
MAE 545: Lecture 6 (10/6)

Growth dynamics of actin 
filaments and microtubules
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Cytoskeleton in cells

Actin filament

Microtubule

(wikipedia)

Cytoskeleton matrix gives the cell shape 
and mechanical resistance to deformation.
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7nm

Actin filaments

Persistence length `p ⇠ 10µm

Minus end
(pointed end) Plus end

(barbed end)

Typical length L . 10µm

Actin treadmilling

actin
monomer



Dynamic fi laments423

    Fig. 11.12      (a) If [ M ] c  
+  = [ M ] c   

−
  , both fi lament ends grow or shrink simultaneously. (b) If [ M ] c  

+   ≠  [ M ] c   
−
  , there is 

a region where one end grows while the other shrinks. The vertical line indicates the steady-state 

concentration [ M ] ss  where the fi lament length is constant.  

the same time as the minus end shrinks. A special case occurs when the two 

rates have the same magnitude (but opposite sign): the total fi lament length 

remains the same although monomers are constantly moving through it. 

Setting d n  + /d t  = −d n  − /d t  in Eqs. (11.5), this steady-state dynamics occurs at 

a concentration [ M ] ss  given by 

   [ M ] ss  = ( k  off  
+  +  k  off  

− ) / ( k  on  
+  +  k  on  

− ).    (11.7)  

 Here, we have assumed that there is a source of chemical energy to phos-

phorylate, as needed, the diphosphate nucleotide carried by the protein 

monomeric unit; this means that the system reaches a steady state, but not 

an equilibrium state. 

 The behavior of the fi lament in the steady-state condition is called tread-

milling, as illustrated in  Fig. 11.13 . Inspection of Table 11.1 tells us that 

treadmilling should not be observed for microtubules since the critical con-

centrations at the plus and minus ends of the fi lament are the same; that 

is, [ M ] c  
+  = [ M ] c  

−  and the situation in  Fig. 11.12(a)  applies. However, [ M ] c  
−  is 

noticeably larger than [ M ] c  
+  for actin fi laments, and treadmilling should 

occur. If  we use the observed rate constants in Table 11.1 for ATP-actin 

solutions, Eq. (11.7) predicts treadmilling is present at a steady-state actin 

concentration of 0.17  µ  M , with considerable uncertainty. A direct meas-

ure of the steady-state actin concentration under not dissimilar solution 

conditions yields 0.16  µ  M  (Wegner,  1982 ). At treadmilling, the growth rate 

from Eqs. (11.5) is    

  d n  +  /d t  = −d n  −  /d t  = ( k  on  
+  •  k  off  

−  –  k  on  
−  •  k  off  

+ ) / ( k  on  
+  +  k  on  

− ),   (11.8)  

 corresponding to d n  +  /d t  = 0.6 monomers per second for [ M ] ss  = 0.17  µ  M .  
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Actin growth
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Distribution of actin filament lengths

k+
on

k+
o↵

k�
o↵

k�
on

total rate of actin 
monomer addition

k
on

= k+
on

+ k�
on

k
o↵

= k+
o↵

+ k�
o↵

total rate of actin 
monomer removal

Master equation
@p(n, t)

@t
= k

on

[M ]p(n� 1, t) + k
o↵

p(n+ 1, t)� k
on

[M ]p(n, t)� k
o↵

p(n, t)

Continuum limit
@p(n, t)

@t
= �v

@p(n, t)

@n
+D

@2p(n, t)

@n2

v = k
on

[M ]� k
o↵

D = (k
on

[M ] + k
o↵

)/2

drift velocity
diffusion constant

at large concentrations 
actin grows (            )          

[M ] >
k
o↵

k
on

= [M ]
ss

v > 0

at low concentrations 
actin shrinks (            )          v < 0

[M ] <
k
o↵

k
on

= [M ]
ss



6

Distribution of actin filament lengths
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What is steady state distribution of actin 
filament lengths at low concentration?
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Actin filament growing against the barrier
work done against the 
barrier for insertion of 

new monomer

W = Fa

effective monomer free energy  
potential without barrier

away from
filament

attached
to the tip
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Actin filament growing against the barrier
work done against the 
barrier for insertion of 

new monomer

W = Fa

effective monomer free energy 
potential with barrier
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Growth speed of the tip
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Microtubules

25nm

Persistence length 
Typical length L . 50µm

`p ⇠ 1mm
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Microtubule dynamic instability

Wikipedia

catastrophe occurs 
when protective 
cap disappears
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Simple model of microtubule growth

What is the average growth speed 
and average diffusion constant 

for such dynamic system?

First let’s ignore all molecular details 
and assume that microtubules 
switch at fixed rates between 

growing and shrinking phases

(for simplicity ignore diffusion during 
individual growing or shrinking event)
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M. Dogterom and S. Leibler,
PRL 70, 1347-1350 (1993)

Typical values in a tubilin 
solution of concentration          :10µM

vg ⇡ 2µm/min

vs ⇡ 20µm/min

rcat ⇡ 0.24min�1

rres ⇡ 3min�1
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Fokker-Plank equation in Fourier spectrum
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Average growth speed and average 
diffusion constant can be determined 

from dispersion relation for such system:

Master equation
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!(k) = vk + iDk2 + · · ·

Simple model of microtubule growth
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Master equation
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Simple model of microtubule growth
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Only those Fourier modes are nonzero, that 
correspond to the matrix with zero determinant! 
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vg

vs

x

rres rcat

Simple model of microtubule growth
Dispersion relation

± i
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We are interested in effective behavior at large 
timescales, which correspond to small    . 

Taylor expand for small k to find:      
!

average growth speed average diffusion constant
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Simple model of microtubule growth

average growth speed
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