

### **MAE 545 (Spring 2017)**

### **Special Topics - Lessons from Biology for Engineering Tiny Devices**



Lectures: T, Th 11:00 AM-12:20 PM, W 1:30-3:00 PM, Friend Center 111

**Office hours: EQUAD D414** (or by appointment)







### Andrej Košmrlj

andrej@princeton.edu









- \* text books: none
- Iecture slides will be posted on Blackboard

http://blackboard.princeton.edu

course: MAE545\_S2017

### Assignments

- \* presentation of research paper in class
- # final paper (final project)

### Course overview Structural colors

Structural colors of animals and plants appear due to the selective reflection of ambient light on structural features underneath the surface.



H. Wang and K-Q. Zhang, Sensors 13, 4192 (2013) V. Saranathan et al., J. R. Soc. Interface 9, 2563 (2012)

### Wrinkling



Wrinkling of thin films on soft substrates can be used to make flexible electronics and to tune drag, adhesion and wetting.

### Golf balls (reduced drag)



#### Gecko (strong adhesion)

#### Lotus leaves (hydrophobic)



### **Growth and forms in nature**

#### Brain



Gut



**Beaks** 



Leaf

Flower

Shells







### From transformable shapes to self-folding robots

#### opening/closing of flowers



#### self-folding robots



https://vimeo.com/98276732

https://www.youtube.com/watch?v=1M-vQdyY6OE

#### swelling of patterned gels



### **Patterns in nature**



### **Turing patterns**

### **Random walks**

#### **Brownian motion**



#### **Polymer random coils**



#### Swimming of E. coli



# Protein search for a binding site on DNA



### **Protein filaments and molecular motors**

#### Actin filament

#### Microtubule

#### **Cargo transport**

#### **Crawling of cells**

# Contraction of muscles

10 nm







### Viruses and drug delivery

assembly of viral capsids

packing of viral DNA inside the capsid

infection of cells



Copyright @ Fearson Education, Inc., publishing as Benjamin O, mmings,



drug delivery

### **DNA Origami**



C. E. Castro et al., Nature methods (2011)

MAE 545: Lecture 1 (2/7) **Structural colors** 



 $1.7 \mu m$ 

### **Structural color**

Structural colors of animals and plants appear due to the selective reflection of ambient light on structural features underneath the surface. structural color

### White light coming from the sun consists of all colors. rainbow $1.7 \mu m$ incoming reflected light light 42° transmitted

light

### **Structural colors**

Structural colors of animals and plants appear due to the selective reflection of ambient light on structural features underneath the surface.

11

**Peacock feather eyes** 

**Morpho butterfly** 





**Plum-throated Cotinga** 





Marble berry

 $1.7 \mu m$ 





#### bleak fish









 $1 \mu m$ 

250 nm



### **Dynamic structural colors**

#### Chameleon (speed 8x)



J. Teyssier et al., Nat. Comm. 6, 6368 (2015)

Changes in osmotic concentration lead to the swelling of cells in excited chameleon. This changes the spacing of periodic structure from which the ambient light is reflected.





yellow color

#### green color



 $200 \mathrm{nm}$ 

#### **Comb Jelly (real time)**



https://www.youtube.com/watch?v=Qy90d0XvJIE

Rainbow color waves are produced by the beating of cilia, which change the orientation of periodic structure from which the ambient light is reflected.



15





### **Dynamic colors in cephalopods**

octopus





squid

https://www.youtube.com/watch?v=9MB2ItsAPnQ

## Dynamical color change in cephalopod is achieved by modulation of size and spacing of both the pigment cells and the cells reflecting light.



 $7.5 \mu m$ 



#### electromagnetic waves

### **Wave equation**



**Solutions are** traveling waves with velocity c.

#### waves in ropes under tension



- tensile force F
- mass density ρ
- A cross-section area

### waves on liquid surfaces



 $c = \sqrt{gh}$ 

deep water

$$c = \sqrt{\frac{g\lambda}{2\pi}}$$

- gravitational const.  $\boldsymbol{Q}$
- h water depth
- $\lambda$  wavelength

permittivity  $\mu$  permeability

 $\frac{1}{\sqrt{\epsilon\mu}}$ 

#### sound waves

 $\epsilon$ 

$$c = \sqrt{\frac{K}{\rho}}$$

- **bulk modulus** K
  - mass density

#### shear waves

$$c = \sqrt{\frac{\mu}{\rho}}$$

- shear modulus  $\mu$
- mass density 0

ρ





### **Plane waves**



#### Planes of constant phases:

$$\vec{k} \cdot \vec{r} = \text{const}$$

Solutions of wave equation can be described as a linear superposition of plane waves:

$$u(x,t) = \sum_{\vec{k}} A_{\vec{k}} e^{i(\vec{k}\cdot\vec{r}-\omega t)}$$

$$k = \frac{2\pi}{\lambda}$$
 wavevector

 $\omega = 2\pi\nu \quad \text{angular frequency}$ 

Plane waves travel in direction of  $\vec{k}$  with velocity:

$$c = \frac{\omega}{k} = \lambda \nu$$

Note: velocity of plane waves may depend on the wavevector  $c(\vec{k})$  !

### Interference

constructive interference



Constructive interference occurs when the two waves are in phase: waves offset by  $m\lambda$ ,  $m = 0, \pm 1, \pm 2, ...$  $e^{ikm\lambda} = e^{i2\pi m} = +1$  destructive interference



20

### **Propagation of light in medium**



speed of light frequency

wavelength

 $c_0 = 3 \times 10^8 \text{m/s}$   $c = c_0/n$   $\nu_0$   $\nu = \nu_0$   $\lambda_0$   $\lambda = \lambda_0/n$  $c_0 = \nu_0 \lambda_0$   $c = \nu \lambda$ 

total number of cycles

$$\frac{x_1}{\lambda_0} + \frac{x_2}{\lambda} = \frac{x_1 + nx_2}{\lambda_0}$$

Optical path length is geometric distance multiplied by the index of refraction!

### **Reflection of waves**



# Reflection of light at the interface between two media



### **Refraction of light**



Snell's  
law
$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$
Total internal  
reflection $\theta_2 > \arcsin(n_1/n_2)$ 

### Rainbow

# Rainbow forms because refraction index *n* in water droplets depends on the color (wavelength) of light.

 $n_{\text{purple}} > n_{\text{blue}} > n_{\text{green}} > n_{\text{yellow}} > n_{\text{orange}} > n_{\text{red}}$ 





### Interference on thin films



difference between optical path lengths of the two reflected rays

$$OPD = n_2 \left( \overline{AB} + \overline{BC} \right) - n_1 \overline{AD}$$
$$OPD = 2n_2 d \cos(\theta_2)$$

#### no additional phase difference due to reflections

 $n_1 < n_2 < n_3$   $n_1 > n_2 > n_3$ 

## constructive interference $OPD = m\lambda$

#### destructive interference

 $OPD = (m + 1/2)\lambda$ 

$$m=0,\pm 1,\pm 2,\ldots$$

# additional $\pi$ phase difference due to reflections

 $n_1 < n_2 > n_3$   $n_1 > n_2 < n_3$ 

#### constructive interference

 $OPD = (m + 1/2)\lambda$ destructive interference  $OPD = m\lambda$ 

### Interference on soap bubbles



#### constructive interference for different colors happens at different angles

$$2dn_{\text{soap}}\cos(\theta_2) = (m+1/2)\lambda$$

 $m=0,\pm 1,\pm 2,\ldots$ 

#### soap bubble



#### visible spectrum



### Single structural color

# Single reflected color on structures with uniform spacing





#### Morpho butterfly





 $1.7 \mu m$ 

Marble berry





250nm

Chrysochroa raja bettle





 $1 \mu m$ 

### Silver and gold structural colors

29

# Many colors reflected on structures with varying spacing





#### chirped structure



disordered layer spacing bleak fish







### **Bragg scattering on crystal layers**



#### **Comb jelly**



#### Beating cilia are changing crystal orientation





### **Scattering on disordered structures**



#### **Disordered structures with** a characteristic length scale.

This length scale determines what light wavelengths are preferentially scattered. This gives rise to blue colors in birds above.