
MAE 545: Lecture 4 (9/29)

Statistical mechanics of proteins
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Ideal freely jointed chain

N identical unstretchable links (Kuhn segments) 
of length a with freely rotating joints

~r1

~r2

~rN

~R

a

In first part of the lecture we will ignore 
interactions between different segments:

e.g. steric interactions,
van der Waals interactions, etc.
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Ideal freely jointed chain
N identical unstretchable links (Kuhn segments) 

of length a with freely rotating joints

What are statistical properties of the end to end vector     ?~R

Statistical mechanics
partition function

(sum over all possible 
chain configurations)

Z =
X

c

e�Ec/kBT Ec
energy of a given

configuration

T

kB

temperature

Boltzmann 
constant

kB = 1.38⇥ 10�23JK�1

expected value of 
observables

hOi =
X

c

Oc
e�Ec/kBT

Z

For ideal chain all configurations have 
zero energy cost and contribute equally!

~r1

~r2

~rN

~R

a
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Ideal freely jointed chain
N identical unstretchable links of length a with freely rotating joints

Each ideal chain configuration is a realization of random walk.

D
~R
E
= 0

D
~R2

E
= Na2~R =

NX

i=1

~ri

h~rii = 0
⌦
~r 2
i

↵
= a2individual links

end to end
distance

For large N the probability distribution for     approaches ~R

Note: not accurate in tails 
of distribution where  

|~R| ⇠ Na

~r1

~r2

~rN

~R

a

p
⇣
~R
⌘
⇡ 1

(2⇡Na2/3)3/2
⇥ e�

~R2/(2Na2/3)
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Ideal freely jointed chain

Statistical mechanics}
proportional to the number of random 

walks with end to end distance     .   ~R

D
~Rm

E
=

X

c

~Rm
c
e�Ec/kBT

Z

~r1

~r2

~rN

~R

a

D
~Rm

E
=

Z
d3 ~R ~Rm ⇥ 1

(2⇡Na2/3)3/2
⇥ e�

~R2/(2Na2/3)
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Stretching of ideal freely jointed chain

~F

Each chain configuration is a realization of biased random walk.

Work due to external force W = ~F · ~R

Statistical mechanics

partition function

average end to
end distance

D
~R
E
=

X

c

~Rc
e�(Ec�~F ·~Rc)/kBT

Z
= +kBT

@ lnZ

@ ~F

Z =
X

c

e�(Ec�Wc)/kBT =
X

c

e�(Ec�~F ·~Rc)/kBT

~r1

~r2

~rN

~R

a

fixed
end
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Bias for a single chain link

partition function

bias in direction 
of force

~F

~r1

✓
x̂

ŷ
ẑ

Z
1

=

Z
1

�1

d(cos ✓)

2

e�Fa cos ✓/kBT
=

sinh (Fa/kBT )

Fa/kBT

hx1i = a

✓
coth


Fa

kBT

�
� kBT

Fa

◆

hx1i ⇡
Fa

2

3kBT

hx1i ⇡ a� kBT

F

small force

large force

Fa/kBT
0 1 2 3 4 5 6 7 8 9 10

⟨x
1
⟩/

a
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1

Langevin function

Fa ⌧ kBT

Fa � kBT

hx
1

i =
Z

1

�1

d(cos ✓)

2

⇥ a cos ✓ ⇥ e

+Fa cos ✓/kBT

Z
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Stretching of ideal freely jointed chain

~F
~r1

~r2

~rN

~R

a
x̂

ŷ
ẑ

hxi = N hx1i = Na

✓
coth


Fa

kBT

�
� kBT

Fa

◆
Exact result for stretching of ideal chain 

small force

Gaussian approximation
Z =

Z
d3 ~R

1

[2⇡Na2/3]3/2
e�

~R2/(2Na2/3) ⇥ e
~F ·~R/kBT = eNF 2a2/6k2

BT 2

hxi = kBT
@ lnZ

@F

=
NFa

2

3kBT

Gaussian approximation is only valid for small forces!

hxi ⇡ NFa

2

3kBT
⌘ F

k

entropic spring 
constant k =

3kBT

Na2

fixed
end
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Experimental results for stretching of DNA

J.F. Marko and E.D. Siggia, 
Macromolecules 28, 8759-8770 (1995)

Ideal chain fails to 
explain experimental 
data at large forces!

Ideal chain predicts
hxi
L

⇡ 1� kBT

Fa

Experiments suggest
hxi
L

⇡ 1� Cp
F

L = 32.8µm
8760 Marko and Siggia Macromolecules, Vol. 28, No. 26, 1995 

A long enough linear DNA is a flexible polymer with 
random-walk statistics with end-to-end mean-squared 
distance Ro = (bLY2 ,  where b is the Kuhn statistical 
monomer size (excluded volume effects can be ignored 
in most of the experimental data considered in this 
paper;* see section 1II.C). The bending costs an energy 
per length of ~ B T A K ~ / ~ ,  where K = laS2rl is the curvature 
(the reciprocal of the bending radius) and where A is 
the characteristic length over which a bend can be made 
with energy cost kBT. This inextensible polymer model 
is variously called the wormlike chain (WLC), the 
Kratky-Porod model, and the persistent chain model. 
For the WLC, Ro2 = 2AL, and thus b = 2Ae7 

Since A is also the characteristic distance along the 
WLC over which the tangent vector correlations die 
it is called the persistence length. For DNA in vivo 
(where there is about 150 mM Na+ plus other ions), one 
should keep in mind a value A x 50 nm or 150 b ~ , ~  
although at  low ionic strengths electrostatic stiffening 
can cause A to appear as large as 350 nm. Throughout 
this paper, L >> A is always assumed. 

Like any flexible polymer, separation of the ends of a 
DNA by an amount z << L costs free energy F = 3 k ~ T z ~ /  
(2R02)  and therefore requires a force f = aF/az = 3k~Tz/ 
(W). Below the characteristic force of kBTIA, the 
extension z is small compared to L and this linear force 
law is valid. Since 1 kBT/nm = 4.1 piconewtons (pN), 
for A = 50 nm, kBTIA = 0.08 pN: the forces needed to 
extend DNAs are very small compared to the piconew- 
tons needed to fully extend conventional polymers (e.g., 
polystyrene) with Kuhn length b < 1 nm. 

For forces beyond kBTIA, the nonlinear entropic 
elasticity11J2 of the WLC model with fixed total contour 
length determines the force-distance behavior. Only 
for forces of order the base-stackinglpairing energies/ 
length 10kBT/nm = 500k~T/A will the constraint of 
fixed arc length cease to  be a good approximation, thus 
rendering inapplicable the WLC model (see section V). 

The effective energy of a stretched WLC is11,20 

1 0 -  

c T 
e 
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C 
L - 1= 0.5 r 

J 
/ 
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force f (kT/nm) 

Figure 2. Fit of numerical exact solution of WLC force- 
extension curve to experimental data of Smith et a1.l (97004 
bp DNA, 10 mM Na+). The best parameters for a global least- 
squares fit are L = 32.8 pm and A = 53 nm. The FJC result 
for b = 2A = 100 nm (dashed curve) approximates the data 
well in the linear low-fregime but scales incorrectly at large 
f and provides a qualitatively poorer fit. Inset: f 1 l 2  vs z for 
the highest forces; the exact WLC result (solid line) is in this 
plot a straight line extrapolating to L = 32.8 pm from which 
the experimental points begin to diverge above z = 31 pm; 
including intrinsic elasticity (eq 19 with y = 500 kBT/nm, 
dotted curve) improves the fit. 

also make plausible a crossover from an entropic 
elasticity regime to an intrinsic stretching elasticity 
regime (where the DNA contour length slightly in- 
creases), recently suggested by Odijk.16 In the same 
section, we describe why one can largely ignore effects 
of excluded volume and spontaneous bends that may 
occur along DNA because of its heterogeneous base-pair 
sequence. 

Section IV discusses experiments that stretch teth- 
ered DNAs with one free end (Figure lb) with an electric 
field (again relying on the polyelectrolyte character of 
DNA) or with hydrodynamic Because of the 
complexities of dealing with a nonuniform and self- 
consistently determined tension, these kinds of experi- 
ments furnish less stringent tests of elastic theory but 
are closer to the kinds ofways DNAs and other polymers 
get stretched in the natural world. Finally, section V 
discusses recent experiments17 showing that strong 
forces cause the double-helical "secondary structure" of 
B-DNA to abruptly lengthen by a factor of about 1.85. 
Although the precise nature of the new DNA state is at  
this time unclear (perhaps it is an extended flat ribbon 
or separated random-coil-like single strands), the ge- 
ometry of the lengthening is consistent with straighten- 
ing of the double helix, and the force scale is consistent 
with what is necessary to overcome the cohesive free 
energy binding the DNA strands together. 

11. Entropic Elasticity of the Wormlike Chain 
Double-helical B-DNA is a stiff-rod polymer. At 

length scales comparable to the double-helix repeat of 
3.5 nm or the diameter of 2.1 nm, the pairing and 
stacking enthalpy of the bases makes the polymer very 
rigid, with a well-defined contour length that may be 
measured either in nanometers or in base pairs (1 bp 
= 0.34 nm).4 DNA conformations may therefore be 
described by a space curve r(s) of fixed total lengthA L ,  
where s is arc length and where the tangent vector t = 
a,r is a unit vector.l8Jg 

where the force f appears as a Lagrange multiplier to 
fix the end-to-end extension z = &*[r(L)  - r(0)I. Below 
we will compute the equilibrium extension using the 
Boltzmann distribution e-E1kBT. In the remainder of this 
paper, forces and extensions are taken to be along the 
z axis, and when forces appear with inverse-length 
dimensions, a factor of kBT has been suppressed. 

A. Simple Calculation of WLC StrongStretch- 
ing Behavior. When large forces are applied to a 
WLC, the extension approaches the total length L, and 
the tangent vector fluctuates only slightly around 2.12 
From the constraint It1 = 1, we see that if t, and ty are 
taken as independent components, the t, fluctuations 
are quadratic in the two-vector t l =  [t,,t,], namely, t, = 
1 - tL2/2 + 0(t14). To quadratic order, K~ = (a,tl)2, and 
we obtain the Gaussian approximation to (1):12 

where we have expressed the extension in (1) as z = 
Jds t, and where terms of higher than quadratic order 
in tl have been dropped. 

Fourier transforms ( $ L ( q )  Jds eiqstl(s)) decouple the 
energy into normal modes: 

ideal
chain

hx
i/

L

F [kBT/nm]

F
�
1
/
2
[k

B
T
/n

m
]�

1
/
2

hxihxi [µm]

1kBT/nm ⇡ 4pN
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Worm-like chain

Unstretchable chain of length L, but energy cost of bending is included.

s 2 [0, L]

Coordinate along the chain

~r(s)

~t(s) =
d~r(s)

ds

Position vector

~t

~r

R

Unit tanget vector

Radius of curvature

R(s) =

����
d~t(s)

ds

���� =
����
d2~r(s)

ds2

����

Ebend =


2

Z L

0
ds

1

R(s)2
=



2

Z L

0
ds

����
d~t(s)

ds

����
2 bending modulus



Example: energy cost for 
bending of chain to semicircle

2R = 2L/⇡

Ebend =


2
⇥ L

R2
=

⇡2

2



L

Thermal fluctuations can easily 
bend chains that are longer than

L � `p =


kBT
Ebend ⌧ kBT
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Worm-like chain
Persistence length

`p ⌘ 

kBT
Example: DNA at room temperature

`p ⇡ 50nm

~r

~t

This is equivalent to ideal chain for
L = Na

⌦
~r(L)2

↵
= Na2

a = 2`p

N = L/(2`p)

length of Kuhn segment

number of Kuhn segments

Distribution of end to end distances

~r(L) =

Z L

0
ds ~t(s) h~r(L)i = 0

⌦
~r(L)2

↵
=

*Z L

0
ds1 ~t(s1) ·

Z L

0
ds2 ~t(s2)

+
=

Z L

0
ds1

Z L

0
ds2

⌦
~t(s1) · ~t(s2)

↵
=

Z L

0
ds1

Z L

0
ds2 e

�|s1�s2|/`p

⌦
~r(L)2

↵
= 2`pL


1� `p

L

⇣
1� e�L/`p

⌘�

L � `p

⌦
~r(L)2

↵
= 2`pL =

2L

kBT

Polymers shrink, 
when temperature 

is increases!

⌦
~t(s) · ~t(s+ `)

↵
= e�|`|/`p
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Stretching of worm-like chains

~r

~t

~F
x̂

ŷ
ẑ

In order to calculate the response of worm-like chains to 
external force, we need to evaluate partition function

Z =
X

c

e�Ebend(c)/kBT

hxi = kBT
@ lnZ

@F

This is very hard to do analytically for the whole range of forces, 
but we can treat asymptotic cases of small and large forces.
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Stretching of worm-like chains at small forces

x̂

ŷ
ẑ

At small forces Gaussian approximation works well

hxi ⇡ NFa

2

3kBT
=

2FL`p

3kBT
=

2FL

3k2BT
2
⌘ F

k

entropic spring constant

k =
3kBT

2L`p
=

3k2BT
2

2L

F `p ⌧ kBT

~F

fixed
end

~r
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Stretching of worm-like chains at large forces

x̂

ŷ
ẑ

~Ffixed
end

~t

At large forces chains are nearly straight and oriented along x direction.

F `p � kBT

Ay(s), Az(s) ⌧ 1

Bending energy to the lowest order in Ay and Az.

Ebend =


2

Z L

0
ds

����
d~t(s)

ds

���� ⇡


2

Z L

0
ds

"✓
dAy(s)

ds

◆2

+

✓
dAz(s)

ds

◆2
#

Work due to external forces to the lowest order in Ay and Az.

W = ~F · ~r(L) =
Z L

0
ds ~F · ~t(s) ⇡ FL�

Z L

0
ds

F

2

⇥
Ay(s)

2 +Az(s)
2
⇤

~t(s) =
q

1�Ay(s)2 �Az(s)2 x̂+Ay(s)ŷ +Az(s)ẑ
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Stretching of worm-like chains at large forces

x̂

ŷ
ẑ

~Ffixed
end

~t

Free energy to the lowest order in Ay and Az.

F `p � kBT

Rewrite free energy in terms of Fourier modes

From equipartition theorem we can find average fluctuations of Ay and Az

E = Ebend �W ⇡ �FL+
1

2

Z L

0
ds

 


"✓
dAy(s)

ds

◆2

+

✓
dAz(s)

ds

◆2
#
+ F

⇥
Ay(s)

2 +Az(s)
2
⇤
!

Ay,z(s) =
X

q

eiqsÃy,z(q) Ãy,z(q) =

Z L

0

ds

L
e�iqsAy,z(s)

E ⇡ �FL+
1

2

X

q

L(F + q2)
h
|Ãy(q)|2 + |Ãz(q)|2

i

D
|Ãy(q)|2

E
=

D
|Ãz(q)|2

E
⇡ kBT

L(F + q2)

q = 2⇡m/L
m = 1, 2, · · ·
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Stretching of worm-like chains at large forces

x̂

ŷ
ẑ

~Ffixed
end

~t
F `p � kBT

From equipartition theorem we can find average fluctuations of Ay and Az

At large forces chains are nearly straight and oriented along x direction.

~t(s) ⇡

1� Ay(s)2 +Az(s)2

2

�
x̂+Ay(s)ŷ +Az(s)ẑ

D
|Ãy(q)|2

E
=

D
|Ãz(q)|2

E
⇡ kBT

L(F + q2)

Stretching due to large force is  

hxi ⇡ L


1� kBT

2
p
F

�
= L

"
1�

s
kBT

4F `p

#

hxi ⇡
*Z L

0
ds

"
1�

⇥
Ay(s)2 +Az(s)2

⇤

2

#+
= L� L

2

X

q

hD
|Ãy(q)|2

E
+

D
|Ãz(q)|2

Ei
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Stretching of worm-like chains

x̂

ŷ
ẑ

F `p ⌧ kBT

~F

Small force Large force
F `p � kBT

hxi ⇡ L

2F `p

3kBT
hxi ⇡ L

"
1�

s
kBT

4F `p

#

Approximate expression that interpolates between both regimes

J.F. Marko and E.D. Siggia, 
Macromolecules 28, 8759-8770 (1995)

F `p

kBT
=

1

4

✓
1� hxi

L

◆�2

� 1

4
+

hxi
L

~F
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Stretching of worm-like chains

J.F. Marko and E.D. Siggia, 
Macromolecules 28, 8759-8770 (1995)

F `p

kBT
=

1

4

✓
1� hxi

L

◆�2

� 1

4
+

hxi
L
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Figure 3. Comparison of three different calculations of the 
WLC extension zlL as a function of fXlk~T.  The solid line 
shows the numerical exact result (Appendix); the dashed line 
shows the variational solution (13- 14); the dot-dashed line 
shows the interpolation formula (7). All three expressions are 
asymptotically equal for large and small fMkBT. 

way matches the result of a battery of other, less direct 
measurements.516 

The inset of Figure 2 shows that f 1 I 2  goes to zero 
approximately linearly in z for z - L (the solid line 
shows the asymptotic WLC result zlL = 1 - (kBT/ 
[4Af1)1/2 for A = 53 nm and L = 32.8 pm). However, for 
the highest forces, the measured extensions exceed L 
= 32.8 pm, and f1I2 is not quite linear in z (note that 
this effect is very hard to see in the main part of Figure 
2 where zlL is plotted versus f) .  These effects point to  
a failure of the pure WLC model a t  high forces. A 
possible explanation is that the B-DNA is slightly 
stretched by the highest tensions (e.g., consider that a 
slight untwisting of the double helix will slightly 
lengthen it; the linear twisting elasticity of B-DNA is 
well characterized5Q Odijk has recently noted that 
relaxing the constraint of fixed length in the WLC model 
via the addition of linear stretching elasticity yields the 
asymptotic stretching16 zlL = 1 - (kBT/[4Af1)112 i- f l y ,  
where L is the total contour length of the unstressed 
chain and where y is an elastic constant with dimen- 
sions of force (when y-l - 0, the inextensible WLC 
result is obtained). The estimate y = 1 6 k ~ T  AID2 can 
be made by supposing DNA to be a homogeneous elastic 
rod of radius D = 1.2 nm;16 takingA = 53 nm, we guess 
y % 600 kBT/nm. Turning to the data shown in the inset 
of Figure 2 and keeping the previously fit L = 32.8 pm 
and A = 53 nm, we find that y = 500 kBT/nm can 
account for the slight deviation from WLC behavior at  
high forces (inset of Figure 2, dotted line). 

A more revealing way to plot the data and directly 
test the WLC model is to  define an effective persistence 
length, Ace, computed separately in the high- and low- 
force limits from the simple exact analytic formulas 
relating z to  f: 

Figure 4 shows the 10 mM data of Figure 2 transformed 
using L,ff = 33.7 pm in (15). This value of L,R was 
chosen for consistency with the low-salt data discussed 
in the following section. Given only the data in Figure 

a 
I 

0 '  ' 1 1 1 1 1 ' 1 '  ' ' ' ~ " l  ' " . ' " '  ' ' " "  
1 0 - ~  lo-' 10-1 l o o  10' 

force f (kT/nm) 

Figure 4. Apparent persistence lengths as defined in (15) for 
high and low forces, extracted from the 10 mM experimental 
data of Smith et al.' in Figure 2 using L,tf = 33.7 pm. The 
curves are the two theoretical fits of sections I11 (solid curves 
show L = 32.8 pm, A0 = 50.8 nm, A = 53 nm, and y = 500 
kBT/nm; dashed curves show L = 33.7 pm, A0 = 15 nm, A = 
52 nm, and y infinite) for z vs f transformed in an identical 
fashion. 

2 however, L,ff = 33.4 pm would make Aeff in Figure 4 
nearly f-independent, thereby establishing that a single 
persistence length can describe both limits. However, 
this would still leave the deviations shown in the inset 
of Figure 2 pointing to a failure of the naive WLC model. 
The scatter in A,ff for intermediate forces is in any event 
independent of the choice of LeE within the range L,ff = 
33.4-33.7 pm. The next section shows how the gentle 
decrease of A,a for 10 mM Na+ (Figure 4) may be 
explained by electrostatic self-repulsion, either with or 
without intrinsic stretching elasticity. 

111. Electrostatic Stiffening 
Figures 5a and 5b show A,R, (151, for the experimental 

data of Smith et a1.l for 97 004 bp DNAs with L,ff = 
33.7 pm for 1 and 0.1 mM Na+ (Figures 6a-c show 
extension z versus force f for 10, 1, and 0.1 mM Na'). 
The limiting low-force persistence length in these cases 
greatly exceeds its high-force limit, with most of the 
variation occurring for zlL > 0.5. There is compara- 
tively little variation in A,R measured for high salt (10 
mM, Figure 4). 

For the low ionic strengths of 0.1 and 1 mM, the 
electrostatic screening length AD falls within the range 
of the WLC elastic correlation length, 6 = (A/flU2. (For 
the Na2HP04 solution used,l we expect complete 2: 1 
Na-HP04 dissociation at 300 K,23 which gives AD % 

0.25M-u2 nm,24 where M is the Na+ molarity; M is used 
to label the data sets). At low forces, electrostatic self- 
repulsion increases the effective persistence length; for 
high enough forces that << AD, only the "intrinsic" 
elastic persistence length is observed. Although the 
electrostatic contribution to the low-force persistence 
length was discussed long ago by Odijk, Skolnick, and 
Fixman13 (OSF), Barrat and Joanny14 (BJ) only recently 
emphasized that the OSF results indicate scale depen- 
dence of the persistence length. We now incorporate 
these electrostatic effects into the force-extension 
calculations of the previous section to explain the low 
ionic strength results of Smith et ale1 and also examine 
how the resulting fits change when intrinsic stretching 
elasticity (see section 1I.C) is included. 

F `p/kBT

hx
i/

L

exact
(numerics)

Interpolation formula
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Experimental results for stretching of DNA

J.F. Marko and E.D. Siggia, 
Macromolecules 28, 8759-8770 (1995)
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A long enough linear DNA is a flexible polymer with 
random-walk statistics with end-to-end mean-squared 
distance Ro = (bLY2 ,  where b is the Kuhn statistical 
monomer size (excluded volume effects can be ignored 
in most of the experimental data considered in this 
paper;* see section 1II.C). The bending costs an energy 
per length of ~ B T A K ~ / ~ ,  where K = laS2rl is the curvature 
(the reciprocal of the bending radius) and where A is 
the characteristic length over which a bend can be made 
with energy cost kBT. This inextensible polymer model 
is variously called the wormlike chain (WLC), the 
Kratky-Porod model, and the persistent chain model. 
For the WLC, Ro2 = 2AL, and thus b = 2Ae7 

Since A is also the characteristic distance along the 
WLC over which the tangent vector correlations die 
it is called the persistence length. For DNA in vivo 
(where there is about 150 mM Na+ plus other ions), one 
should keep in mind a value A x 50 nm or 150 b ~ , ~  
although at  low ionic strengths electrostatic stiffening 
can cause A to appear as large as 350 nm. Throughout 
this paper, L >> A is always assumed. 

Like any flexible polymer, separation of the ends of a 
DNA by an amount z << L costs free energy F = 3 k ~ T z ~ /  
(2R02)  and therefore requires a force f = aF/az = 3k~Tz/ 
(W). Below the characteristic force of kBTIA, the 
extension z is small compared to L and this linear force 
law is valid. Since 1 kBT/nm = 4.1 piconewtons (pN), 
for A = 50 nm, kBTIA = 0.08 pN: the forces needed to 
extend DNAs are very small compared to the piconew- 
tons needed to fully extend conventional polymers (e.g., 
polystyrene) with Kuhn length b < 1 nm. 

For forces beyond kBTIA, the nonlinear entropic 
elasticity11J2 of the WLC model with fixed total contour 
length determines the force-distance behavior. Only 
for forces of order the base-stackinglpairing energies/ 
length 10kBT/nm = 500k~T/A will the constraint of 
fixed arc length cease to  be a good approximation, thus 
rendering inapplicable the WLC model (see section V). 

The effective energy of a stretched WLC is11,20 
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Figure 2. Fit of numerical exact solution of WLC force- 
extension curve to experimental data of Smith et a1.l (97004 
bp DNA, 10 mM Na+). The best parameters for a global least- 
squares fit are L = 32.8 pm and A = 53 nm. The FJC result 
for b = 2A = 100 nm (dashed curve) approximates the data 
well in the linear low-fregime but scales incorrectly at large 
f and provides a qualitatively poorer fit. Inset: f 1 l 2  vs z for 
the highest forces; the exact WLC result (solid line) is in this 
plot a straight line extrapolating to L = 32.8 pm from which 
the experimental points begin to diverge above z = 31 pm; 
including intrinsic elasticity (eq 19 with y = 500 kBT/nm, 
dotted curve) improves the fit. 

also make plausible a crossover from an entropic 
elasticity regime to an intrinsic stretching elasticity 
regime (where the DNA contour length slightly in- 
creases), recently suggested by Odijk.16 In the same 
section, we describe why one can largely ignore effects 
of excluded volume and spontaneous bends that may 
occur along DNA because of its heterogeneous base-pair 
sequence. 

Section IV discusses experiments that stretch teth- 
ered DNAs with one free end (Figure lb) with an electric 
field (again relying on the polyelectrolyte character of 
DNA) or with hydrodynamic Because of the 
complexities of dealing with a nonuniform and self- 
consistently determined tension, these kinds of experi- 
ments furnish less stringent tests of elastic theory but 
are closer to the kinds ofways DNAs and other polymers 
get stretched in the natural world. Finally, section V 
discusses recent experiments17 showing that strong 
forces cause the double-helical "secondary structure" of 
B-DNA to abruptly lengthen by a factor of about 1.85. 
Although the precise nature of the new DNA state is at  
this time unclear (perhaps it is an extended flat ribbon 
or separated random-coil-like single strands), the ge- 
ometry of the lengthening is consistent with straighten- 
ing of the double helix, and the force scale is consistent 
with what is necessary to overcome the cohesive free 
energy binding the DNA strands together. 

11. Entropic Elasticity of the Wormlike Chain 
Double-helical B-DNA is a stiff-rod polymer. At 

length scales comparable to the double-helix repeat of 
3.5 nm or the diameter of 2.1 nm, the pairing and 
stacking enthalpy of the bases makes the polymer very 
rigid, with a well-defined contour length that may be 
measured either in nanometers or in base pairs (1 bp 
= 0.34 nm).4 DNA conformations may therefore be 
described by a space curve r(s) of fixed total lengthA L ,  
where s is arc length and where the tangent vector t = 
a,r is a unit vector.l8Jg 

where the force f appears as a Lagrange multiplier to 
fix the end-to-end extension z = &*[r(L)  - r(0)I. Below 
we will compute the equilibrium extension using the 
Boltzmann distribution e-E1kBT. In the remainder of this 
paper, forces and extensions are taken to be along the 
z axis, and when forces appear with inverse-length 
dimensions, a factor of kBT has been suppressed. 

A. Simple Calculation of WLC StrongStretch- 
ing Behavior. When large forces are applied to a 
WLC, the extension approaches the total length L, and 
the tangent vector fluctuates only slightly around 2.12 
From the constraint It1 = 1, we see that if t, and ty are 
taken as independent components, the t, fluctuations 
are quadratic in the two-vector t l =  [t,,t,], namely, t, = 
1 - tL2/2 + 0(t14). To quadratic order, K~ = (a,tl)2, and 
we obtain the Gaussian approximation to (1):12 

where we have expressed the extension in (1) as z = 
Jds t, and where terms of higher than quadratic order 
in tl have been dropped. 

Fourier transforms ( $ L ( q )  Jds eiqstl(s)) decouple the 
energy into normal modes: 
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Steric interactions

So far we ignored interactions between different chain segments, but in 
reality the chain cannot pass through itself due to steric interactions.

Example of forbidden 
configuration in 2D

Polymer chains are realizations of self-avoiding random walks!

Steric interactions are 
important for long polymers in 
the absence of pulling forces

~F

Steric interactions are not 
important in the presence 

of pulling forces.
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Mean field estimate for the radius 
of self-avoiding polymers

Paul 
Flory

R
Approximate partition function: estimate number of 
self-avoiding random walks of N steps of size a that are 
restricted to a sphere of radius R. 

Z(R,N) ⇡ gN ⇥ e�3R2/2Na2

[2⇡Na2/3]3/2
⇥


1 ·

✓
1� a3

R3

◆
·
✓
1� 2a3

R3

◆
· · ·

✓
1� (N � 1)a3

R3

◆�

total number of 
random walks

reduction in entropy 
when constrained to 
sphere of radius R

}
Cev

reduction in 
entropy due to 

excluded volume
Excluded volume effect

lnCev =
N�1X

k=1

ln

✓
1� ka3

R3

◆
⇡

N�1X

k=1

✓
�ka3

R3
� k2a6

2R6
� · · ·

◆
⇡ �N2a3

2R3
� N3a6

6R6

Approximate partition function

lnZ(R,N) ⇡ N ln g � 3

2
ln(2⇡Na2/3)� 3R2

2Na2
� N2a3

2R3
� N3a6

6R6
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Mean field estimate for the radius 
of self-avoiding polymers

Paul 
Flory

R
Approximate partition function

lnZ(R,N) ⇡ N ln g � 3

2
ln(2⇡Na2/3)� 3R2

2Na2
� N2a3

2R3
� N3a6

6R6

Estimate polymer radius by maximizing the partition function
@ lnZ(R,N)

@R
⇡ � 3R

Na2
+

3

2

N2a3

R4
+

N3a6

R7
= 0

(higher order 
term can be 

ignored)R ⇠ aN⌫ ⇠ `p

✓
L

`p

◆⌫

⌫ = 3/5Flory exponent

non-avoiding
random walks

⌫ = 1/2

Exact result from more 
sophisticated methods

⌫ ⇡ 0.591R

lnZ

N ln g
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Self-avoiding walks in d dimensionsPaul 
Flory

R

Approximate partition function

Estimate R by maximizing the partition function

R ⇠ aN⌫ ⌫ =
3

d+ 2

For         Flory exponent is            , but for non-avoiding walk            .d � 4 ⌫  1/2 ⌫ = 1/2

For         excluded volume is irrelevant!d � 4

d

⌫

1 2 3 � 4

1 3/4 3/5 1/2
Note: except for d=3 these 

exponents are exact!

Z(R,N) ⇡ gN ⇥ e�dR2/2Na2
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1 ·

✓
1� ad

Rd

◆
·
✓
1� 2ad
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◆
· · ·
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Rd

◆�

lnZ(R,N) ⇡ N ln g � d

2
ln(2⇡Na2/d)� dR2

2Na2
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@ lnZ(R,N)
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