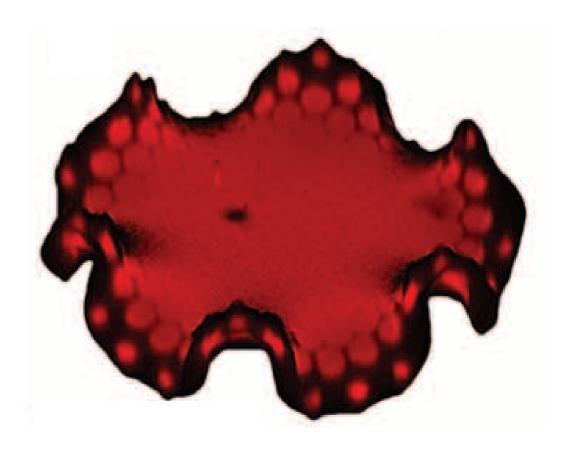
MAE 545: Lecture 20 (12/3)

Shapes of growing/swelling sheets and coiling of rods



Shapes of flowers and leaves

saddles

wrinkled edges

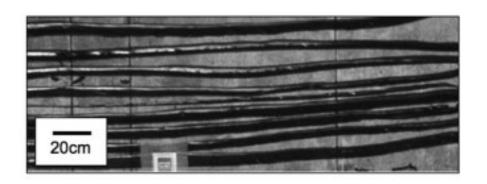
helices

Wrinkled and straight blades in macroalgae

bull kelp (seaweed)

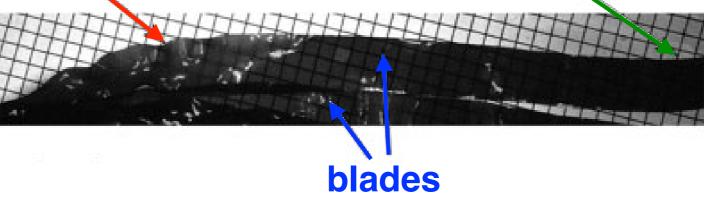
Slow water flow environment (v~0.5 m/s)

Fast water flow environment (v~1.5 m/s)



new growth after transplantation (wrinkled)

Transplantation of blade from one environment to the other changes morphology!



M. Koehl et al., Integ. Comp. Biol. 48, 834 (2008)

Wrinkled and straight blades in macroalgae

bull kelp (seaweed)

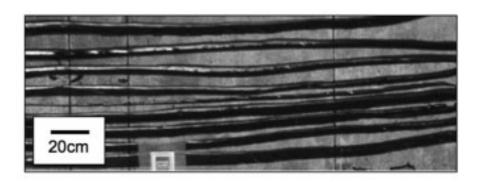
Slow water flow environment (v~0.5 m/s)

increased drag

blades flap like flags

flapping prevents bundling of blades, which can thus receive more sunlight (photosynthesis)

Fast water flow environment (v~1.5 m/s)



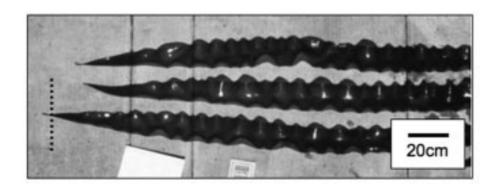
reduced drag to prevent detachment from base (=death)

minimal flapping

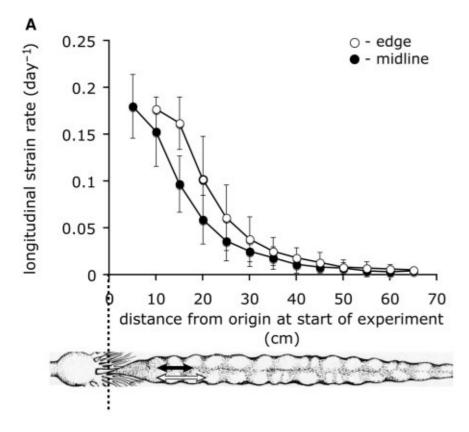
blades bundle together and some blades on the bottom receive less sunlight

Wrinkled and straight blades in macroalgae

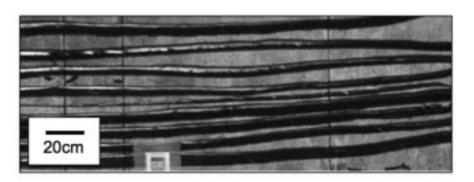
Slow water flow environment (v~0.5 m/s)



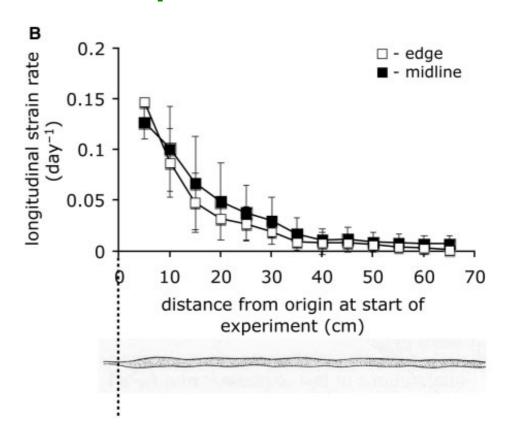
edges of blades grow faster than the midline



Fast water flow environment (v~1.5 m/s)



edges of blades grow at the same speed as the midline

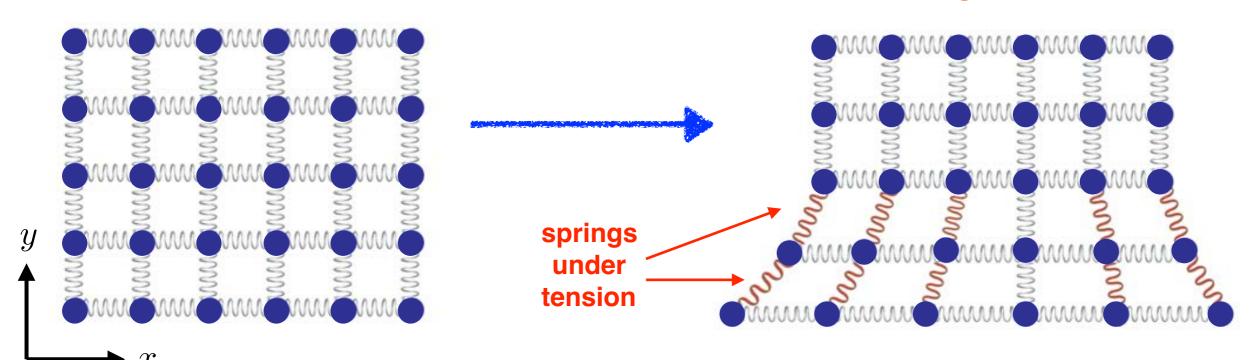


M. Koehl et al., Integ. Comp. Biol. 48, 834 (2008)

Differential growth produces internal stress

before growth

faster growth of the bottom edge in x direction



Growth modifies the metric tensor of sheet!

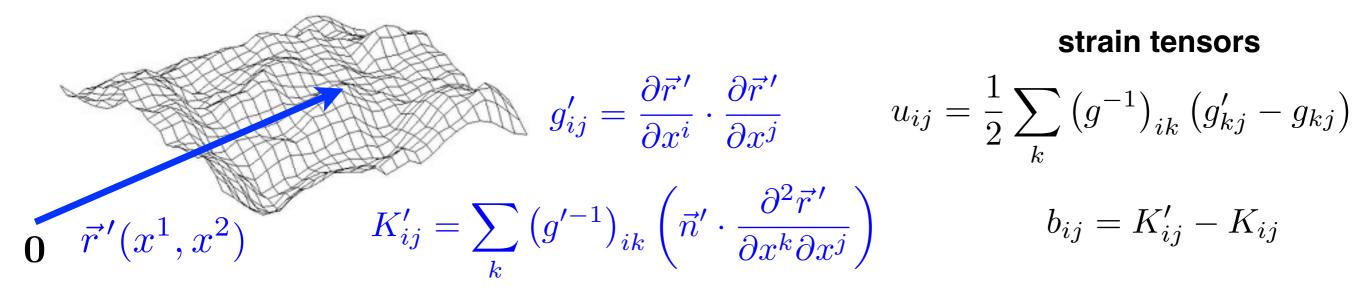
$$d\ell^2 = \sum_{i,j} g_{ij} dx^i dx^j$$

$$g_{ij} = \begin{pmatrix} 1, & 0 \\ 0, & 1 \end{pmatrix}$$
 $g_{ij} = \begin{pmatrix} f(y), & 0 \\ 0, & 1 \end{pmatrix}$

Note: If growth is different between the top and bottom of the sheet, then the curvature tensor K_{ij} is modified as well!

Mechanics of growing membranes

Growth defines preferred metric tensor g_{ij} and preferred curvature tensor K_{ij} .



The equilibrium membrane shape $\vec{r}'(x^1, x^2)$ corresponds to the minimum of elastic energy:

$$U = \int \sqrt{g} dx^{1} dx^{2} \frac{1}{2} \left[(B - \mu) \operatorname{tr}(u_{ij})^{2} + 2\mu \sum_{i,j} u_{ij}^{2} + \kappa \operatorname{tr}(b_{ij})^{2} + 2\kappa_{G} \det(b_{ij}) \right]$$

Growth can independently tune the metric tensor g_{ij} and the curvature tensor K_{ij} , which may not be compatible with any surface shape that would produce zero energy cost!

Zero energy shape exists only when preferred metric tensor g_{ij} and preferred curvature tensor K_{ij} satisfy Gauss-Codazzi-Mainardi relations!

Mechanics of growing membranes

One of the Gauss-Codazzi-Mainardi equations (Gauss's Theorema Egregium) relates the Gauss curvature to metric tensor

$$\det(K'_{ij}) = \mathcal{F}(g'_{ij})$$

The equilibrium membrane shape $\vec{r}'(x^1, x^2)$ corresponds to the minimum of elastic energy:

$$U = \int \sqrt{g} dx^{1} dx^{2} \frac{1}{2} \left[(B - \mu) \operatorname{tr}(u_{ij})^{2} + 2\mu \sum_{i,j} u_{ij}^{2} + \kappa \operatorname{tr}(b_{ij})^{2} + 2\kappa_{G} \det(b_{ij}) \right]$$

scaling with membrane thickness d

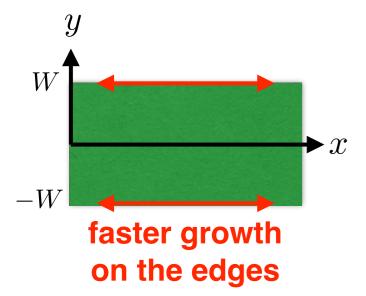
$$B, \mu \sim Ed$$

 $\kappa, \kappa_G \sim Ed^3$

For very thin membranes the equilibrium shape matches the preferred metric tensor to avoid stretching, compressing and shearing. This also specifies the Gauss curvature!

$$g'_{ij} = g_{ij}$$
$$\det(K'_{ij}) = \mathcal{F}(g_{ij})$$

Example



Assume that differential growth in x direction produces metric tensor of the form

$$g_{ij} = \begin{pmatrix} f(y), & 0 \\ 0, & 1 \end{pmatrix}$$
 $f(y) = 1 + ce^{(|y| - W)/\lambda}$

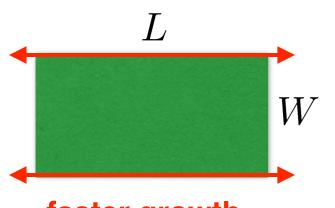
For thin membranes the metric tensor wants to be matched

$$g'_{ij} = g_{ij}$$

Gauss's Theorema Egregium provides Gauss curvature

$$\det(K'_{ij}(y)) = \mathcal{F}(g_{ij}) = -\frac{1}{f} \frac{d^2 f(y)}{dy^2} = -\frac{1}{\lambda^2} \times \frac{ce^{(|y| - W)/\lambda}}{(1 + ce^{(|y| - W)/\lambda})} < 0$$

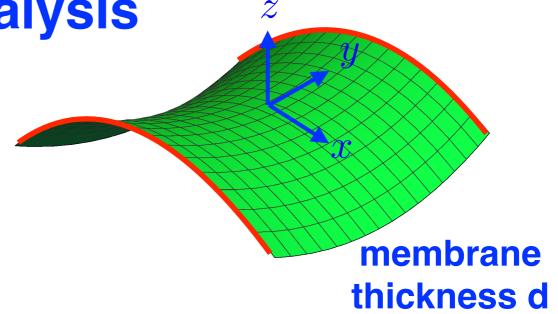
For thin membranes faster growth on edges produces shapes that locally look like saddles!



faster growth increases the edge length by factor ϵ

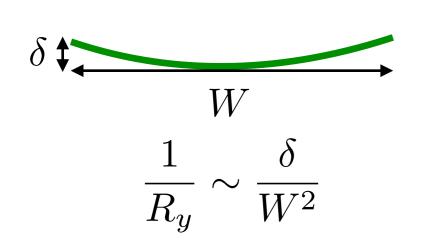
Scaling analysis

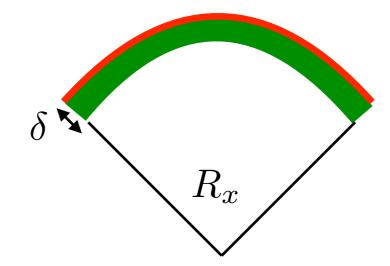
stress released by bending



y-z cross-section

projection to x-z plane





$$\frac{L(1+\epsilon)}{L} \sim \frac{R_x + \delta}{R_x}$$

$$\frac{1}{R_x} \sim \frac{\epsilon}{\delta}$$

Membrane bending energy

$$U_b \sim A \times \kappa \times \left(\frac{1}{R_x^2} + \frac{1}{R_y^2} + \frac{1}{R_x R_y}\right) \sim A \times E_m d^3 \times \left(\frac{\epsilon^2}{\delta^2} + \frac{\delta^2}{W^4} + \frac{\epsilon}{W^2}\right)$$

Minimize U_b with respect to δ :

$$\delta \sim W \sqrt{\epsilon}$$
 $U_b \sim \frac{A E_m d^3 \epsilon}{W^2}$

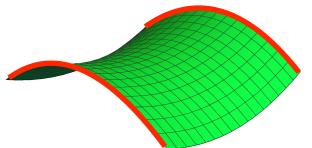
$$U_b \sim \frac{AE_m d^3 \epsilon}{W^2}$$

Scaling analysis

membrane compression

$$U_c \sim A E_m d\epsilon^2$$

membrane bending



$$U_b \sim \frac{AE_m d^3 \epsilon}{W^2}$$

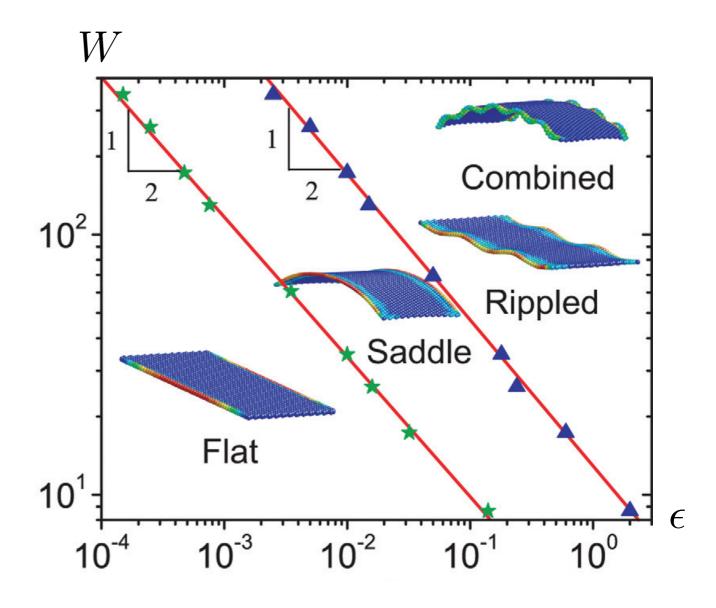
membrane bends above the critical strain

$$\epsilon > \epsilon_c \sim \frac{d^2}{W^2}$$

amplitude of bending at the critical strain

$$\delta^* \sim W \sqrt{\epsilon_c} \sim d$$

numerical simulations



H. Liang and L. Mahadevan, PNAS 106, 22049 (2009)

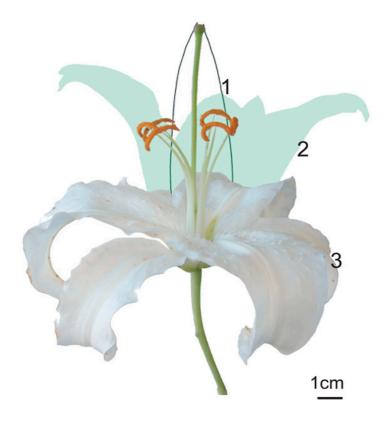
Shapes of flowers and leaves

Faster growth of the edge is consistent with observed saddles and edge wrinkles, which indeed correspond to the negative Gauss curvature!

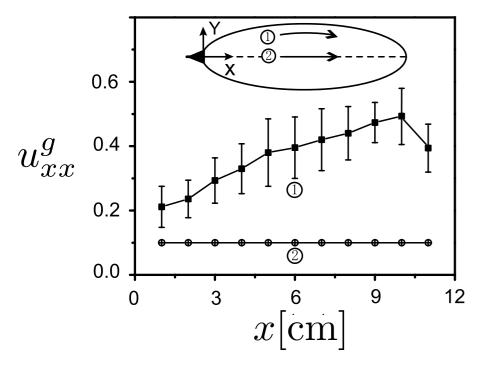
saddles

wrinkled edges (+saddles)

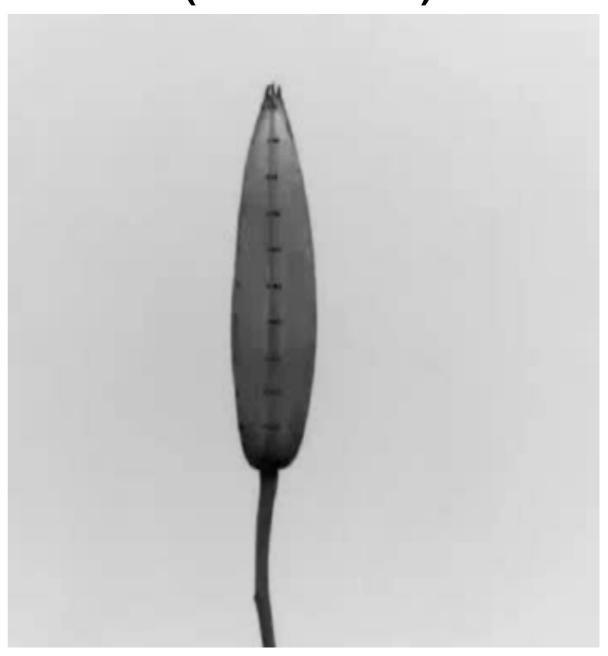
Growth of a blooming lily



faster growth of the edge



in lab blooming takes 4.5 days under constant fluorescent light (1 frame/min)



H. Liang and L. Mahadevan, PNAS 108, 5516 (2011)

Shaping of gel membranes by differential shrinking

Computer software controls valves to inject a predefined time depend concentration of NIPA polymers in water solution. **Frozen NIPA** High concentration Low concentration concentration At higher temperatures NIPA solution NIPA solution profile gel shrinks because **APS** some of the water gets C(r)expelled. Shrinking A "programed" flat disc depends on the NIPA PC concentration. solenoid valves $\Omega(C(r))$ $T=22^{\circ}\mathrm{C}$ Hele Shaw cell thickness 0.25 or 0.5 mm "Activation" of the metric" Non uniform gel disc in hot water Active cross-linkers (APS) polymerize the $T = 45^{\circ} \mathrm{C}$

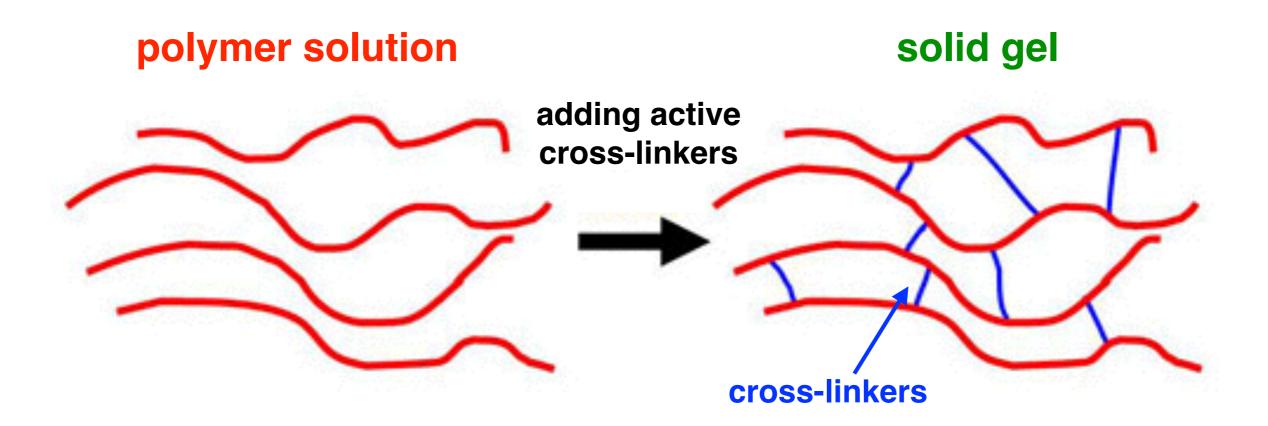
14

polymer solution within one minute, before

polymers get a chance to diffuse around.

E. Efrati et al., Physica D 235, 29 (2007)

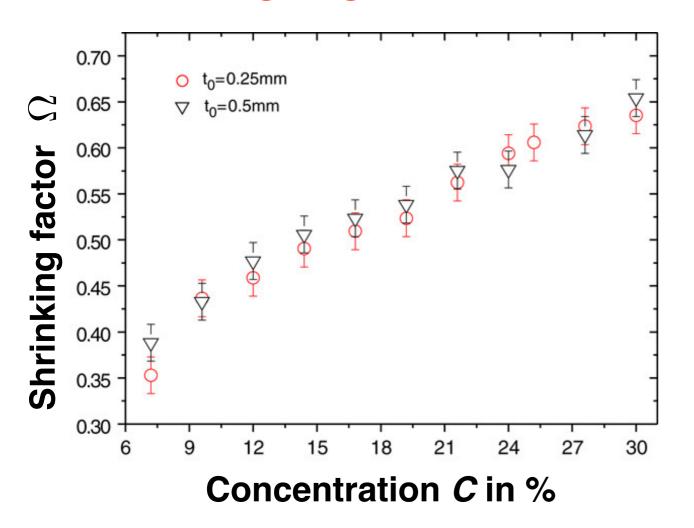
Cross-linking of polymers result in a solid gel

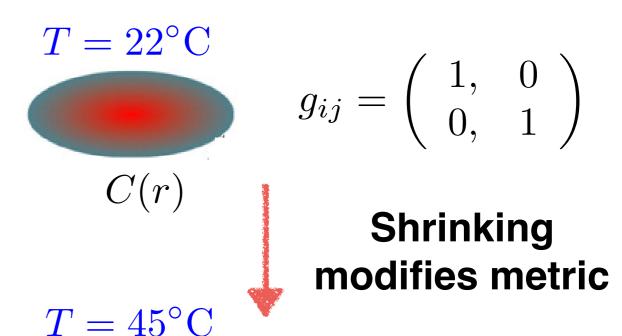


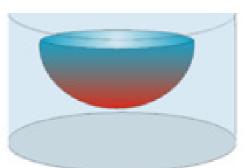
Note: some cross-linkers can be chemically activated by UV light exposure. Duration of UV light exposure controls the degree of cross-linking and therefore the Young's modulus *E* for gels.

Shaping of gel membranes by differential shrinking

Shrinking of gels at T=45°C







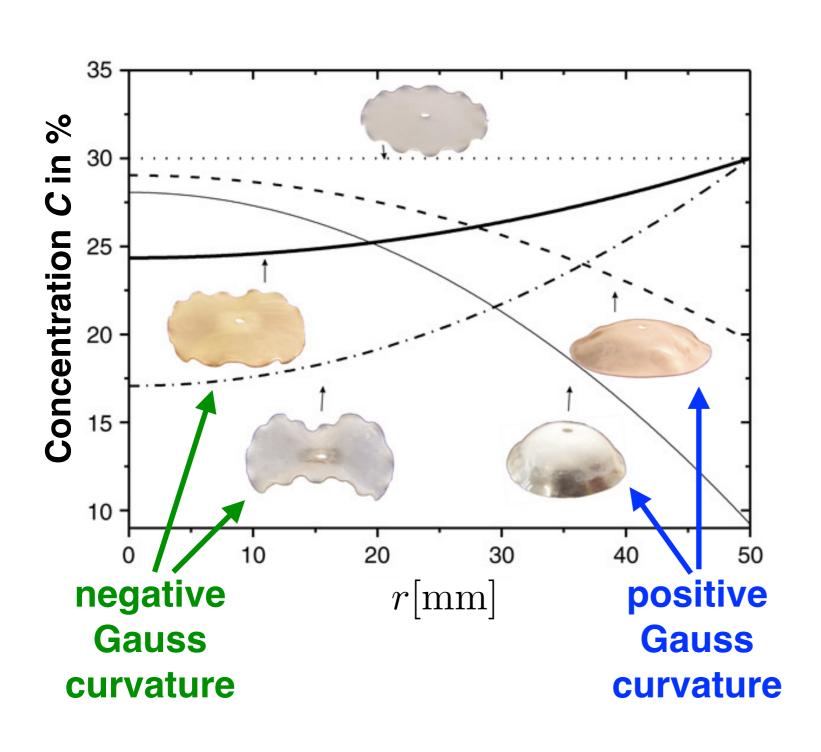
$$g_{ij} = \begin{pmatrix} \Omega(r), & 0 \\ 0, & \Omega(r) \end{pmatrix}$$

locally isotropic shrinking

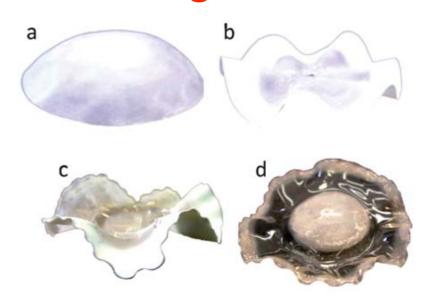
For thin membranes the target Gauss curvature is

$$\det(K'_{ij}(r)) = -\frac{\nabla^2(\ln\Omega(r))}{2\Omega(r)}$$

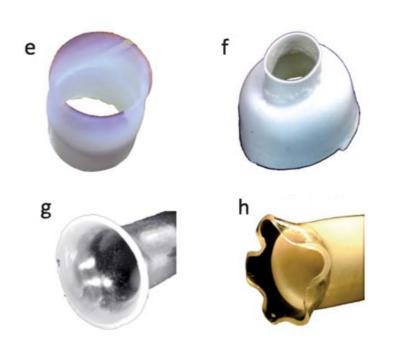
Shaping of gel membranes by differential shrinking



Shrinking of sheets



Shrinking of tubes



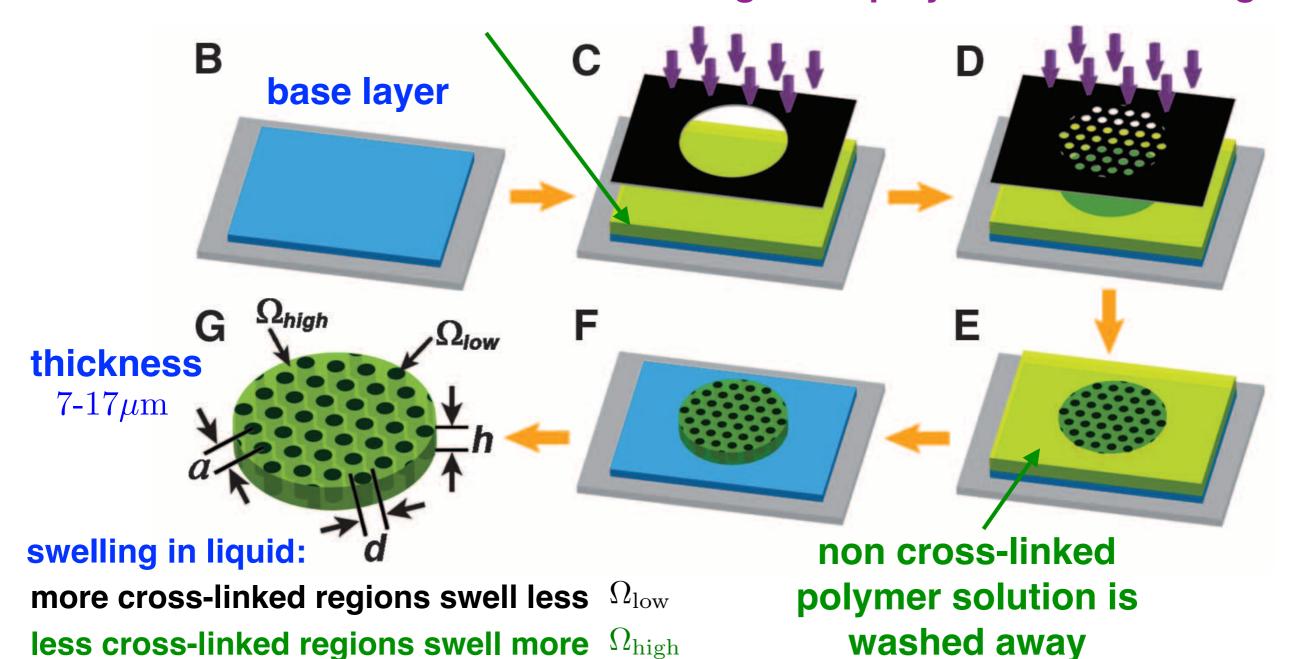
E. Sharon and E. Efrati, Soft Matter 6, 5693 (2010)

Shaping of gel membrane properties by lithography

thin film of polymer solution with premixed inactive cross-linkers

UV light activates cross-linkers.

Time of UV light exposure determines the degree of polymer cross-linking.



J. Kim et al., Science 335, 1201 (2012)

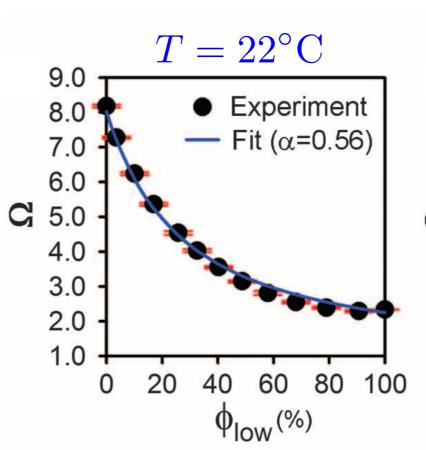
Halftoning

local area fraction of the low swelling regions

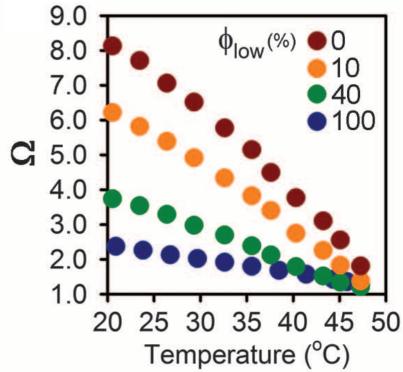
$$\phi_{\text{low}} = \frac{\Delta A_{\text{low}}}{\Delta A_{\text{low}} + \Delta A_{\text{high}}} = \frac{\pi}{2\sqrt{3}} \left(\frac{d}{a}\right)^2$$

Effective swelling Ω can be estimated from local force balance as

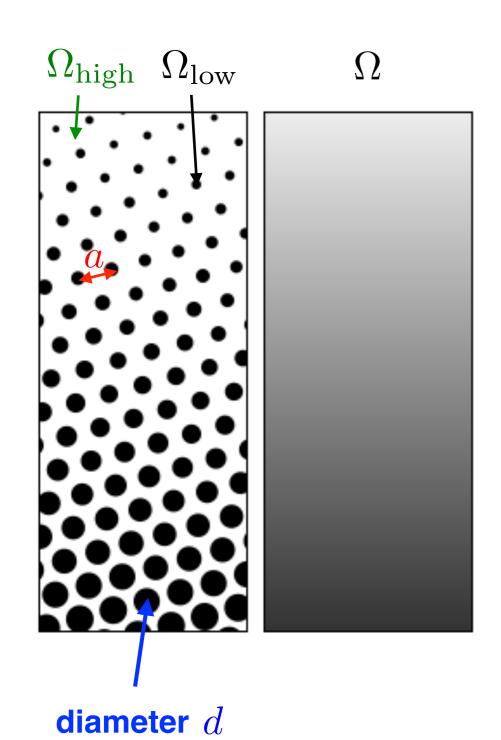
$$\frac{\phi_{\text{low}} + \alpha(1 - \phi_{\text{low}})}{\Omega^{1/2}} = \frac{\phi_{\text{low}}}{\Omega_{\text{low}}^{1/2}} + \frac{\alpha(1 - \phi_{\text{low}})}{\Omega_{\text{high}}^{1/2}}$$



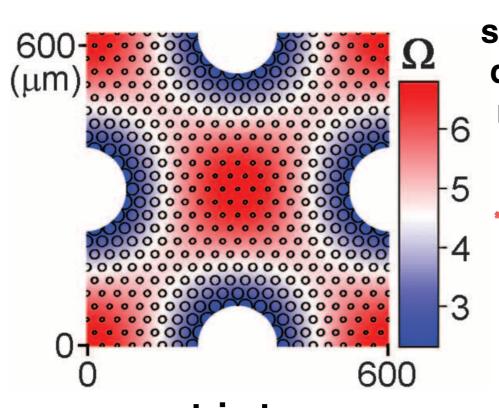
swelling depends on T



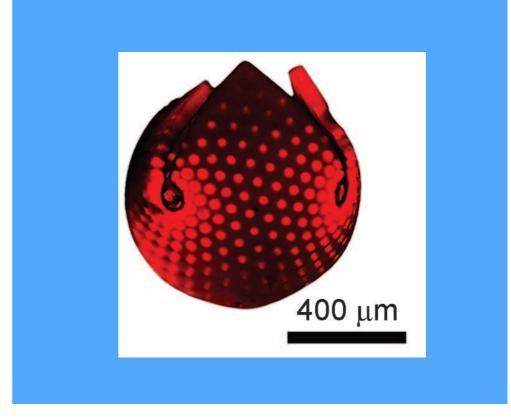
J. Kim et al., Science 335, 1201 (2012)



Shaping of gel membrane properties by halftone lithography



Differential swelling in liquid deforms square membrane to a closed sphere



metric tensor

$$g_{ij} = \left(\begin{array}{cc} 1, & 0 \\ 0, & 1 \end{array}\right)$$

locally isotropic swelling

$$g_{ij} = \begin{pmatrix} \Omega(x,y), & 0\\ 0, & \Omega(x,y) \end{pmatrix}$$

For thin membranes the target Gauss curvature is

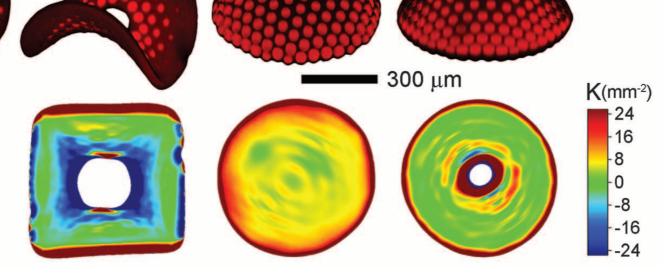
$$\det(K'_{ij}(x,y)) = -\frac{\nabla^2(\ln\Omega(x,y))}{2\Omega(x,y)}$$

Inverse problem can be solved with conformal maps.

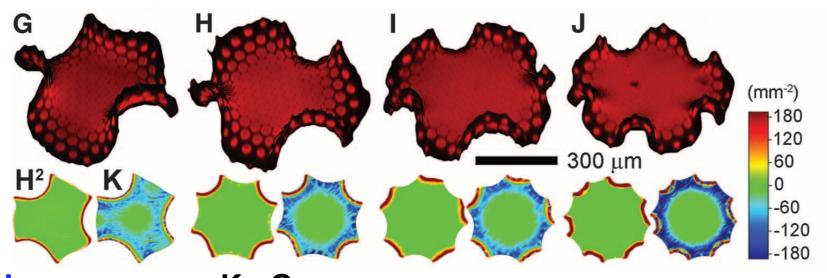
Shaping of gel membrane properties by halftone lithography

saddle (Sa) cone with excess spherical cone with deficit angle (Ce) cap (Sp) angle (Cd)

A B C D D D



Enneper's minimal surfaces (H=0)



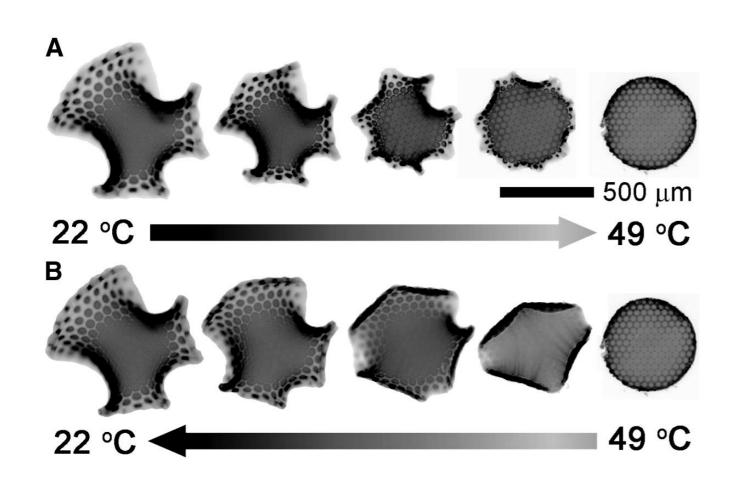
8.0 6.0 4.0 **C** 2.0 8.0 6.0 – n=6 4.0 2.0 0.5 0.0 r/R

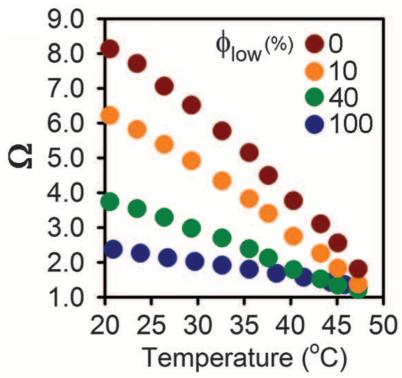
swelling profiles

H - mean curvature

K - Gauss curvature

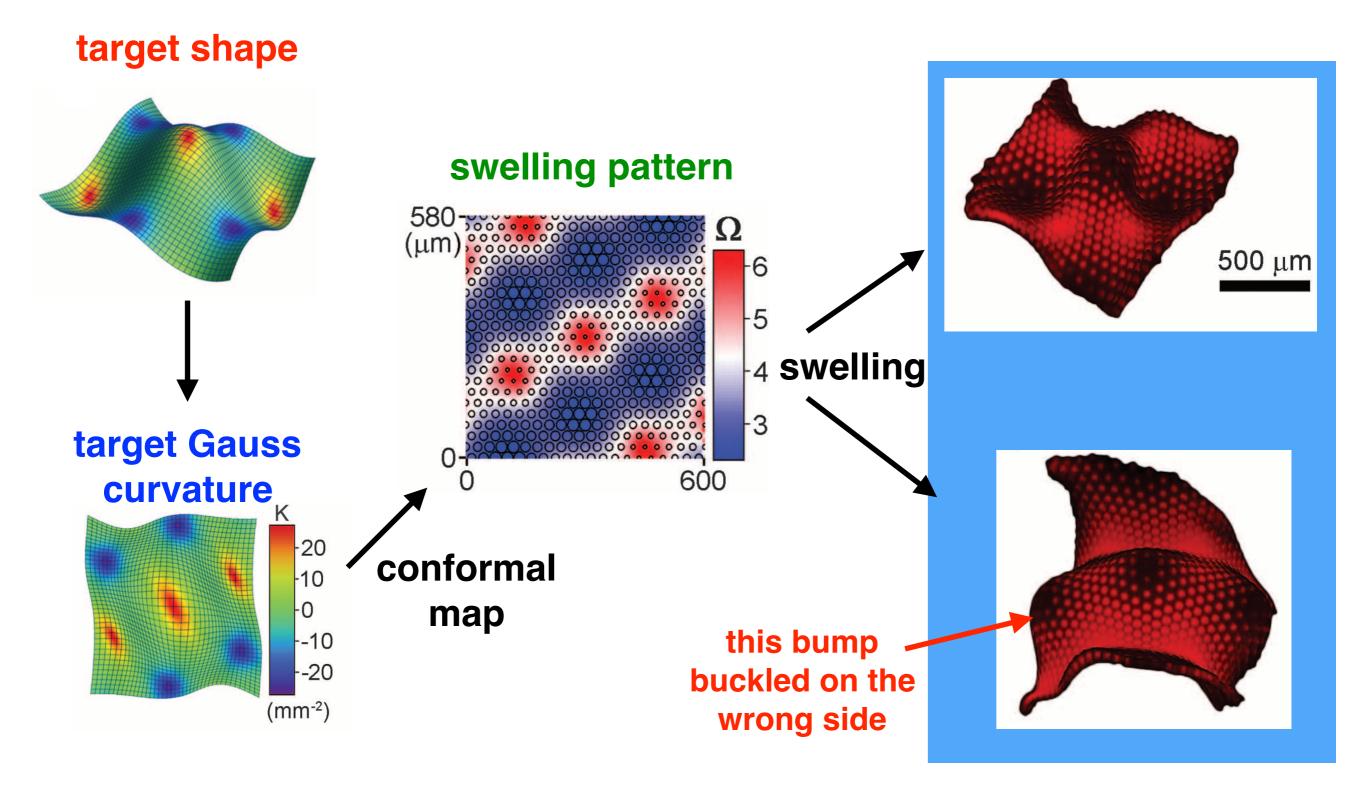
Temperature controls swelling and thus the deformed shape





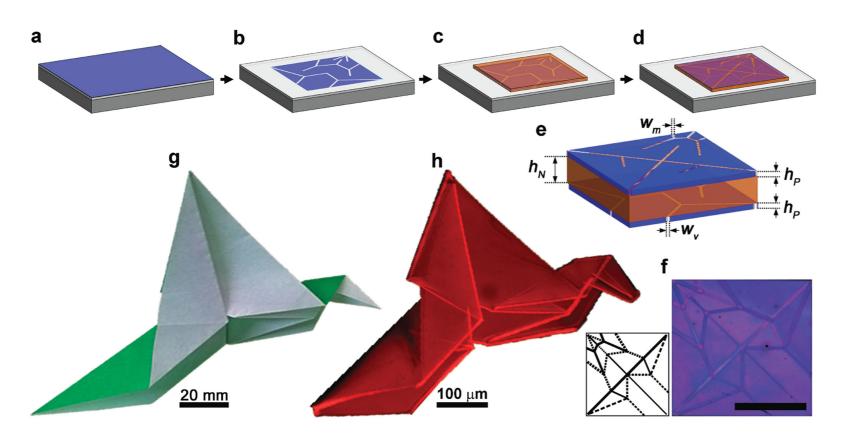
Note different intermediate shapes! By slowly varying the temperature we stay in a local minimum!

Gaussian curvature does not uniquely specify the shape!

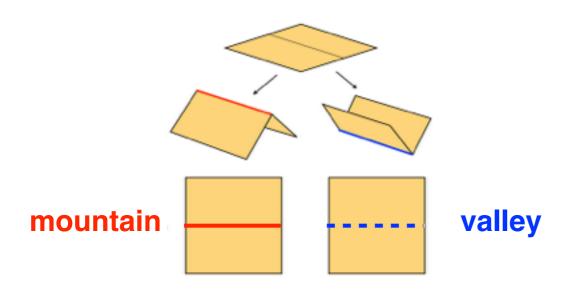


Self folding origami with gel swelling

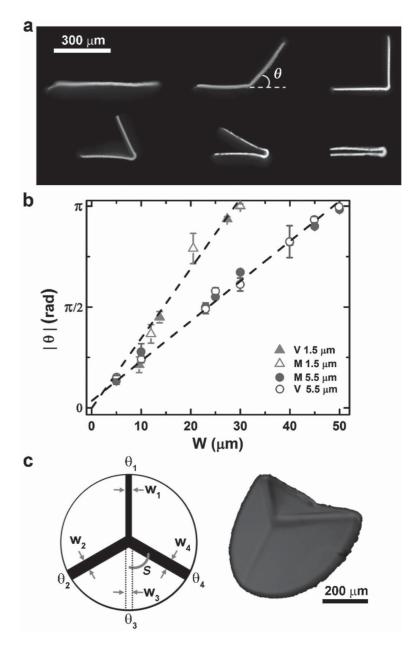
pattern of intermediate pattern of valley folds layer mountain folds



Randlett's flapping bird



width of the "cuts" determines the folding angle



Temperature controls swelling and thus the folding of origami

