MAE 545: Lecture 19 (4/27)

How proteins find target sites on DNA?

Statistical mechanics of polymers

Growth dynamics of actin filaments and microtubules

Berg - von Hippel theory (1980s)

(facilitated diffusion)

- 1. Proteins diffuse in space and nonspecifically bind to a random location on DNA.
- 2. Proteins slide (diffuse) along the DNA.
- 3. Proteins jump (diffuse) to another random location on DNA and continue this sliding/ jumping process until the target site is found.

 $b = 0.34 \mathrm{nm}$ L - DNA length D_3 - diffusion constant in space D_1 - diffusion constant along the DNA

How long that is it take to find a target site in this process?

O.G.Berg et al., <u>Biochemistry</u> **20**, 6929-48 (1981)

Berg - von Hippel theory (1980s)

3

First assume fixed sliding time τ_{1d}

Number of distinct sites visited during each sliding event

 $n = \sqrt{16D_1 \tau_{1d} / (\pi b^2)}$

(valid for n >> 1)

Probability that target site is found during a sliding event

$$q = nb/L$$

Probability that target site is found exactly after *N*_R rounds

 $p(N_R) = q(1-q)^{N_R-1}$

Average number of rounds needed to find the target $\underset{\infty}{\infty}$

$$\overline{N_R} = \sum_{N_R=1} N_R p\left(N_R\right) = 1/q$$

 $b = 0.34 \mathrm{nm}$ L - DNA length

- D_3 diffusion constant in space
- $D_1\mbox{-}$ diffusion constant along the DNA
- τ_{3d} characteristic jumping time

Average search time

$$\overline{t_s} = \overline{N_R} \left(\tau_{1d} + \tau_{3d} \right)$$

O.G.Berg et al., <u>Biochemistry</u> **20**, 6929-48 (1981)

Facilitated diffusion

In reality sliding times are exponentially distributed

$$p(\tau_{1d}) = k_{\text{off}}^{\text{NS}} e^{-k_{\text{off}}^{\text{NS}}\tau_{1d}}$$
$$\langle \tau_{1d} \rangle = \int_0^\infty d\tau_{1d} \tau_{1d} p(\tau_{1d}) = 1/k_{\text{off}}^{\text{NS}}$$

Average number of distinct sites visited during each sliding

$$\langle n \rangle = \int_0^\infty d\tau_{1d} \, p(\tau_{1d}) \sqrt{16D_1 \tau_{1d} / (\pi b^2)}$$
$$\langle n \rangle = 2\sqrt{D_1 \langle \tau_{1d} \rangle / (b^2)}$$

Average probability that target site is found during a sliding event

 $\langle q \rangle = \langle n \rangle \, b/L$

Average number of rounds *N_R* needed to find the target site

$$\overline{\langle N_R \rangle} = 1/\langle q \rangle$$

 $b = 0.34 \mathrm{nm}$ L - DNA length D_3 - diffusion constant in space D_1 - diffusion constant along the DNA au_{3d} - characteristic jumping time

Average search time

$$\overline{\langle t_s \rangle} = \overline{\langle N_R \rangle} \left(\langle \tau_{1d} \rangle + \tau_{3d} \right)$$
$$\overline{\langle t_s \rangle} = \frac{L}{2\sqrt{D_1 \langle \tau_{1d} \rangle}} \left(\langle \tau_{1d} \rangle + \tau_{3d} \right)$$

Facilitated diffusion

Example: search time for target site in bacteria on DNA with 10⁶ base pairs

Sinultaneous search for target site by multiple proteins

Interactions and collisions between proteins are ignored

Search times for target site by individual proteins are exponentially distributed

 $p_1(t_s) = \frac{1}{\overline{\langle t_s \rangle}} e^{-t_s/\overline{\langle t_s \rangle}}$

What is the typical search time for the fastest of *n* independently searching proteins?

(Extreme value distributions)

$$p_n(t_s) = n \times p_1(t_s) \times \left(\int_{t_s}^{\infty} dt' \ p_1(t') \right)^{n-1} = \frac{n}{\langle t_s \rangle} e^{-nt_s/\langle t_s \rangle}$$

n proteins finds the target site at time *t*_s

probability that one of probability that other n-1 proteins take longer time to find the target site

Average search time is reduced by factor n

 $\int dt_s t_s p_n(t_s) = \frac{\langle t_s \rangle}{n}$

Statistical mechanics of polymers and filaments

Statistical mechanics of polymers and filaments

molecular dynamics simulation

Note: averaging over time is equivalent to averaging over all possible configurations weighted with Boltzmann weights!

partition function (sum over all possible configurations)

expected value of observables

$$Z = \sum_{c} e^{-E_c/k_B T}$$

$$\langle \mathcal{O} \rangle = \sum_{c} \mathcal{O}_{c} \frac{e^{-E_{c}/k_{B}T}}{Z}$$

- $E_c \begin{array}{c} \text{energy of a given} \\ \text{configuration} \end{array}$
 - T temperature
- $k_B \qquad \begin{array}{c} \text{Boltzmann} \\ \text{constant} \end{array}$

 $k_B = 1.38 \times 10^{-23} \text{JK}^{-1}$

Persistence length

correlations between tangents

$$\langle \mathbf{t}(s) \cdot \mathbf{t}(s+x) \rangle = e^{-x/\ell_p}$$

tangents become uncorrelated beyond persistence length!

persistence length

$$\ell_p = \frac{B}{k_B T}$$

- **B** filament bending rigidity
- *T***-temperature**
- L filament length

Short filaments remain straight

 $L \ll \ell_p$

Long filaments perform self-avoiding random walk

 $L \gg \ell_p$

Examples: persistence length

10 nm

 $\overline{k_BT}$

 ℓ_p

Persistence length for polymers is on the order of nm

actin $\ell_p \approx 17 \,\mu \mathrm{m}$

microtubule $\ell_p \approx 1.4 \,\mathrm{mm}$

 $\ell_p \approx 50 \,\mathrm{nm}$

double stranded DNA

single stranded DNA

 $\ell_p \approx 2 \,\mathrm{nm}$

uncooked spagetthi

 $\ell_p \approx 10^{18} \,\mathrm{m}$

End-to-end distance

Ideal chain vs worm-like chain

Ideal chain

N identical unstretchable links (Kuhn segments) of length a with freely rotating joints

Each configuration *C* has zero energy cost.

$$E_c = 0$$

Worm-like chain

Continuous unstretchable rod

Bending energy cost of configuration *C*:

$$E_c = \frac{B}{2} \int_0^L ds \left(\frac{d^2 \vec{r}}{ds^2}\right)^2$$

Each configuration C appears with probability $p_{c} \propto e^{-E_{c}/k_{B}T}$

L = Na - chain length

Ideal chain vs worm-like chain

Ideal chain

N identical unstretchable links (Kuhn segments) of length a with freely rotating joints

Worm-like chain

Continuous unstretchable rod

$$\left\langle \vec{R}_{AB}^2 \right\rangle = Na^2 = aL$$

 $\left\langle \vec{R}_{AB}^2 \right\rangle \approx 2\ell_p L = \frac{2BL}{k_B T}$

End-to-end distance fluctuations can be made identical if one choses the segment length to be

$$a = 2\ell_p$$

L = Na - chain length

Stretching of ideal freely jointed chain

Exact result for end-to-end distance

Stretching of worm-like chains

Assume long chains $L \gg \ell_p$

$$\frac{F\ell_p}{k_BT} = \frac{1}{4} \left(1 - \frac{\langle x \rangle}{L} \right)^{-2} - \frac{1}{4} + \frac{\langle x \rangle}{L}$$

J.F. Marko and E.D. Siggia,

Macromolecules 28, 8759-8770 (1995)

Experimental results for stretching of DNA

 $L = 32.8 \mu \mathrm{m}$

Random coil to globule transition in polymers
random coilcompact globule
 $T > \Theta$ $T > \Theta$ $T < \Theta$

 $R \sim \sqrt{L\ell_p}$

at high temperature entropic contributions dominate

 $R \sim \left(d^2 L\right)^{1/3}$

d - diameter of polymer chain at low temperature attraction between polymer chains dominates

Figures from: W.B. Hu and D. Frenkel, <u>J. Phys. Chem. B</u> **110**, 3734 (2006)

Further reading

Dynamics of actin filaments and microtubules

Cytoskeleton in cells

Cytoskeleton matrix gives the cell shape and mechanical resistance to deformation.

Microlubule

(wikipedia)

Crawling of cells

migration of skin cells during wound healing

spread of cancer cells during metastasis of tumors

amoeba searching for food

Immune system: neutrophils chasing bacteria

David Rogers, 1950s $v\sim 0.1 \mu {
m m/s}$

Movement of bacteria

Listeria monocytogenes moving in infected cells

Julie Theriot (speeded up 150x)

 $v \sim 0.1 - 0.3 \mu \mathrm{m/s}$

L. A. Cameron *et al.*, <u>Nat. Rev. Mol. Cell Biol.</u> **1**, 110 (2000)

Molecular motors

A.B. Kolomeisky, <u>J. Phys.: Condens.</u> <u>Matter</u> **25**, 463101 (2013) Transport of large molecules around cells (diffusion too slow) $v \sim 1 \mu {
m m/s}$

Contraction of muscles

Harvard BioVisions

Cell division

Segregation of chromosomes

Contractile ring divides the cell in two

Actin

Microtubules

Swimming of sperm cells

Swimming of Chlamydomonas (green alga)

Jeff Guasto $v \sim 50 \mu {
m m/s}$

Jeff Guasto

 $v\sim 60 \mu {\rm m/s}$

Bending is produced by motors walking on neighboring microtubule-like structures

Actin filaments

Actin filament growing against the barrier

work done against the barrier for insertion of new monomer

$$W = Fa$$

effective monomer free energy potential without barrier

effective monomer free energy potential with barrier

Actin filament growing against the barrier

Maximal force that can be balanced by growing filament (stall force) $k_{on}^+ \sim$

$$v^{+}(F_{\max}) = 0 \qquad \longrightarrow \qquad F_{\max} = \frac{k_B T}{a} \ln\left(\frac{k_{on}^{+}[M]}{k_{off}^{+}}\right)$$

$$k_{\rm on}^+ \sim 10 \mu {\rm M}^{-1} {\rm s}^{-1}$$
$$k_{\rm off}^+ \sim 1 {\rm s}^{-1}$$
$$[M] \sim 10 \mu {\rm M}$$
$$a \approx 2.5 {\rm nm}$$
$$F_{\rm max} \sim 8 {\rm pN}$$

Movement of bacteria

