MAE 545: Lecture 22 (12/10) Viral capsids and self assembly

Viral capsids

helical symmetry

icosahedral symmetry

Hepatitis B virus

capsid proteins are wrapped around the viral RNA

(e.g. Tobacco Mosaic Virus)

Note: many viruses also have envelope (lipid bilayer) around the capsid conical shaped (spherical caps usually still icosahedral)

complex symmetry

Poxvirus

Icosahedral capsids

Colors correspond to different proteins.

Caspar-Klug classification of icosahedral capsids

Generating vector

 $\vec{A} = h\vec{a}_1 + k\vec{a}_2$

 $\vec{a}_1 = (1,0)$ $\vec{a}_2 = (1/2,\sqrt{3}/2)$ **T number:** $T = \vec{A}^2 = h^2 + k^2 + hk$ **12 pentamers (vertices of icosahedron) 10 (T-1) hexamers**

Caspar-Klug classification of icosahedral capsids

Duality between hexagonal and triangular lattice

$$T = 1$$
$$(h,k) = (1,0)$$

13

(3,1)

Pentamers correspond to vertices with 5 neighbors:

5-fold disclinations

5

Caspar-Klug classification of icosahedral capsids

Cowpea chlorotic mottle virus

Simian virus SV40

Capsids with Caspar-Klug numbers of type (h,0) and (h,h) have mirror symmetry, while other (h,k) structures are chiral!

Why are viral capsids very often icosahedral?

Euler's polyhedron formula

$$V - E + F = 2$$

V = number of vertices E = number of edges F = number of faces

tetrahedron

octahedron

$$V = 6$$
$$E = 12$$
$$F = 8$$

cube

$$V = 8$$
$$E = 12$$
$$F = 6$$

icosahedron

V = 12E = 30F = 20

Euler's polyhedron formula

$$V - E + F = 2$$

V = number of vertices E = number of edges F = number of faces

For arbitrary polyhedron constructed with triangles the numbers of vertices, edges and faces are related:

$$E = {3F \over 2}$$
 each face has 3 edges
each edge is shared between 2 faces

number of vertices with z neighbors

$$V = \sum_{z} N_{z}$$
$$E = \frac{1}{2} \sum_{z} z N_{z}$$

 N_z

total number of vertices

total number of edges

$$V - E + F = 2$$

$$12 = \sum_{z} N_z (6 - z)$$

Euler's polyhedron formula

$$12 = \sum_{z} N_z (6 - z)$$

Topological charge of disclinations

5-fold disclination

z-fold disclination is associated with a topological charge

$$q_z = \frac{\pi}{3}(6-z)$$

total topological charge for closed convex polyhedra

$$4\pi = \sum_{z} N_z q_z$$

Note: dipoles of opposite charges (e.g. 5-fold and 7fold disclinations) produce dislocations defects.

Topological charge vs Gaussian curvature

Triangulation of sphere

Gauss-Bonnett theorem

$$4\pi = \oint \frac{dA}{R_1 R_2} = \sum_z N_z q_z$$

Excess angle

Triangles on a sphere

$$\alpha + \beta + \gamma > \pi$$

Excess angle over the edge of a curved surface

$$\Delta \theta = \int \frac{dA}{R_1 R_2} = \sum_z N_z q_z$$

Buckling instability for disclinations

$$q_z=rac{\pi}{3}(6-z)$$
 (WV nature com/nature is

buckling favorable for $R \gtrsim R_b \sim \sqrt{\kappa/Y}$

 $E_b \sim \kappa q_z^2 \ln(R/a)$

Y = 2D Young's modulus

stretching energy

 $E_s \sim Y R^2 q_z^2$

 $E_s \sim A \times Y \times \epsilon^2$

 $\epsilon \sim q_z$

strain

bending energy

(for the corresponding cone)

$$E_b \sim \int dA \frac{\kappa}{(r/q_z)^2}$$
$$E_b \sim \int r dr \frac{\kappa}{(r/q_z)^2}$$
$$E_b \sim \kappa q^2 \ln(R/q)$$

12

Buckling instability for disclinations

Buckling instability for spherical shells with 12 5-fold disclinations

Icosahedral viral capsids

Topology requires certain number of disclinations

$$12 = \sum_{z} N_z (6 - z)$$

5-fold disclinations have lower energy then 4fold and 3-fold disclinations. 7-fold and 8-fold disclinations would have to be compensated by additional 5-fold disclinations.

12 5-fold disclinations want to be as far away as possible, which produces structures with icosahedral symmetry.

Bacteriophage T4 infecting bacteria

Before attachment to bacteria the virus tail is in the extended state.

 $50 \mathrm{nm}$

After attachment to bacteria the virus tail contracts and the hard inner core tube pierces through bacteria cell wall. Then viral DNA enters the cell through the tube.

Contraction of Bacteriophage T4 tail

Contraction of the virus tail is achieved by movement of dislocations (5-fold + 7-fold disclination) through the tail.

movement of dislocations modifies the crystal orientation on tail sheet

