MAE 545: Lecture 6 (10/6)

Growth dynamics of actin filaments and microtubules

Cytoskeleton in cells

Cytoskeleton matrix gives the cell shape and mechanical resistance to deformation.

(wikipedia)

Actin filaments

Actin growth

Distribution of actin filament lengths

total rate of actin monomer addition

total rate of actin monomer removal

$$k_{\rm off} = k_{\rm off}^+ + k_{\rm off}^-$$

 $k_{\rm on} = k_{\rm on}^+ + k_{\rm on}^-$

Master equation

$$\frac{\partial p(n,t)}{\partial t} = k_{\rm on}[M]p(n-1,t) + k_{\rm off}p(n+1,t) - k_{\rm on}[M]p(n,t) - k_{\rm off}p(n,t)$$

Continuum limit

at large concentrations actin grows (v > 0)

$$[M] > \frac{k_{\text{off}}}{k_{\text{on}}} = [M]_{\text{ss}}$$

 $\frac{\partial p(n,t)}{\partial t} = -v \frac{\partial p(n,t)}{\partial n} + D \frac{\partial^2 p(n,t)}{\partial n^2} \qquad \begin{array}{c} \text{diffusion constant} \quad v = n_{\text{on}} \sum_{j=1}^{n} \frac{\partial p(n,t)}{\partial n^j} + k_{\text{off}} \right)/2$ drift velocity $v = k_{on}[M] - k_{off}$

> at low concentrations actin shrinks (v < 0) $[M] < \frac{k_{\text{off}}}{k} = [M]_{\text{ss}}$

Distribution of actin filament lengths

total rate of actin monomer addition

total rate of actin monomer removal

$$k_{\rm off} = k_{\rm off}^+ + k_{\rm off}^-$$

 $k_{\rm on} = k_{\rm on}^+ + k_{\rm on}^-$

What is steady state distribution of actin filament lengths at low concentration?

 $\frac{\partial p^*(n,t)}{\partial t} = -v \frac{\partial p^*(n,t)}{\partial n} + D \frac{\partial^2 p^*(n,t)}{\partial n^2} = 0 \quad \begin{array}{l} \text{drift velocity} \quad v = k_{\rm on}[M] - k_{\rm off} < 0 \\ \text{diffusion constant} \quad D = (k_{\rm on}[M] + k_{\rm off})/2 \end{array}$

average actin filament length

$$p^{*}(n) = \frac{|v|}{D} e^{-|v|n/D} = \frac{1}{\overline{n}} e^{-n/\overline{n}}$$
$$\overline{n} = \frac{D}{|v|} = \frac{(k_{\text{off}} + k_{\text{on}}[M])}{2(k_{\text{off}} - k_{\text{on}}[M])}$$

Actin filament growing against the barrier

Actin filament growing against the barrier

Microtubules

Microtubule dynamic instability

Wikipedia

Typical values in a tubilin solution of concentration $10 \mu M$:

 $v_g \approx 2\mu \text{m/min}$ $v_s \approx 20\mu \text{m/min}$ $r_{\text{cat}} \approx 0.24 \text{min}^{-1}$ $r_{\text{res}} \approx 3 \text{min}^{-1}$ First let's ignore all molecular details and assume that microtubules switch at fixed rates between growing and shrinking phases

$$\frac{\partial p_g(x,t)}{\partial t} = -v_g \frac{\partial p_g(x,t)}{\partial x} - r_{\text{cat}} p_g(x,t) + r_{\text{res}} p_s(x,t)$$
$$\frac{\partial p_s(x,t)}{\partial t} = +v_s \frac{\partial p_s(x,t)}{\partial x} + r_{\text{cat}} p_g(x,t) - r_{\text{res}} p_s(x,t)$$

(for simplicity ignore diffusion during individual growing or shrinking event)

What is the average growth speed and average diffusion constant for such dynamic system?

> M. Dogterom and S. Leibler, PRL 70, 1347-1350 (1993)

Fokker-Plank equation in Fourier spectrum

12

Master equation

$$\begin{split} \frac{\partial p(x,t)}{\partial t} &= -v \frac{\partial p(x,t)}{\partial x} + D \frac{\partial^2 p(x,t)}{\partial x^2} \\ \text{Fourier spectrum} \qquad p(x,t) &= \int \! dk d\omega \, e^{i\omega t - ikx} \tilde{p}(k,\omega) \\ i\omega \tilde{p}(k,\omega) &= +ivk \tilde{p}(k,\omega) - Dk^2 \tilde{p}(k,\omega) \\ i \left[\omega - vk - iDk^2 \right] \tilde{p}(k,\omega) = 0 \end{split}$$

Only those Fourier modes $\tilde{p}(k,\omega)$ are nonzero that satisfy dispersion relation

$$\omega(k) = vk + iDk^2$$

Initial condition

Time evolution
$$p(x,t) = \int dk \, e^{-ik(x-vt)} e^{-Dk^2 t} \tilde{p}(k,\omega(k))$$

At large times only small k components are relevant!

Master equation

 $\frac{\partial p_g(x,t)}{\partial t} = -v_g \frac{\partial p_g(x,t)}{\partial x} - r_{\text{cat}} p_g(x,t) + r_{\text{res}} p_s(x,t)$ $\frac{\partial p_s(x,t)}{\partial t} = +v_s \frac{\partial p_s(x,t)}{\partial x} + r_{\text{cat}} p_g(x,t) - r_{\text{res}} p_s(x,t)$

Average growth speed and average diffusion constant can be determined from dispersion relation for such system:

$$\omega(k) = \overline{v}k + i\overline{D}k^2 + \cdots$$

 \mathcal{X}

Master equation

$$\frac{\partial p_g(x,t)}{\partial t} = -v_g \frac{\partial p_g(x,t)}{\partial x} - r_{\text{cat}} p_g(x,t) + r_{\text{res}} p_s(x,t)$$
$$\frac{\partial p_s(x,t)}{\partial t} = +v_s \frac{\partial p_s(x,t)}{\partial x} + r_{\text{cat}} p_g(x,t) - r_{\text{res}} p_s(x,t)$$

Fourier spectrum

$$p_{g,s}(x,t) = \int dk d\omega e^{i\omega t - ikx} \tilde{p}_{g,s}(k,\omega)$$

$$i \begin{pmatrix} \omega - v_g k - ir_{\text{cat}} & ir_{\text{res}} \\ ir_{\text{cat}} & \omega + v_s k - ir_{\text{res}} \end{pmatrix} \begin{pmatrix} \tilde{p}_g(k,\omega) \\ \tilde{p}_s(k,\omega) \end{pmatrix} = 0$$

Only those Fourier modes are nonzero, that correspond to the matrix with zero determinant!

$$(\omega - v_g k - ir_{\text{cat}})(\omega + v_s k - ir_{\text{res}}) + r_{\text{res}}r_{\text{cat}} = 0$$

Dispersion relation

$$\begin{split} \omega(k) &= \frac{1}{2} \bigg(k(v_g - v_s) + ir_{\text{cat}} + ir_{\text{res}} \bigg) \\ &\pm \frac{i}{2} \sqrt{(r_{\text{cat}} + r_{\text{res}})^2 + 2ik(r_{\text{cat}} + r_{\text{res}})(v_g + v_s) - k^2(v_g + v_s)^2} \end{split}$$

We are interested in effective behavior at large timescales, which correspond to small ω . Taylor expand for small *k* to find:

$$\omega(k) = \overline{v}k + i\overline{D}k^2 + \cdots$$

average diffusion constant

$$\overline{D} = \frac{r_{\rm res} r_{\rm cat} (v_g + v_s)^2}{(r_{\rm res} + r_{\rm cat})^3}$$

average growth speed

$$\overline{v} = \frac{r_{\rm res}}{(r_{\rm res} + r_{\rm cat})} v_g - \frac{r_{\rm cat}}{(r_{\rm res} + r_{\rm cat})} v_s$$
probability
probability
probability
of growing
probability
of shrinking

 v_{g} growth

$$p_g^*(x) = \frac{v_s}{(v_g + v_s)} \frac{1}{\overline{L}} e^{-x/\overline{L}}$$
$$p_s^*(x) = \frac{v_g}{(v_g + v_s)} \frac{1}{\overline{L}} e^{-x/\overline{L}}$$

$$\overline{L} = \frac{v_g v_s}{(v_s r_{\rm cat} - v_g r_{\rm res})} \propto \frac{1}{|\overline{v}|}$$

average filament length

average growth speed

