplicity gz = 1.29 was
fixed) the gray matter folds down into the white matter forming
a big cusped sulcus and smooth gyrus, reminiscent of the sulci and
gyri found in more folded brains such as a cat (Fig. 2B). Our plots
also indicate regions of compressive and tensile stress, which agree
with observations in developing ferret brains (11).
We plot the geometric characteristics of the sulcus, such as

depth and width, as a function of gx in Fig. 2C, which allow us to
establish several nontrivial similarities between our geometry
and actual brains (Fig. S2). After the transition from smooth to

A B C

D E F

Fig. 1. Wrinkling and sulcification in a layered material subject to differ-
ential growth. (A) If the growing gray matter is much stiffer than the white
matter it will wrinkle in a smooth sinusoidal way. (B) If the gray matter is
much softer than the white matter its surface will invaginate to form cusped
folds. (C) If the two layers have similar moduli the gray matter will both
wrinkle and cusp giving gyri and sulci. Physical realizations of A, B, and C,
based on differential swelling of a bilayer gel (Materials and Methods),
confirm this picture and are shown in D, E, and F, respectively.

A

B

C

Fig. 2. Formation of a minimal sulcus. The 2D sulci with tangential expansion
ratio of (A) g = 1.30 and (B) g = 2.25 of the gray matter (Eq. 2 and Fig. S1).
Coloring shows radial and circumferential tensile stress in the left and right sulci,
respectively. The stress is compressive in the noncolored areas. Grid lines corre-
spond to every 20 rows or columns of the numerical discretization with nodes.
The width W, depth D, and thickness of the gray matter in the sulcus (Ts) and
gyrus (Tg) are indicated in B. For comparison with observations of brains, we also
show sections of porcupine and cat brains, taken from www.brainmuseum.org.
(C) Scaled dimensions of the simulated sulcus (solid lines) as a function of g
compared with those in porcupine (triangles), cat (dots), and human (squares)
show that our model can capture the basic observed geometry.Width and depth
are given relative to the undeformed thickness T of the gray matter (for details
of the measurements and error bars, see Fig. S2).
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sulcified, the sulcal depth increases continuously although the
width between sulci is always finite, agreeing with observations in
weakly convoluted brains. In the high g regime, the optimal spacing
is about 4T whereas depth continues to increase, in agreement with
observations in highly folded brains. Finally, the deformed thick-
ness of the gray matter varies such that, at the gyrus, it is nearly
twice that at the base of the sulcus; the same pattern as seen in all
real brains. Our 2D model thus captures the essential features of
individual sulci and gyri and the intersulcal spacing.
Although sulci are fundamentally different from wrinkles,

a qualitative understanding of our results follows by using the
classical formula λ = 2πt[μ/(3μs)]1/3 for the wrinkling wavelength
of a compressed stiff film (modulus μ, thickness t) on a soft
substrate (modulus μs) (27). Extrapolating this to the case here
(μs = μ) yields λ ≈ 4.36t in rough agreement with the simulated
sulcal spacing. A rigorous analytical treatment of gyrification is,
however, presently out of reach due to the subcritical nature of
the instability that is accompanied by finite strains and cusplike
features. Although the underlying mechanical principle is that
the gray matter folds to relax its compressive stress and that is
balanced by deforming the white matter, we emphasize that the
details are quite different from wrinkling and buckling, because
sulcification is a scale-free nonlinear subcritical instability (24).
We now explore the patterns of sulci and gyri in 3D by mod-

eling the brain as a thick spherical shell, with outer radius R and
inner radius Ri = R/2, including both the gray and white matter;
we note that for such geometries the resulting gyrification pat-
terns are independent of the (presence or absence of a) core. As
in the 2D model above, the domain is assumed to be of uniform
elastic material described by Eq. 1, but for numerical conve-
nience we now adopt modest compressibility with K = 5μ, cor-
responding to Poisson’s ratio ν ≈ 0.4. Brain tissues actually show
time-dependent compressibility owing to poroelasticity (28), but
this is irrelevant over the long times associated with morpho-
genesis, when we may safely limit ourselves to considering just
elastic effects. We assume that tangential expansion, given by Eq. 2,
is transversely isotropic so that the area expansion is given by g2.
We model small brains as complete thick spherical shells and
patches of large brains as patches of thick spherical shells with
periodic boundary conditions along the edges, and discretize
them using tetrahedral elements (Materials and Methods).
Our 3D model of the brain has three geometrical parameters,

brain radius (size) R, cortical thickness T and the tangential ex-
pansion g2 with experimentally observable analogs. Indeed, in
mammals the cortical thickness T, gray-matter volume VG and
white-matter volume VW are linked by robust scaling laws that relate
brains varying over a millionfold range in weight (29, 30). These laws
can be written, in dimensionless units, as T ∼V 0:1

G and VW ∼V 1:23
G

(29). Using the spherical geometry of our model, we can relate these
quantities to our model parameters as VG ∼ g2[R3 − (R − T)3] and
VW ∼ (R − T)3 − (R/2)3. These empirical scaling laws, together with
an estimate that g2 = 5 for R/T = 20, eliminate two degrees of
freedom from the model, leaving us with a single parameter
family of models describing brains of different sizes. This is shown
in Fig. 3 where we plot g2 against relative brain size R/T and
display images of real brains as well as numerically simulated
brain shapes for a range of representative relative sizes.
Our model correctly predicts that brains with R/T K 5 (cor-

responding to physical size of R ≈ 5 mm) should be smooth as g is
insufficient to cause buckling. Intermediate-size brains are cor-
rectly predicted to have isolated sulci that are largely localized
within the gray matter. Larger brains become increasingly folded,
with sulci penetrating the white matter and the brain surface
displaying complicated patterns of branched sulci, similar to
those in large real brains (Fig. 3). The degree of folding is con-
ventionally quantified by the gyrification index (GI), the ratio of
the surface area to the area of the convex hull. For the largest
brain that we simulate (R/T = 20, g2 = 5, corresponding to

physical size R ≈ 36 mm) we find GI ≈ 2.8, which can be compared
with the modestly larger human brain that has GI ≈ 3 in regions
that exclude the sylvian fissure (31). Most actual brain shapes de-
viate from spherical so that sulci, especially in small- and medium-
sized brains, tend to align with the direction of least curvature. By
repeating our calculations on an ellipsoidal geometry (Fig. 3) we
capture this qualitative trend. The numerical brain shapes are
complemented by experimental realizations in Fig. 3. Our bilayer
gel brain models (Materials and Methods) capture the realistic
sulcal spacing of about 4T and the qualitative trends in variation of
sulcal patterns with R/T up to modest-size brains.
Because many brain atlases show different sections of the brain

to highlight the anatomical complexity of the folds, we show
sections of our simulated patterns in Fig. 4A. For comparison, we
show sections from a raccoon brain, which has a similar size to the
simulated brain, and see that the two appear very similar. An
important observation that becomes apparent is that cutting
through gyri and sulci with various alignments with respect to the
section plane gives the impression of rather complex gyrification
and exaggerates depths of sulci, especially when the section plane
is off the center of curvature (plane 2; Fig. 4A). Simulated cross
sections display features such as buried gyri and regions with
disproportionally thick cortices seen in sections of real brains, but
they are really just geometric artifacts of sectioning.
As can be observed, the calculated gyri are rounded rather than

flattened as in, e.g., brain samples that have been fixed before re-
moval. Experimental evidence suggests, in agreement with our
model, that the compressive constraint of the skull or meninges is
not required for gyrification (30), but it could affect the appearance
by flattening the gyral crowns. Our simulation of a brain confined by
a rigid shell that mimics the skull confirms this (Fig. 4B).

Fig. 3. Known empirical scaling laws for gray-matter volume and thickness
are mapped on a g2 vs. R/T diagram. Corresponding simulations for spherical
brain configurations, with images shown at a few points, show that the
surface remains smooth for the smallest brains, but becomes increasingly
folded as the brain size increases. We also show patterns for ellipsoidal
configurations (major axis = 1.5 × minor axes) that lead to anisotropic gyr-
ification. Images of rat, lemur, wolf, and human brains illustrate the in-
creasingly prominent folding with increasing size in real brains. Also shown
are images of our physical mimic of the brain using a swelling bilayer gel of
PDMS immersed in hexanes. The smooth initial state gives rise to gyrified
states for different relative sizes of the brain R/T = 10, 15 (see also Fig. 5). All
of the brain images are from www.brainmuseum.org.
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Brains for various organisms

Supporting Information
Tallinen et al. 10.1073/pnas.1406015111

Fig. S1. Tangential growth profiles for α = 0.3 and α = 1.25 applied in simulations of Fig. 2 A and B, respectively.

Fig. S2. Geometric parameters from brain sections of a porcupine, cat, and human. Brain radius R is indicated by the red arcs. Gyral widths in the porcupine
and cat are determined as the length of the red arc over each gyrus. In the human the sulcal geometry is more complicated and some gyri are inclined with
respect to the sectioning plane. Therefore, in the human gyral widths are determined more selectively as indicated by magenta line segments. Sulcal depths are
indicated by blue line segments (the sylvian fissure and sulci that are clearly inclined with respect to the sectioning plane are excluded in the human). The
thickness of the gray matter at the gyri is indicated by the yellow line segments, and thickness of the gray matter at the sulci by the green line segments (not
shown for the human). The undeformed thickness of the gray matter is approximated by T = Tg/1.5 using the mean thickness Tg of the gray matter at the gyri.
Tangential expansion g is estimated by dividing the length of the surface contour by the length of the red arc (excluding the sylvian fissure in the human). The
data shown for W/T, D/T, and Tg/Ts are given as the mean ± SD. All images are cell-stained (porcupine and cat) or fiber-stained (human) coronal sections from
www.brainmuseum.org.
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squares of perpendicular distance, and least absolute deviations,
the third of which is more robust against outliers (13). The
standard deviations for the slope and intercept were estimated
directly for the first method and by bootstrap for the last two
methods (14). Bootstrap may help detect outliers in the data
because, when they are left out from a same-size resample, the
correlation coefficient often increases, which could be exploited
to improve estimation. Systematic bias caused by outliers was not
detected in Fig. 2.

3. Theory of Scaling
Our analysis rests on two assumptions. First, we assume that each
small piece of cortex of unit area, regardless of its thickness and
the overall brain size, sends and receives about the same total
cross-sectional area of long-distance connection fibers to and
from other cortical regions. Second, we assume that the global

geometry of the cortex minimizes the average length of the
long-distance fibers.

The second assumption follows from Ramon y Cajal’s prin-
ciple for conservation of space, conduction time, and cellular
materials (Chap. V in ref. 15). This principle has been explored
more recently as the principle of minimal axon length (16–18).
Consistent with previous observations on the basic uniformity of
the cortex (19–21), the first assumption is supported loosely by
the evidence that the total number of neurons beneath a unit
cortical surface area is about 105!mm2 across different cortical
regions for several species, from mouse to human (22) (after
shrinkage correction). But there are exceptions, including the
higher density in striate cortex of primates (22, 23), the lower
density in dolphin cortex (24), and the variability observed in cat
cortex (25). The number of axons leaving or entering the
gray–white boundary per unit cortical area should be compara-

Fig. 2. Cortical white and gray matter volumes of various species (n ! 59) are related by a power law that spans five to six orders of magnitude. Most data points
are based on measurement of a single adult animal. The line is the least squares fit, with a slope around 1.23 " 0.01 (mean " SD). The average and median
deviations of the white matter volumes from the regression line are, respectively, 18% and 13% on a linear scale. Sources of data: If the same species appeared
in more than one source below, the one mentioned earlier was used. All 38 species in table 2 in ref. 3 were taken, including 23 primates, 2 tree shrews, and 13
insectivores. Another 11 species were taken from table 2 in ref. 8, including 3 primates, 2 carnivores, 4 ungulates, and 2 rodents. Five additional species came
from table 1 in ref. 11, including 1 elephant and 4 cetaceans. The data point for the mouse (G ! 112 mm3 and W ! 13 mm3) was based on ref. 30, and that for
the rat (G ! 425 mm3 and W ! 59 mm3) was measured from the serial sections in a stereotaxic atlas (42). The estimates for the fisherman bat (Noctilio leporinus,
G ! 329 mm3 and W ! 43 mm3) and the flying fox (Pteropus lylei, G ! 2,083 mm3 and W ! 341 mm3) were based on refs. 43 and 44, with the ratios of white
and gray matters estimated roughly from the section photographs in the papers. The sea lion data (Zalophus californianus, G ! 113,200 mm3 and W ! 56,100
mm3) were measured from the serial sections at the website given in the legend to Fig. 1, with shrinkage correction.
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Power law scaling for the brain size
of various organisms
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Typically gray matter has 
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layers in the affected areas.


