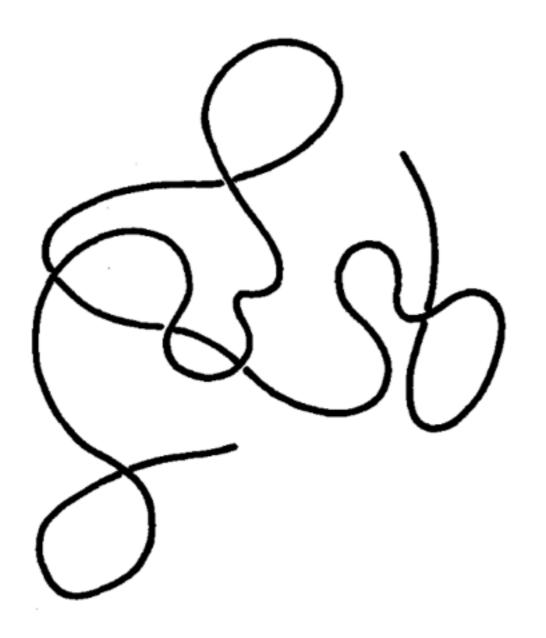
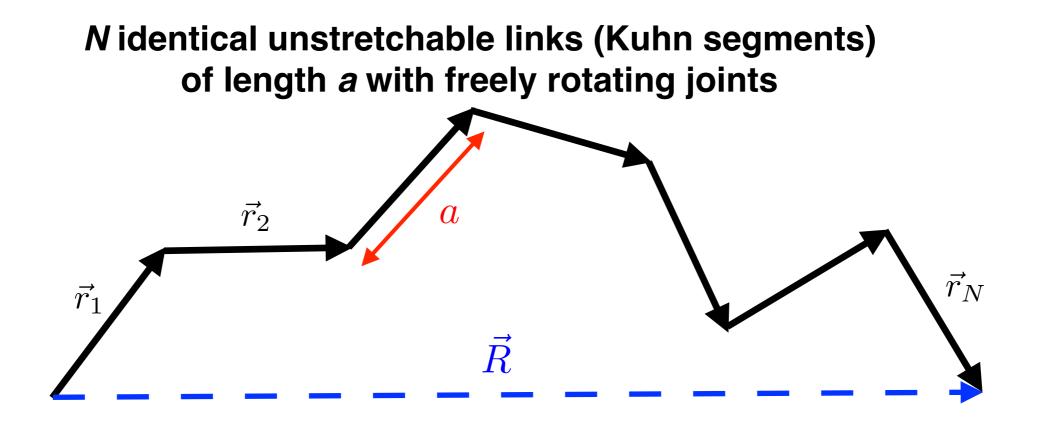
MAE 545: Lecture 4 (9/29)

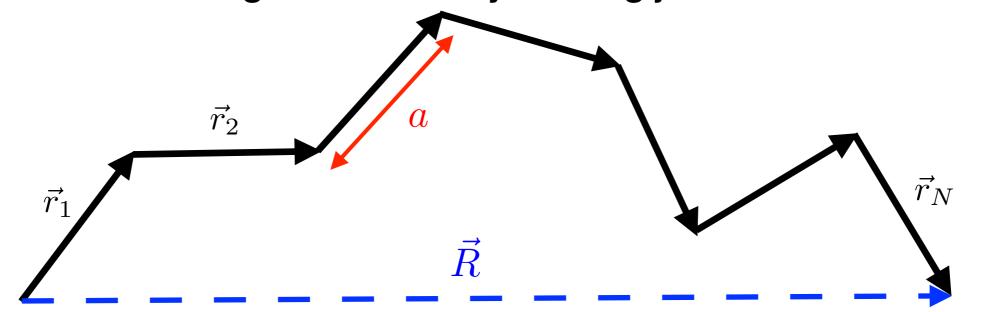
Statistical mechanics of proteins





In first part of the lecture we will ignore interactions between different segments: e.g. steric interactions, van der Waals interactions, etc.

N identical unstretchable links (Kuhn segments) of length a with freely rotating joints



What are statistical properties of the end to end vector \vec{R} ?

Statistical mechanics

partition function (sum over all possible chain configurations)

expected value of observables

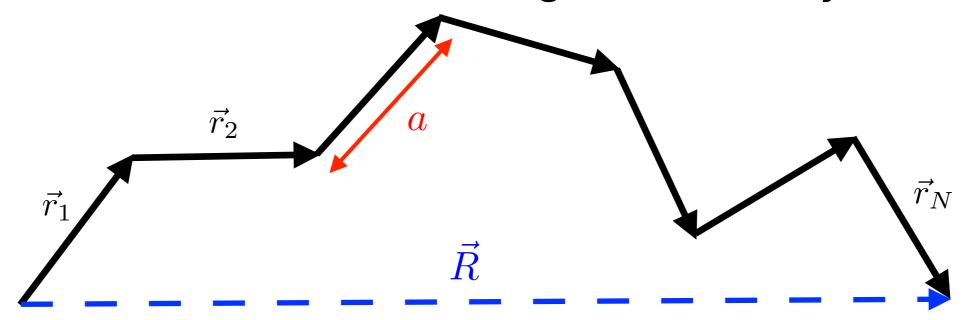
$$Z = \sum_{c} e^{-E_c/k_B T}$$

 $\langle \mathcal{O} \rangle = \sum_{c} \mathcal{O}_{c} \frac{e^{-E_{c}/k_{B}T}}{Z}$

 $E_c \quad \begin{array}{l} \mbox{energy of a given} \\ \mbox{configuration} \end{array}$ $T \quad \mbox{temperature} \\ k_B \quad \begin{array}{l} \mbox{Boltzmann} \\ \mbox{constant} \end{array}$ $k_B = 1.38 \times 10^{-23} \mbox{JK}^{-1}$

For ideal chain all configurations have zero energy cost and contribute equally!

N identical unstretchable links of length a with freely rotating joints



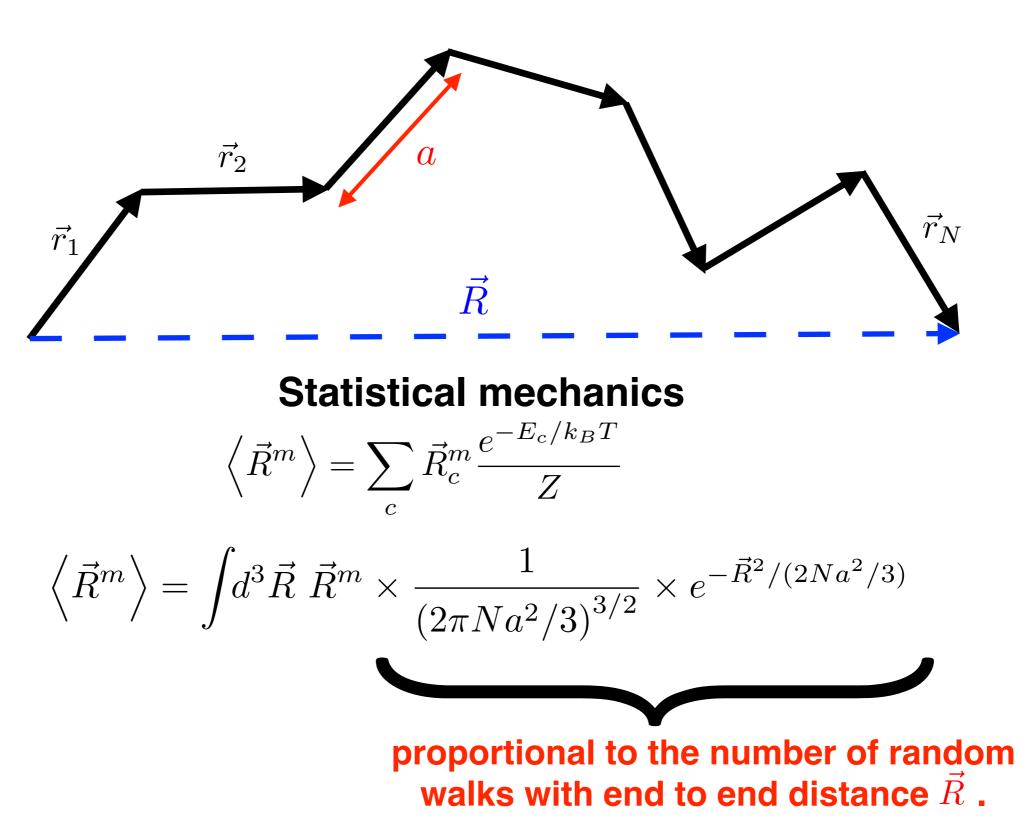
Each ideal chain configuration is a realization of random walk.

individual links $\langle \vec{r}_i \rangle = 0$ $\langle \vec{r}_i^2 \rangle = a^2$ end to end
distance $\vec{R} = \sum_{i=1}^{N} \vec{r}_i$ $\langle \vec{R} \rangle = 0$ $\langle \vec{R}^2 \rangle = Na^2$ For large N the probability distribution for \vec{R} approaches

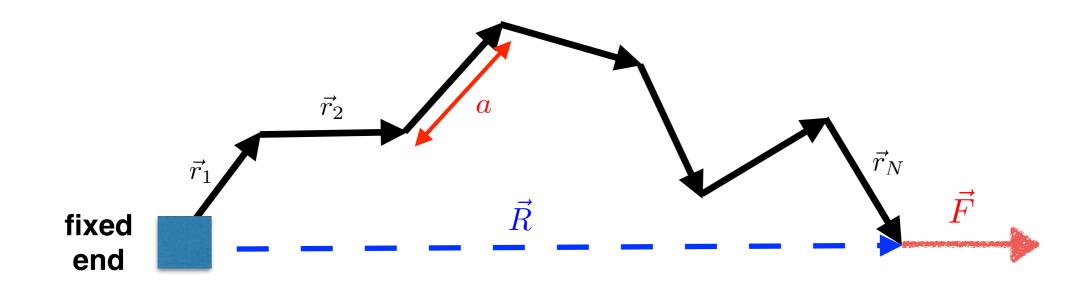
$$p\left(\vec{R}\right) \approx \frac{1}{\left(2\pi Na^2/3\right)^{3/2}} \times e^{-\vec{R}^2/(2Na^2/3)}$$

Note: not accurate in tails of distribution where

 $|\vec{R}| \sim Na$



Stretching of ideal freely jointed chain



Each chain configuration is a realization of biased random walk.

Work due to external force $W = \vec{F} \cdot \vec{R}$

Statistical mechanics

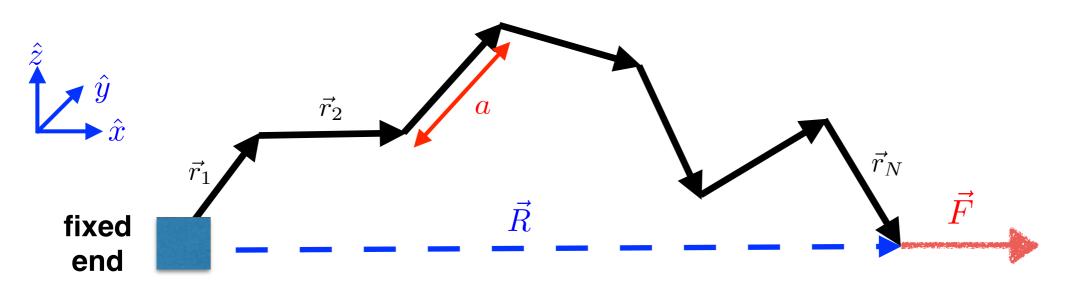
partition function
$$Z = \sum_{c} e^{-(E_c - W_c)/k_B T} = \sum_{c} e^{-(E_c - \vec{F} \cdot \vec{R}_c)/k_B T}$$

average end to
end distance
$$\langle \vec{R} \rangle = \sum_{c} \vec{R}_{c} \frac{e^{-(E_{c} - \vec{F} \cdot \vec{R}_{c})/k_{B}T}}{Z} = +k_{B}T \frac{\partial \ln Z}{\partial \vec{F}}$$

Bias for a single chain link $Z_1 = \int_{-1}^{1} \frac{d(\cos\theta)}{2} e^{-Fa\cos\theta/k_BT} = \frac{\sinh\left(Fa/k_BT\right)}{Fa/k_BT}$ partition function $\langle x_1 \rangle = \int_{-1}^{1} \frac{d(\cos \theta)}{2} \times a \cos \theta \times \frac{e^{+Fa \cos \theta/k_B T}}{Z_1}$ bias in direction of force $\langle x_1 \rangle = a \left(\coth \left[\frac{Fa}{k_P T} \right] - \frac{k_B T}{Fa} \right)$ **Langevin function** small force $Fa \ll k_B T$ 0.8 $\langle x_1 \rangle \approx \frac{Fa^2}{3k_BT}$ $\left< x_1 \right> a$ 0.6 $\left< x_1 \right> a$ large force $Fa \gg k_B T$ $\langle x_1 \rangle \approx a - \frac{k_B T}{\Gamma}$ 0.2 0 2 3 8 9 7 0 4 5 6 10 1 Fa/k_BT

7

Stretching of ideal freely jointed chain



Exact result for stretching of ideal chain

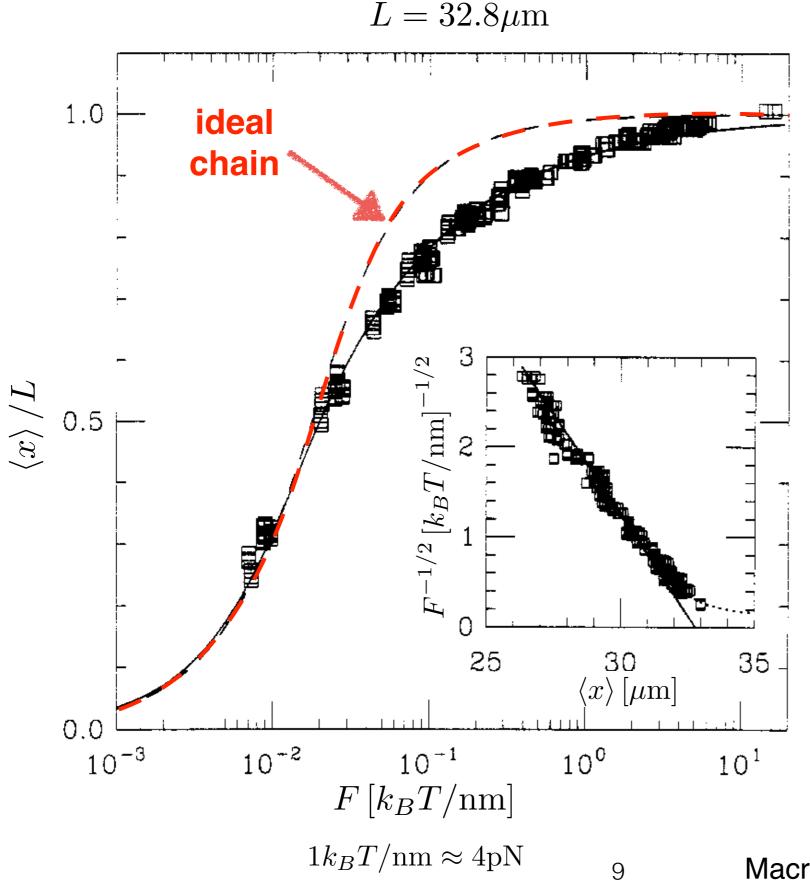
$$\langle x \rangle = N \langle x_1 \rangle = Na \left(\coth \left[\frac{Fa}{k_B T} \right] - \frac{k_B T}{Fa} \right)$$
small force $\langle x \rangle \approx \frac{NFa^2}{3k_B T} \equiv \frac{F}{k}$ entropic spring constant $k = \frac{3k_B T}{Na^2}$

Gaussian approximation

$$Z = \int d^{3}\vec{R} \, \frac{1}{\left[2\pi Na^{2}/3\right]^{3/2}} e^{-\vec{R}^{2}/(2Na^{2}/3)} \times e^{\vec{F}\cdot\vec{R}/k_{B}T} = e^{NF^{2}a^{2}/6k_{B}^{2}T^{2}}$$
$$\langle x \rangle = k_{B}T \frac{\partial \ln Z}{\partial F} = \frac{NFa^{2}}{3k_{B}T}$$

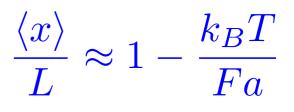
Gaussian approximation is only valid for small forces!

Experimental results for stretching of DNA

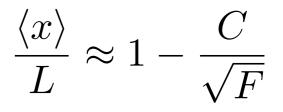


Ideal chain fails to explain experimental data at large forces!

Ideal chain predicts



Experiments suggest



J.F. Marko and E.D. Siggia, Macromolecules 28, 8759-8770 (1995)

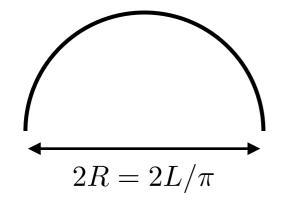
Worm-like chain

 $s \in [0, L]$ Position vector $\vec{r}(s)$ Unit tanget vector $\vec{t}(s) = \frac{d\vec{r}(s)}{ds}$ Radius of curvature $R(s) = \left|\frac{d\vec{t}(s)}{ds}\right| = \left|\frac{d^2\vec{r}(s)}{ds^2}\right|$

Unstretchable chain of length L, but energy cost of bending is included.

$$E_{\text{bend}} = \frac{\kappa}{2} \int_0^L ds \frac{1}{R(s)^2} = \frac{\kappa}{2} \int_0^L ds \left| \frac{d\vec{t}(s)}{ds} \right|^2 \qquad \qquad \text{bending modulus}$$

Example: energy cost for bending of chain to semicircle



$$E_{\text{bend}} = \frac{\kappa}{2} \times \frac{L}{R^2} = \frac{\pi^2}{2} \frac{\kappa}{L}$$

Thermal fluctuations can easily bend chains that are longer than

$$L \gg \ell_p = \frac{\kappa}{k_B T}$$

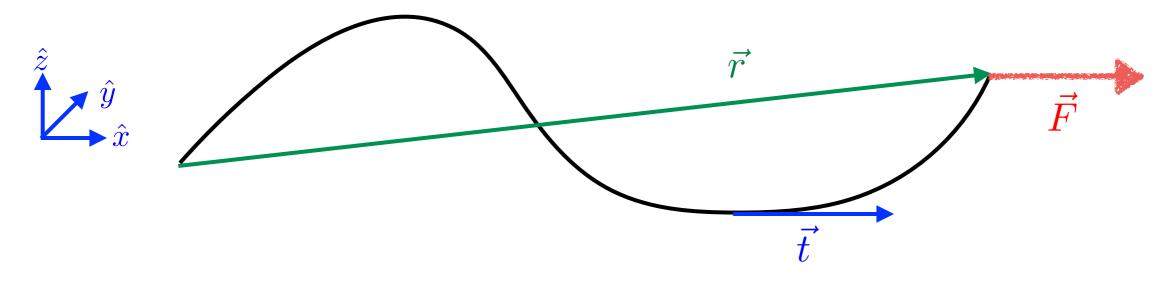
 $E_{\rm bend} \ll k_B T$

Coordinate along the chain

Worm-like chain



Stretching of worm-like chains



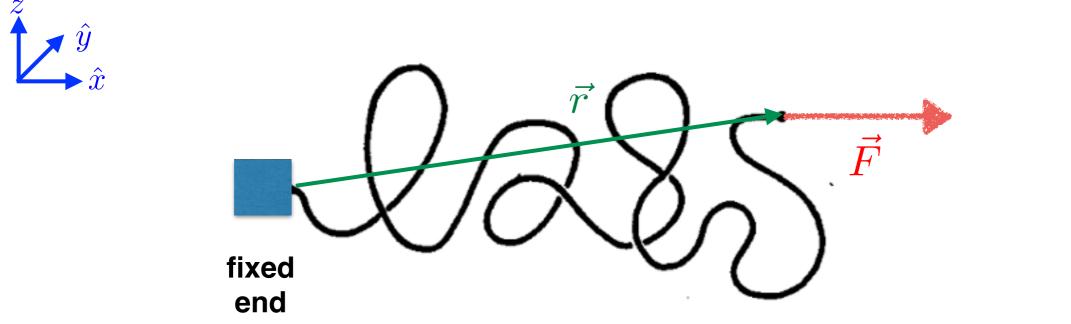
In order to calculate the response of worm-like chains to external force, we need to evaluate partition function

$$Z = \sum_{c} e^{-E_{\text{bend}}(c)/k_B T}$$
$$\langle x \rangle = k_B T \frac{\partial \ln Z}{\partial F}$$

This is very hard to do analytically for the whole range of forces, but we can treat asymptotic cases of small and large forces.

Stretching of worm-like chains at small forces

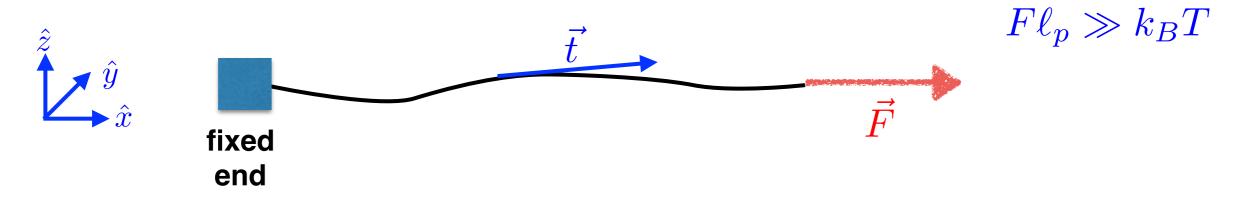
 $F\ell_p \ll k_B T$



At small forces Gaussian approximation works well

$$\langle x \rangle \approx \frac{NFa^2}{3k_BT} = \frac{2FL\ell_p}{3k_BT} = \frac{2FL\kappa}{3k_B^2T^2} \equiv \frac{F}{k}$$
entropic spring constant
$$k = \frac{3k_BT}{2L\ell_p} = \frac{3k_B^2T^2}{2L\kappa}$$

Stretching of worm-like chains at large forces



At large forces chains are nearly straight and oriented along x direction.

$$\vec{t}(s) = \sqrt{1 - A_y(s)^2 - A_z(s)^2 \,\hat{\mathbf{x}} + A_y(s)\hat{\mathbf{y}} + A_z(s)\hat{\mathbf{z}}}$$

 $A_y(s), A_z(s) \ll 1$

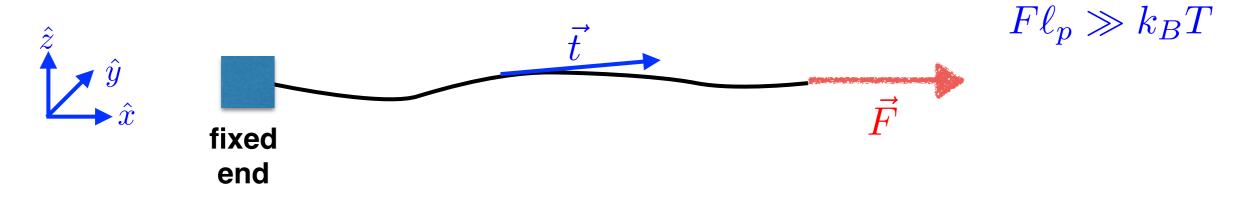
Bending energy to the lowest order in A_y and A_z .

$$E_{\text{bend}} = \frac{\kappa}{2} \int_0^L ds \left| \frac{d\vec{t}(s)}{ds} \right| \approx \frac{\kappa}{2} \int_0^L ds \left[\left(\frac{dA_y(s)}{ds} \right)^2 + \left(\frac{dA_z(s)}{ds} \right)^2 \right]$$

Work due to external forces to the lowest order in A_y and A_z .

$$W = \vec{F} \cdot \vec{r}(L) = \int_0^L ds \ \vec{F} \cdot \vec{t}(s) \approx FL - \int_0^L ds \ \frac{F}{2} \left[A_y(s)^2 + A_z(s)^2 \right]$$

Stretching of worm-like chains at large forces



Free energy to the lowest order in A_y and A_z .

$$E = E_{\text{bend}} - W \approx -FL + \frac{1}{2} \int_0^L ds \left(\kappa \left[\left(\frac{dA_y(s)}{ds} \right)^2 + \left(\frac{dA_z(s)}{ds} \right)^2 \right] + F \left[A_y(s)^2 + A_z(s)^2 \right] \right)$$

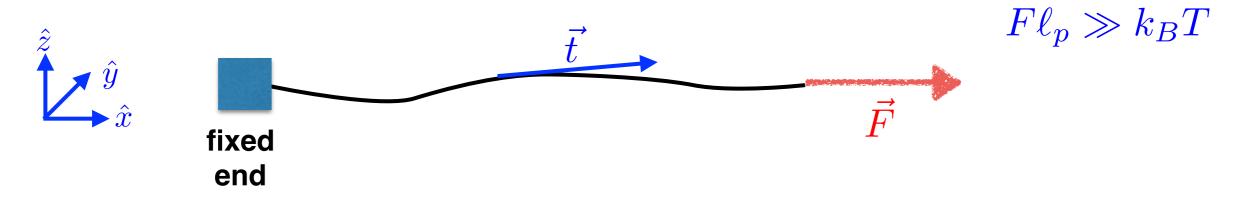
Rewrite free energy in terms of Fourier modes

$$A_{y,z}(s) = \sum_{q} e^{iqs} \tilde{A}_{y,z}(q) \qquad \tilde{A}_{y,z}(q) = \int_{0}^{L} \frac{ds}{L} e^{-iqs} A_{y,z}(s) \qquad \begin{array}{l} q = 2\pi m/L \\ m = 1, 2, \cdots \end{array}$$
$$E \approx -FL + \frac{1}{2} \sum_{q} L(F + \kappa q^{2}) \left[|\tilde{A}_{y}(q)|^{2} + |\tilde{A}_{z}(q)|^{2} \right]$$

From equipartition theorem we can find average fluctuations of A_y and A_z

$$\left\langle |\tilde{A}_y(q)|^2 \right\rangle = \left\langle |\tilde{A}_z(q)|^2 \right\rangle \approx \frac{k_B T}{L(F + \kappa q^2)}$$

Stretching of worm-like chains at large forces



At large forces chains are nearly straight and oriented along x direction.

$$\vec{t}(s) \approx \left[1 - \frac{A_y(s)^2 + A_z(s)^2}{2}\right] \hat{\mathbf{x}} + A_y(s)\hat{\mathbf{y}} + A_z(s)\hat{\mathbf{z}}$$

From equipartition theorem we can find average fluctuations of A_y and A_z

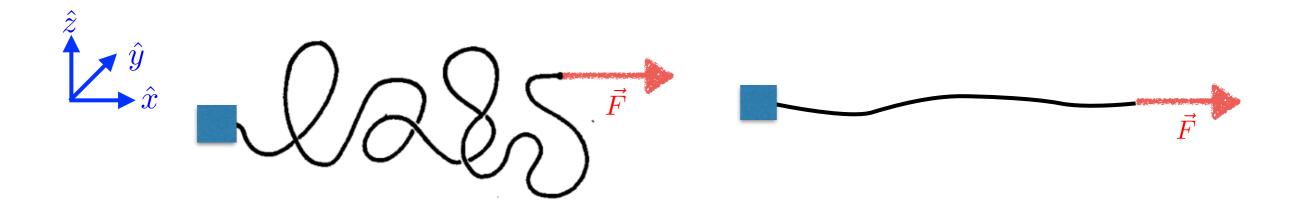
$$\left\langle |\tilde{A}_y(q)|^2 \right\rangle = \left\langle |\tilde{A}_z(q)|^2 \right\rangle \approx \frac{k_B T}{L(F + \kappa q^2)}$$

Stretching due to large force is

$$\langle x \rangle \approx \left\langle \int_0^L ds \left[1 - \frac{\left[A_y(s)^2 + A_z(s)^2 \right]}{2} \right] \right\rangle = L - \frac{L}{2} \sum_q \left[\left\langle |\tilde{A}_y(q)|^2 \right\rangle + \left\langle |\tilde{A}_z(q)|^2 \right\rangle \right]$$

$$\langle x \rangle \approx L \left[1 - \frac{k_B T}{2\sqrt{F\kappa}} \right] = L \left[1 - \sqrt{\frac{k_B T}{4F\ell_p}} \right]$$

Stretching of worm-like chains



Small force	Large force		
$F\ell_p \ll k_B T$	$F\ell_p \gg k_B T$		
$\langle x \rangle \approx L \ \frac{2F\ell_p}{3k_BT}$	$\langle x \rangle \approx L \left[1 - \sqrt{\frac{k_B T}{4F\ell_p}} \right]$		

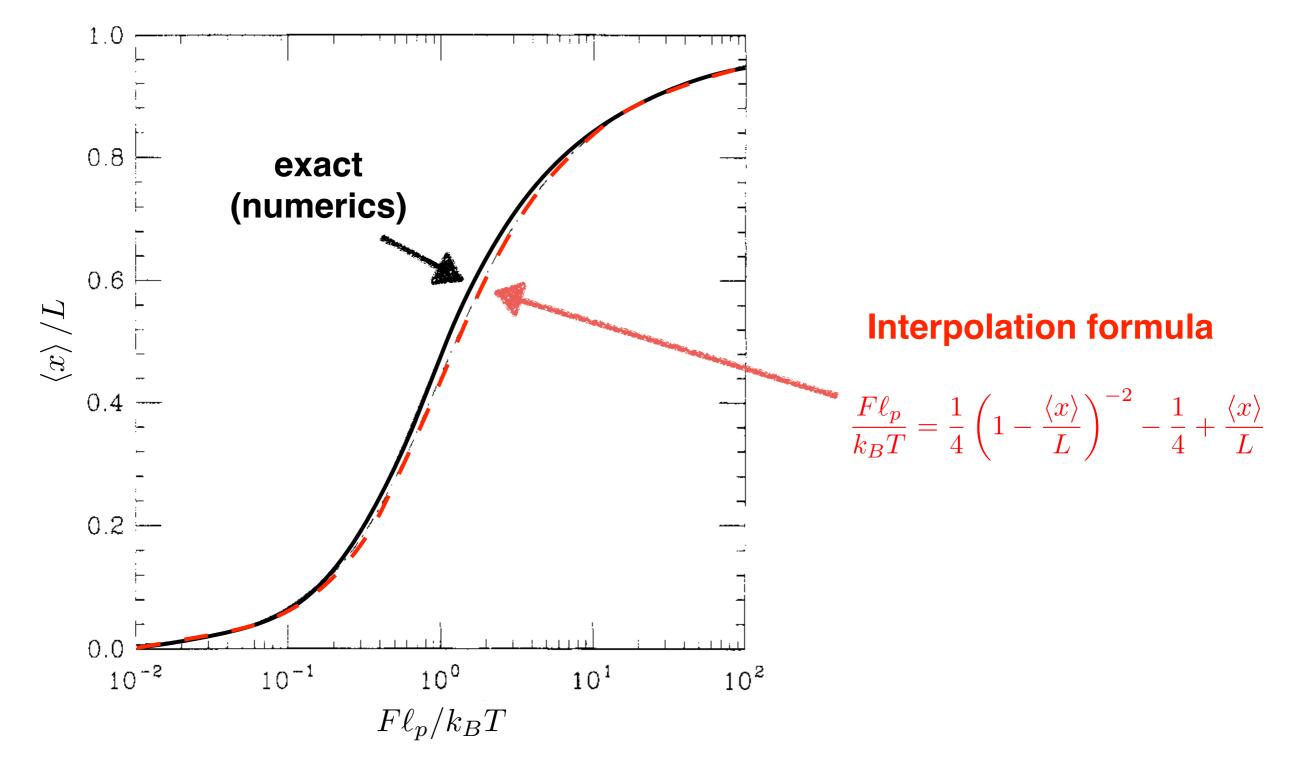
Approximate expression that interpolates between both regimes

$$\frac{F\ell_p}{k_BT} = \frac{1}{4} \left(1 - \frac{\langle x \rangle}{L} \right)^{-2} - \frac{1}{4} + \frac{\langle x \rangle}{L}$$

17

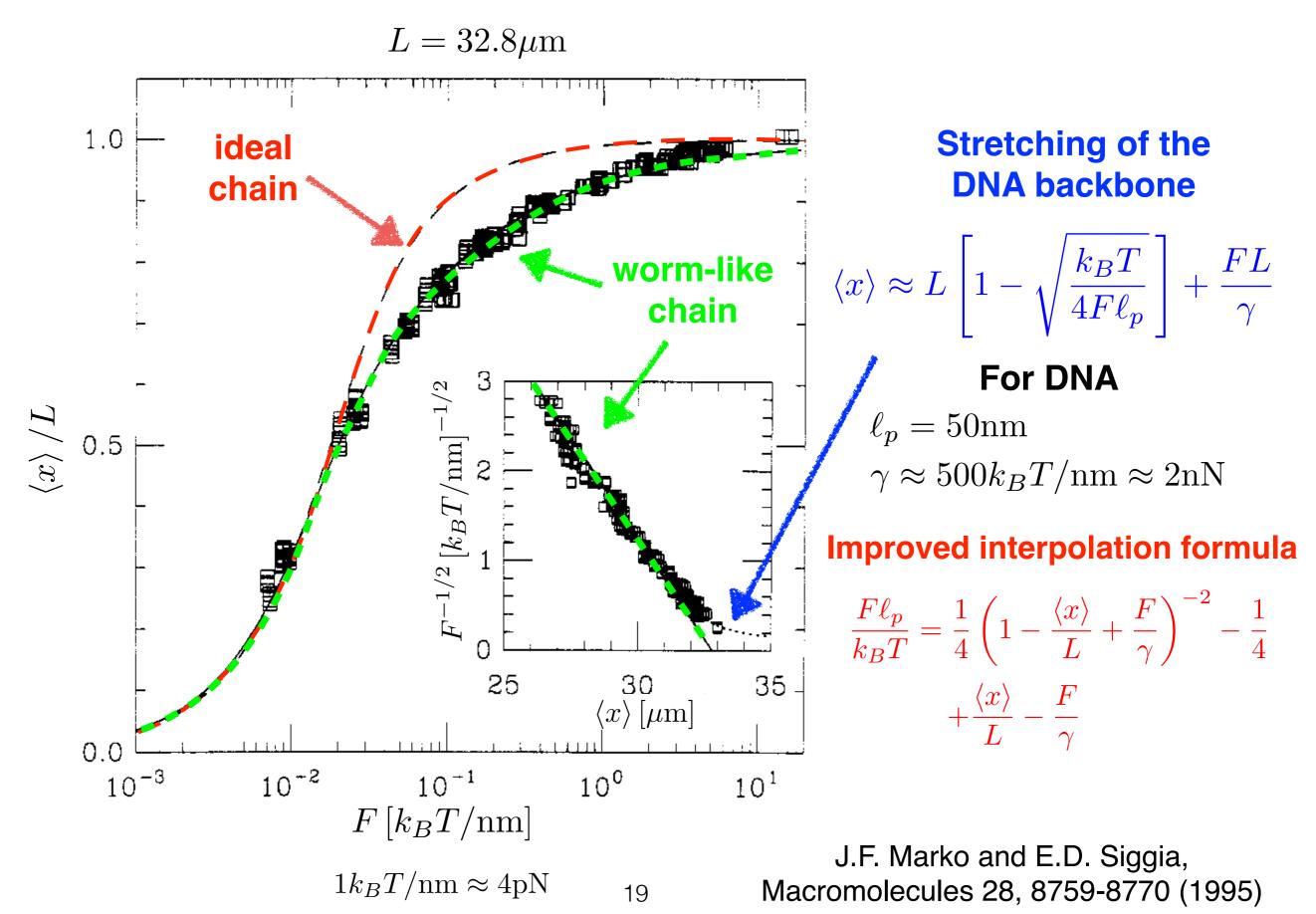
J.F. Marko and E.D. Siggia, Macromolecules 28, 8759-8770 (1995)

Stretching of worm-like chains



J.F. Marko and E.D. Siggia, Macromolecules 28, 8759-8770 (1995)

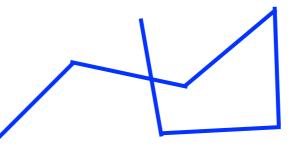
Experimental results for stretching of DNA



Steric interactions

So far we ignored interactions between different chain segments, but in reality the chain cannot pass through itself due to steric interactions.

Example of forbidden configuration in 2D



Polymer chains are realizations of self-avoiding random walks!

Steric interactions are important for long polymers in the absence of pulling forces

Steric interactions are not important in the presence of pulling forces.

20



Paul Flory

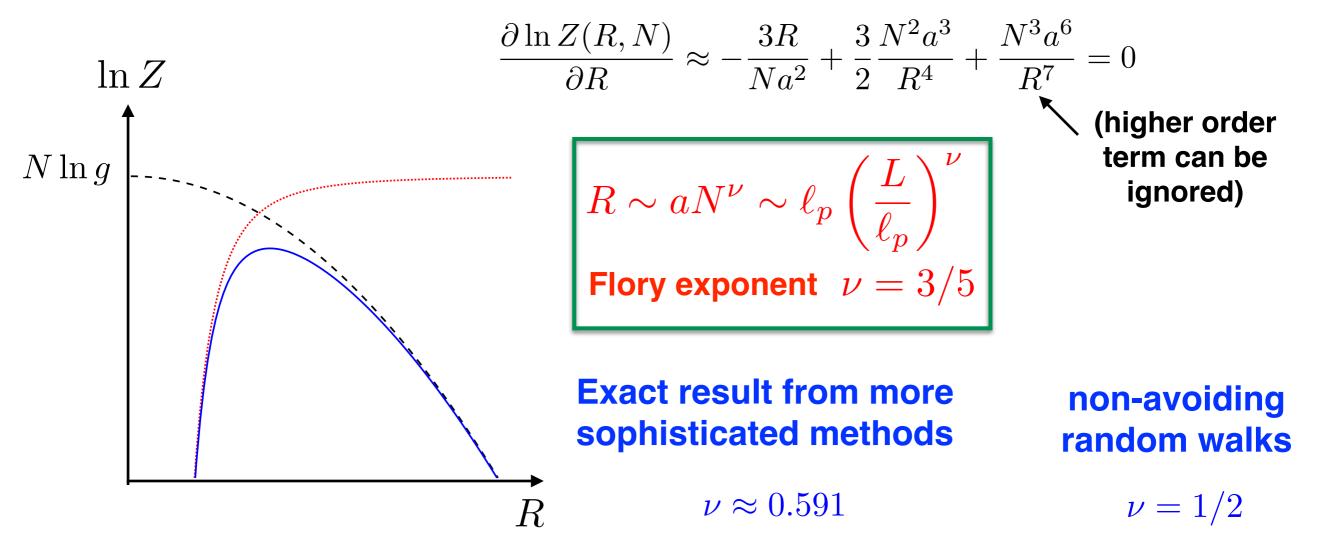
R

Mean field estimate for the radius of self-avoiding polymers

Approximate partition function

$$\ln Z(R,N) \approx N \ln g - \frac{3}{2} \ln(2\pi N a^2/3) - \frac{3R^2}{2Na^2} - \frac{N^2 a^3}{2R^3} - \frac{N^3 a^6}{6R^6}$$

Estimate polymer radius by maximizing the partition function



Paul Self-avoiding walks in *d* dimensions Flory

Approximate partition function

$$Z(R,N) \approx g^N \times \frac{e^{-dR^2/2Na^2}}{\left[2\pi Na^2/d\right]^{d/2}} \times \left[1 \cdot \left(1 - \frac{a^d}{R^d}\right) \cdot \left(1 - \frac{2a^d}{R^d}\right) \cdots \left(1 - \frac{(N-1)a^d}{R^d}\right)\right]$$

$$\ln Z(R,N) \approx N \ln g - \frac{d}{2} \ln(2\pi N a^2/d) - \frac{dR^2}{2Na^2} - \frac{N^2 a^d}{2R^d}$$

Estimate *R* by maximizing the partition function

$$\frac{\partial \ln Z(R,N)}{\partial R} \approx -\frac{dR}{Na^2} + \frac{d}{2} \frac{N^2 a^d}{R^{d+1}} = 0$$
$$R \sim a N^{\nu} \qquad \nu = \frac{3}{d+2}$$

For $d \ge 4$ Flory exponent is $\nu \le 1/2$, but for non-avoiding walk $\nu = 1/2$. For $d \ge 4$ excluded volume is irrelevant!

d	1	2	3	≥ 4
ν	1	3/4	3/5	1/2

Note: except for *d*=3 these exponents are exact!