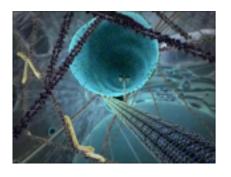
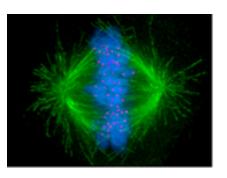
MAE 545

Special Topics - Lessons from Biology for Engineering Tiny Devices



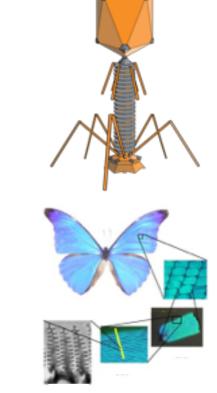
Lectures: T, Th 1:30-2:50 PM, Friend Center 003

Office hours: W 1:30-3:00 PM, **EQUAD D414**



Andrej Košmrlj

andrej@princeton.edu



Lecture Notes

* text books: none

Iecture slides will be posted on Blackboard

http://blackboard.princeton.edu

course: MAE545_F2015

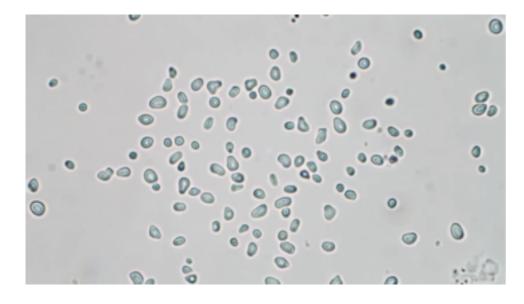
Assignments

* presentation of research paper in class

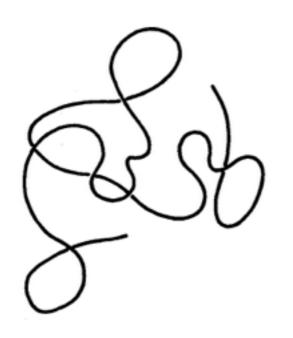
* final paper (final project)

Syllabus Random walks

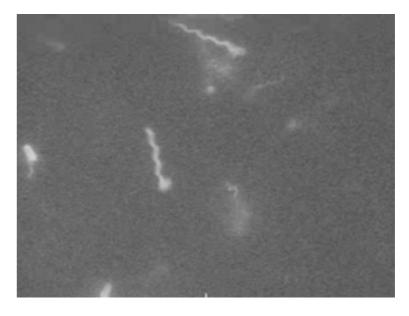
Brownian motion



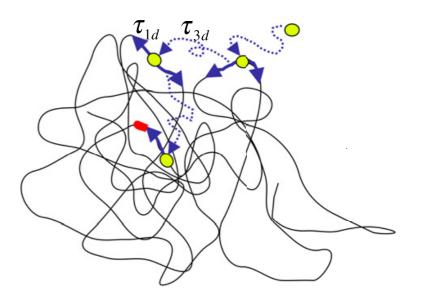
Polymer random coils



Swimming of E. coli

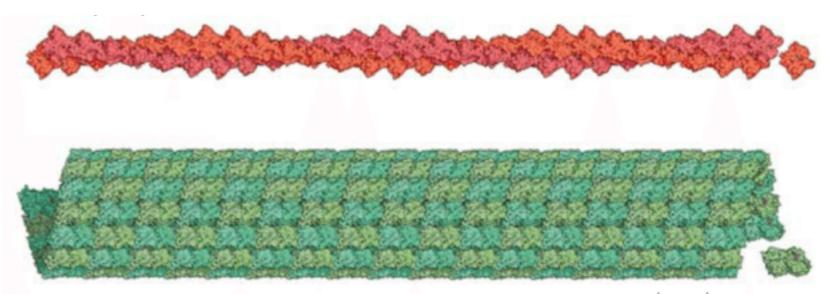


Protein search for a binding site on DNA

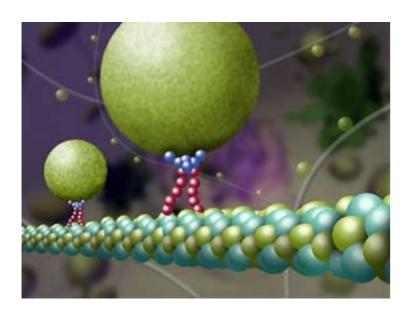


Protein filaments

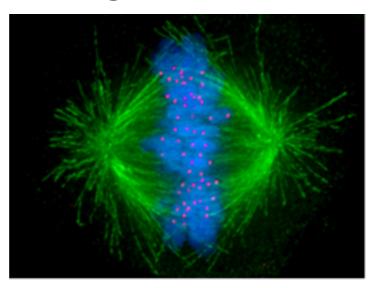
Microtubule



Cargo transport

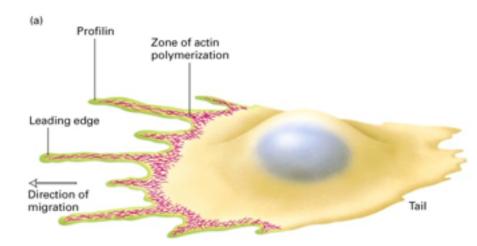


Segregation of chromosomes during cell division



Crawling of cells

10 nm

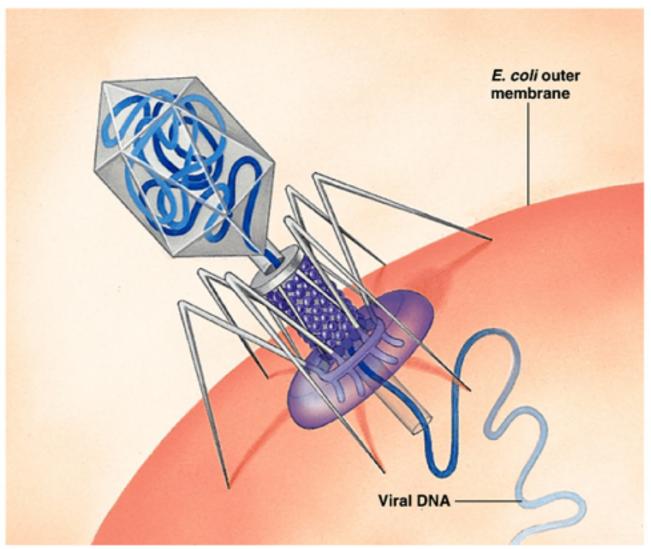


Viruses

assembly of viral capsids

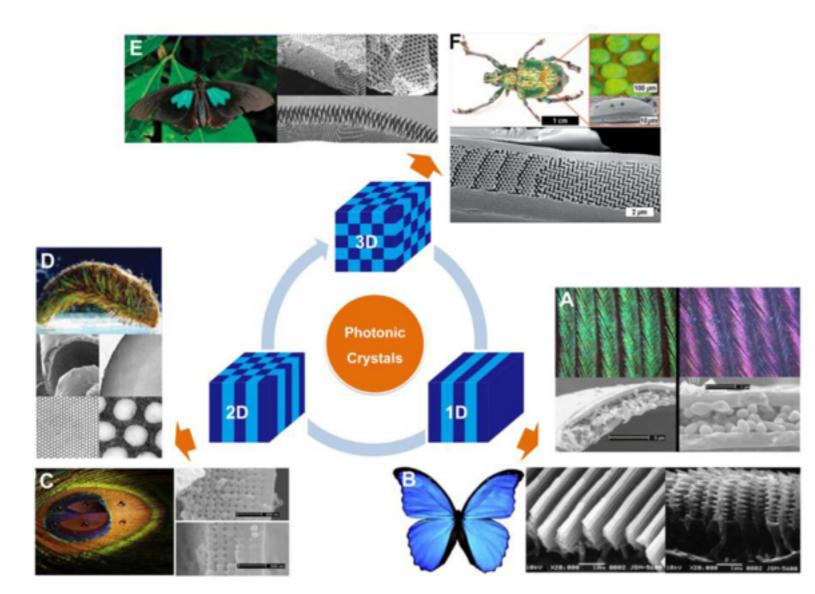
packing of viral DNA inside the capsid

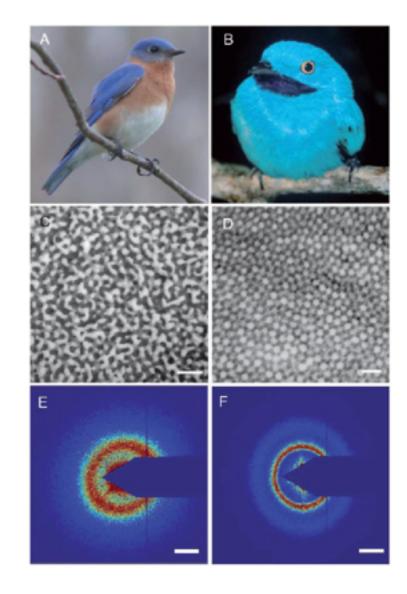
infection of cells



Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Structural colors





H. Wang and K-Q. Zhang, Sensors (2013)

H. Cao, Yale

Structure and form of organs and plants

Brain

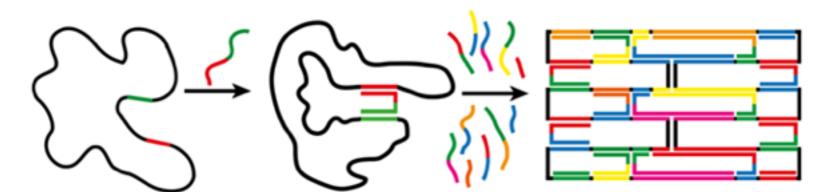
Gut

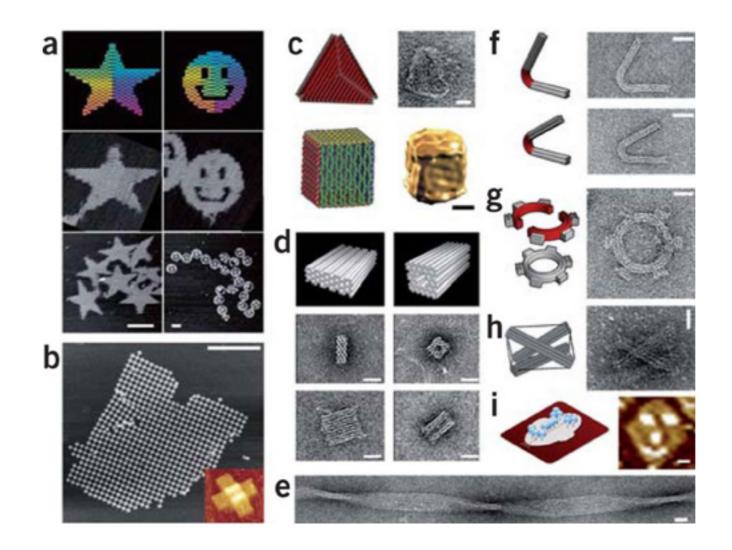
Plantain Lily leaf

Bauhinia seed pods

(A and B) Closed and open Bauhinia pods

DNA Origami



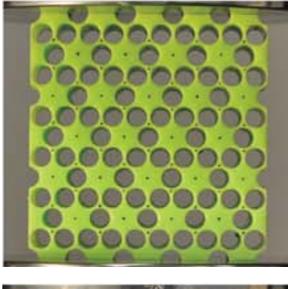


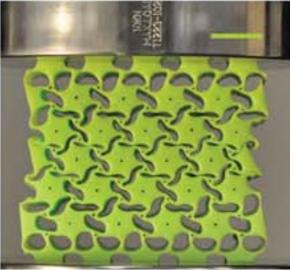
C. E. Castro et al., Nature methods (2011)

View Article Online

Elastic metamaterials

buckliball



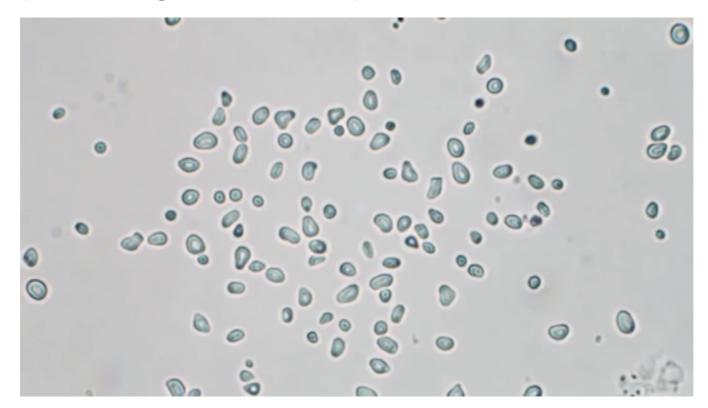


swelling of patterned gels



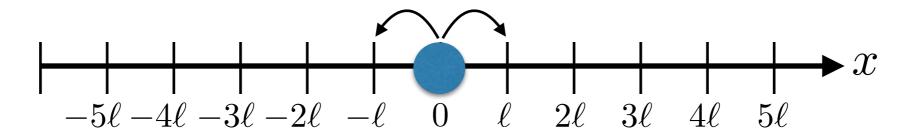
Lecture 1 (9/17) Brownian motion of small particles History

1827 Robert Brown: observed irregular motion of small pollen grains suspended in water



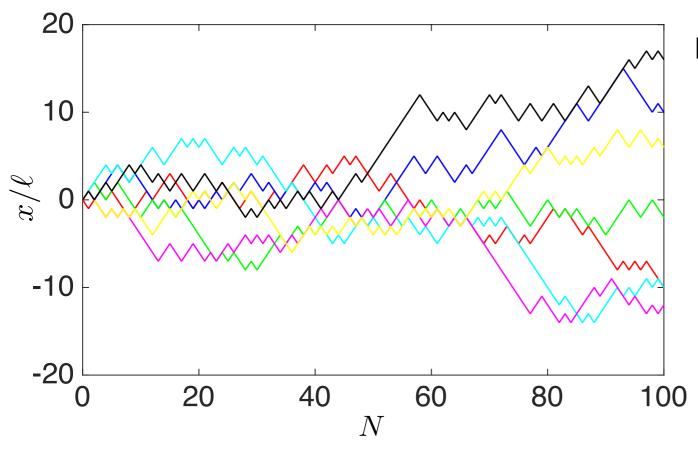
1905-06 Albert Einstein, Marian Smoluchowski: microscopic description of Brownian motion and relation to diffusion equation

Random walk on a 1D lattice



At each step particle jumps left or right with probability 1/2.

What is the probability *p(x,N)* that we find particle at position *x* after *N* jumps?



Probability that particle makes *k* jumps to the right and *N-k* jumps to the left obeys the binomial distribution

$$\left(\begin{array}{c}N\\k\end{array}\right)2^{-N}$$

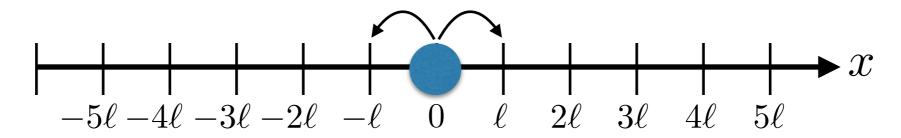
This corresponds to particle position

$$x = k\ell - (N - k)\ell = (2k - N)\ell$$

Therefore

$$p\left(x = (2k - N)\ell, N\right) = \left(\begin{array}{c}N\\k\end{array}\right) 2^{-N}$$

Random walk on a 1D lattice



Gaussian approximation for *p(x,N)*

Position *x* after *N* jumps can be expressed as the sum of individual jumps *x*_i

Mean value averaged over all possible random walks

Variance averaged over all possible random walks

$$x = \sum_{i=1}^{N} x_i$$

$$\langle x \rangle = N \langle x_1 \rangle = N \left(\frac{1}{2}\ell - \frac{1}{2}\ell \right) = 0$$

$$\sigma^{2} = \langle x^{2} \rangle - \langle x \rangle^{2} = N \langle x_{1}^{2} \rangle = N \ell^{2}$$
$$\sigma^{2} \equiv 2DN$$

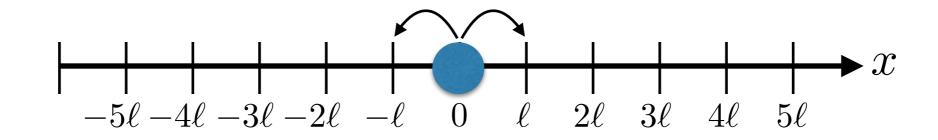
effective diffusion constant

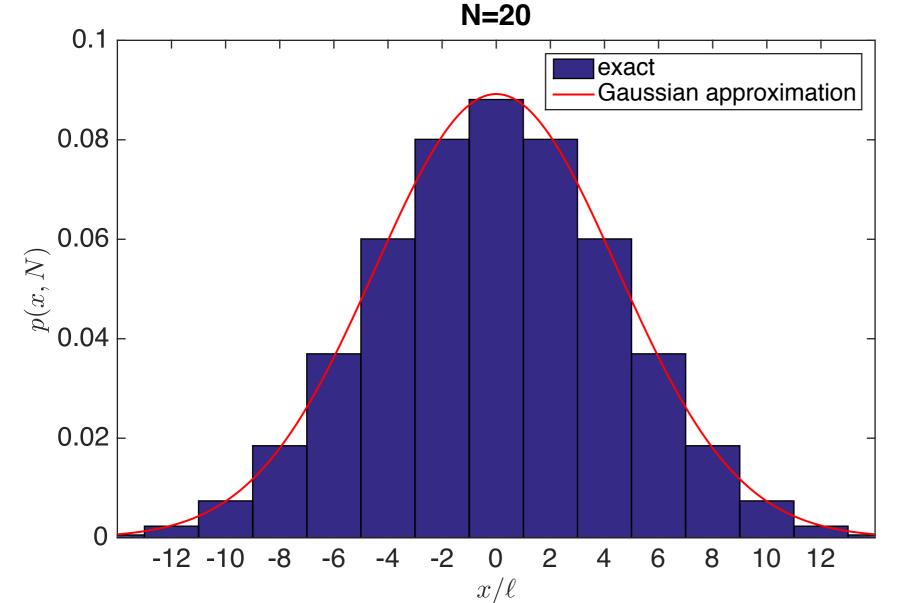
 $D = \ell^2/2$

According to the central limit theorem p(x,N)approaches gaussian distribution for large N

$$p(x,N) \approx \frac{1}{\sqrt{2\pi\sigma^2}} e^{-x^2/2\sigma^2}$$

Random walk on a 1D lattice





Exact distribution

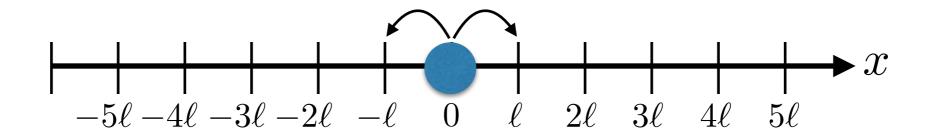
$$p\left(x = (2k - N)\ell, N\right) = \begin{pmatrix} N \\ k \end{pmatrix} 2^{-N}$$

Gaussian approximation

$$p(x,N) \approx \frac{1}{\sqrt{2\pi N\ell^2}} e^{-x^2/2N\ell^2}$$

Note: exact discrete distribution has been made continuous by replacing discrete peaks with boxes whose area corresponds to the same probability.

Master equation and diffusion equation



Master equation provides recursive relation for the evolution of probability distribution, where $\Pi(x, y)$ describes probability for a jump from *y* to *x*.

$$p(x, N+1) = \sum_{y} \Pi(x, y) p(y, N)$$

For our example master equation reads

$$p(x, N+1) = \frac{1}{2}p(x-\ell, N) + \frac{1}{2}p(x+\ell, N)$$

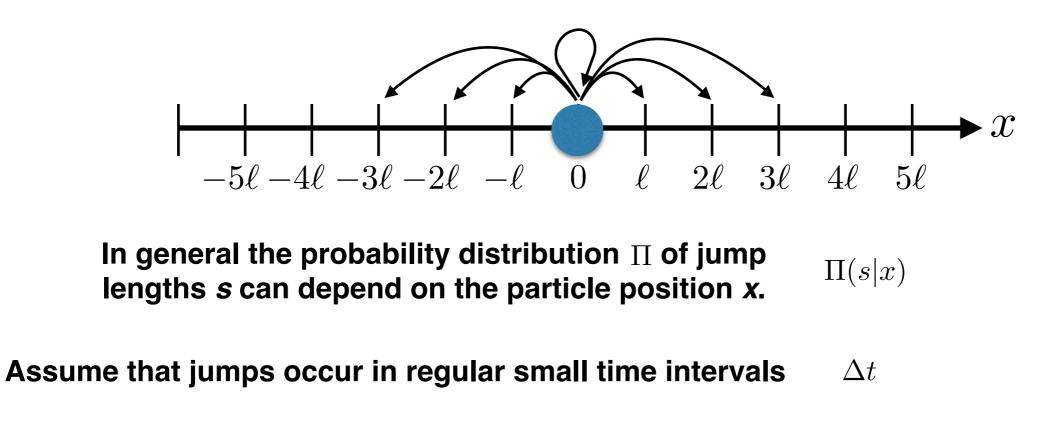
Initial condition $p(x, N = 0) = \delta(x)$

In the limit of large number of jumps N and small step size ℓ , we can Taylor expand master equation to derive an approximate diffusion equation

$$\frac{\partial p(x,N)}{\partial N} = D \frac{\partial^2 p(x,N)}{\partial x^2}$$

$$D = \ell^2/2$$

Fokker-Planck equation



Generalized master equation

$$p(x, t + \Delta t) = \sum_{s} \Pi(s|x - s)p(x - s, t)$$

Again Taylor expand master equation above to derive the Fokker-Planck equation

$$\frac{\partial p(x,t)}{\partial t} = -\frac{\partial}{\partial x} \left[v(x)p(x,t) \right] + \frac{\partial^2}{\partial x^2} \left[D(x)p(x,t) \right]$$

drift velocity
(external fluid flow,
external potential)
$$v(x) = \sum_s \frac{s}{\Delta t} \Pi(s|x) = \frac{\langle s(x) \rangle}{\Delta t}$$

diffusion coefficient
(e.g. position dependent
temperature)
$$D(x) = \sum_s \frac{s^2}{2\Delta t} \Pi(s|x) = \frac{\langle s^2(x) \rangle}{2\Delta t}$$

Probability current

Fokker-Planck equation

$$\frac{\partial p(x,t)}{\partial t} = -\frac{\partial}{\partial x} \bigg[v(x)p(x,t) \bigg] + \frac{\partial^2}{\partial x^2} \bigg[D(x)p(x,t) \bigg]$$

Conservation law of probability (no particles created/removed)

 $\frac{\partial p(x,t)}{\partial t} = -\frac{\partial J(x,t)}{\partial x}$

By comparing equations above we can define probability current

$$J(x,t) = v(x)p(x,t) - \frac{\partial}{\partial x} \left[D(x)p(x,t) \right]$$

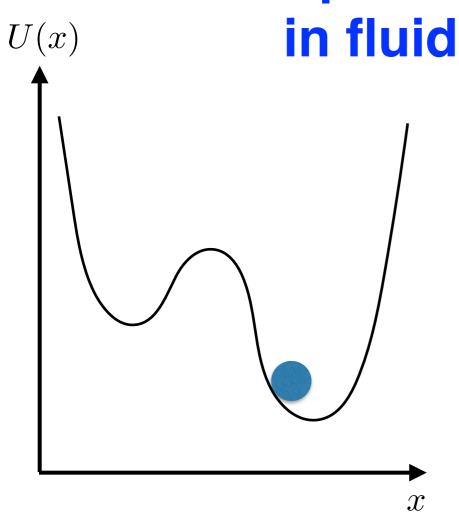
Note that for the steady state distribution, where $\partial p^*(x,t)/\partial t \equiv 0$

the steady state current is constant and independent on x

$$J^* \equiv v(x)p^*(x) - \frac{\partial}{\partial x}\left[D(x)p^*(x)\right] = \text{const}$$

If we don't create/remove particles at boundaries then $J^*=0$

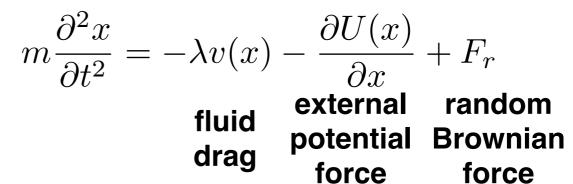
$$p^*(x) \propto \frac{1}{D(x)} \exp\left[\int_{-\infty}^x dy \frac{v(y)}{D(y)}\right]$$



R	particle radius
η	fluid viscosity
$\lambda = 6\pi\eta R$	Stokes drag coefficient
k_B	Boltzmann constant
T	temperature
D	diffusion constant

Spherical particle suspended in fluid in external potential

Newton's law



For simplicity assume overdamped regime and ignore inertial term on the left hand side. This produces average drift velocity

$$\langle v(x) \rangle = -\frac{1}{\lambda} \frac{\partial U(x)}{\partial x}$$

Equilibrium probability distribution

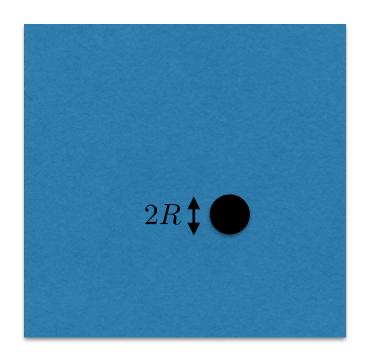
$$p^*(x) = Ce^{-U(x)/\lambda D} = Ce^{-U(x)/k_B T}$$

(see previous slide) (equilibrium physics)

Einstein - Stokes equation

$$D = \frac{k_B T}{\lambda} = \frac{k_B T}{6\pi\eta R}$$

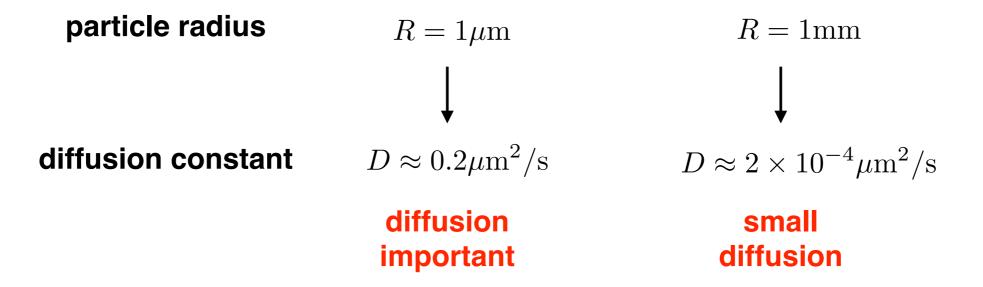
Example of Einstein-Stokes equation



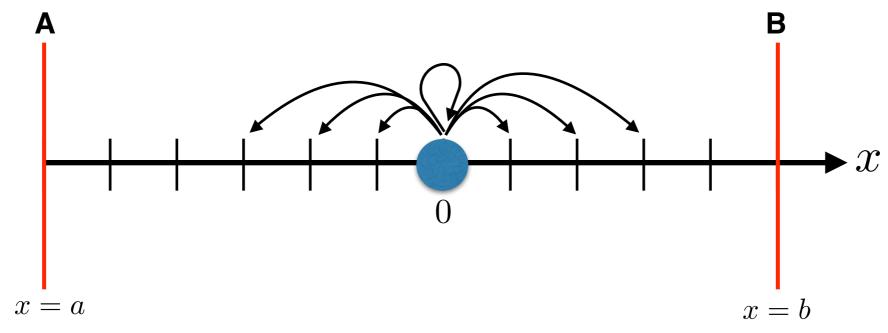
$$D = \frac{k_B T}{\lambda} = \frac{k_B T}{6\pi\eta R}$$

Spherical particle suspended in water at room temperature

water viscosity $\eta \approx 10^{-3} \mathrm{kg m/s}$ temperature $T = 300 \mathrm{K}$ Boltzmann constant $k_B = 1.38 \times 10^{-23} \mathrm{J/K}$



Random walk with absorbing boundaries



What is the probability $P_B(x)$ that particle that starts at position *x* gets absorbed at site B?

$$P_A(x) = 1 - P_B(x)$$

$$P_B(x) = \sum_{s} \Pi(s|x) P_B(x+s)$$

$$0 = v(x) \frac{dP_B(x)}{dx} + D(x) \frac{d^2 P_B(x)}{dx^2}$$

boundary conditions

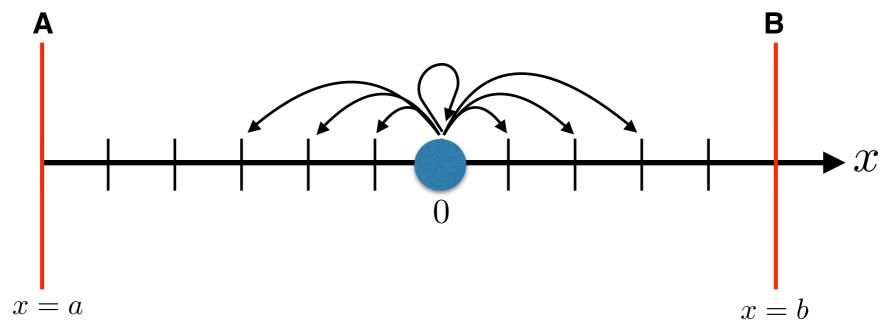
$$P_B(x=b) = 1$$
$$P_B(x=a) = 0$$

Example

$$v = 0, D = \text{const}$$

 $P_B(x) = \frac{(x-a)}{(b-a)}$
 $v, D = \text{const}$
 $P_B(x) = \frac{(1-e^{-v(x-a)/D})}{(1-e^{-v(b-a)/D})}$

Random walk with absorbing boundaries



What is the mean time T(x) that particle that starts at position *x* gets absorbed at either site?

$$T(x) = \sum_{s} \Pi(s|x)T(x+s) + \Delta t$$
$$-1 = v(x)\frac{dT(x)}{dx} + D(x)\frac{d^{2}T(x)}{dx^{2}}$$

boundary conditions

$$T(x = a) = 0$$
$$T(x = b) = 0$$

Example

v = 0, D = const

$$T(x) = \frac{(x-a)(b-x)}{2D}$$

Escape over a potential barrier

U(x)

What is the average time T_{esc} it takes for a particle to escape over a barrier?

Once particle crosses the peak it quickly descends into the global minimum. Therefore estimate the escape time, by placing reflecting boundary at x=a and absorbing boundary at x=b.

boundary conditions

$$-1 = v(x)\frac{dT(x)}{dx} + D(x)\frac{d^2T(x)}{dx^2} \qquad \frac{dT}{dx}(x=a) = 0$$
$$T(x=b) = 0$$

Arrhenious Law

$$T_{\rm esc} = T(a) \approx \frac{\pi \lambda}{\sqrt{U''(a)U''(b)}} e^{[U(b) - U(a)]/k_B T}$$

 \mathcal{X}

 \boldsymbol{C}

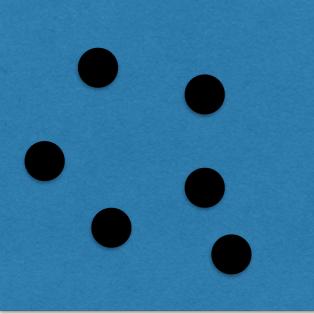
b

 $\langle v(x) \rangle = -\frac{1}{\lambda} \frac{\partial U(x)}{\partial x}$

 $D = \frac{k_B T}{\lambda}$

 \boldsymbol{a}

Fick's laws



Local concentration c(x,t) = Np(x,t)

Fick's laws below directly follow from Fokker-Plank equations

First Fick's law

Concentration flux

$$J = vc - \frac{\partial}{\partial x} \left[Dc \right]$$

Second Fick's law

Diffusion of concentration

$$\frac{\partial c}{\partial t} = -\frac{\partial}{\partial x} \left[vc \right] + \frac{\partial^2}{\partial x^2} \left[Dc \right]$$

Generalization to higher dimensions

$$\vec{J} = \vec{v}c - \vec{\nabla}(Dc)$$

$$\frac{\partial c}{\partial t} = -\vec{\nabla} \cdot (\vec{v}c) + \vec{\nabla}^2 (Dc)$$

Further reading

