MAE 545: Lecture 18 (4/25)

E. coli chemotaxis

(continued)
—
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E. coli chemotaxis

L. Turner, W.S. Ryu, H.C. Berg, J. Bacteriol. 182, 2793-2801 (2000)
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E. coli chemotaxis

-~

Tumble

Run
swimming speed: v, ~ 20um/s

typical duration: ¢, ~ 1s
all motors turning counter clockwise

Increase (Decrease) run durations, when
swimming towards good (harmful) environment.

Tumble
random change in orientation (0) = 68°

typical duration: ¢; ~ 0.1s

one or more motors turning clockwise
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_E. coli chemotaxis

Homogeneous environment

run duration:

tumble duration:

swimming speed:

drift
velocity

”Ud:O

t, ~ 1s
tt ~ 0.1s

Vs ~ 20pum/s

effective diffusion

eff

Deff

Y
Y

(AL)

6 (At)
vst;

6(t, + t¢)

~ 60pm? /s

Tumble

j /;

Gradient in “food” concentration

run duration increases (decreases) when
swimming towards (away) from “food”

(7)) = Tr + alf - 2)(Dc)02)
drift velocity

(Az)  wvsa(dc/0z)
(AL 3(t, + tr)

o (B2) = {v()tr(n)) = (Vs(7 - 2)tr (1))
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Sensing of environment

E. coli surface is covered with receptors, which can bind specific molecules.

Average fraction of bound receptors ps is related to concentration ¢ of molecules.

C

PB = —
¢+ ¢ 0

koff
Kon

Chemical sighaling network inside E. coli analyzes
state of receptors and gives direction to rotary motor.

&
periplasm . ‘

cytoplasm

’

........ 4 flagellar motors
Cher . *CHs . X /" (default = CCW)



Diffusion limited flux of molecules to E. coli

l 1917 Smoluchowski theory
\ / Fick’s law boundary conditions
% _ pvie— D%ag (ﬂ%) c(r — 00) = Coo
ot T4 or r ¢(R) = 0
/ I \ steady state flux density of molecules
R
| o(r) = o [1 . ?] i) = D) _ Do
absorbing r r
sphere rate of absorbing molecules

I(r) = J(r) x 47r® = —4nDRcoe = Iy = —konCoo

diffusion constant for

~ 3 2 4 3
small molecules L~ 107pm /s kon ~ 107 pm=/s

example R~ 1luym s~ 1nm  E. coli can use many

7 flux drops by factor 2 for types of receptors

I= . N — 7R/s ~ 3000 _specific for different

1+7R/Ns . / ™% molecules, without

fractional area covered by R
N equally spaced these receptors significantly

absorbing B affecting the
disks of radius s (N7ws?)/(4mR?) ~ 107" diffusive flux
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Accuracy of concentration measurement

How many molecules do we expect inside a volume occupied by E. coli?

N ~ R’c
Probability p(N) that cell measures N molecules follows Poisson distribution
—N -
N E—-N — standard _
p(N) = NI mean N deviaton on = VN
Error in measurement
ON _
Err ~ ~ (Rc) bz for ¢ =1uM =6 x 10°°m™° = Err ~ 4%

E.coli can be more precise by counting molecules for longer time L.
However, they need to wait some time 1 in order for the original molecules
to diffuse away to prevent double counting of the same molecules!

- N ~ Rct/tg ~ DRct .
to ~ R*/D ~107°s /to for t=1s, precision
Frr ~ (DRct)_1/2 improves to Err~0.1%

When E. coli is swimming, it wants to swim faster
than the diffusion of small molecules

vst > (D)2 =t > D/v? ~ 1s Molar concentration
7 1M =6 x 10°°m™3



How E. coli actually measures concentration?

Probability for motor to rotate in CCW direction (runs) as a function of time
In response to short pulse in external molecular concentration

.0

Input
concentration

:l
O | 1 ! §
5 0 5 20

Time (sec)
E. coli integrates measured concentration observed during the last second

and compare this with measured concentration during the previous 3
seconds. If difference is positive then increase the probability of runs,
otherwise increase the probability of tumbles.

J. E. Segall, S. M. Block, and H. C. Berg,
PNAS 83, 8987-8991 (1986) 8



Adaptation

Probability for motor to rotate in CCW direction (runs) as a function of time in
response to a sudden increase in external molecular concentration

1.0
Input
concentration
(7p)
B 0.5}
a
O J B | | 1 1

0 2 4 6 8 10
' Time (sec)

E. coli adapts to the new level of concentration in about 4 seconds.
This enables E. coli to be very sensitive to changes in
concentration over a very broad range of concentrations!

J. E. Segall, S. M. Block, and H. C. Berg,
PNAS 83, 8987-8991 (1986) 9



How efficient is motor of E. coli?

Each proton gains energy due to

Energy source forrotary  p,nsmembrane electric potential difference

motor are charged protons

0 ~ —120mV
pH = 7.0 Change in pH
H* oU = (—2.3kgT /e)ApH ~ —50mV
- Total protonmotive force
Flament Ap =0+ 90U ~ —170mV
Edz Need 1200 protons per one body revolution
Input power

Pn =nxeApx f=1200 x 0.17eV x 10Hz ~ 3.2 x 10°pN nm/s
Power loss due to Stokes drag

Piot = N x (27 f) ~ 4600pN nm x (207Hz) ~ 2.9 x 10°pN nm/s

Pirans = F x v &~ 0.4pN x 20000nm/s ~ 8 x 10°pN nm/s

MS-ring
C-ring

Type lll
secretion system

pH ~ 7.8 " Motor efficiency Ptra“;;r Frot
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pH value of solutions

HYOH | _ [Ho0)Keo(Tp) _ | 1
c2 N c2 -~
0 0 at room
co = 1M temperature

pH = —log; ([H+]/Co)
pOH = —log;, ([OH™|/¢p) ~ 14 — pH

How much free energy is changed when H+

goes to environment with different pH?
pH, pH,
H"——
po — pi1 = kpTIn ([H"]/[H™])
— 2.3026 kT’
p=r2"m o “— (pH, — pH,)
€0 €0

Nernst electric potential E -

BASE

ACID

Examples

Liquid drain cleaner
(pH=14)

Bleaches, oven cleaner, lye
(p H=1 3.5)

Ammonia solution
(pH=10.5-11.5)

Baking soda
(pH=9.5)

Sea water

~ (pH=8)

Blood
(pH=7.4)

Milk, urine, saliva
(pH=6.3-6.6)

Black coffee
(PH=5)

Grapefruit juice, soda,
tomato juice
(pH=2.5-3.5)

Lemon juice, vinegar
(PH=2)

Battery acid, hydrochloric acid

(PH=0)



Further reading

Random
Walks in
Howard C. Berg A ¥\ ! | BiOIOSY

E. coli in Motion § i
Howard C::Bérg

New, expanded dition,
» Ed

SEARCHING FOR PRINCIPLES
L

William Bialek

310LOGICAL AND MEDICAL PHYSICS
BIOMEDICAL ENGINEERING
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How proteins find target sites on DNA?




DNA

prokaryotic cell
(bacteria, archaea)

inner membrane
base
nucleoid (DNA) outer membrane pair
hydrogen
bonds
3.4nm
cytoplasm
nucleotides
W Adenine (A)

B Thymine (T)
B Cytosine ()

Guanine (G)

DNA stores genetic
information encoded
with sequence of bases
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Production of new proteins

: - Transcription of DNA DNA
ranscription
factors
& & Coding
: —> Strand
g. AEEEEEEEEEEEERENN
Template
™ mRNA strand

Transcription factors are proteins, which bind to specific locations
on DNA, and they help recruiting RNA polymerase (RNAP) that
makes a messenger RNA (mMRNA) copy of certain DNA segment.

Note: some transcription factors (repressors) also prevent transcription.
Translation of mRNA

Growi
b ® Amino acid

Polypeptide
Chain of Amino Acids
Peptide Bond tRNA
. ;

Kﬁii-oodon
godm

Translation

mRNA

protein
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Protein-DNA interactions

orotein Binding to specific target
- sequence is strong
@ AG® ~ 20 — 25kpT
i BN Binding to nonspecific
O / m\\ sequence is weak
Kot ) AGNS

~ 5 — 10kpT

(Binding free energies can
be modified by changing

. .ATTATGCATGACGATGTGGACAAACACCTGCGT salt concentration, etc.)

target

sequence b= O 34nm
DNA seguence

on rates are off rates depend on
diffusion limited binding strengths
kS, ~ kNS &~ 4mDyb kSg = Ase G RoT « N8 = A emAGT ke T

Kot 406
. ns ~ 10
(see slide 6) Ko
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How long proteins remain bound on DNA?

Probability that protein unbinds
in a small time interval At :

Tkoﬂ-’ kog At

Probability that protein remains bound for time ¢
and then it unbinds between time ¢t and ¢ + At :

koAt X (1 — kogAt)H/ A

‘l'limit At — 0

p(t) = koge ™ "o

> 1
Average binding time () = / tp(t)dt =
0 koff

Proteins remain bound to specific target sites for minutes to hours,
while they unbind from nonspecific sites after milliseconds to seconds.
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How quickly proteins find target sites on DNA?
Characteristic search time via 3D diffusion

Approximate target site as t"’;?:t protein

absorbing sphere of radius

4 b = 0.34nm
— “— concentration of free proteins
/ \ far from the target site

c(r — o0) = | P]
rate of absorption (see slide 6)
Iy = 47TD3b[P] = Kkon [P]

Kinetics of protein binding/unbinding

k short time binding kinetics for
[P] - [T] i [P—T] initially empty target sites [P-T]=0
Foff d|P-T] P]
d[P-T| o = (an[TDIP] = =

e kon|P]|T] — kog|P-T|

[P-T] concentration of proteins bound to target sites 1
[P] concentration of free proteins ts = (kon|T))
[T] concentration of empty target sites 18

characteristic search time




How quickly proteins find target sites on DNA?

Characteristic search time via 3D diffusion tzri?:t protein

kon — 47TD3b tS — (kOH[T])—l
1917 Smoluchowski theory

Example: characteristic search time
for lac repressor protein in E. coli

b ~ 0.34nm D3 ~ 30um?/s
'T] ~ 1 per cell ~ 107" M

kon ~ 108M g1 t, ~ 10s

Molar concentration
1M =6 x 10%°m—3

in vitro experiments (1970)
kP ~ 1019 M s

A.D.Riggs et al.,
t. ~0.1s J. Mol. Biol. 83, 401-417 (1970)
S °

Why is experimentally observed rate 100 times larger?
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Berg - von Hippel theory (1980s)

(facilitated diffusion)

1. Proteins diffuse in space and non-
specifically bind to a random location on DNA.

2. Proteins slide (diffuse) along the DNA.

3. Proteins jump (diffuse) to another random
location on DNA and continue this sliding/
jumping process until the target site is found.

b= 0.34nm [, - DNA length
D3 - diffusion constant in space
D1 - diffusion constant along the DNA

How long that is it take to find a target site in this process?

O.G.Berg et al.,
20 Biochemistry 20, 6929-48 (1981)




Berg - von Hippel theory (1980s)

First assume fixed sliding time 714

Number of distinct sites visited

during each sliding event
n — \/16D1’7’1d/(ﬂ'b2)

(valid for n>>1)

Probability that target site is
found during a sliding event

q=nb/L

Probability that target site is
found exactly after Ns rounds

p(Ng) =q(1 —g)"n~"

Average number of rounds
needed to find the target
©.@)

Nr= » Nrp(Nr)=1/q
Ngr=1

21

b=0.34nm L - DNA length
D5 - diffusion constant in space
D - diffusion constant along the DNA

Average search time

E:N_R(Tld+73d)

O.G.Berg et al.,
Biochemistry 20, 6929-48 (1981)




Facilitated diffusion

In reality sliding times
are exponentially distributed

NS —ENS
p(T1a) = ko € "o T

(r14) = / dr1g 10 p(ria) = 1/ENS
0

Average number of distinct sites
visited during each sliding
b= 0.34nm [, - DNA length

n) = A1 p(T 16 D174/ (mb?
2 /o tp(ma) V16Dima/ (mb?) D5 - diffusion constant in space

(n) = 2+/D1 (114) / (b?) D1 - diffusion constant along the DNA

Average probability that target site

Is found during a sliding event Average search time

(q) = (n)b/L {ts) = (Ng) ({(11a) + T34)
Average number of rounds Ng L
needed to find the target site (ts) = NORCT ((T1d) + T34)
1 1d
<NR> — 1/ <q> 20




Facilitated diffusion

L Lig T34 ... ©O

(Lg1) ({(T1d) + T34) k A g
Average sliding length ((s) = 21/ D; (714)

Average search time (fs) =

Optimal search time

<7_1d>opt — T3d

Tag b= 0.34nm [, - DNA length
<t5>opt — D_1 D5 - diffusion constant in space

b‘

D - diffusion constant along the DNA
Search time for jJumps alone

1 v Search time for sliding alone
Typical jump time 75 = ;— NS~ 2705 (t) o~ L?
Concentration of NS| = L/b —— Dy
non-specific sites 1% Search time speed up |
average number of jumps — L for facilitated diffusion |
needed to find the target JUIPS =y Iy umps  (Lel) -

_ — V
ts,jumps — NjumpsTSd — A Db

f ()b (e +7sa) f

23




Example: search time for target site in
bacteria on DNA with 10 base pairs

_ 104 _ _ -
T3¢ = 10778 search time for jumps alone % ;umps = (L/b)734 = 300s
Dy = 0.05pum?/s _ o
I, — 1mm average search time (¢,) = o ((T14) + T34)
b = 0.34nm )

average sliding length (¢,) = 2\/D; (114)

1O6§ I I I I T I : | :
s| <+— jumping sliding+ sliding!—»
el jumping |




Simultaneous search for target site by multiple proteins

Interactions and collisions
between proteins are ignored

Search times for target site by individual
proteins are exponentially distributed

1
pi(ts) = e/

(ts)

What is the typical search time for the fastest
of nindependently searching proteins?

(Extreme value distributions)

o0 n—1
n
pn(ts) =N X P1 (ts) X (/ dt/ D1 (t/)) — e_nt8/<t8>
ts (ts)
—_— YV Average search time is
probability that one of probability that other n-1 reduced by factor n

n proteins finds the proteins take longer time

©.@)
target site at time £ to find the target site / dtsts Dn (?fs) _ <ts>
25 0 n




