MAE 545

Special Topics - Lessons from
Biology for Engineering Tiny Devices

Lectures: Office hours:
T, Th 1:30-2:50 PM, W 1:30-3:00 PM,
Friend Center 003 EQUAD D414

Andrej Kosmrlj

andrej@princeton.edu




Lecture Notes

+ text books: none

% lecture slides will be posted on Blackboard

http:/blackboard.princeton.edu

course: MAE545 F2015

Assignments

# presentation of research paper in class

# final paper (final project)


http://blackboard.princeton.edu

Syllabus
Random walks

Brownian motion Swimming of E. coli
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Polymer random coils Protein search for a
binding site on DNA
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Segregation of
chromosomes Crawling of cells

during cell division
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assembly of
viral capsids

packing of viral DNA
inside the capsid

infection of cells

Viruses
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E. coli outer
membrane




Structural colors

H. Wang and K-Q. Zhang, Sensors (2013) H. Cao, Yale



Structure and form of
organs and plants

Gut

Plantain Lily leaf Bauhinia seed pods

A%

Closed and open Bauhinia pods




DNA Origami

C. E. Castro et al., Nature methods (2011)
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Elastic metamaterials

buckliball

phononic crystals

swelling of patterned gels
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Lecture 1 (9/17)
Brownian motion of small particles

History

1827 Robert Brown: observed irregular motion of
small pollen grains suspended in water
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1905-06 Albert Einstein, Marian Smoluchowski:
microscopic description of Brownian motion and
relation to diffusion equation
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Random walk on a 1D lattice
'SV

—50—40 -3¢0 —-2¢ —¢ 0 ¢ 20 3¢ 4 5/
At each step particle jumps left or right with probability 1/2.

What is the probability p(x,N) that we find
particle at position x after N jumps?

Probability that particle makes k jumps
to the right and N-k jumps to the left
obeys the binomial distribution

(1)

This corresponds to particle position
xr=kl{ — (N —k){=2k—N){
.20 , , | | Therefore

0 20 40 60 80 100 .
N p<x:(2k—N)£,N>:( . )Q—N
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Random walk on a 1D lattice
'SV

[ s R B . By By

—50—40 3020 —¢ O ¢ 20 3¢ 4¢ 5/
Gaussian approximation for p(x,N)

Position x after N jumps can be expressed al
as the sum of individual jumps x; —

Mean value averaged over all possible (x) = N{z1) = N (lg _ 15) —0

random walks 2 2
Variance averaged over all possible 0% = (z?) — (2)? = N(z3) = N¢?
random walks 52 =9DN
effective diffusion constant D = (%/2

According to the central limit theorem p(x,N)
approaches gaussian distribution for large N




Random walk on a 1D lattice
'SV

T @7

-5l —40 =30 =20 —¢ O ¢ 20 3¢ 4¢ BHL

N=20
0.1 | T T T T T T

Bloxact Exact distribution
——G@Gaussian approximation

p(x: (2k—N)€,N) = ( ]Z )Q—N

Gaussian approximation

0.08

0.06

1 2 2
plx, N) =~ €
( ) 21 N (2

p(z,N)

0.04

Note: exact discrete distribution
has been made continuous by
replacing discrete peaks with

boxes whose area corresponds

-12-10 8 6 -4 -2 0 2 4 6 8 10 12 to the same probability.
x /0

0.02
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Master equation and diffusion equation
Y N\/ "N

-5l —40 =30 =20 —¢ O ¢ 20 3¢ 4¢ BHL

Master equation provides recursive relation for the evolution of probability
distribution, where II(z, y) describes probability for a jump from y to x.

p(z, N + 1 ZHfL‘y p(y, N)

For our example master equation reads

1 1

Initial condition p(x, N =0) = i(z)

In the limit of large number of jumps N and small step size ¢, we can Taylor

expand master equation to derive an approximate diffusion equation

ap(maN) 82p($7N) D:€2/2
ON Ox?

|
3
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Fokker-Planck equation

VAN

XL
—50—40 -3¢0 =20 —¢ 0 £ 20 3¢ 40 BL
In general the probability distribu_tion IT o_f_jump I(s|x)
lengths s can depend on the particle position x.
Assume that jumps occur in regular small time intervals At
Generalized master equation  p(z,t + At) Z II(s|z — s)p(x — s,1)

Again Taylor expand master equation above to derive the Fokker-Planck equation

Op(x,t) 9, 0*
= = s [v(w)p(:c,t)] + 92 D(z)p(z,t)
drift velocity diffusion coefficient
(external fluid flow, (e.g. position dependent
external potential) temperature)

2

=2 pgele) = % D(x) =Y —=T(s|z) = (+"(2))

— 2A (sle) = 557
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Probability current

Fokker-Planck equation

819(8? D _ _8% [v(m)p(:z:, t)] + aa_; [D(w)p(az t>]

Conservation law of probability
(no particles created/removed)

op(x,t)  0J(x,1)

ot ox

By comparing equations above we can define probability current

Note that for the steady state distribution, where Op™(z,t)/0t =0

the steady state current is constant and independent on x

_ a% [D(x)p*(x)] — const

If we don’t create/remove particles at boundaries then J*=0

() % g o U U é(é))]

(©. @]

J* =wv(x)p*(x)
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Spherical particle suspended
in fluid in external potential

S

U(x)
A

R particle radius
U fluid viscosity

A =6mnR Stokes drag coefficient
kg Boltzmann constant
T temperature
D diffusion constant

Newton’s law
0%z oU (x)
| _ F,
m v(x) 5 +

external random
potential Brownian
force force

fluid
drag

For simplicity assume overdamped regime
and ignore inertial term on the left hand side.
This produces average drift velocity

(o(a)) = 3 2

Equilibrium probability distribution
p*(z) = Ce U@/AD — 0= U@)/ksT

(see previous slide)  (equilibrium physics)

Einstein - Stokes equation

kT kpT

D _
A 6mn R
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Example of Einstein-Stokes equation

kT kT
D=—-=
A 6 R

Spherical particle suspended in
water at room temperature

water viscosity n ~ 10" kg m/s

temperature T = 300K

Boltzmann constant k5 = 1.38 x 107**J /K

particle radius R =1pm R = 1mm
diffusion constant D = 0.2pum? /s D =~ 2 x 10" *um? /s
diffusion small
important diffusion
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Random walk with absorbing boundaries
A B

AN

0

r = a x:b

What is the probability Pz(x) that particle that
starts at position x gets absorbed at site B?

Pg(z) =) T(s|z)Pp(z + s)

PA(ZIZ) =1-— PB(J?)

$ boundary conditions
PB (513 = b) =1
dPB (33) dZPB ($>
0= v(z)——+ D(z)—- Pg(z=a)=0
Example
— p— U, D — COIlSt
v =0,D = const Pae) - (z —a) i C(1- e—v(@—a)/D)
b (b—a) () = (1 — e—v(b—a)/D)
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Random walk with absorbing boundaries
A B

AN

0

r = a x:b

What is the mean time T(x) that particle that
starts at position x gets absorbed at either site?

Z II(s r+s)+ At
$ boundary conditions
| T(x=a)=0
dT(x) d*T ()
Example
v =0,D = const 7 —a)(b— )
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Escape over a potential barrier

What is the average time Tesc it takes for a
particle to escape over a barrier?

Once particle crosses the peak it quickly
descends into the global minimum. Therefore
estimate the escape time, by placing reflecting

boundary at x=a and absorbing boundary at x=b.

boundary conditions

Arrhenious Law

T = Ta) ~ ——2__U®)=U@)/kpT

\/ U// U//
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N noninteracting
Brownian particles

Fick’s laws

Local concentration c(x,t) = Np(x,t)

Fick’s laws below directly follow
from Fokker-Plank equations

9,

Concentration flux J = vec — % [Dc]

Second Fick’s law

Diffusion of oc ) 0?
concentration 9 or ve| + 912 Dc




Further reading

spucensnes Springer: “E“% B Random
Walks in
ol STOCHASTIC Biology
- PROCESSES IN
Stochastic | PHYSICS AND 3
Methods CHEMISTRY Howard C;Berg

- -

SEARCHING FOR PRINCIFLES

» EE 2 EEEEEEEREEREEDS
William Bialek
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