MAE 545: Lecture 17 (4/20)
Receptor mediated endocytosis
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Random walks




Viral entry to cell via receptor
mediated endocytosis

(density n;) (density ng)

ligand receptor envelope
protein
viral capsid imi
Eirﬁﬁm < " ol (similar
deltvery process l_nay
} help during
l Budding bUdding of
enveloped
viruses)

lipid bilayer

Bending energy cost and loss of entropy for receptors is
compensated by the binding energy between cell
receptors and ligands on the surface of viral capsid.

G. Bao and X.R. Bao,
PNAS 102, 9997 (2005)



Viral entry to cell via receptor
mediated endocytosis

A

2R nz ~ 5000um = * total number of ligands
2
density of ligands N =47 R°ny,
v
h SEEEEL. AN AN SENNEL AN AN —

no ~ 50-500m ™2
density of receptors

bending - o
energy Ebend =0 Ebend = 87K

binding energy of

— .= _N
ligand-receptor pairs Ebing = 0 Lind LU

free energy due to
mixing of receptors

Gmix — NkBTln(nOAQ) Gmix :(N — NL)kJBTlIl(n()AQ)
-+ NL]CBTID(HLA())

total change of | ’
free energgy AG = 87T/£—NLU5+NLkBT1n(nL/nO)

H. Gao et al., PNAS 102, 9469 (2005) 3




Viral entry to cell via receptor
mediated endocytosis

A

ny ~ 5000,&111_2 total number of ligands

2R 2
density of ligands N =4nRnp,

\4

h I AN AN AN RN N d ———
no ~ 50-500m ™2
density of receptors

receptor-ligand total change of free energy
binding energy
~ 15kgT
Up ~ 15k l AG = 8nk — 4T R*n Uy + 4n R°kpTny, In(ny /ng)
bending rigidity
K~ 20kpT Receptor mediated endocytosis is

thermodynamically favorable when AG <0«

2K
R> ~ 30nm | &
\/nL (Up — kT In(ng, /ng))

H. Gao et al., PNAS 102, 9469 (2005) +  How fast is this process?



Viral entry to cell via receptor

mediated endocytosis H. Gao et al, PNAS

Side view: 102, 9469 (2005)

A

ny, ~ 5000pm 2
density of ligands

2R

v

e

no ~ 50-500um ~*
' 2
density of recepto.rs B> K 30 nm
Top view: nr (Up —ksT In(nr/no))

Need to recruit N. receptors from
circular region of radius L via diffusion

i N; = wl°ng = 47 R*n;

L2 RQnL
Fro 2 > 10
D"~ Dng ~




Use of magnetic nanoparticles for
diagnostic and treatment of tumors

Receptors for LHRH hormone are over-expressed
in breast, ovarian, and prostate cancer cells

LHRH hormone M ti ticl nter onl ncer cells
PEG coating agnetic particles enter only cancer ce

magnetic core ~ Via LHRH-receptor mediated endocytosis

PEG coating shields nanoparticles
from immune system and prevents
macro-clustering of nanoparticles.

Cancer cells containing magnetic
nanoparticles can be detected with MRI
(magnetic resonance imaging). Then TAAE ALl & L
magnetic particles can be heated via FERBAE men
magnetic field to destroys cancer cells. ST

J. Meng et al., Mater. Sci.
Eng. C 29, 1467 (2009)
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Random walks

Brownian motion
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Polymer random coils

Swimming of E. coli

Protein search for a
binding site on DNA




Brownian motion of small particles

1827 Robert Brown: observed irregular motion of
small pollen grains suspended in water
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https://www.youtube.com/watch?v=R5t-0A796t0

1905-06 Albert Einstein, Marian Smoluchowski:
microscopic description of Brownian motion and
relation to diffusion equation
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https://www.youtube.com/watch?v=R5t-oA796to

Random walk on a 1D lattice

l1—gq
/\/\

—50—40 —-30—-2¢0 —¢ 0 (¢ 2¢ 3¢ 4¢ BL
At each step particle jJumps to the right with

probability g and to the left with probability 1-q.

sample trajectories for q=1/2 sample trajectories for q=2/3
(unbiased random walk) (biased random walk)
100 100 . . .
80 % 80
60 | i; 60 |
< ? Z
40| % - 40|
20/ N S 2
5
0 - = - 0 - - -
-20 -10 0 10 20 -50 -25 0 25 50

x/l 9 x/l



Random walk on a 1D lattice

l1—gq
/\/\

T T T @ T 7

—o0—40 =30 —-2¢ —¢ 0O ¢ 20 3¢ 4¢ BHL

At each step particle jJumps to the right with
probability g and to the left with probability 1-q.

What is the probability p(x,N) that we find
particle at position x after N jumps?

Probability that particle makes k
jumps to the right and N-k jumpsto | p(k,N) = (k ) ¢"(1— )" "
the left obeys the binomial distribution

| x =kl — (N —k)l=(2k— N
Relation between k and .

particle position x: Lo - ( N+ f)
2 14

10



Random wlalk on a 1D lattice
AN
T ®T—TT T 1

—ol —40 =30 —-2¢ —¢ 0 ¢ 20 3¢ 4¢ 5S¢

unbiased random walk biased random walk
q=1/2, N=1 N\ & N—k 2B
0.5} o I-Iexlactl — | p(k’ N) — (k)q (1 o Q) 0.5} !‘é"a"t. imation| ]
—@Gaussian approximation 1 aussian approximation
04 ]{::—(N—I——) Ao.4
Zﬁ 0.3} ] 2 ¢ < 03}
S 05 Note: exact discrete 2
ISP . . . 0.2
distribution has been made
01 continuous by replacing 0.1}
0 ———— — discrete peaks with boxes L
1210-8 6-4-2 0 2 4 6 8 1012 6 4
z/l whose area corresponds to °42 02 Z/z 1012141618 20
=1/2, N=20 the same probability. q=2/3, N=20
i  [Elexc tl — ] 0.5} - '-'exalCt.' | N
0-5 !éx:ucssian approximation =als anippicanelon
0.4} o
Z 03l after several steps the =
goz probability distribution & ,
LT 4 0.2} ; 1
< - spreads out and becomes \Y;
| ___‘__ approximately Gaussian °'| ‘
0 ‘
-1210-8 -6 -4 -2 0 2 4 6 8 1012 %6 420246 8101214 16 18 20
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Gaussian approximation for p(x,N)

l1—gq
/\/\

—o0—40 =30 —-2¢ —¢ 0O ¢ 20 3¢ 4¢ BHL

Position x after N jumps can be expressed N
as the sum of individual jumps z; € {4, /}. L = Z X

N
Mean value averaged over

all possible random walks () = ; (x;) = N (z1) = N (¢f — (1 — q)¢)

(x) = Nl (2q — 1)

Variance averaged over all ;2 = (32} — ()? = No? = (
possible random walks , , , >
o = N (g + (1 - ) = (21 )

‘02 = 4N/Pq(1 — q)‘

According to the central limit 7 —
theorem p(x,N) approaches p(x, N) ~ 2@—(fc—<x>> /(207)
Gaussian distribution for large N: 1 210




Number of distinct sites visited
by unbiased random walks

’---

o ;

Total number of sites inside
explored region after N steps

1D Not x VN In 1D and 2D every
site gets visited after
2D Ntot X N d Iong time

In 3D some sites are

3D Nyt x NVN never visited even
after a very long time!

Shizuo Kakutani: “A drunk man will find his way
home, but a drunk bird may get lost forever.”

1D NViS%\/SN/TF

Number of distinct visited
2D Nyis =~ TN/ 1In(8N)

sites after N steps
3D Nvis ~ (.66 V
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Master equation

l1—q ¢
Y N/ "\

T T T @ T T 17

—o0—40 =30 —-2¢ —¢ 0O ¢ 20 3¢ 4¢ BHL

Master equation provides recursive relation for the
evolution of probability distribution, where I1(x, y)
describes probability for a jump from y to x.

p(a, N +1) =3 (2, y)p(y, N)

For our example the master equation reads:
p(z, N +1)=qp(x —{,N)+ (1 —q)p(z + £, N)
Initial condition: p(x,0) = d(x)

Probability distribution p(x,N) can be easily obtained
numerically by iteratively advancing the master equation.

14



Master equation and Fokker-Planck equation

l1—q ¢
Y N/ "\

IR S . Ry

—50—40 —30 =20 —¢ O £ 2¢ 30 40 S
Assume that jJumps occur in regular small time intervals: At
Master equation:
plx,t+ At) =gp(x —0,t) + (1 — q) p(z + £, t)

In the limit of small jumps and small time intervals, we can Taylor expand
the master equation to derive an approximate drift-diffusion equation:

Op op , 0%p - ,0p 282
p+At§_q<p gé‘az ' §€ 8x2)+(1_Q) (p o §€ 02

- Fokker-Planck equation:
S| op (9]0 0%p

_— v n n
ot O o2 dlffu_S|_on n_ (2
coefficient INAL

drift velocity v = (2q — 1)Kt

15




Fokker-Planck equation

e NN
1T ® T T T

—Hl—40 =30 -20 —¢ O £ 20 3¢ 4 B/

In general the probability distribution II of jump T (5|:1:)
lengths s can depend on the particle position x

Generalized master equation:
pla,t+At) =Y H(sle — s)p(x - 5,1)

Again Taylor expand the master equation above
to derive the Fokker-Planck equation:

op(x,1t) 0 O?
L = —— |v(z)p(x, t)]| D(x)p(z,t
drift velocity diffusion coefficient
(external fluid flow, external potential) (e.g. position dependent temperature)

vlr) = 3 il = S b= Y el = )



Lévy flights Lévy flight

Probability of T trajectory
: : (7)) — sI=, |§| > so B B
jump lengths in | 11(5) = § “1 ST e 0~ 55 D=
D dimensions ’ )
NormaI!z_atlon /dpgﬂ(g) 1 o> D
condition

Moments of #) =0 (52)— Apsé, a>D+2
distribution - 0o, a<D+2

Lévy flights are better strategy than 2D random walk

random walk for finding prey that is scarce trajectory

D. W. Sims et al.
Nature 451, 1098-1102 (2008)




Probability current
Fokker-Planck equation

02?5{;, t) _ _(% {v(az)p(x,t)} | 8851;22 {D(Qj)p(x,t)}

Conservation law of probability
(no particles created/removed)
op(z,t)  0J(z,1)

ot Ox
Probability current:

5= | D@t )]

Note that for the steady state distribution, where 0p™(x,t)/0t =0

the steady state current is constant and independent on x

9,

T = v(@)p () — 5 [D(:c)p*(a:)] — const

J(x,t) =v(x)p(x,t) —

Equilibrium probability distribution:

If we don’t create/remove “ (2) 1 { z ; v(y)
articles at boundaries then J*=0 ™ ¢ |p (T) exp / Yy
' D(x) o D(y)




Spherical particle suspended

Ul(z) in fluid in external potential
4 Newton’s law:
| | 0%z oU (x) |
m@ = —\v(x) Py F.

fluid external random
potential Brownian

drag
force force
. _ 0% x
For simplicity assume overdamped regime: EYo) ~
o’ Drift velocity ~ 10U(z)
. (v(z)) =
averaged over time A Ox
R particle radius o . o
Equilibrium probability distribution
n fluid viscosity

p*(ﬂf) _ Ce—U(x)/)\D _ CB—U(x)/kBT

)\ = 6mn R Stokes drag coefficient (see previous slide)  (equilibrium physics)

kB Boltzmann constant Einstein - Stokes equation

T  temperature ksT  kgT

D="2" —
19 A 6mn R

D diffusion constant




Translational and rotational diffusion
for particles suspended in liquid

Translational Rotational
diffusion diffusion
(%) = 2Dt (6%) = 2Dpt
Stokes viscous drag: A\ = 6mn R Stokes viscous drag: A\p = 87 R”
Einstein - Stokes Dy = kT Einstein - Stokes Dp = kpl’
relation 6mnR relation 8rnR3
Time to move one body length Time to rotate by 900
in water at room temperature in water at room temperature
3T R3 A R3
(42) ~ R e 1~ 511 (02) ~ 1 e o —
kgl kgl
R~ lpym et~ 1s Boltzmann constant k5 = 1.38 x 107*°J /K
. . ~ 10—3 —1_—1
20 room temperature ' = 300K




Fick!s IaWS Adolf Fick 1855
N noninteracting Local concentration
Brownian particles of particles c(x,t) = Np(x,t)

Fick’s laws are equivalent to Fokker-Plank equation
First Fick’s law

0
Flux of particles | J = vc — D—C

ox

Second Fick’s law

Diffusionof | 9c _ _9J 9| | 0 |,0c
particles | 9¢ Oz Oz

Generalization to higher dimensions

o = VI ==V (ct) + V- (DVo)

21



Further reading

SPRINGER SERIES Sprineer:
IN SYNERGETICS COMPLEXITY

Crispin Gardiner

Stochastic
Methods

Fourth Edition

A Handbook for the Natural
and Social Sciences

@ Springer
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NH PL

STOCHASTIC
PROCESSES IN

PHYSICS AND
CHEMISTRY

Third edtion

B N.G. VAN KAMPEN ¢

PERSONAL UERARY



E. coli chemotaxis

L. Turner, W.S. Ryu, H.C. Berg, J. Bacteriol. 182, 2793-2801 (2000)
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Escherichia coli

Toilis bl i il A o 1

o] K T i iy X

i e " *\ e ] .
.+ A*=—— flagella
F: B BT i .4 o g AR 11l

" : i i

L o ’

E. coli is a part of gut flora In normal conditions E. coli divide and
that helps us digest food. produce 2 daughter cells every ~20min.

Concentration of E. coli  ~ 10%cm 3 In one day one E. coli could

Total concentration of bacteria ~ 10'tcm™° produce ~7x1010 new cells!
24



Flagella filaments and rotary motors

Flagellum filament

left handed helix

helix diameter
d ~ 0.4um

A

length
L < 10pum

+—>

5
=

filament

L / diameter

~ 20nm

pitch
Ip ~ 2.3um

p———"
)
SN
e v =
N
e WA
4 &
N

Rotary motor

Tip

Hook

Filament

Junction L-ring

Outer membrane
—

Periplasmic
space

Inner membrane

MS-ring
C-ring

Type li <

secretion system 4 5
11111



Swimming of E. coli

swimming Vs ~ 20pm /8
speed
body spinning £, ~ 10Hz
frequency b
spinning

frequencyof  f ~ 100Hz
flagellar bundie

Thrust force generated by Torque generated by

spinning flagellar bundie spinning flagellar bundile
Fthrust — Fdrag ~ 67T77Rvs N = Ndrag ~ 87777R3Wb
Fthrust ~ O4pN = 4 X 10_13N N ~ 2pN I = 2 X 10—18Nm

sizeof E.coli R~ lum

water viscosity 7~ 10 °kgm~'s™!
26



How quickly E. coli stops if motors shut off?

swimming Vs ~ 20pm /s
speed

sizeof E.coli R~ lum

.wate[‘ N~ 10_3kg m—Llg—1
viscosity

mass of 4T R3p

E. coli my~ ~ 4pg

3

Newton’s law
mx = —6mnRx

E. coli stops almost instantly!

signature of low Reynolds numbers

Re =

Ty = VgT ~ 0.1A

27



Translational and rotational diffusion of E. coli

(%) = 2Dt <(92> = 2Dpt
Einstein - Stokes Einstein - Stokes
relation relation

_ kT 2 Dgr ~ kel ~ 0.2rad?/s
Dr =~ 6nnR 0.2pum* /s R™ SR /

After ~10s the orientation of
E. coli changes by 90° due

sizeof E.coli [t~ lpm to the Brownian motion!

water viscosity 1~ 10 3kgm !s7!
Boltzmann constant kp = 1.38 x 107%°J/K

temperature T'= 300K

28



E. coli chemotaxis

-~

Tumble

Run
swimming speed: v, ~ 20um/s

typical duration: ¢, ~ 1s
all motors turning counter clockwise

Increase (Decrease) run durations, when
swimming towards good (harmful) environment.

Tumble
random change in orientation (0) = 68°

typical duration: ¢; ~ 0.1s

one or more motors turning clockwise
29




_E. coli chemotaxis

Homogeneous environment

run duration: t, ~ 1s
tumble duration: ¢ ~ 0.1s
swimming speed: vs ~ 20um/s

drift effective diffusion
velocity
_(Ar)
vg=0 TN 6(AL)
V22
De ~ s’r ~ 60 2
ff 6(t, + 1) pm® /s

30

Tumble

A
Gradient in “food” concentration

run duration increases (decreases) when
swimming towards (away) from “food”

(7)) = Tr + alf - 2)(Dc)02)
drift velocity

(Az)  wvsa(dc/0z)
(AL 3(t, + tr)

(Az) = (v (R)tr (1)) = (s(7 - 2)t,(7))

Vg —



Sensing of environment

E. coli surface is covered with receptors, which can bind specific molecules.

Average fraction of bound receptors ps is related to concentration ¢ of molecules.

C

PB = —
¢+ ¢ 0

koff
Kon

Chemical sighaling network inside E. coli analyzes
state of receptors and gives direction to rotary motor.

&
periplasm . ‘

cytoplasm

’

........ 4 flagellar motors
Cher . *CHs . X /" (default = CCW)
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Diffusion limited flux of molecules to E. coli

\ l Fick’s law bourrc!ary
/ conditions
c(R) =0
/ I \ steady state flux density of molecules
c(r) = Coo [1 - %] J(r) = —p2d) _ _Deoolt
absorbing or r2
sphere rate of absorbing molecules

I(r) = J(r) x 47r® = —4nDRcoe = Iy = —konCoo

diffusion constant for

~ 103 2 4 3
small molecules 2~ 107 pm /s kon ~ 107 pm=/s

example R~ 1luym s~ 1nm  E. coli can use many

7 flux drops by factor 2 for types of receptors

I= . N — 7R/s ~ 3000 _specific for different

1+7R/Ns . / ™% molecules, without

fractional area covered by R
significantly
N absorbing these receptors

affecting the
disks of radius s (N7s?)/(4nR*) ~ 1073 diffusive flux

32



Accuracy of concentration measurement

How many molecules do we expect inside a volume occupied by E. coli?

N ~ R’c

Probability p(N) that cell measures N molecules follows Poisson distribution
—N -
N E—N — standard e

p(V) N mean N deviation Y
Error in measurement
ON _
Forr ~ ~ ~ (RSC) t/2 for c=1uM =6 X 10°m™ = Err ~ 4%

E.coli can be more precise by counting molecules for longer time L.
However, they need to wait some time 1 in order for the original molecules
to diffuse away to prevent double counting of the same molecules!

- N ~ Rct/tg ~ DRct .
to ~ R*/D ~107°s /to for t=1s, precision
Frr ~ (DRct)_1/2 improves to Err~0.1%

When E. coli is swimming, it wants to swim faster
than the diffusion of small molecules

vst > (D)2 =t > D/v? ~ 1s Molar concentration
33 1M =6 x 10°°m™3



How E. coli actually measures concentration?

Probability for motor to rotate in CCW direction (runs) as a function of time
In response to short pulse in external molecular concentration

.0

Input
concentration

0 15 20

Time (sec)

E. coli integrates measured concentration observed during the last second
and compare this with measured concentration during the previous 3
seconds. If difference is positive then increase the probability of runs,

otherwise increase the probability of tumbles.

J. E. Segall, S. M. Block, and H. C. Berg,
PNAS 83, 8987-8991 (1986) 34




Adaptation

Probability for motor to rotate in CCW direction (runs) as a function of time in
response to a sudden increase in external molecular concentration

1.0
Input
concentration
Vp
B 0.5}
a
O 1. | | 1 ]

0 2 4 6 8 10
' Time (sec)

E. coli adapts to the new level of concentration in about 4 seconds.
This enables E. coli to be very sensitive to changes in
concentration over a very broad range of concentrations!

J. E. Segall, S. M. Block, and H. C. Berg,
PNAS 83, 8987-8991 (1980) 35



How efficient is motor of E. coli?

Each proton gains energy due to

Energy source forrotary  p,nsmembrane electric potential difference

motor are charged protons

0 ~ —120mV
pH = 7.0 Change in pH
H* oU = (—2.3kgT /e)ApH ~ —50mV
- Total protonmotive force
Flament Ap =0+ 90U ~ —170mV
Edz Need 1200 protons per one body revolution
Input power

Pn =nxeAp x f=1200 x 0.17eV x 10Hz ~ 3.2 x 10°pN nm/s
Power loss due to Stokes drag

Piot = N x (27 f) = 4600pN nm x (207Hz) ~ 2.9 x 10°pN nm/s

Pirans = F x v = 0.4pN x 20000nm/s ~ 8 x 10°pN nm/s

MS-ring
C-ring

Type lll
secretion system

pH ~ 7.8 " Motor efficiency Ptra“;;r Frot

36
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pH value of solutions

HYOH | _ [Ho0)Keo(Tp) _ | 1
c2 N c2 -~
0 0 at room
co = 1M temperature

pH = —log; ([H+]/Co)
pOH = —log;, ([OH™|/¢p) ~ 14 — pH

How much free energy is changed when H+

goes to environment with different pH?
pH, pH,
H"——
po — pi1 = kpTIn ([H"]/[H™])
— 2.3026 kT’
p=r2"m o “— (pH, — pH,)
€0 €0

Nernst electric potential E .

BASE

ACID

Examples

Liquid drain cleaner
(pH=14)

Bleaches, oven cleaner, lye
(p H=1 3.5)

Ammonia solution
(pH=10.5-11.5)

Baking soda
(pH=9.5)

Sea water

~ (pH=8)

Blood
(pH=7.4)

Milk, urine, saliva
(pH=6.3-6.6)

Black coffee
(PH=5)

Grapefruit juice, soda,
tomato juice
(pH=2.5-3.5)

Lemon juice, vinegar
(PH=2)

Battery acid, hydrochloric acid

(PH=0)



Further reading

Random
Walks in
Howard C. Berg A ¥\ ! | BiOIOSY

E. coli in Motion § i
Howard C::Bérg

New, expanded dition,
» Ed

SEARCHING FOR PRINCIPLES
L

William Bialek

310LOGICAL AND MEDICAL PHYSICS
BIOMEDICAL ENGINEERING
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