MAE 545: Lecture 4 (9/29)

Statistical mechanics of proteins



Ideal freely jointed chain

N identical unstretchable links (Kuhn segments)
of length a with freely rotating joints

In first part of the lecture we will ignore
interactions between different segments:
e.g. steric interactions,
van der Waals interactions, etc.



Ideal freely jointed chain

N identical unstretchable links (Kuhn segments)
of length a with freely rotating joints

What are statistical properties of the end to end vector R?

Statistical mechanics

partition function
(sum over all possible /4 = Z e~ Be/kpT
chain configurations) c

o—Be/kpT
expected value of (0) =)0,
observables c Z

For ideal chain all configurations have
zero energy cost and contSribute equally!

energy of a given

¢ configuration

T temperature
Boltzmann
B constant

kg =1.38 x 10723JK !



Ideal freely jointed chain
N identical unstretchable links of length a with freely rotating joints

Each ideal chain configuration is a realization of random walk.

individual links () =0 (77) = a”

N
end to end = - =g —
distance R = Z T <R> =0 <R2> = Na’

1=1

For large N the probability distribution for & approaches

R’ ~ 1 > 6—1?/(2]\&:?/3) Note: not accurate in tails
b - (27TNCL2/3)3/2 of distribution where

IR| ~ Na



Ideal freely jointed chain

Statistical mechanics
E./kgT

<ém> B Zé?e_ 7

<Rm> = /dgﬁ R™ x ( 12/ )3/2 % o~ R?/(2Na?/3)
2nNa</3

W_/

proportional to the number of random
walks with end to end distance 7 .




Stretching of ideal freely jointed chain

fixed
end

Each chain configuration is a realization of biased random walk.

Work due to external force W=F-R

Statistical mechanics

partition function 7 = Z e~ (BEe=We)/kpT _ Z o~ (Be=F-Re)/kpT

C

., o—(Ec—F-R.)/kpT

average end to 5\ _ . Ta InZ
end distance <R> 2T Z TR

&



Bias for a single chain link

™

e : Y d(cos 6) sinh (Fa/kgT)
7. — —Facos0/kpT __ B
partition function 1 /_ Ty FalhgT
. . . ] 1 +FacosO/kpT
bias in direction (x1) = / d(C;S %) X acosf x - Z
of force ! :
F kT
(x1) = a (coth T _IB Langevin function
kBT Fa
1 —
08l small force Fa<kpT
() ~ Fa?
=06} U kT
S04l large force  Fa > kgT

0.2}

0

012345678 910
Fa/kBT /

kT
<$1>%a—%



Stretching of ideal freely jointed chain

end

Exact result for stretching of ideal chain
- - Fa B kBT
() = N {(x1) = Na (COth [kBT] o )
L NFa? _F entropic spring 3kgT
small force (z)~ ST = T i constant k N3
Gaussian approximation

7 = /d3ﬁ [ 12/ ]3/2 o~ B2/(2Na?/3)  F-R/kpT _ ,NF?a®/6k}T?
2rNa*/3

Olnz B N Fa?
OF  3kgT

Gaussian approximation is only valid for small forces!

<$> = kBT
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Experimental results for stretching of DNA
L = 32.8um

| T T T ITTr-E R |||I1| 1 T = Tri_[;: |

1.0 — o Ideal chain fails to
explain experimental

data at large forces!

Ideal chain predicts
' N <QZ> ~ 1 :ZCBT
-~ Fa

|
~
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F kT /nm]

1kgT /nm ~ 4pN

J.F. Marko and E.D. Siggia,
9 Macromolecules 28, 8759-8770 (1995)



Worm-like chain

Coordinate along the chain
s e |0, L]
Position vector
7(s)
Unit tanget vector

fls) = 0

Radius of curvature

Unstretchable chain of length L, but energy cost of bending is included.
2

k [F 1 kY| dE(s) bending modulus
Ebend — — ds 5 — — ds K
2 Jo  R(s) 2 /s ds
Example: energy cost for K L ™ K
bending of chain to semicircle Epend = 9 X R2 — o T
Thermal fluctuations can easily
bend chains that are longer than
K
< > L> &y = kT Fyena < kT
2R=2L/7
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Worm-like chain
Persistence length

T —> <F(s) (s + 0)) = e~ |61/ tp
K
[
P kgT
= Example: DNA at room temperature
t ¢, ~ 50nm
Distribution of end to end distances
L
7(L) = / ds t(s) (L)) =0
L L 0 L L L L
<77(L)2> — </ ds1 t(s1) / dss 5(32)> :/ d51/ dss <f(51) .{’(32)> :/ dsi | dsge 51752/t
0 0 0 0 0 0
. 14 _ 2Lk
2\ __ p Y723 Y [ — Y -
(F(L)?) = 20, L [ -2 (1—e )] b () =2 =
This Is equivalent to ideal chain for T"
L = Na a =20, length of Kuhn segment Polymers shrink,

PR 5 when temperature

11



Stretching of worm-like chains

In order to calculate the response of worm-like chains to
external force, we need to evaluate partition function

Z — Z B_Ebend(c)/kBT

’ Oln Z
<$> — kBT Yo

This is very hard to do analytically for the whole range of forces,
but we can treat asymptotic cases of small and large forces.
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Stretching of worm-like chains at small forces

L
T

Fl, < kT

At small forces Gaussian approximation works well

N Fa? B 2L, B 2F LK F

VN ST T kT BISTE — k

entropic spring constant
kT 3k%T?

| = —
210, 2Lk
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Stretching of worm-like chains at large forces
Fl, > kT

2 t
fixed
end

At large forces chains are nearly straight and oriented along x direction.

() = /1~ Ay ()% — Au(5)2% + Ay ()5 + As(5)z

Ay(s),AL(s) < 1
Bending energy to the lowest order in Ay and A..

L Y L 2 2]
K dt(s K dA, (s dA. (s
Ebend p— 5/ dS ( ) > 5/ dS ( dys( )> —I— ( ds( )>
0 0

ds
Work due to external forces to the lowest order in Ay and A..
L L

W:ﬁ-F(L):/O dsﬁ-f(s)%FL—/O dsg[Ay(S)qu(s)z}
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Stretching of worm-like chains at large forces
Fl, > kT

2

t

F

fixed
end

Free energy to the lowest order in Ay and A..
dAy(s)>2 N (dAZ(s)>2
( ds ds

Rewrite free energy in terms of Fourier modes

Lds q=2mm/L

Aya(s) =3 €A, (q) Ape(a) = [ FeT04y2(5) 1.
q 9 9

1 L
E:Ebend—W%—FL—l—§/ds (/-4;
0

+ F[A,(s)* + Az(s)ﬂ)

- 1 2 1 2 1 2
B ~FL+3 D UF+ ) 14,(@) +|4.(a)P|
From equipartition theorem we can find average fluctuations of A, and A:

<!z‘1y(Q)!2> = <]A2(q)\2> = L(;iJ;QZ)
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Stretching of worm-like chains at large forces
Fl, > kT

: 3
Vi, W -
fixed

end

At large forces chains are nearly straight and oriented along x direction.

From equipartition theorem we can find average fluctuations of Ay, and A:

(14,(@)?) = (|A-(a)?) ~ L(;iquQ)

Stretching due to large force is

- [Ay(S)Q_QI_Az(S)Q}:|> I gz [<V~ly(q)\2> 4 <‘Az(q)‘2>:|

q

kT ' kT
Y~ L |1 =1 |1 —
< > |: 2’\/ F/i:| ] \/4F€p_

16

(x) ~ </0Lds




Stretching of worme-like chains

E — - ﬁ i
Small force Large force
ng L kT Ffp > kT
2L/ ' kT
r) ~ L o ~7 |1~
@~ LT () \/4F%p

Approximate expression that interpolates between both regimes

zwp__1( C@)Q 1 ()

keT 4 4 L

L

J.F. Marko and E.D. Siggia,
17 Macromolecules 28, 8759-8770 (1995)



Stretching of worme-like chains

1.0
-

—

0.8 L

-
0.6 —

T

exact
(numerics)

18

Fe, 1 (1 ) <x>>2 B i n @)

Interpolation formula

keT 4 I i3

J.F. Marko and E.D. Siggia,
Macromolecules 28, 8759-8770 (1995)



Experimental results for stretching of DNA

L = 32.8um
| — |||Tr‘rij L AL |||||1| T i
1.0 —  ideal — -~ Stretching of the
i gr DNA backbone
: _ ksT | FL
- ~ L |[1— —
: ) \Varg, | T
i / For DNA
0.5 — / ¢, = 50nm
v =~ 500kpT /nm =~ 2nN
) /' | Improved interpolation formula
: Fo, _1() @) FNT 1
kpT 4 L v 4
‘ L F
00 L Jlin|| L1 ||;||‘ i ;_111111| I ‘ L ’)/
107° 107" 1071 10° 10!

F kT /nm]
J.F. Marko and E.D. Siggia,
1kpT /nm ~ 4pN 19 Macromolecules 28, 8759-8770 (1995)



Steric interactions

So far we ignored interactions between different chain segments, but in
reality the chain cannot pass through itself due to steric interactions.

Example of forbidden
configuration in 2D

Polymer chains are realizations of self-avoiding random walks!

Steric interactions are Steric interactions are not
important for long polymers in important in the presence
the absence of pulling forces of pulling forces.



Mean field estimate for the radius
Flory of self-avoiding polymers

Approximate partition function: estimate number of

R  self-avoiding random walks of N steps of size a that are
restricted to a sphere of radius R.

—3R?/2Na? 3 243 N — 1)g3
~ gV« € N (207 )a
AR N) = g7 2 Na2/3P 2 [1 (1 RS) (1 RS) (1 R3 )]

total number of
random walks

reduction in entropy
when constrained to
sphere of radius R

reduction in
entropy due to
excluded volume

Excluded volume effect

R D LR PR o B I S
N R3 £~ \ R} 2RS 2R3 6RS
Approximate partition function

3 3R N?ag3> N3ab

N 2
an(R,N)~N1ng—§ln(27TNa /3)—m— SR3 6RO
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Mean field estimate for the radius
Flory of self-avoiding polymers

Approximate partition function

R 2 2 3 3,6
3 5 3R N<a N-a
an(R,N)%Nlng—ﬁln(QﬂNa /3)—m——2R3 ~ GRS

Estimate polymer radius by maximizing the partition function
OlnZ(R,N) 3R  3N?%a® N°°

InZ ok~ Na? "2 Ri "R D
4 \ (higher order
Nlng|. I\V term can be
_ R~ aNV ~ ¢ -~ ignored)
p gp
Flory exponent v = 3/5
Exact result from more non-avoiding
sophisticated methods random walks

>
R v~ 0.591 v=1/2
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paui  Self-avoiding walks in d dimensions
Flory

Approximate partition function

—dR?/2Na? d d _ d
[27_‘_Na2/d]d/2 Rd Rd Rd

d dR?  N?%qg¢
an(R,N)%Nlng—iln(QﬂNaz/d)— 1 ‘

2N a? 2Rd
Estimate R by maximizing the partition function

OmZ(RN) ~ dR | d N?a* 0
OR " Na?2 2 R+l

V—i
d+2

R~ aN"

For d > 4 Flory exponent is v < 1/2, but for non-avoiding walk » = 1/2.
For d > 4 excluded volume is irrelevant!

d 1 2 s (=4 Note: except for d=3 these
v | 1 |13/413/5(1/2 exponents are exact!
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