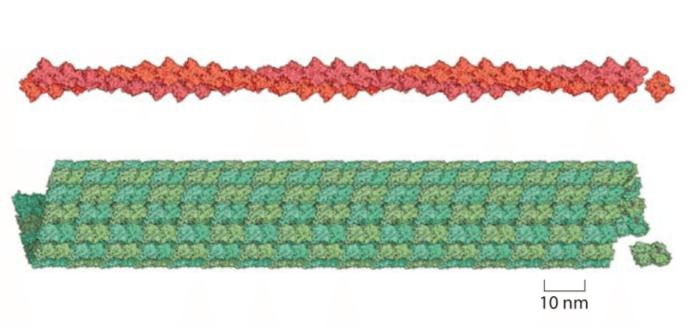
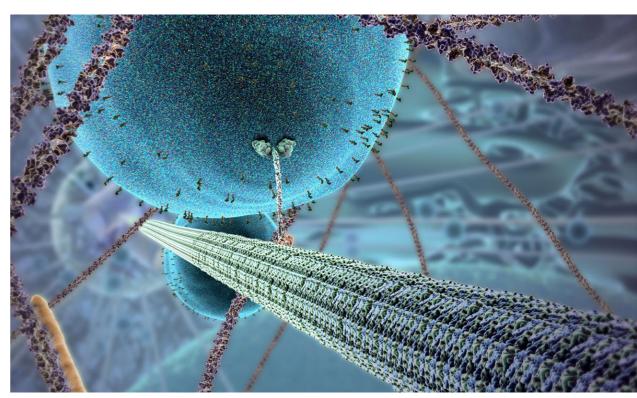
MAE 545: Lecture 20 (5/2)

Growth dynamics of actin filaments and microtubules

Dynamics of molecular motors





Actin filaments

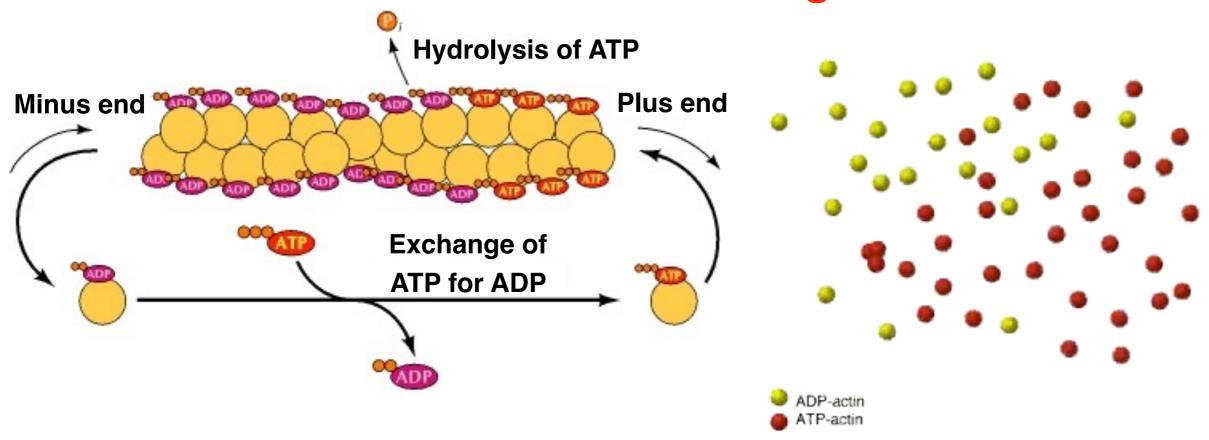
Minus end (pointed end)

Plus end (barbed end)

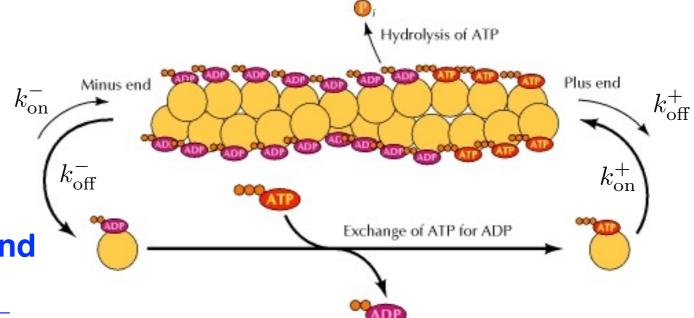
Persistence length $\ell_p \sim 10 \mu \mathrm{m}$

Typical length $L \lesssim 10 \mu \mathrm{m}$

Actin treadmilling



Actin growth



+ grows

shrinks

 $[M]_{ss}$

end

growth of minus end

$$\frac{dn^-}{dt} = k_{\rm on}^-[M] - k_{\rm off}^-$$

no growth at

$$[M]_c^- = \frac{k_{\text{off}}^-}{k_{\text{on}}^-}$$

Steady state regime

$$rac{dn^+}{dt} = -rac{dn^-}{dt}$$
 $[M]_{
m ss} = rac{k_{
m off}^+ + k_{
m off}^-}{k_{
m on}^+ + k_{
m on}^-} pprox 0.17 \mu{
m M}$ front speed

 $\frac{dn^{+}}{dt} = \frac{k_{\text{on}}^{+} k_{\text{off}}^{-} - k_{\text{on}}^{-} k_{\text{off}}^{+}}{k_{\text{on}}^{+} + k_{\text{on}}^{-}} \approx 0.6 \text{s}^{-1}$

growth of plus end

$$\frac{dn^+}{dt} = k_{\rm on}^+[M] - k_{\rm off}^+$$

no growth at

$$[M]_c^+ = \frac{k_{\text{off}}^+}{k_{\text{on}}^+}$$

concentration of free actin monomers

actin shrinks

+ end

 $[M]_{c}^{+}$

ooth ends

shrink

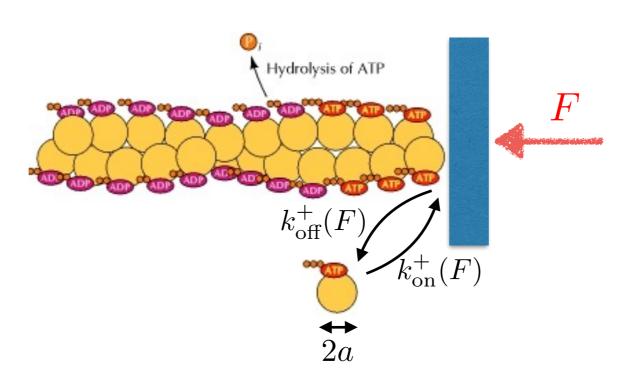
actin grows

 $[M]_{c}$

both ends

grow

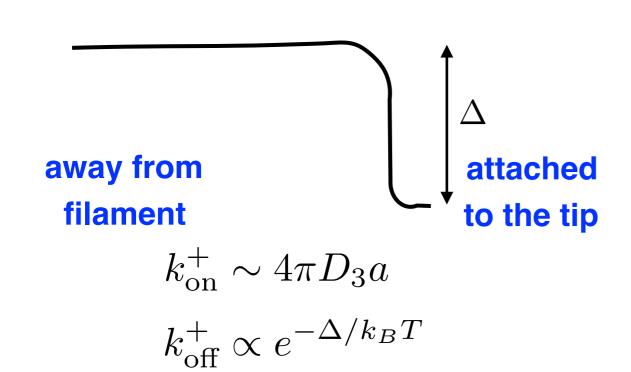
Actin filament growing against the barrier



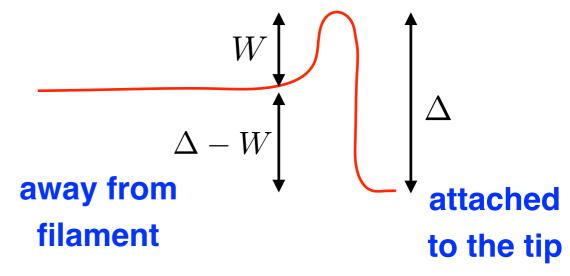
work done against the barrier for insertion of new monomer

$$W = Fa$$

effective monomer free energy potential without barrier



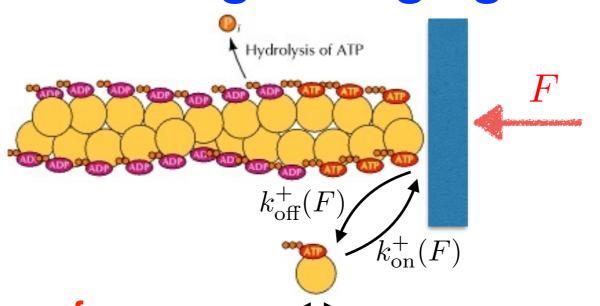
effective monomer free energy potential with barrier



$$k_{\rm on}^+(F) \sim k_{\rm on}^+ e^{-Fa/k_B T}$$

 $k_{\rm off}^+(F) \sim k_{\rm off}^+$

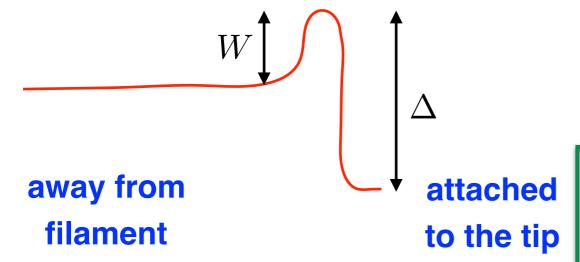
Actin filament growing against the barrier



work done against the barrier for insertion of new monomer

$$W = Fa$$

effective monomer free energy potential with barrier



$$k_{\rm on}^+(F) \sim k_{\rm on}^+ e^{-Fa/k_B T}$$

 $k_{\rm off}^+(F) \sim k_{\rm off}^+$

Growth speed of the tip

$$v^{+}(F) = \frac{dn^{+}(F)}{dt} = k_{\text{on}}^{+}[M]e^{-Fa/k_{B}T} - k_{\text{off}}^{+}$$

Maximal force that can be balanced by growing filament

(stall force)

$$v^{+}(F_{\text{max}}) = 0$$

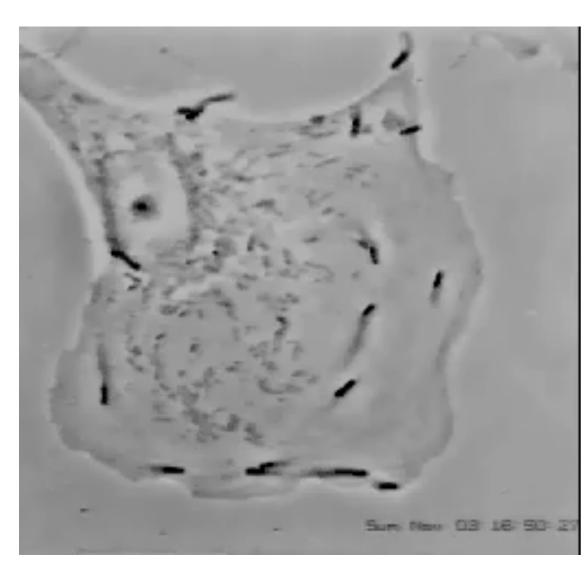
$$F_{\text{max}} = \frac{k_B T}{a} \ln \left(\frac{k_{\text{on}}^{+}[M]}{k_{\text{off}}^{+}} \right)$$

$$k_{\rm on}^+ \sim 10 \mu {\rm M}^{-1} {\rm s}^{-1}$$

 $k_{\rm off}^+ \sim 1 {\rm s}^{-1}$
 $[M] \sim 10 \mu {\rm M}$
 $a \approx 2.5 {\rm nm}$
 $F_{\rm max} \sim 8 {\rm pN}$

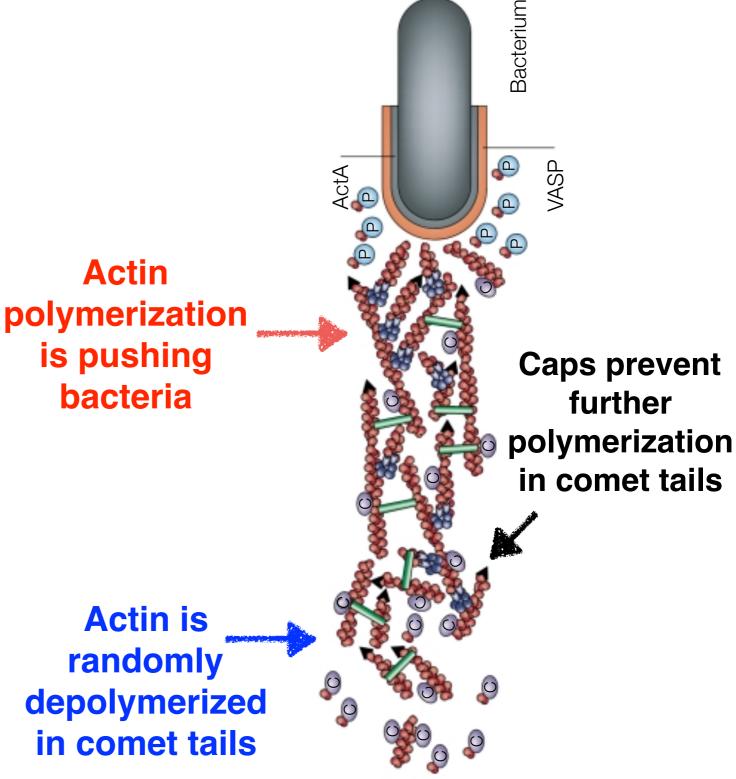
Movement of bacteria

Listeria monocytogenes moving in infected cells



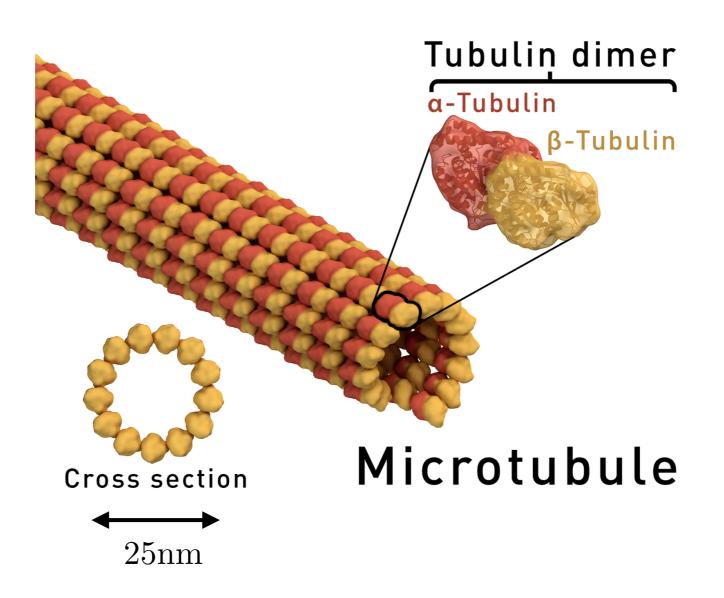
Julie Theriot (speeded up 150x)

 $v \sim 0.1 - 0.3 \mu \text{m/s}$



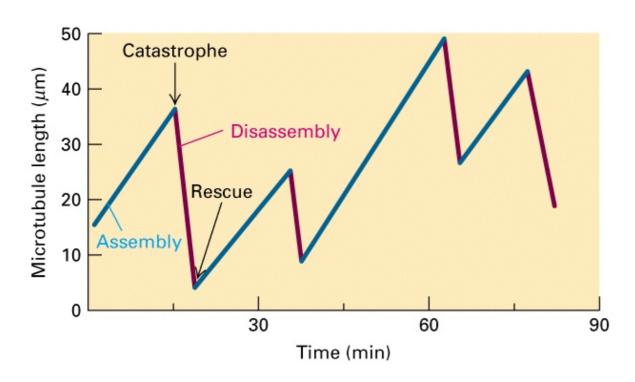
L. A. Cameron *et al.*, Nat. Rev. Mol. Cell Biol. **1**, 110 (2000)

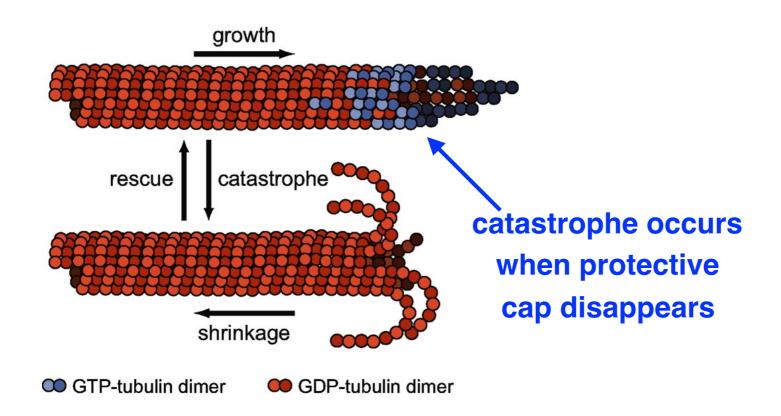
Microtubules

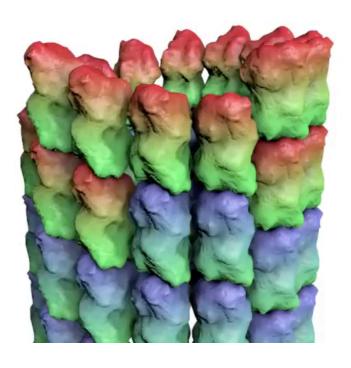


Persistence length $\ell_p \sim 1 \mathrm{mm}$ Typical length $L \lesssim 50 \mu \mathrm{m}$

Microtubule dynamic instability

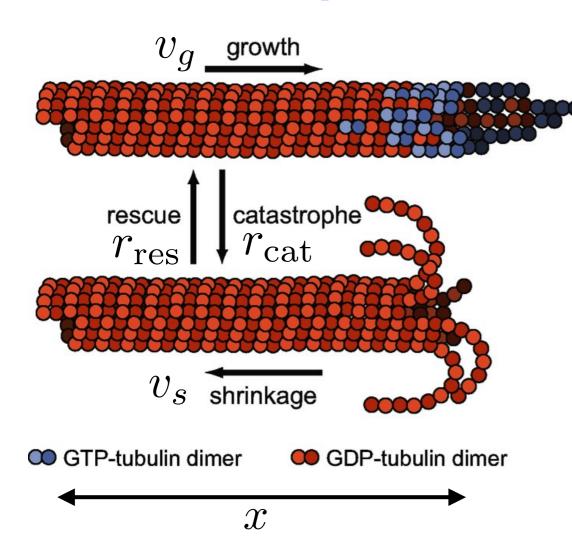






Wikipedia

Simple model of microtubule growth



Typical values in a tubilin solution of concentration $[T] \approx 10 \mu M$:

$$v_g \approx 2 \mu \text{m/min} \propto [\text{T}]$$
 $v_s \approx 20 \mu \text{m/min} \sim \text{const}$
 $r_{\text{cat}} \approx 0.24 \text{min}^{-1} \sim \text{const}$
 $r_{\text{res}} \approx 3 \text{min}^{-1} \propto [\text{T}]$

Let's ignore all molecular details and assume that microtubules switch at fixed rates between growing and shrinking phases

Master equation:

$$\frac{\partial p_{\text{growth}}}{\partial t} = -r_{\text{cat}} p_{\text{growth}} + r_{\text{res}} p_{\text{shrinking}}$$

$$\frac{\partial p_{\text{shrinking}}}{\partial t} = +r_{\text{cat}} p_{\text{growth}} - r_{\text{res}} p_{\text{shrinking}}$$

$$p_{\text{growth}} + p_{\text{shrinking}} = 1$$

Steady state ($\partial p/\partial t \equiv 0$):

$$p_{\text{growth}}^* = \frac{r_{\text{res}}}{r_{\text{res}} + r_{\text{cat}}}$$
 $p_{\text{shrinking}}^* = \frac{r_{\text{cat}}}{r_{\text{res}} + r_{\text{cat}}}$

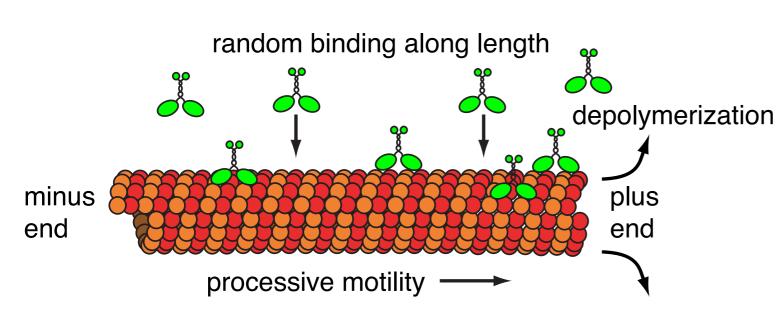
Average growth speed of microtubules

$$\overline{v} = p_{\text{growth}}^* v_g - p_{\text{shrinking}}^* v_s$$

$$\overline{v} \approx 0.4 \, \mu \text{m/min}$$

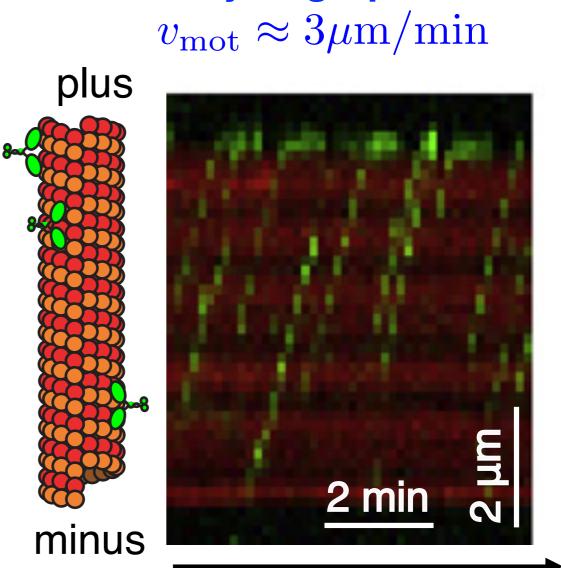
How cells control the total length of microtubules

Special kinesin-8 motors bind to microtubules and then walk towards the plus end, where they help detach (depolymerize) tubulin dimers



Motors walk at speed

 $v_{\rm mot} \approx 3 \mu \rm m/min$

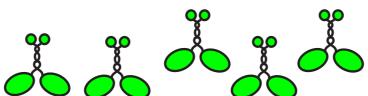


kymograph

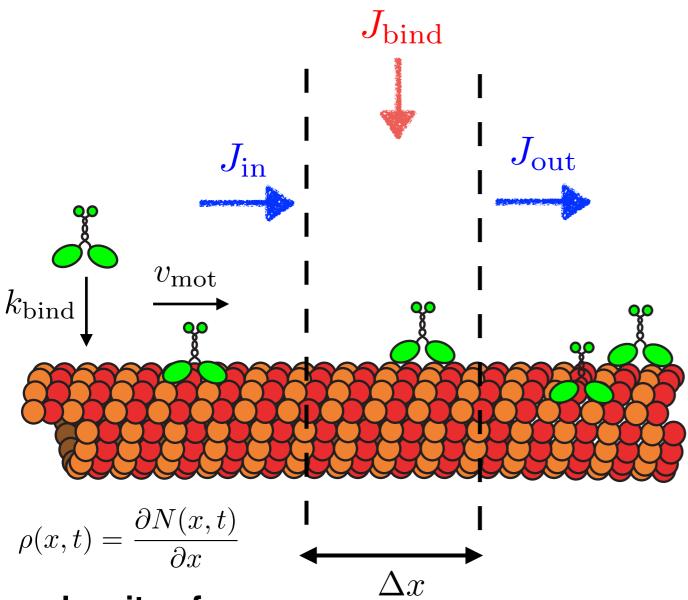
V. Varga et al., Cell 138, 1174-1183 (2009)

time

Density of motors bound to microtubules



[M] concentration of unbound motors number of bound motors $\frac{\Delta N}{\Delta t} = J_{\text{bind}} - J_{\text{out}} + J_{\text{in}}$



$$rac{\Delta N(x,t)}{\Delta t} = k_{
m bind}[M]\Delta x$$

$$-(\rho(x+\Delta x,t)-\rho(x,t))v_{
m mot}$$

Conservation law for the

$$\frac{\partial \rho(x,t)}{\partial t} = k_{\text{bind}}[M] - v_{\text{mot}} \frac{\partial \rho(x,t)}{\partial x}$$

Generalized Fick's law

$$\frac{\partial \rho(x,t)}{\partial t} = r(x,t) - \frac{\partial j(x,t)}{\partial x}$$

creation/removal of particles

Density of motors bound to microtubules

Time evolution for density of bound motors

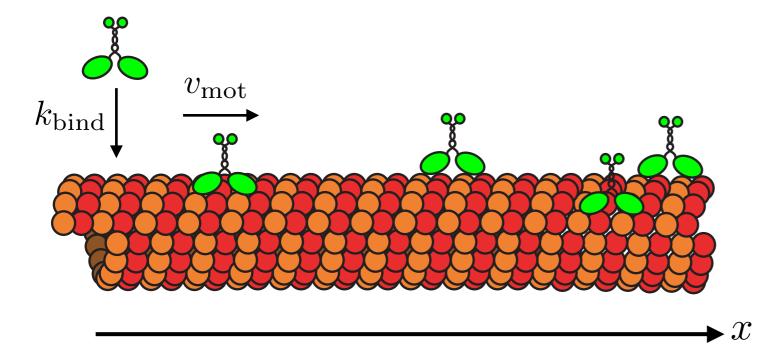
$$\frac{\partial \rho(x,t)}{\partial t} = k_{\text{bind}}[M] - v_{\text{mot}} \frac{\partial \rho(x,t)}{\partial x}$$

For initially empty microtubule

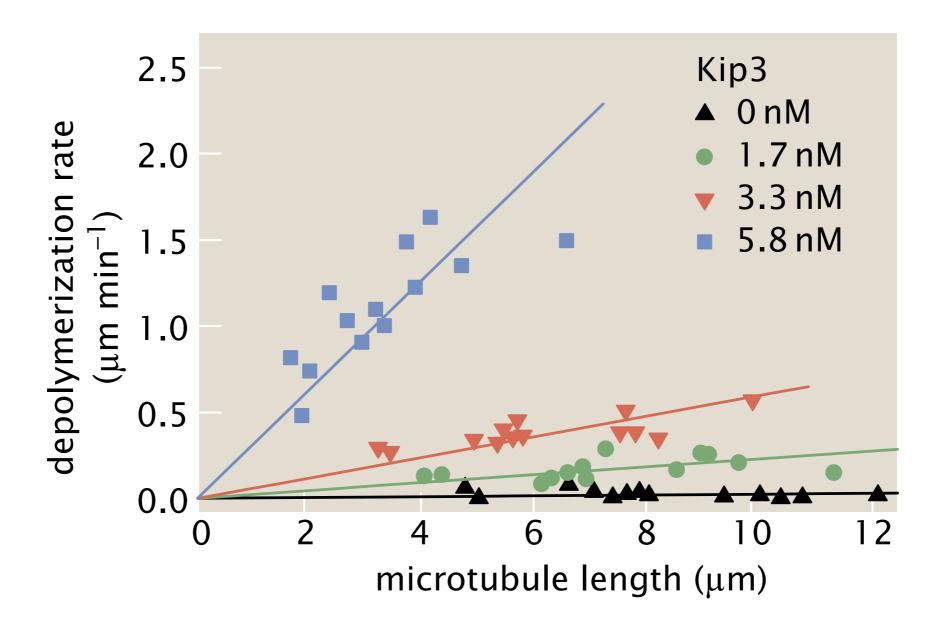
$$\rho(x,t) = \begin{cases} \frac{k_{\text{bind}}[M]}{v_{\text{mot}}} x, & 0 < x < v_{\text{mot}}t \\ k_{\text{bind}}[M]t, & x > v_{\text{mot}}t \end{cases}$$

Stationary density of bound motors

$$\rho^*(x) = \frac{k_{\text{bind}}[M]}{v_{\text{mot}}} \ x$$



Length dependent depolymerization rate

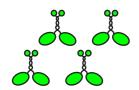


Depolymerization rate is proportional to density of Kip3 motors

$$\rho^*(L) = \frac{k_{\text{bind}}[M]}{v_{\text{mot}}} L$$

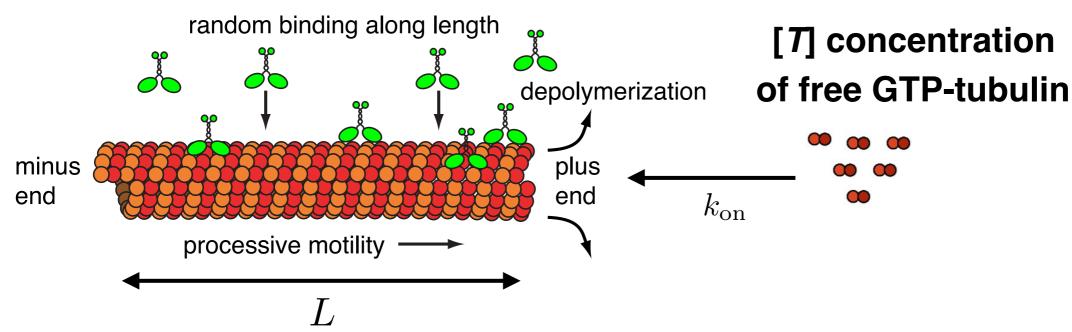
V. Varga et al., Nat. Cell Biol. 8, 957-962 (2006)

Controlled length of microtubules



[M] concentration

of unbound motors



relative velocity of motors arriving to the tip

$$\frac{dL}{dt} = ak_{\rm on}[T] - a\rho^*(L) \left[v_{\rm mot} - \frac{dL}{dt} \right]$$

$$\frac{dL}{dt} = \frac{(ak_{\rm on}[T] - a\rho^*(L)v_{\rm mot})}{1 - a\rho^*(L)}$$

$$\rho^*(L) = \frac{k_{\text{bind}}[M]}{v_{\text{mot}}} \ L$$

Stationary length of microtubules

$$L^* = \frac{k_{\rm on}[T]}{k_{\rm bind}[M]}$$

$$[T] \approx 10 \mu \mathrm{M}$$

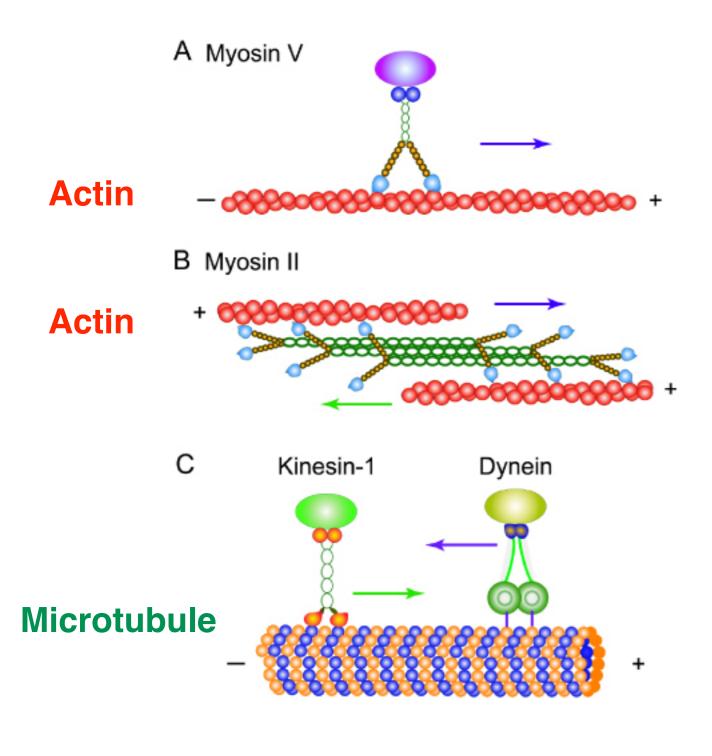
$$k_{\rm on} \approx 9 \mu \mathrm{M}^{-1} \mathrm{s}^{-1}$$

$$L^* \sim 75 \mu \mathrm{m}$$

$$[M] \approx 3 \mathrm{nM}$$

$$k_{\rm bind} \approx 24 {\rm nM}^{-1} {\rm min}^{-1} \mu {\rm m}^{-1}$$

Molecular motors

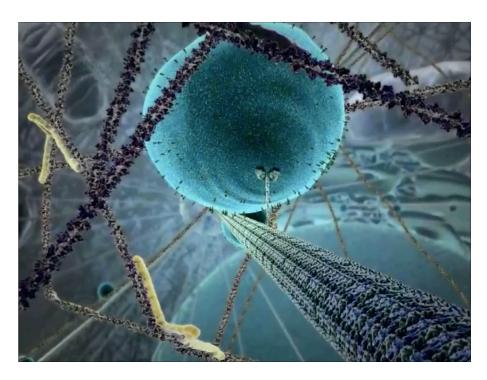


A.B. Kolomeisky, <u>J. Phys.: Condens.</u>
Matter **25**, 463101 (2013)

Transport of large molecules around cells (diffusion too slow)

 $v \sim 1 \mu \text{m/s}$

Contraction of muscles

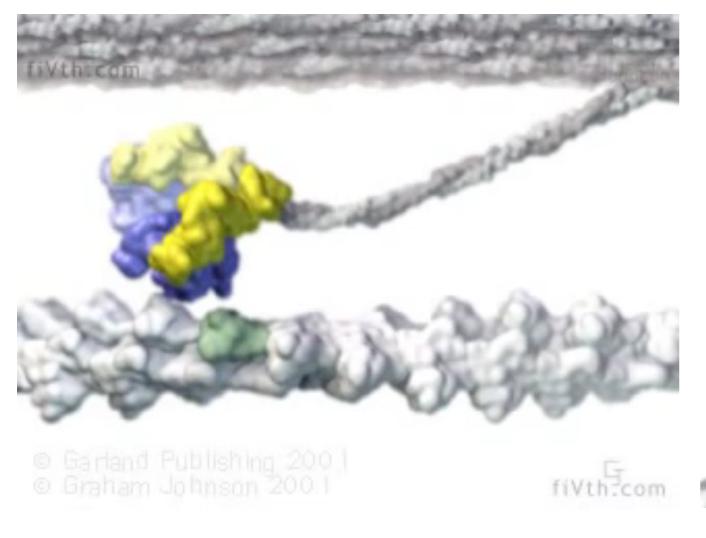


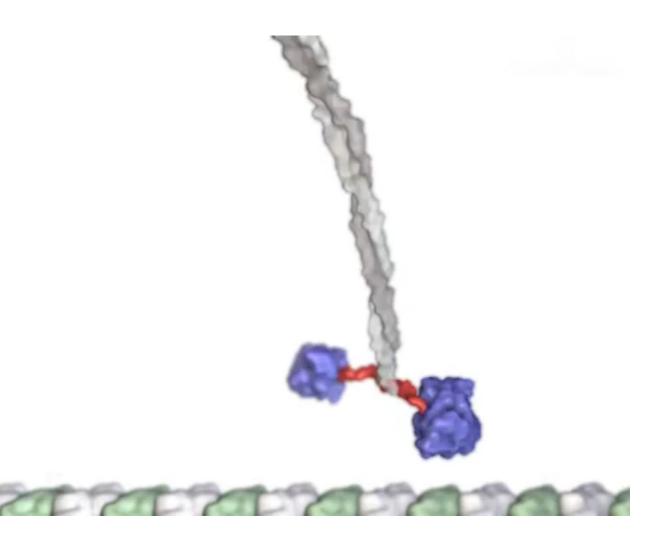
Harvard BioVisions

Movement of molecular motors is powered by ATP molecules

Myosin motor walking on actin in muscles

Kinesin motor walking on microtubule



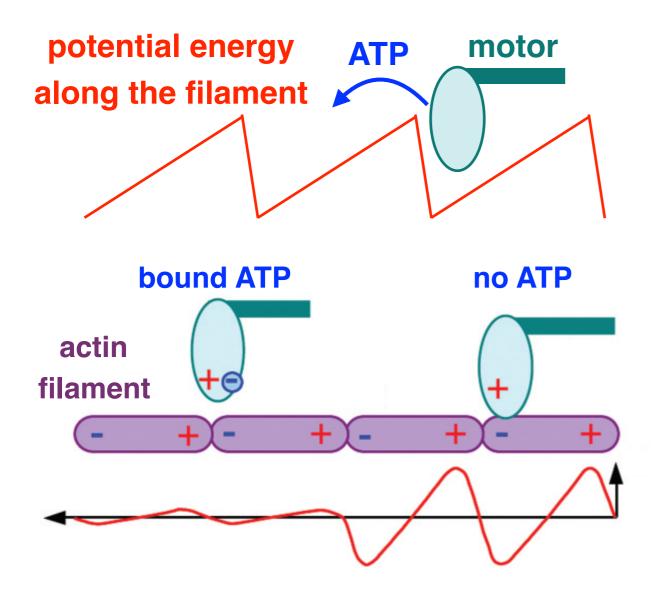


Graham Johnson

Molecular motors vs Brownian ratchets

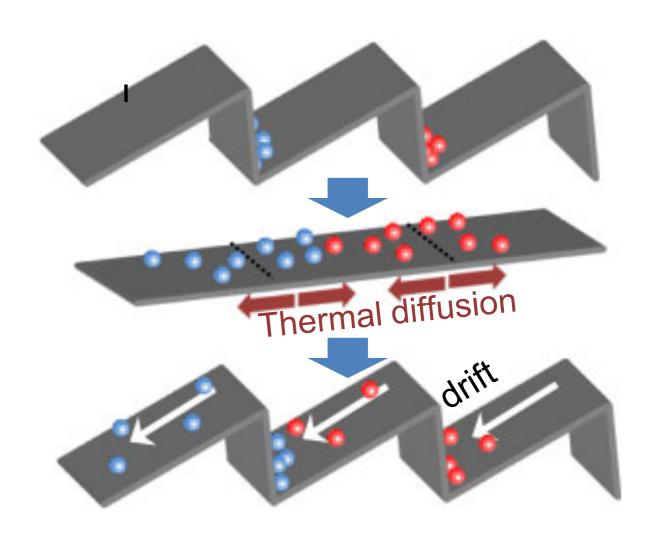
Myosin motor

ATP driven process drives molecular motors along the filaments



Brownian ratchet

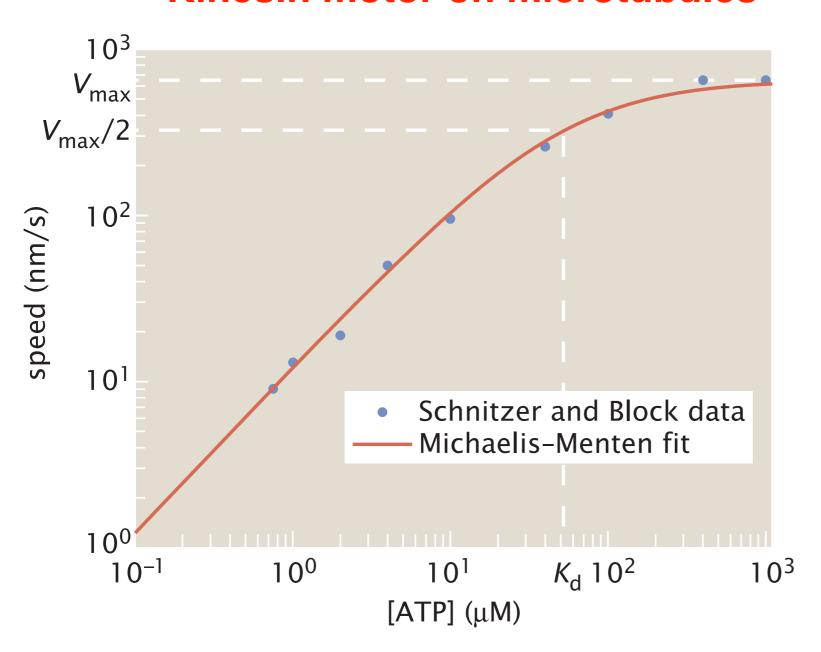
net movement of particles is achieved by periodic modulation of asymmetric external potential



ATP concentration dependent speed of motors

$$v \approx v_{\text{max}} \frac{[\text{ATP}]}{[\text{ATP}] + K_d}$$

Kinesin motor on microtubules



Maximal speed

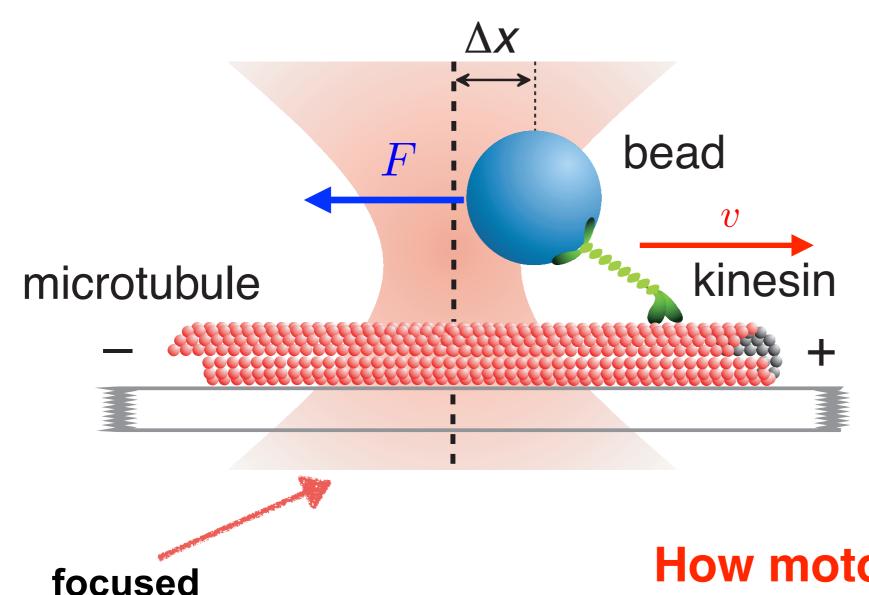
 $v_{\rm max} \approx 0.6 \,\mu{\rm m/s}$

ATP concentration at half the maximal speed

$$K_d \approx 50 \,\mu\mathrm{M}$$

Motors carrying the load

Force exerted on kinesin motors carrying plastic beads can be controlled with optical tweezers



 $F \approx k\Delta x$

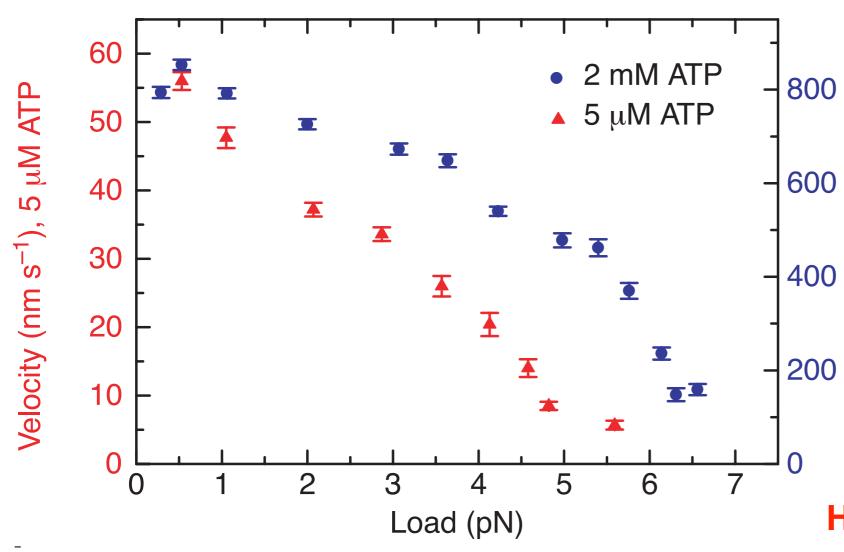
Effective spring constant k depends on the bead size, refractive indices of the bead and surrounding medium, and the gradient of laser intensity

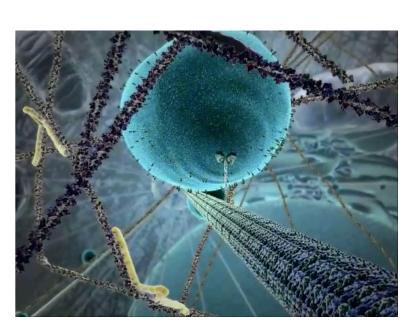
How motor speed depends on the loading force?

laser beam

Motor velocity dependence on the load

kinesin walking on microtubules





How important is viscous drag for motors carrying vesicles?

stall force

$$v(F_s) = 0$$

$$F_{\text{drag}} = 6\pi \eta R v$$
$$F_{\text{drag}} \sim 6\pi 10^{-3} \text{kgm}^{-1} \text{s}^{-1} \cdot 1\mu \text{m} \cdot 1\mu \text{m/s}$$

/elocity (nm s⁻¹), 2 mM ATF

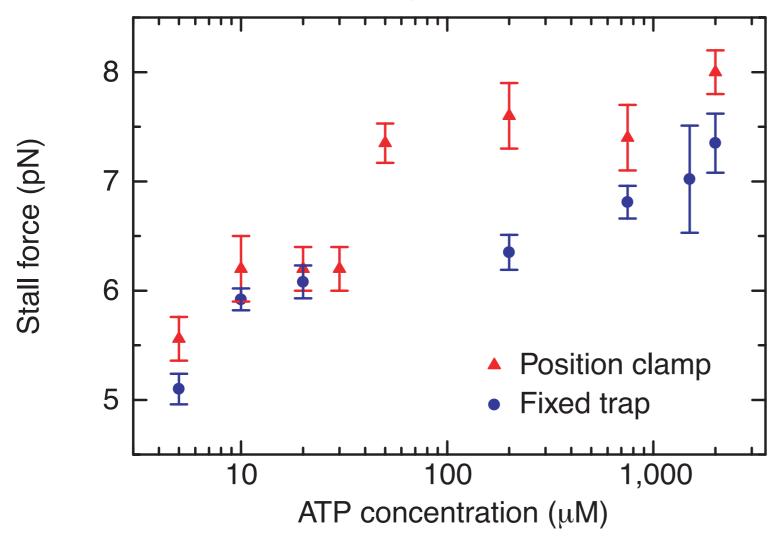
$$F_{\rm drag} \sim 10^{-2} \, \rm pN$$

Note: viscous drag is negligible

ATP concentration dependent stall force

$$F_s \sim \frac{k_B T}{a} \ln[\text{ATP}]$$

kinesin walking on microtubules

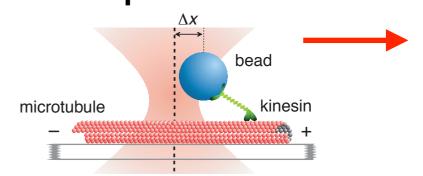


motor step length

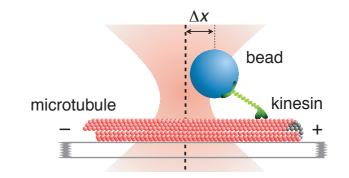
$$a \approx 8 \, \mathrm{nm}$$

Position clamp

laser follows the bead and keeps fixed force



Fixed trap
laser position is is fixed



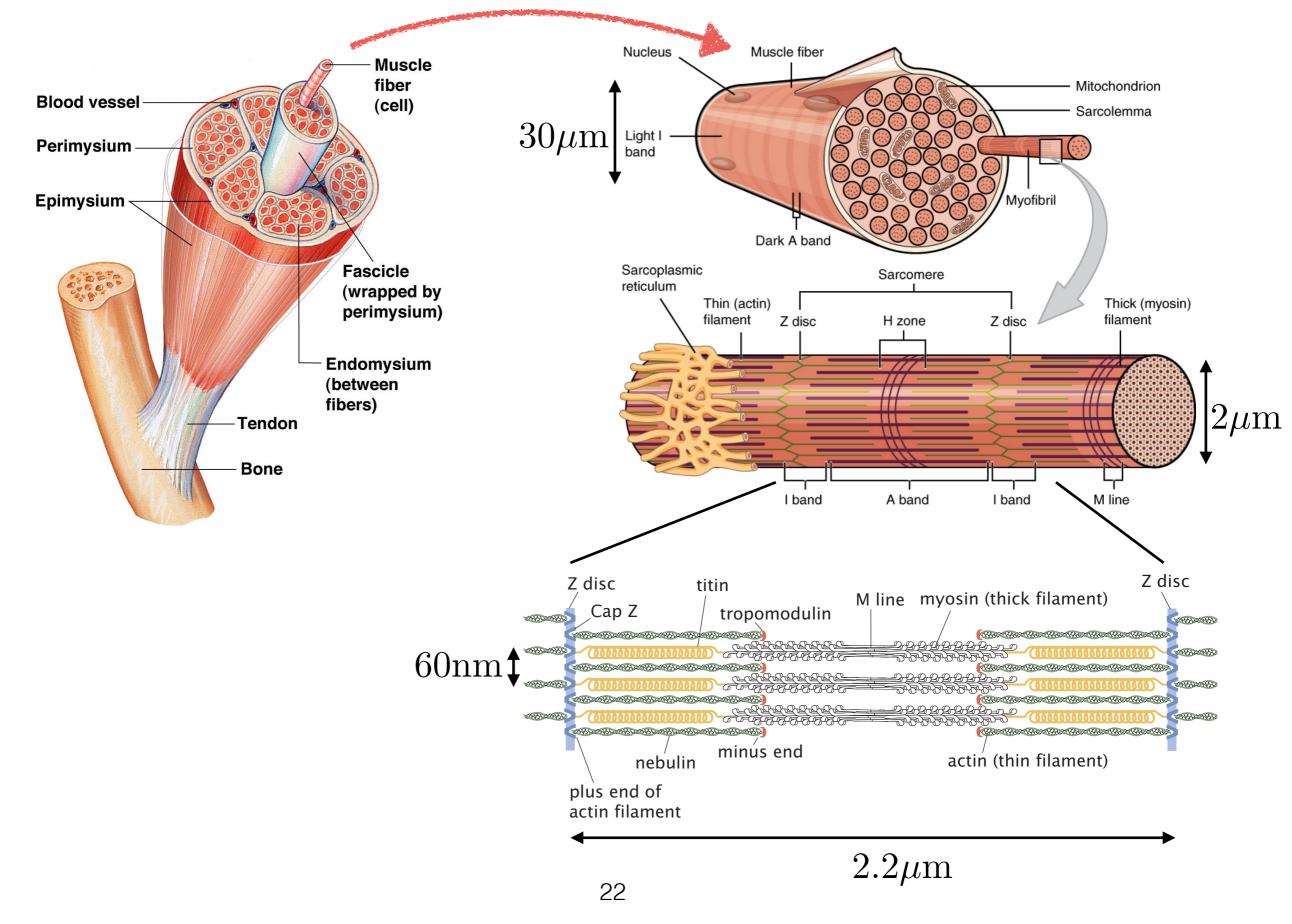
maximal possible force exerted by motors can

be estimated from energy conservation

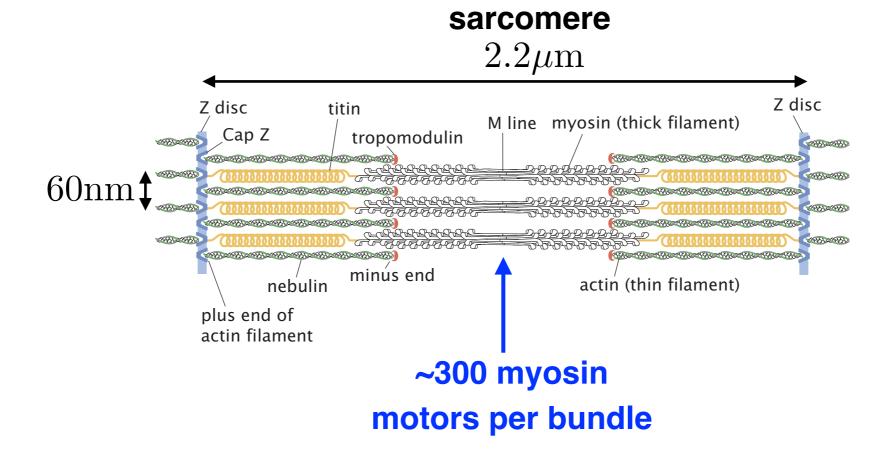
$$F_{\mathrm{max}} = \frac{\Delta G_{\mathrm{ATP}}}{a} pprox \frac{20k_BT}{8\mathrm{nm}} \sim 10\mathrm{pN}$$
 21

K. Visscher et al., Nature 400, 184-189 (1999)

Skeletal muscle contraction by myosin motors



Skeletal muscle contraction by myosin motors



Estimated force generated by myosin motors

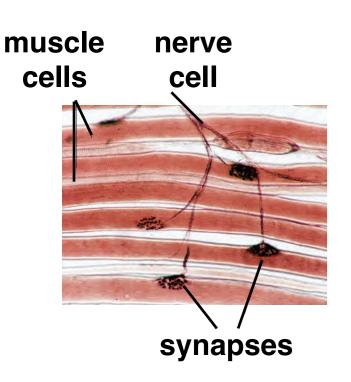
$$300 \times \frac{2 \text{pN}}{\pi (30 \text{nm})^2} \sim 20 \text{N/cm}^2$$

Muscles contract at twice the speed of myosin motors

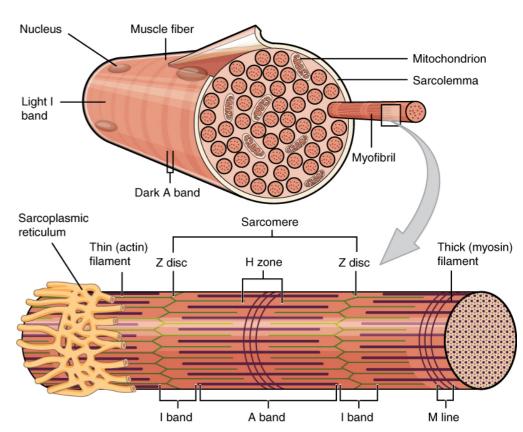
$$\sim 0.1$$
-1 $\mu \mathrm{m/s}$

Muscles may contract by 5%-45% per second!

Skeletal muscle contraction is controlled by nerve cells

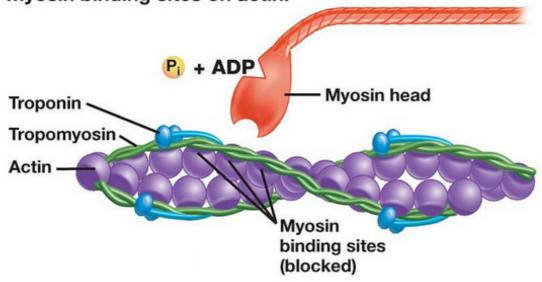


Electric signal from nerve cells releases Ca²⁺ from sarcoplasmic reticulum



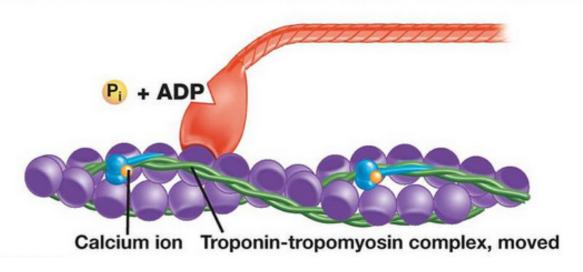
Low Ca²⁺, muscles are relaxed

(a) Tropomyosin and troponin work together to block the myosin binding sites on actin.

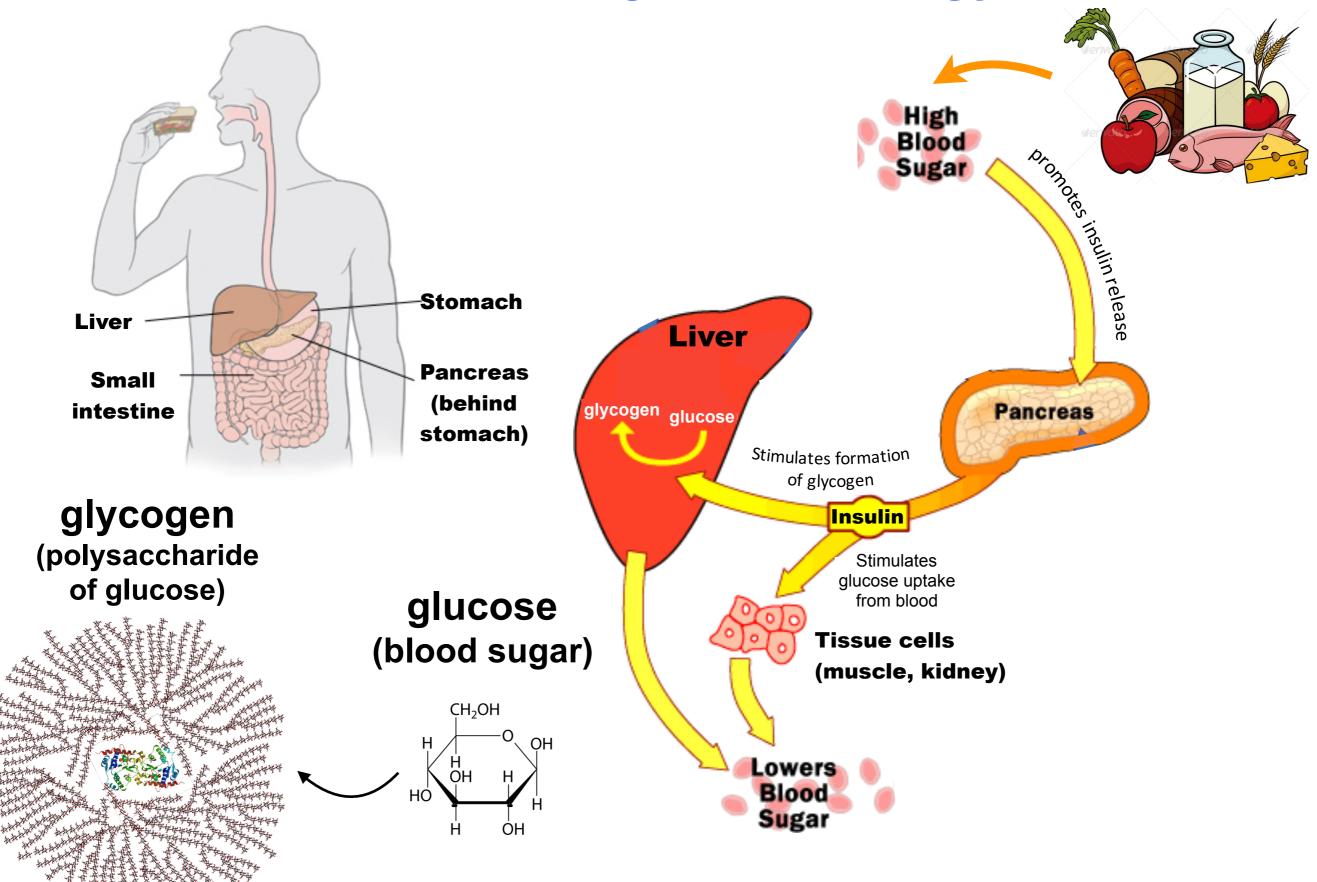


High Ca²⁺, muscles are contracted

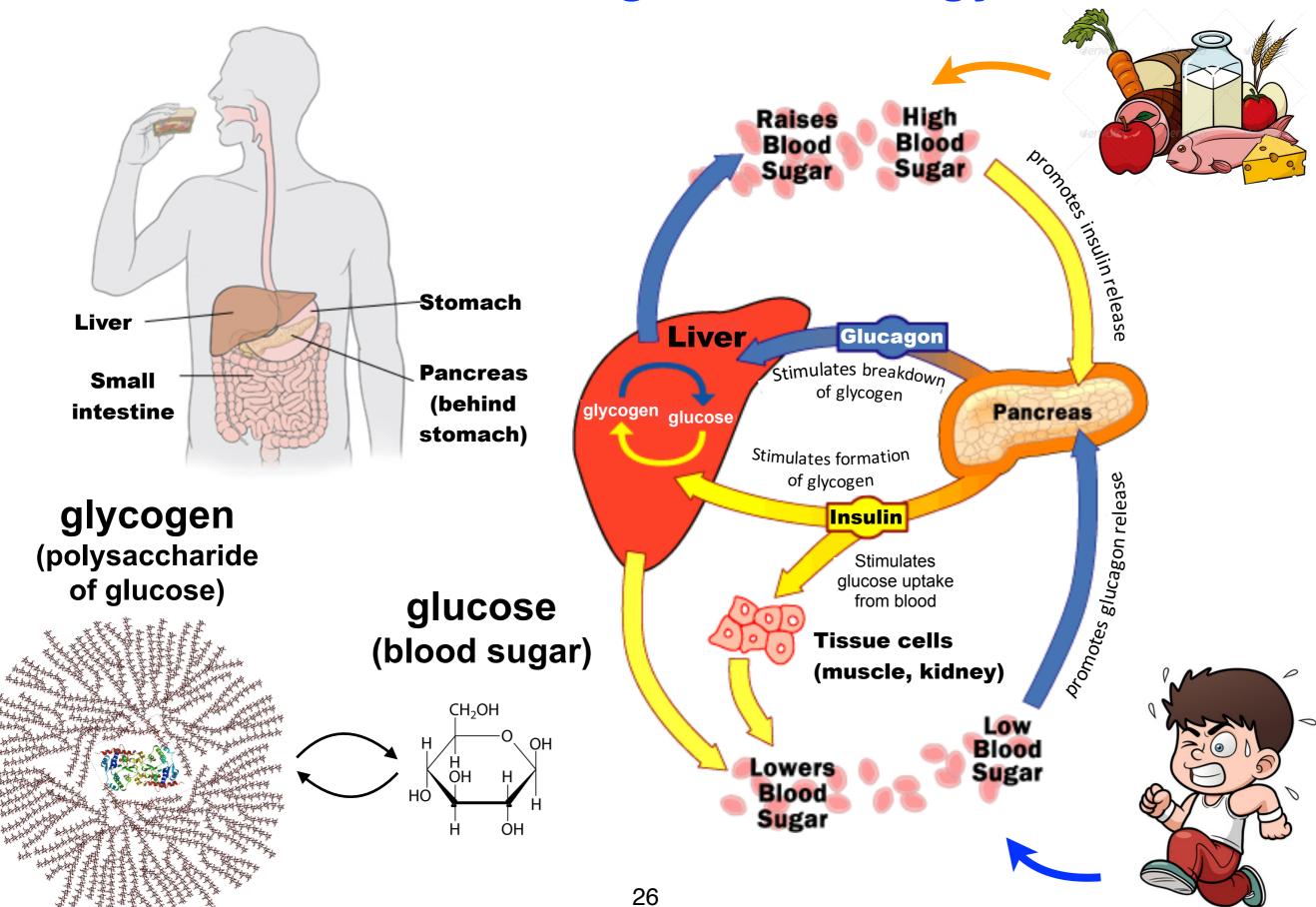
(b) When a calcium ion binds to troponin, the troponintropomyosin complex moves, exposing myosin binding sites.



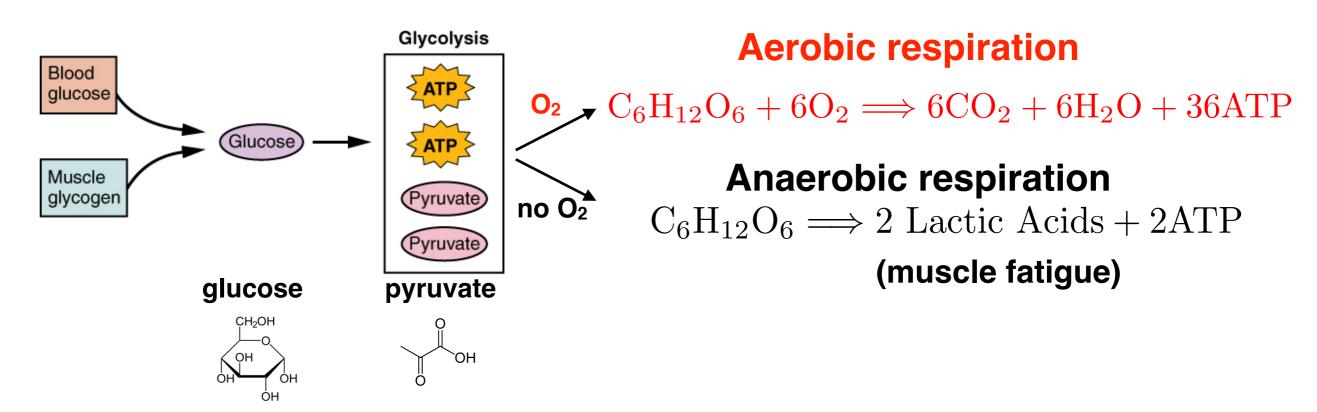
How muscles get ATP energy?



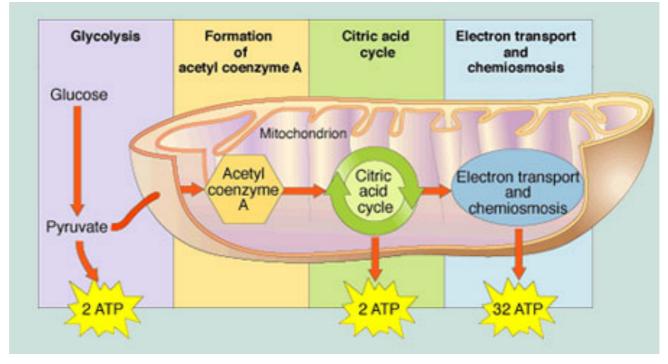
How muscles get ATP energy?



How muscles get ATP energy?

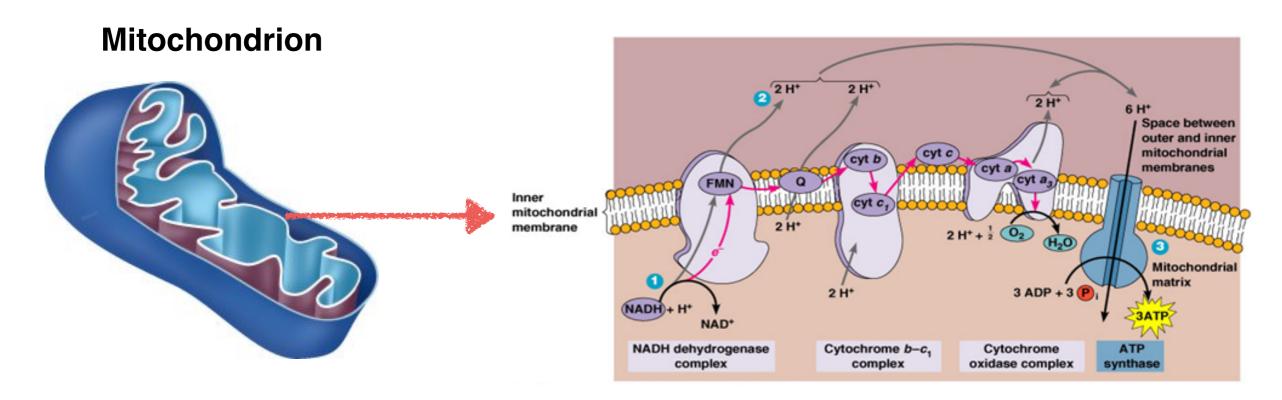


Aerobic respiration



Note:
Citric acid cycle
= Krebs cycle

Electron transport chain

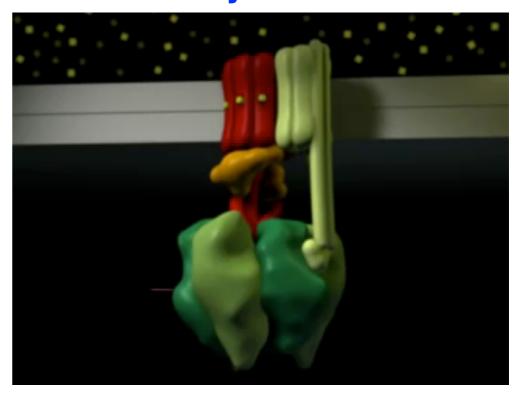


NADH products of the Cytric acid cycle are used to pump H+ to the space between outer and inner mitochondrial membrane.

Gradient of H+ concentration drives the ATP synthase motor that converts ADP to ATP.

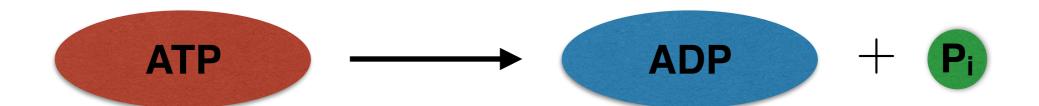
Note: ATP synthase can run in reverse and use ATP to pump H+ at low concentrations.

ATP synthase



Energetics of ATP hydrolysis

How much energy is released during ATP hydrolysis?



$$\Delta G = \mu_{\text{ADP}} + \mu_{\text{P}} - \mu_{\text{ATP}}$$

$$\Delta G = \mu_{ADP}^{0} + \mu_{P}^{0} - \mu_{ATP}^{0} + k_{B}T \ln \left(\frac{[ADP][P_{i}]}{[ATP]c_{0}} \right)$$

 $-12.5k_{B}T$

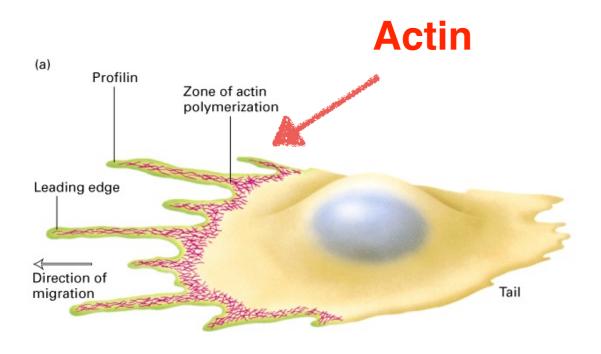
Under physiological conditions: $\Delta G \sim -20k_BT$

 $([ATP], [ADP], [P_i] \sim 1 \text{mM})$

Chemical potentials are typically defined relative to concentration $c_0 \sim 1$ M.

$$\mu_s(c_s) = \mu_s(c_0) + k_B T \ln(c_s/c_0)$$

Crawling of cells

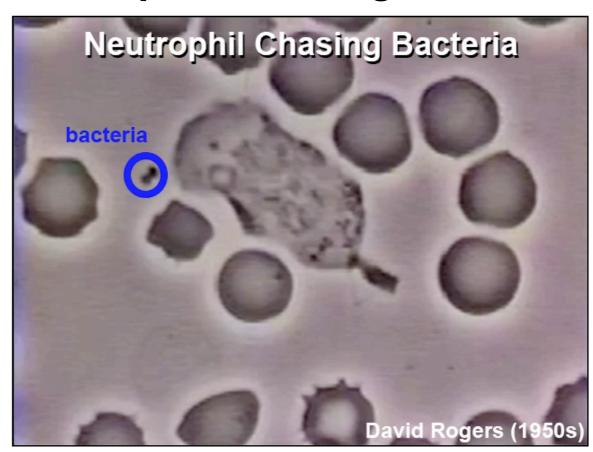


migration of skin cells during wound healing

spread of cancer cells during metastasis of tumors

amoeba searching for food

Immune system: neutrophils chasing bacteria

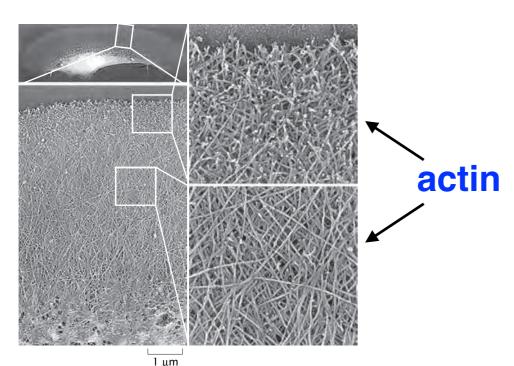


David Rogers, 1950s

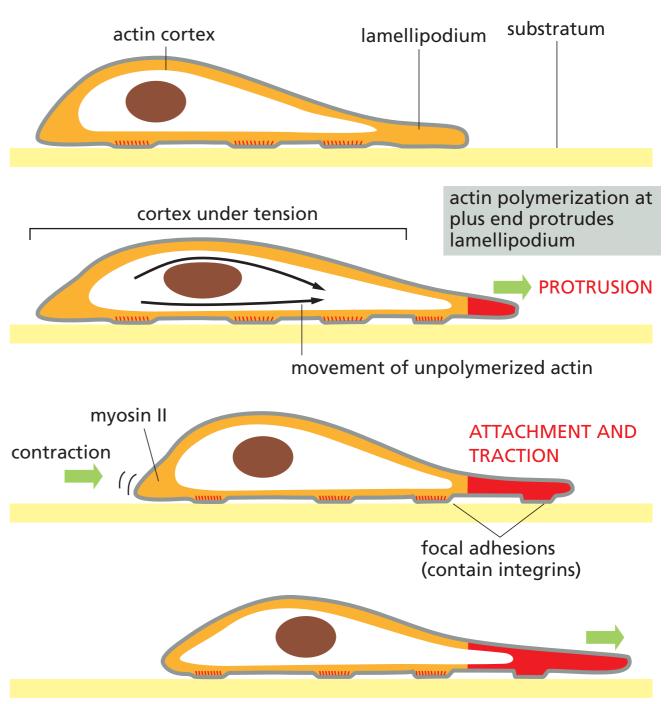
 $v \sim 0.1 \mu \text{m/s}$

Crawling of cells

fish skin cell $v=0.2 \mu \mathrm{m/s}$



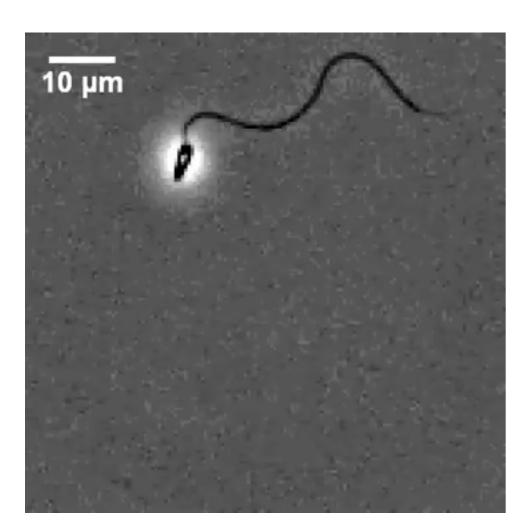
R. Phillips et al., Physical Biology of the Cell



Alberts et al., Molecular Biology of the Cell

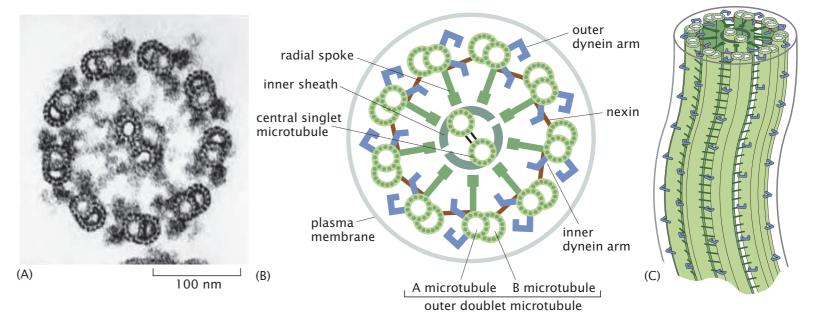
Swimming of sperm cells

Sperm flagellum is constructed from microtubules

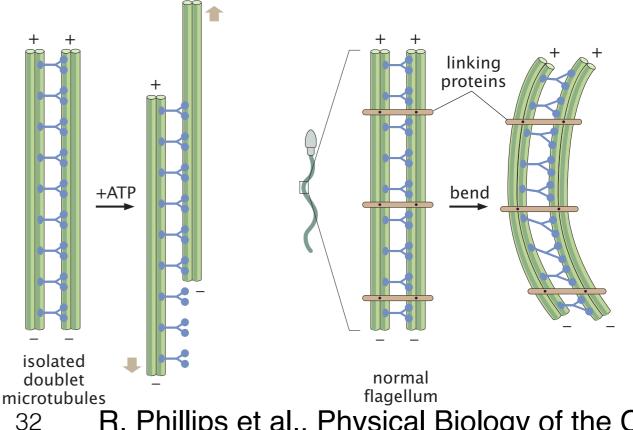


Jeff Guasto

 $v \sim 50 \mu \text{m/s}$



Bending is produced by motors walking on neighboring microtubule-like structures



R. Phillips et al., Physical Biology of the Cell

Further reading

