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Random walks

Receptor mediated endocytosis
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Viral entry to cell via receptor
mediated endocytosis

G. Bao and X.R. Bao, 
PNAS 102, 9997 (2005)

Bending energy cost and loss of entropy for receptors is 
compensated by the binding energy between cell 

receptors and ligands on the surface of viral capsid.

Shedding light on the dynamics of endocytosis
and viral budding
Gang Bao†‡ and X. Robert Bao§

†Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332; and §Department
of Applied Physics, California Institute of Technology, Pasadena, CA 91125

E ndocytosis is used by eukaryotic
cells to perform a wide range of
functions, including the uptake
of extracellular nutrients and

the regulation of cell-surface receptors,
as well as by toxins, viruses, and micro-
organisms to gain entry into cells (1).
Endocytosis actually encompasses many
different processes, such as phagocytosis
of large (!250 nm) particles as well as
pinocytosis of large volumes of fluid (2).
One of the most important endocytic
mechanisms is a receptor-mediated
process whereby the plasma membrane
binds specific macromolecules and
smaller particles by means of specialized
receptors, invaginates around those par-
ticles, and then pinches off to form
small vesicles. Receptor-mediated endo-
cytosis had been thought to be assisted
by specific proteins, either clathrin or
caveolin, polymerizing into a spherical
shell around the invagination (3).
Recently, however, evidence has arisen
for a different, clathrin- and caveolin-
independent route by which endocytosis
may occur (4, 5). The understanding
and quantitative analysis of the mecha-
nisms underlying receptor-mediated en-
docytosis have important implications
for not only viral pathogenesis but also
the delivery of macromolecules and
nanoparticles for intracellular imaging
and targeted therapies (6).

A Model for Clathrin-Independent
Endocytosis
The key process of endocytosis is the
formation of the vesicle wrapping the
particle, which requires mechanical
force. Despite the essential role of
endocytosis in biology, much of the me-
chanics behind it remains elusive. Al-
though clathrin alone can, under certain
conditions, assemble into a caged struc-
ture, it may not be the major driving
force for membrane deformations dur-
ing endocytosis. The macromolecular
assembly with which clathrin associates,
however, does contain proteins that can
deform plasma membranes to the de-
gree required (7). Clathrin-independent
mechanisms are still rather poorly un-
derstood. The study in a recent issue
of PNAS by Gao, Shi, and Freund (8)
sought to predict the particle size range
and kinetics of clathrin-independent en-
docytosis in a rather general and elegant

way, advancing the quantitative
understanding of endocytosis, viral
budding, and possibly other vesicle-
associated biological processes.

In their study, Gao et al. (8) present a
mechanical model of endocytosis by
considering a particle displaying immo-
bilized ligands gradually attracting and
binding receptor proteins on a plasma
membrane. The initial binding event
nucleates a patch of bound receptors,
which holds the particle to the mem-
brane. Unbound (free) receptors on the
plasma membrane diffuse toward the
edge of the patch and bind particle li-
gands there, bringing more of the mem-
brane into contact with the particle until
the entire particle is engulfed by the
plasma membrane (Fig. 1). This process
serves as a simple model for the more
complicated reactions that occur during
endocytosis while retaining much of the
interesting dynamics. It is what happens
at the boundary of that invagination
that dictates these dynamics. Gao et al.
assume that all of the free-energy dissi-
pation arises from receptor diffusion,
which means that the binding of recep-
tors onto the engulfed particle entails
no free-energy change; this assumption

is equivalent to saying that the bound
and free receptors are in equilibrium at
the boundary of the contact zone. With
these assumptions and other minor ones,
Gao et al. were able to predict the size
range of particles that could internalize
by means of an endocytic pathway and
the associated kinetics (summarized in
table 1 of ref. 8).

Salient Features of the Model and the
Scaling Laws
The salient features of the model pre-
sented by Gao et al. (8) can be under-
stood by simply considering equilibrium
between bound and free receptors at the
boundary of the contact zone, which is
fulfilled whenever receptor diffusion is
rate-limiting. The concentration of un-
bound receptors !! just outside the con-
tact zone is then

!" " e#U!L, [1]

See companion article on page 9469 in issue 27 of volume
102.
‡To whom correspondence should be addressed. E-mail:
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© 2005 by The National Academy of Sciences of the USA

Fig. 1. A schematic illustration of the receptor-mediated endocytosis and viral budding processes. In
modeling clathrin-independent, receptor-mediated endocytosis, Gao et al. (8) assume that once binding
between a particle and the plasma membrane is initiated, the particle with immobilized ligands attracts
and binds to progressively more receptors on the cell surface. Depletion of free receptors in the vicinity
of the contact zone drives diffusion of receptors toward the zone, where they bind particle ligands,
bringing more of the membrane into contact with the particle until the entire particle is engulfed by the
plasma membrane. With some modifications, this model may be applicable to other biological problems,
such as viral budding, in which the viral capsid is wrapped outward into a vesicle by means of membrane-
bound envelope proteins.

www.pnas.org!cgi!doi!10.1073!pnas.0504555102 PNAS " July 19, 2005 " vol. 102 " no. 29 " 9997–9998
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Viral entry to cell via receptor
mediated endocytosis

H. Gao et al., PNAS 102, 9469 (2005)

NL = 4⇡R2nL

total number of ligandsnL ⇠ 5000µm�2
2R

density of receptors

density of ligands

n0 ⇠ 50-500µm�2

bending
energy

binding energy of 
ligand-receptor pairs

free energy due to 
mixing of receptors

Ebend = 8⇡Ebend = 0

Ebind = 0 Ebind = �NLUb

G
mix

=(N �NL)kBT ln(n
0

A
0

)

+NLkBT ln(nLA0

)

G
mix

= NkBT ln(n
0

A
0

)

total change of
free energy �G = 8⇡�NLUb +NLkBT ln(nL/n0)
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Viral entry to cell via receptor
mediated endocytosis

H. Gao et al., PNAS 102, 9469 (2005)

NL = 4⇡R2nL

total number of ligandsnL ⇠ 5000µm�2
2R

density of receptors

density of ligands

n0 ⇠ 50-500µm�2

�G = 8⇡� 4⇡R2nLUb + 4⇡R2kBTnL ln(nL/n0)
Ub ⇠ 15kBT

 ⇠ 20kBT

receptor-ligand 
binding energy

bending rigidity

total change of free energy

Receptor mediated endocytosis is  
thermodynamically favorable when �G < 0

How fast is this process?

R >

s
2

nL (Ub � kBT ln(nL/n0))
⇠ 30 nm
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Viral entry to cell via receptor
mediated endocytosis H. Gao et al., PNAS 

102, 9469 (2005)

2R

Need to recruit NL receptors from 
circular region of radius L via diffusion

density of receptors

t ⇠ L2

D
⇠ R2nL

Dn0
& 10s

NL = ⇡L2n0 = 4⇡R2nL

n0 ⇠ 50-500µm�2

nL ⇠ 5000µm�2

density of ligands

Side view:

Top view:

2L

R >

s
2

nL (Ub � kBT ln(nL/n0))
⇠ 30 nm
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Use of magnetic nanoparticles for 
diagnostic and treatment of tumors
Receptors for LHRH hormone are over-expressed 

in breast, ovarian, and prostate cancer cells

LHRH hormone
PEG coating

magnetic core

Magnetic particles enter only cancer cells 
via LHRH-receptor mediated endocytosis

PEG coating shields nanoparticles 
from immune system and prevents 
macro-clustering of nanoparticles.

Cancer cells containing magnetic 
nanoparticles can be detected with MRI 

(magnetic resonance imaging). Then 
magnetic particles can be heated via 

magnetic field to destroys cancer cells.

dispersiveX-ray spectroscopy (XEDS), as shown in Fig.11b.Note that the
Cu Kα and Kβ peaks correspond to a fluorescence effect from the copper
TEM grids, while the Fe Kα and Kβ peaks are a signature of the Fe3O4

nanoparticles.

4.3.3. Multi-CRAZED imaging
Amontageofmulti-CRAZED imagesof thebreast tumor specimensare

presented in Fig.12 [20]. These show that the incorporated LHRH–SPIONs
enhance the contrast inmulti-CRAZEDmagnetic anisotropy images of the

Fig. 7. TEM micrographs illustrating how LHRH–SPIONs are interacting with breast cancer cells: (a) Nanoparticle cluster interaction with cell membrane; (b) entry and transport of
nanoparticle clusters within cytoplasm.

Fig. 6. Comparison of an endocytosis schematic diagram with TEM micrographs of breast cancer cells incubated with LHRH–SPIONs for 30 min(a) Schematic representation of
Endocytosis (http://www.emc.maricopa.edu/faculty/farabee/BIOBK/endocytosis.gif). (b) Micrographs of nanoparticles LHRH–SPIONs that were about to enter cells with curved
cell membrane. (c) Micrographs of encapsulated LHRH–SPIONs or SPIONs in the cytoplasm of a cancer cell.

1474 J. Meng et al. / Materials Science and Engineering C 29 (2009) 1467–1479

J. Meng et al., Mater. Sci. 
Eng. C 29, 1467 (2009) 
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Random walks
Brownian motion Swimming of E. coli

Polymer random coils

J. Phys. A: Math. Theor. 42 (2009) 434013 L Mirny et al

..ATTATGCATGACGAT..

(B)(A)

Figure 1. (A) Schematic representation of the protein–DNA search problem. The protein (yellow)
must find its target site (red) on a long DNA molecule confined within the cell nucleoid (in bacteria)
or cell nucleus (in eukaryotes). Compare with figure 9(A) which shows confined DNA. (B) The
target site must be recognized with 1 base-pair (0.34 nm) precision, as displacement by 1 bp results
in a different sequence and consequently a different site.

3d1d

n

(A) (B)

Figure 2. (A) The mechanism of facilitated diffusion. The search process consists of alternating
rounds of 3D and 1D diffusion, each with average duration τ3D and τ1D, respectively. (B) The
antenna effect [9]. During 1D diffusion (sliding) along DNA, a protein visits on average n̄ sites.
This allows the protein to associate some distance ∼n̄ away from the target site and reach it by
sliding, effectively increasing the reaction cross-section from 1bp to ∼n̄. The antenna effect is
responsible for the speed-up by facilitated diffusion.

1.3. History of the problem: theory

To resolve this discrepancy, one possible mechanism of facilitated diffusion that includes both
3D diffusion and effectively 1D diffusion of protein along DNA (the 1D/3D mechanism) was
suggested. This mechanism was first proposed and dismissed by Riggs et al [1] but was soon
revived and rigorously studied by Richter and Eigen [3], then further expanded and corrected
by Berg and Blomberg [4] and finally developed by Berg et al [5]. The basic idea of the 1D/3D
mechanism is that while searching for its target site, the protein repeatedly binds and unbinds
DNA and, while bound non-specifically, slides along the DNA, undergoing one-dimensional
(1D) Brownian motion or a random walk. Upon dissociation from the DNA, the protein
diffuses three dimensionally in solution and binds to the DNA in a different place for the next
round of one-dimensional searching (figure 2(A)).

During 1D sliding the protein is kept on DNA by the binding energy to non-specific
DNA. This energy has been measured for several DNA-binding proteins and has a range
of 10–15 kBT (at physiological salt concentration), was shown to be driven primarily by
screened electrostatic interactions between charged DNA and protein molecules [6], and

3

Protein search for a
binding site on DNA
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1827 Robert Brown: observed irregular motion of 
small pollen grains suspended in water

1905-06 Albert Einstein, Marian Smoluchowski: 
microscopic description of Brownian motion and 
relation to diffusion equation

Brownian motion of small particles

https://www.youtube.com/watch?v=R5t-oA796to

⇡ 10µm

https://www.youtube.com/watch?v=R5t-oA796to
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Random walk on a 1D lattice

At each step particle jumps to the right with 
probability q and to the left with probability 1-q.

x

�`�2`�3`�4`�5` ` 2` 3` 4` 5`0

x/ℓ
-20 -10 0 10 20

N

0

20

40

60

80

100

1� q q

sample trajectories for q=1/2
(unbiased random walk)

sample trajectories for q=2/3
(biased random walk)
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Random walk on a 1D lattice

At each step particle jumps to the right with 
probability q and to the left with probability 1-q.

x

�`�2`�3`�4`�5` ` 2` 3` 4` 5`0

1� q q

What is the probability p(x,N) that we find
particle at position x after N jumps? 

Probability that particle makes k 
jumps to the right and N-k jumps to 

the left obeys the binomial distribution
p(k,N) =

✓
N

k

◆
qk(1� q)N�k

Relation between k and 
particle position x:

x = k`� (N � k)` = (2k �N)`

k =
1

2

⇣
N +

x

`

⌘
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Random walk on a 1D lattice

x

�`�2`�3`�4`�5` ` 2` 3` 4` 5`0

1� q q

unbiased random walk biased random walk

after several steps the 
probability distribution 

spreads out and becomes 
approximately Gaussian

Note: exact discrete 
distribution has been made 

continuous by replacing 
discrete peaks with boxes 

whose area corresponds to 
the same probability.

p(k,N) =

✓
N

k

◆
qk(1� q)N�k

k =
1

2

⇣
N +

x

`

⌘
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Gaussian approximation for p(x,N)

x

�`�2`�3`�4`�5` ` 2` 3` 4` 5`0

1� q q

x =
NX

i=1

xi

Mean value averaged over 
all possible random walks

Variance averaged over all 
possible random walks

Position x after N jumps can be expressed 
as the sum of individual jumps                    .xi 2 {�`, `}

hxi =
NX

i=1

hxii = N hx1i = N (q`� (1� q)`)

hxi = N` (2q � 1)

�

2 =
⌦
x

2
↵
� hxi2 = N�

2
1 = N

⇣⌦
x

2
1

↵
� hx1i2

⌘

�

2 = N

⇣
q`

2 + (1� q)`2 � hx1i2
⌘

�2 = 4N`2q(1� q)

According to the central limit 
theorem p(x,N) approaches 

Gaussian distribution for large N:
p(x,N) ⇡ 1p

2⇡�2
e

�(x�hxi)2/(2�2)
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Number of distinct sites visited
by unbiased random walks

Shizuo Kakutani: “A drunk man will find his way 
home, but a drunk bird may get lost forever.”

Total number of sites inside 
explored region after N steps

N
tot

/ N

N
tot

/ N
p
N

N
tot

/
p
N1D

2D

3D

In 1D and 2D every 
site gets visited after 

a long time

In 3D some sites are 
never visited even 

after a very long time!

Number of distinct visited 
sites after N steps 

Nvis ⇡
p
8N/⇡

Nvis ⇡ ⇡N/ ln(8N)

Nvis ⇡ 0.66N

1D
2D

3D

2r /
p
N
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Master equation

x

�`�2`�3`�4`�5` ` 2` 3` 4` 5`0

1� q q

p(x,N + 1) =
X

y

⇧(x, y)p(y,N)

Master equation provides recursive relation for the 
evolution of probability distribution, where             

describes probability for a jump from y to x.
⇧(x, y)

Initial condition:

For our example the master equation reads:

p(x,N + 1) = q p(x� `, N) + (1� q) p(x+ `, N)

p(x, 0) = �(x)

Probability distribution p(x,N) can be easily obtained 
numerically by iteratively advancing the master equation.
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Master equation and Fokker-Planck equation

x

�`�2`�3`�4`�5` ` 2` 3` 4` 5`0

1� q q

Master equation:
Assume that jumps occur in regular small time intervals: �t

p(x, t+�t) = q p(x� `, t) + (1� q) p(x+ `, t)

In the limit of small jumps and small time intervals, we can Taylor expand 
the master equation to derive an approximate drift-diffusion equation: 

p+�t

@p

@t

= q

✓
p� `

@p

@x

+
1

2
`

2 @
2
p

@x

2

◆
+ (1� q)

✓
p+ `

@p

@x

+
1

2
`

2 @
2
p

@x

2

◆

@p

@t

= �v

@p

@x

+D

@

2
p

@x

2

v = (2q � 1)
`

�t

D =
`2

2�t

Fokker-Planck equation:
drift velocity

diffusion 
coefficient
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Fokker-Planck equation

x

�`�2`�3`�4`�5` ` 2` 3` 4` 5`0

⇧(s|x)

Generalized master equation:
p(x, t+�t) =

X

s

⇧(s|x� s)p(x� s, t)

drift velocity diffusion coefficient

v(x) =
X

s

s

�t

⇧(s|x) = hs(x)i
�t

(external fluid flow, external potential) (e.g. position dependent temperature)

D(x) =
X

s

s

2

2�t

⇧(s|x) =
⌦
s

2(x)
↵

2�t

⇧In general the probability distribution     of jump 
lengths s can depend on the particle position x  

Again Taylor expand the master equation above
to derive the Fokker-Planck equation:

@p(x, t)

@t

= � @

@x


v(x)p(x, t)

�
+

@

2

@x

2


D(x)p(x, t)

�
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Lévy flights

2D random walk
trajectory

Probability of 
jump lengths in 
D dimensions

Normalization 
condition ↵ > D

Moments of 
distribution

Lévy flights are better strategy than 
random walk for finding prey that is scarce

D. W. Sims et al. 
Nature 451, 1098-1102 (2008)

↵ = 3.5, D = 2

Lévy flight
trajectory

⇧(~s ) =

⇢
C|~s |�↵, |~s | > s0

0, |~s | < s0

Z
dD~s ⇧(~s ) = 1

h~s i = 0
⌦
~s 2

↵
=

⇢
ADs20, ↵ > D + 2
1, ↵ < D + 2
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Probability current
Fokker-Planck equation

@p(x, t)

@t

= � @

@x


v(x)p(x, t)

�
+

@

2

@x

2


D(x)p(x, t)

�

Conservation law of probability
(no particles created/removed)

@p(x, t)

@t

= �@J(x, t)

@x

Note that for the steady state distribution, where @p

⇤(x, t)/@t ⌘ 0

the steady state current is constant and independent on x

J

⇤ ⌘ v(x)p

⇤
(x)� @

@x


D(x)p

⇤
(x)

�
= const

Probability current:

J(x, t) = v(x)p(x, t)� @

@x


D(x)p(x, t)

�

If we don’t create/remove 
particles at boundaries then J*=0 p

⇤
(x) / 1

D(x)

exp

Z
x

�1
dy

v(y)

D(y)

�
Equilibrium probability distribution:
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Spherical particle suspended
in fluid in external potential

x

U(x)
Newton’s law:

m

@

2
x

@t

2
= ��v(x)� @U(x)

@x

+ Fr

fluid
drag

external 
potential

force

random 
Brownian 

force

particle radius

fluid viscosity
Stokes drag coefficient

R

⌘

� = 6⇡⌘R

Equilibrium probability distribution
p

⇤(x) = Ce

�U(x)/�D = Ce

�U(x)/kBT

(see previous slide) (equilibrium physics)
kB

T

D

Boltzmann constant
temperature
diffusion constant

For simplicity assume overdamped regime:

hv(x)i = � 1

�

@U(x)

@x

Drift velocity  
averaged over time

@

2
x

@t

2
⇡ 0

D =
kBT

�
=

kBT

6⇡⌘R

Einstein - Stokes equation
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Translational and rotational diffusion
for particles suspended in liquid

x

hx2i = 2DT t

✓

⌦
✓2
↵
= 2DRt

Einstein - Stokes 
relation

Translational 
diffusion

Rotational 
diffusion

Stokes viscous drag: �T = 6⇡⌘R

DT =
kBT

6⇡⌘R
DR =

kBT

8⇡⌘R3
Einstein - Stokes 

relation

Stokes viscous drag: �R = 8⇡⌘R3

water viscosity ⌘ ⇡ 10�3kgm�1s�1

Boltzmann constant

room temperature T = 300K

kB = 1.38⇥ 10�23J/K

Time to move one body length 
in water at room temperature

⌦
x

2
↵
⇠ R

2 t ⇠ 3⇡⌘R3

kBT

R ⇠ 1µm t ⇠ 1s

R ⇠ 1mm t ⇠ 100 years

Time to rotate by 900

in water at room temperature
⌦
✓2
↵
⇠ 1 t ⇠ 4⇡⌘R3

kBT
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Fick’s laws
N noninteracting 

Brownian particles 
Local concentration 

of particles c(x, t) = Np(x, t)

Flux of particles

Fick’s laws are equivalent to Fokker-Plank equation

Diffusion of
particles

J = vc�D

@c

@x

@c

@t

= �@J

@x

= � @

@x


vc

�
+

@

@x


D

@c

@x

�

Adolf Fick 1855

First Fick’s law

Second Fick’s law

Generalization to higher dimensions

~J = c~v �D~rc
@c

@t
= �~rJ = �~r · (c~v ) + ~r · (D~rc)
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Further reading
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E. coli chemotaxis

L. Turner, W.S. Ryu, H.C. Berg, J. Bacteriol. 182, 2793-2801 (2000)



24

References
Adler, J. 1965. Chemotaxis in Escherichia coli. Cold Spring Harbor Symp.

Quant. Biol. 30:289–292.
Berg, H. C. 1975. Chemotaxis in bacteria. Annu. Rev. Biophys. Bioeng.

4:119–136.
Brown, R. 1828. A Brief Account of Microscopical Observations on the

Particles Contained in the Pollen of Plants; and on the General Exis-
tence of Active Molecules in Organic and Inorganic Bodies. Richard
Taylor, London.

Buder, J. 1915. Zur Kenntnis des Thiospirillum jenense und seiner Reak-
tionen auf Lichtreize. Jahrb. Wiss. Bot. 56:529–584.

Dobell,C.1932.Antony van Leeuwenhoek and His “Little Animals.”John
Bale, Sons & Danielsson, London. Reprinted by Dover, New York,
1960.

Ehrenberg, C. G. 1838. Die Infusionsthierchen als vollkommene Organ-
ismen. Leopold Voss, Leipzig, Germany.

16 2. Larger Organisms

Figure 2.5. Electron micrograph of E. coli negatively stained (by expo-
sure of a dried sample to the salt of an element of high atomic number,
usually tungsten or uranium). Scale: the cell body is about 1mm in diam-
eter (2 wavelengths of green light). The flagella are extraordinarily thin.
(Adler, 1965, Fig. 1, reprinted with permission).

Escherichia coli

0.8µm

2.5µm

E. coli is a part of gut flora  
that helps us digest food.

Concentration of E. coli
Total concentration of bacteria

⇠ 109cm�3

⇠ 1011cm�3

flagella

In normal conditions E. coli divide and 
produce 2 daughter cells every ~20min.

In one day one E. coli could 
produce ~7x1010 new cells!
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Flagella filaments and rotary motors 

45nm

Rotary motorFlagellum filament
left handed helix
helix diameter

p ⇡ 2.3µm

d ⇡ 0.4µm

length

pitch

filament
diameter
⇡ 20nm

L . 10µm
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Swimming of E. coli
swimming 

speed 
vs ⇠ 20µm/s

body spinning 
frequency 

Fdrag

Fthrust

Thrust force generated by 
spinning flagellar bundle

water viscosity

fb ⇠ 10Hz

spinning 
frequency of 

flagellar bundle 
fr ⇠ 100Hz

size of E. coli R ⇡ 1µm

Torque generated by 
spinning flagellar bundle

⌘ ⇡ 10�3kgm�1s�1

Fthrust = Fdrag ⇡ 6⇡⌘Rvs

Fthrust ⇠ 0.4pN = 4⇥ 10�13N N ⇠ 2pNµm = 2⇥ 10�18Nm

N = Ndrag ⇡ 8⇡⌘R3!b



27

How quickly E. coli stops if motors shut off?
swimming 

speed 
vs ⇠ 20µm/s

Newton’s law

x = x0

h
1� e

�t/⌧
i

⌧ ⇡ m

6⇡⌘R
⇡ 2⇢R2

9⌘
⇠ 0.2µs

x0 = vs⌧ ⇠ 0.1Å

E. coli stops almost instantly!

signature of low Reynolds numbers

Re =
Rvs⇢

⌘
⇠ 2⇥ 10�5

water
viscosity

size of E. coli R ⇡ 1µm

⌘ ⇡ 10�3kgm�1s�1

mass of
E. coli m ⇠ 4⇡R3⇢

3
⇠ 4pg

Fdrag

Fthrust

mẍ = �6⇡⌘Rẋ
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Translational and rotational diffusion of E. coli

water viscosity
size of E. coli R ⇡ 1µm

⌘ ⇡ 10�3kgm�1s�1

x

hx2i = 2DT t

DT ⇡ kBT

6⇡⌘R
⇡ 0.2µm2/s

Boltzmann constant
temperature T = 300K

kB = 1.38⇥ 10�23J/K

✓

⌦
✓2
↵
= 2DRt

Einstein - Stokes 
relation

Einstein - Stokes 
relation

After ~10s the orientation of 
E. coli changes by 900 due 
to the Brownian motion!

DR ⇡ kBT

8⇡⌘R3
⇠ 0.2 rad2/s
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E. coli chemotaxis

45nm

Rotary motor
typical duration: tr ⇠ 1s

typical duration: tt ⇠ 0.1s

swimming speed: vs ⇠ 20µm/s

Run

all motors turning counter clockwise

Tumble
random change in orientation h✓i = 68�

one or more motors turning clockwise

Increase (Decrease) run durations, when 
swimming towards good (harmful) environment.
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E. coli chemotaxis

run duration: tr ⇠ 1s

tumble duration: tt ⇠ 0.1s

swimming speed: vs ⇠ 20µm/s

drift
velocity effective diffusion

vd = 0
De↵ =

⌦
�`2

↵

6 h�ti

De↵ ⇡ v2st
2
r

6(tr + tt)
⇠ 60µm2/s

Homogeneous environment Gradient in “food” concentration

ẑ

n̂

run duration increases (decreases) when  
swimming towards (away) from “food”

tr(n̂) = tr + ↵(n̂ · ẑ)(@c/@z)
drift velocity

vd =
h�zi
h�ti ⇡ vs↵(@c/@z)

3(t̄r + tt)

h�zi = hvz(n̂)tr(n̂)i = hvs(n̂ · ẑ)tr(n̂)i
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Sensing of environment
E. coli surface is covered with receptors, which can bind specific molecules.

Average fraction of bound receptors pB is related to concentration c of molecules.

pB =
c

c+ c0

Chemical signaling network inside E. coli analyzes 
state of receptors and gives direction to rotary motor. 

c
0

=
k
o↵

k
on

k
on k

o↵
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Diffusion limited flux of molecules to E. coli
Fick’s law

@c

@t
= Dr2c = D

1

r2
@

@r

✓
r2

@c

@r

◆

boundary 
conditions

c(r ! 1) = c1

c(R) = 0

absorbing
sphere

steady state flux density of molecules
c(r) = c1


1� R

r

�

J(r) = �D
@c(r)

@r
= �Dc1R

r2

rate of absorbing molecules
I(r) = J(r)⇥ 4⇡r2 = �4⇡DRc1 = I

0

= �k
on

c1

D ⇡ 103µm2/s
diffusion constant for 

small molecules k
on

⇠ 104µm3/s

N absorbing
disks of radius s

I =
I0

1 + ⇡R/Ns

example s ⇠ 1nmR ⇠ 1µm
flux drops by factor 2 for 

N = ⇡R/s ⇠ 3000

fractional area covered by 
these receptors

(N⇡s2)/(4⇡R2) ⇠ 10�3

E. coli can use many 
types of receptors 

specific for different 
molecules, without 

significantly 
affecting the 
diffusive flux
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Accuracy of concentration measurement
How many molecules do we expect inside a volume occupied by E. coli?

Probability p(N) that cell measures N molecules follows Poisson distribution

p(N) =
N

N
E�N

N !
N �N =

p
Nmean standard 

deviation

Error in measurement 

for c = 1µM = 6⇥ 1020m�3 ) Err ⇠ 4%Err ⇠ �N

N
⇠ (R3c)�1/2

N ⇠ R3c

E.coli can be more precise by counting molecules for longer time t. 
However, they need to wait some time t0 in order for the original molecules 

to diffuse away to prevent double counting of the same molecules!

t0 ⇠ R2/D ⇠ 10�3s N ⇠ R3ct/t0 ⇠ DRct

Err ⇠ (DRct)�1/2
for t=1s, precision 

improves to Err~0.1%

When E. coli is swimming, it wants to swim faster  
than the diffusion of small molecules

vst & (Dt)1/2 ) t & D/v2s ⇠ 1s

1M = 6⇥ 1026m�3

Molar concentration
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How E. coli actually measures concentration?
Probability for motor to rotate in CCW direction (runs) as a function of time 

in response to short pulse in external molecular concentration

constant that depends on the rate at which mechanical energy is
dissipated. You will get essentially the same result whether you
wear a boot or a tennis shoe. If the system is linear, that is, if the
way it responds to a new stimulus does not depend on how it is
responding to past stimuli, the response to the impulse allows one
to predict the response to any stimulus. Decompose the stimulus
of interest into a sequence of impulsive stimuli of different 
magnitudes, weight the corresponding impulse responses by these
magnitudes, and add them up.

The same is true for biochemical systems. If you kick the aspar-
tate receptor by loading it up with ligand for a fraction of a second,
the reactions set in motion by that change will play themselves out
until the cell returns to its initial quiescent state. In practice, this
takes about 4 seconds (Fig. 7.2). The impulse response for E. coli
is biphasic. The probability that the motor spins counterclockwise
rises from the baseline soon after the onset of the pulse, reaches

Impulse Responses 63

Figure 7.2. Impulse response of wild-type E. coli cells. The probability
that a cell spins counterclockwise (the bias) is plotted as a function 
of time; the smooth curve is a fit to a sum of exponentials. Pulses of 
aspartate or a-methylaspartate were applied beginning at 5.06 seconds
(vertical bar). The graph was constructed from 378 trials comprising 
7566 flagellar reversals obtained with 17 cells. (From Segall et al., 1986,
Fig. 1).

1s 3s

E. coli integrates measured concentration observed during the last second 
and compare this with measured concentration during the previous 3 
seconds. If difference is positive then increase the probability of runs, 

otherwise increase the probability of tumbles.

Input 
concentration

J. E. Segall, S. M. Block, and H. C. Berg, 
PNAS 83, 8987–8991 (1986)
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Adaptation
Proc. Natl. Acad. Sci. USA 83 (1986)

internally consistent. Data are presented on the behavior of
wild-type cells and of mutants defective in methylation and
demethylation (deleted for cheR and cheB) or in the functions
specified by che Y or cheZ.

RESULTS

Calibration of the Impulse Response. Given the impulse
response of Fig. 1 (induced by pulses of small but unknown
amplitude), one can predict the time course of the response
to an arbitrary stimulus; however, the amplitude of this
response is unknown up to a constant scaling factor. To
predict both the amplitude and the time course of a response,
this scaling factor must be determined. First, we measured
the rate at which attractant was released from a particular set
of pipettes by exposing cells 5 ,um away to a large step in
current (-100 nA) and recording their recovery times: this
works because the steady-state concentration of attractant a
fixed distance away from the tip of a pipette is proportional
to the rate of release (p. 23 of ref. 17), and the recovery time
is proportional to the net change in receptor occupancy (cf.
table 1 of ref. 16). Next, we measured the amplitude of the
response of the same cells to a smaller step in current (-3 to
-10 nA). Assuming that the rate of release varies linearly
with current, the change in concentration generated by the
smaller step was determined. The type of response generated
by the smaller steps is shown in Fig. 2. Note that this
response is not saturated. For the subset of cells used in the
calibration (those exposed to a-methyl-DL-aspartate; see

figure legend) a change in bias of 0.23 occurred for an

estimated change in fraction of receptor bound of 0.0042.
Finally, we calibrated the impulse response by subtracting
the baseline and scaling its integral to the change in bias ofthe
calibrated step response. We found that a response of the
amplitude shown in Fig. 1 would be generated by a pulse that
increased the receptor occupancy by 0.19 for a period of 20
msec (the approximate width ofthe shortest pulse used in our
experiments).
Comparisons with Ramp and Sine-Wave Data. The solid line

in Fig. 3A is the dependence of bias on ramp rate for
experiments involving linear changes in receptor occupancy

1.0 _

c' 0.5 ,

0 5 10 15 20

Time (sec)

FIG. 1. Impulse response to attractant in wild-type cells. The
dotted curve is the probability, determined from repetitive stimula-
tion, that tethered cells of strain AW405 spin CCW when exposed to
pulses of L-aspartate or a-methyl-DL-aspartate beginning at 5.06 sec

(vertical bar). The smooth curve is a fit to a sum of exponentials (see
text). For methods, see refs. 14 and 16. Pipettes containing aspartate
(1 mM) were pulsed for 0.02 sec at -25 to -100 nA, and pipettes
containing methylaspartate (1-3 mM, with 1.6 mM in the bath) were
pulsed for 0.12 sec at -100 nA, both at 320C. Some pipettes
containing 1-7 mM methylaspartate were pulsed for 0.03-0.12 sec at
-50 to -100 nA at 220C. The curve was constructed from 378 records
comprising 7566 reversals of 17 cells. Points were determined every
0.05 sec.

1-0F

(n
.2 0.5
CD

0 2 4 6 8 10
Time (sec)

FIG. 2. Step response to attractant in wild-type cells. The thick
curve is the probability that cells of strain AW405 spin CCW when
exposed to steps of L-aspartate or a-methyl-DL-aspartate beginning
at 1.00 sec (vertical bar). Pipettes containing aspartate (0.1-1.0 mM)
or methylaspartate (1-10 mM, with 1.6 mM in the bath) were
switched on for 12 sec at -3 to -10 nA at 320C. The curve was
constructed from 227 records comprising 5040 reversals of 10 cells
and was plotted as described in Fig. 1. The thin line is the response
predicted from the impulse response (the dotted curve) of Fig. 1 (cf.
figure 4 of ref. 14). Note the expanded time scale.

predicted by the impulse response; the dashed line has the
same slope but is offset 0.0015 to compensate for the
response threshold. The slope of the predicted dependence is
114 sec, while a linear least-squares fit to the data gave a mean
slope and standard deviation of 78 ± 18 sec. Note that a shift
in bias of 0.1 occurs for a ramp that increases the receptor
occupancy by -0.1% per sec. The solid line in Fig. 3B is the
spectral response to sinusoidal changes in receptor occupan-
cy at different frequencies derived from the fit to the impulse
response (the smooth curve) of Fig. 1; the points comprise a
similar prediction based on the data (the dotted curve) of Fig.
1. The stars are the peak-to-peak changes in bias observed for
sinusoidal oscillations in receptor occupancy generated by
programmed mixing (figure 7 of ref. 15). Use of the latter
measure assumes a large response threshold for negative
rates of change of receptor occupancy (figure 6B of ref. 15).
The close agreement between the Fourier transform repre-
sented by the solid line in Fig. 3B and the data at very low
frequency is not fortuitous: the fit to the sum of exponentials
(the smooth curve of Fig. 1) was constrained so that its
Fourier transform passed through the point (-3, 0.75). Figs.
1 and 3B together show that the impulse and sine-wave data
are consistent. With allowance for thresholds, the agreement
between the three different sets of measurements is satisfac-
tory.

Impulse and Step Responses of Mutant Cells. As reported
earlier (figure 7A of ref. 14), cells with deletions in genes for
the methyltransferase (cheR) and the methylesterase (cheB)
show impulse responses with the second lobe much reduced
(Fig. 4A). This implies that such cells cannot adapt over a
short time span to a sudden increase in the concentration of
attractant. The measured step response bears out this pre-
diction (Fig. 4B). We also studied the behavior of cheRcheB
cells over a longer time span in a flow cell (19). Some cells
failed to respond to step stimuli (shifts from 0 to 25 AM
L-aspartate or from 0 to 1 mM a-methyl-DL-aspartate); others
spun exclusively CCW and failed to recover; still others gave
a sizable response and then partially recovered (Fig. 5). Some
of the latter cells exhibited dramatic swings in bias over
periods of the order of 1 min, but no periodicity was evident
in the average (Fig. 5). Note that cheRcheB cells are less
sensitive to L-aspartate or to c-methyl-DL-aspartate than
wild-type cells by factors of 10-100.

8988 Biophysics: Segall et al. Probability for motor to rotate in CCW direction (runs) as a function of time in 
response to a sudden increase in external molecular concentration

Input 
concentration

E. coli adapts to the new level of concentration in about 4 seconds.
This enables E. coli to be very sensitive to changes in 

concentration over a very broad range of concentrations!

J. E. Segall, S. M. Block, and H. C. Berg, 
PNAS 83, 8987–8991 (1986)
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How efficient is motor of E. coli?

Energy source for rotary 
motor are charged protons

H+

H+

Each proton gains energy due to
Transmembrane electric potential difference

� ⇡ �120mV

Change in pH pH = 7.0
�U = (�2.3kBT/e)�pH ⇡ �50mV

pH ⇡ 7.8

Total protonmotive force 
�p = � + �U ⇡ �170mV

Need 1200 protons per one body revolution

Input power

Power loss due to Stokes drag
P
rot

= N ⇥ (2⇡f) ⇡ 4600pN nm⇥ (20⇡Hz) ⇡ 2.9⇥ 105pN nm/s

Ptrans = F ⇥ v ⇡ 0.4pN⇥ 20000nm/s ⇡ 8⇥ 103pN nm/s

Motor efficiency P
trans

+ P
rot

P
in

⇡ 90%

Pin = n⇥ e�p⇥ f = 1200⇥ 0.17eV⇥ 10Hz ⇡ 3.2⇥ 105pNnm/s
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pH value of solutions

[H+][OH�]

c20
=

[H2O]Keq(T, p)

c20
⇡ 10�14

c0 = 1M

pH = � log10
�
[H+]/c0

�

pOH = � log10
�
[OH�]/c0

�
⇡ 14� pH

at room 
temperature

How much free energy is changed when H+ 
goes to environment with different pH?

pH1 pH2

H+

Nernst electric potential E

µ2 � µ1 = kBT ln
�
[H+]2/[H

+]1
�

E =
µ2 � µ1

e0
⇡ �2.3026 kBT

e0
(pH2 � pH1)
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Further reading


