
curvature, and themagnitude of the applied swelling stress. The
presence of curvature introduces several advantages. First, the
magnitude of the curvature can be a control parameter to
dictate the wrinkle morphology independent of other experi-
mental conditions (Fig. 1a). Second, the connement of the
curved surfaces leads to improved ordering of hexagonal
dimples. Finally, wrinkled curved structures are inherently
hierarchical, a key advantage for the design of many specialty
and biomimetic structured materials.

Background

In 2008, Cao and colleagues25,26 identied four dimensionless
parameters which can describe wrinkling on spherical surfaces
comprised of a lm of uniform thickness, t, supported on a so

elastic substrate with radius of curvature, R: the ratio R/t of
curvature to lm thickness, the modulus mismatch Ef/Es (where
the subscripts f and s refer to the lm and substrate, respec-
tively), the applied overstress, dened as the ratio of the applied
stress to the critical wrinkling stress (s/sc), and the aspect ratio
of the axes of the spheroid. Following Cai, et al.,24 the rst two
parameters may be combined into a single dimensionless
curvature parameter given by:

U ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"
1" nf 2

#q
ðt=RÞðE"f=3E

"
sÞ2=3 (1)

where !E represents the plane strain modulus E/(1 " n2) with n

equal to the Poisson's ratio of the material. For wrinkling
spheres at small overstress, Cao, et al. reported26 formation of
dimple features at large U, while small U values tended to form
ridge-based labyrinthine patterns. They also showed that the
applied overstress affects the amplitude of wrinkling and plays a
strong role in determining the selection between ridges and
dimples, holding everything else constant.

Furthermore, the level of overstress is inherently related to
the curvature. This dependence stems from the relationship
between radial displacement of the shell and the stretching
energy incurred in the shell. The introduction of curvature
changes this dependence from a quadratic to a linear relation-
ship,28 which in turn impacts the critical wrinkling stress. Thus,
when curvature is present, the stretching energy makes a rela-
tively larger contribution to the overall energy. For this reason,
the overstress most relevant to curved surface buckling is s/sRc ,
the ratio of the applied stress to the critical stress of a spherical
surface with radius of curvature R. The denition of the curved
critical stress sRc was presented by Cai et al.24 following the
approach of Hutchinson29 for buckling of hollow spherical
shells. In brief, similar to the case of understanding instabilities
in a at system, critical deformation modes of the following
form were considered:

w ¼ xtcos(b1kx1)cos(b2kx2) (2)

where w is the vertical displacement of the lm, x is the
amplitude of the deection, and k ¼ t"1(3!Es/!Ef)1/3. b1 and b2
represent free variables relating to the periodicity of the solu-
tions, and all modes which satisfy b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1

2 þ b2
2

p
are critical

modes. The associated critical buckling stress for these critical
deformation modes is given by:24

sR
c ¼ 1

3

"
b2 þ 2b"1 þ 3U2b"2

#
sflat
c

"
subject to b4 " b" 3U2 ¼ 0

# (3)

where

sflat
c ¼ E

"
f

4
ð3E"s=E

"
fÞ2=3 (4)

In the limit where the wrinkle wavelength, l ¼ 2p/k, is much
smaller than R, the critical stress may be approximated by24

sR
c

sflat
c

z1þ U2 (5)

Fig. 1 Dimple–ridge transitions effected through independent control of various
system parameters. (a) Varying radius at constant UVO time (60 min) and ethanol
concentration (100%). (b) Varying UVO treatment time at constant radius (381
mm) and ethanol concentration (100%). (c) Varying ethanol concentration at
constant UVO time (60 min) and cap radius (522 mm). All scale bars 250 mm.

This journal is ª The Royal Society of Chemistry 2013 Soft Matter, 2013, 9, 3624–3630 | 3625
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MAE 545: Lecture 4 (2/16)
Wrinkled surfaces



Double Rainbow

2

primary rainbow 
(1 internal reflection)

secondary rainbow 
(2 internal reflections)



3Further reading about structural colors
and photonic crystals

http://ab-initio.mit.edu/book/
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Why do we get wrinkled surfaces?

equilibrated by using the finite element method. While creases are

readily observed in daily life (e.g., Fig. 3), their scientific under-

standing is at its beginning.29–37 Because the initial creases are

localized in space, the onset of each crease is autonomous, when

a material particle reaches a critical state of strain. The set of

critical states of strain can be determined, independent of specific

boundary-value problems. We will ascertain this autonomy by

comparing the critical condition for creasing on the curved

surface of the void to that on the flat surface of a block.

We will study the transition between buckling and creasing.

For a void in a large block of an elastomer, we find that the

critical value of the internal tension to initiate creasing is lower

than that to initiate buckling. As osmosis builds up the internal

tension, the void initially shrinks but retains the cylindrical or

spherical shape, and then creases set in. By contrast, for a void in

an elastomer of a sufficiently small thickness, we find that the

critical value of the internal tension to initiate creasing is higher

than that to initiate buckling. The void buckles when the internal

tension exceeds the critical value. As the internal tension

increases further, the void deforms in the buckled shape, and

then forms creases.

The elastomer is taken to be permeable to water molecules. As

water molecules permeate out, the void reduces size, and the

liquid water inside the void builds up tension. A full analysis of

this process involves the kinetics of permeation. Attention in this

paper will be restricted to the state of equilibrium, when the

chemical potential of water has equalized between the liquid

water inside the void and the water vapor outside the elastomer.

Furthermore, we will neglect swelling of the elastomer due to the

absorption of water. This simplification may be justified in

practice, because the magnitude of the internal tension is

relatively high, and elastomers used in experiments are often

heavily crosslinked.

2. Tension in liquid water caused by osmosis

With reference to Fig. 1, in equilibrium, the tension in the liquid

water inside the void can be related to the humidity outside the

elastomer by the method of thermodynamics. When liquid water

equilibrates with its own vapor, in the absence of any other

species of molecules, the pressure in the coexistent liquid and

vapor is denoted by p0. (At room temperature, p0¼ 3.2 kPa.) The

coexistent liquid and vapor are taken as the state of reference, in

which the chemical potential of water is set to be zero. We next

list the chemical potentials of water in several idealized systems.

The air outside the elastomer has several molecular species,

and is modeled as an ideal gas. The chemical potential of water in

the gas is

m ¼ kTlog(p/p0) (1)

where kT is the temperature in the unit of energy, and p the

partial pressure of water molecules in the gas. The ratio p/p0

defines the relative humidity of the gas.

For a gas in a closed environment, the relative humidity can be

set by placing in the environment an aqueous solution. In a dilute

aqueous solution, the chemical potential of water is given by the

van’t Hoff equation:

m ¼ "UckT (2)

where U is the volume per water molecule (U ¼ 3.0 # 10"29m3), c

is the concentration of the solution (i.e., the number of solute

particles per unit volume of the solution). When the gas equili-

brates with the solution, the chemical potential of water in the

gas equals that in the solution. A comparison of (1) and (2)

relates the partial pressure of water in the gas to the concentra-

tion of the solution.

When pure liquid water is subject to a triaxial stress s, the

chemical potential of water is

m ¼ "U(s + p0) (3)

We adopt the sign convention that the stress in the liquid water is

a tension if s > 0, and is a pressure if s < 0. Eqn (3) recovers the

state of reference: the chemical potential vanishes when s ¼ "p0.

Often the magnitude of the vapor pressure p0 is negligible

compared to the magnitude of the stress s in the liquid water, so

that we may drop p0 from (3).

Fig. 2 The tension in the liquid water causes the elastomer to deform. Illustrated are three types of deformation: breathing, buckling, and creasing.

Fig. 3 Constrained in a bowl, a rising dough forms creases (courtesy of

Michael D. Thouless).

This journal is ª The Royal Society of Chemistry 2010 Soft Matter, 2010, 6, 5770–5777 | 5771
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Compression of stiff thin sheets 
on liquid and soft elastic substrates

for applications in optics,37 microuidics,38 stretchable elec-
tronics39–42 or for metrology in nanometric lms.43–47

Most of the aforementioned natural systems can be idealized
as being composed of a thin and stiff membrane attached to a
thick and so material. However, these systems are oen
characterized by a complex geometry. In order to study carefully
the properties of the emerging structures, we focus on bilayer
systems compressed uniaxially in the plane of the rigid
membrane that have been intensively studied.48–63 Notice,
however, that more complex geometries have already been
studied by considering biaxial/radial stresses (with or without
substrate) or curved substrates64–71 where wrinkle to fold tran-
sitions can also be observed for large enough deformations of
the systems.72–74

Here we consider the case of a sufficiently strong adhesion
between layers to avoid delamination75–77 and discuss in detail
the uniaxial compression of a rigid membrane resting either on
a liquid foundation78,79 or on an elastic solid substrate.80 Before
starting this discussion, let us recall qualitatively the basic steps
of the system deformation.

For small enough connement, compressed sheets stay
planar and preserve the system symmetry. As it is much easier to
bend a thin sheet than to stretch or compress it, there exists
some connement threshold beyond which the membrane
buckles to release the stored compression energy. The
membrane undulates out of its initial plane breaking sponta-
neously the system symmetry. The foundation is then also
deformed following the undulations of the sheet. The bending

energy of the sheet, being proportional to the square of the
curvature, favors the emergence of large length-scales such as
the system size. However, the surface deformation energy of the
bulk substrate favors vanishing length-scales. The total energy
is thus minimized for some intermediate length-scale, l0,
independent of the system size. This behavior is observed for
both liquid and elastic foundations.

For larger connement, the evolution of the membrane
morphology differs strongly according to the nature of the
substrate.

! For a liquid foundation, the amplitude of the initial wrin-
kles rst grows uniformly across the sheet. Further connement
leads to the formation of a single fold where all of the defor-
mation is focused within a narrow region of the sheet (see Fig. 1
le panels). The folding can appear downward, i.e. toward the
substrate, or upward. The system is thus characterized by an
up–down symmetry which is broken spontaneously by the
emergence of the instability.

! For an elastic foundation, the amplitude of the initial
wrinkles also rst grows uniformly across the sheet. However,
beyond a second threshold for the connement, a dramatic
change in the morphology is observed: one wrinkle grows in
amplitude at the expense of its neighbors leading to a period-
doubling instability with the emergence of a subharmonic
mode characterized by a wavelength 2l0 (see Fig. 1 right panels).
The periodic folding appears always downward and never
upward. Consequently the up–down symmetry is broken
explicitly by the system.

Fig. 1 Qualitative comparison between the evolution with respect to confinement of the morphology of compressed sheets resting on a liquid78 (left panels,
l0 " 1.6 cm) and on an elastic foundation (right panels, l0 " 70 mm). The confinement increases from panels a to panels c.

Haim Diamant is an associate
professor at the School of
Chemistry, Tel Aviv University.
His theoretical research is
focused on the ways in which
various so solids and complex
uids are organized and
respond.

Aer his PhD from the University
of California in 1971, Thomas
Witten served at the University of
Michigan and Exxon Corporation
before joining the Physics Depart-
ment, University of Chicago in
1989. He is known for his work on
stochastic growth morphology,
deformed polymers, granular
forces and singular structures in
thin sheets. Witten is the author of
“Structured Fluids” (2004), a
textbook on so matter.
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Buckling vs wrinkling

for applications in optics,37 microuidics,38 stretchable elec-
tronics39–42 or for metrology in nanometric lms.43–47

Most of the aforementioned natural systems can be idealized
as being composed of a thin and stiff membrane attached to a
thick and so material. However, these systems are oen
characterized by a complex geometry. In order to study carefully
the properties of the emerging structures, we focus on bilayer
systems compressed uniaxially in the plane of the rigid
membrane that have been intensively studied.48–63 Notice,
however, that more complex geometries have already been
studied by considering biaxial/radial stresses (with or without
substrate) or curved substrates64–71 where wrinkle to fold tran-
sitions can also be observed for large enough deformations of
the systems.72–74

Here we consider the case of a sufficiently strong adhesion
between layers to avoid delamination75–77 and discuss in detail
the uniaxial compression of a rigid membrane resting either on
a liquid foundation78,79 or on an elastic solid substrate.80 Before
starting this discussion, let us recall qualitatively the basic steps
of the system deformation.

For small enough connement, compressed sheets stay
planar and preserve the system symmetry. As it is much easier to
bend a thin sheet than to stretch or compress it, there exists
some connement threshold beyond which the membrane
buckles to release the stored compression energy. The
membrane undulates out of its initial plane breaking sponta-
neously the system symmetry. The foundation is then also
deformed following the undulations of the sheet. The bending

energy of the sheet, being proportional to the square of the
curvature, favors the emergence of large length-scales such as
the system size. However, the surface deformation energy of the
bulk substrate favors vanishing length-scales. The total energy
is thus minimized for some intermediate length-scale, l0,
independent of the system size. This behavior is observed for
both liquid and elastic foundations.

For larger connement, the evolution of the membrane
morphology differs strongly according to the nature of the
substrate.

! For a liquid foundation, the amplitude of the initial wrin-
kles rst grows uniformly across the sheet. Further connement
leads to the formation of a single fold where all of the defor-
mation is focused within a narrow region of the sheet (see Fig. 1
le panels). The folding can appear downward, i.e. toward the
substrate, or upward. The system is thus characterized by an
up–down symmetry which is broken spontaneously by the
emergence of the instability.

! For an elastic foundation, the amplitude of the initial
wrinkles also rst grows uniformly across the sheet. However,
beyond a second threshold for the connement, a dramatic
change in the morphology is observed: one wrinkle grows in
amplitude at the expense of its neighbors leading to a period-
doubling instability with the emergence of a subharmonic
mode characterized by a wavelength 2l0 (see Fig. 1 right panels).
The periodic folding appears always downward and never
upward. Consequently the up–down symmetry is broken
explicitly by the system.

Fig. 1 Qualitative comparison between the evolution with respect to confinement of the morphology of compressed sheets resting on a liquid78 (left panels,
l0 " 1.6 cm) and on an elastic foundation (right panels, l0 " 70 mm). The confinement increases from panels a to panels c.
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forces and singular structures in
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Compressed thin sheets buckle

Compressed thin sheets on liquid 
and soft elastic substrates wrinkle

for applications in optics,37 microuidics,38 stretchable elec-
tronics39–42 or for metrology in nanometric lms.43–47

Most of the aforementioned natural systems can be idealized
as being composed of a thin and stiff membrane attached to a
thick and so material. However, these systems are oen
characterized by a complex geometry. In order to study carefully
the properties of the emerging structures, we focus on bilayer
systems compressed uniaxially in the plane of the rigid
membrane that have been intensively studied.48–63 Notice,
however, that more complex geometries have already been
studied by considering biaxial/radial stresses (with or without
substrate) or curved substrates64–71 where wrinkle to fold tran-
sitions can also be observed for large enough deformations of
the systems.72–74

Here we consider the case of a sufficiently strong adhesion
between layers to avoid delamination75–77 and discuss in detail
the uniaxial compression of a rigid membrane resting either on
a liquid foundation78,79 or on an elastic solid substrate.80 Before
starting this discussion, let us recall qualitatively the basic steps
of the system deformation.

For small enough connement, compressed sheets stay
planar and preserve the system symmetry. As it is much easier to
bend a thin sheet than to stretch or compress it, there exists
some connement threshold beyond which the membrane
buckles to release the stored compression energy. The
membrane undulates out of its initial plane breaking sponta-
neously the system symmetry. The foundation is then also
deformed following the undulations of the sheet. The bending

energy of the sheet, being proportional to the square of the
curvature, favors the emergence of large length-scales such as
the system size. However, the surface deformation energy of the
bulk substrate favors vanishing length-scales. The total energy
is thus minimized for some intermediate length-scale, l0,
independent of the system size. This behavior is observed for
both liquid and elastic foundations.

For larger connement, the evolution of the membrane
morphology differs strongly according to the nature of the
substrate.

! For a liquid foundation, the amplitude of the initial wrin-
kles rst grows uniformly across the sheet. Further connement
leads to the formation of a single fold where all of the defor-
mation is focused within a narrow region of the sheet (see Fig. 1
le panels). The folding can appear downward, i.e. toward the
substrate, or upward. The system is thus characterized by an
up–down symmetry which is broken spontaneously by the
emergence of the instability.

! For an elastic foundation, the amplitude of the initial
wrinkles also rst grows uniformly across the sheet. However,
beyond a second threshold for the connement, a dramatic
change in the morphology is observed: one wrinkle grows in
amplitude at the expense of its neighbors leading to a period-
doubling instability with the emergence of a subharmonic
mode characterized by a wavelength 2l0 (see Fig. 1 right panels).
The periodic folding appears always downward and never
upward. Consequently the up–down symmetry is broken
explicitly by the system.

Fig. 1 Qualitative comparison between the evolution with respect to confinement of the morphology of compressed sheets resting on a liquid78 (left panels,
l0 " 1.6 cm) and on an elastic foundation (right panels, l0 " 70 mm). The confinement increases from panels a to panels c.
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stochastic growth morphology,
deformed polymers, granular
forces and singular structures in
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In compressed thin sheets on liquid and soft elastic 
substrates global buckling is suppressed, because it 

would result in very large energy cost associated with 
deformation of the liquid or soft elastic substrate!
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Brief intro to mechanics:
Young’s modulus

L
x

Ly

Lz

L0
x

L0
y

L0
z

undeformed
material element

F

F

A = L
x

L
y

Robert Hooke 
(1635-1703)

Thomas Young 
(1773-1829)

Hooke’s law
(small deformations)

F

A
= E

�Lz

Lz

normal stress: � = F/A

Young’s modulus: E

normal strain: ✏ = �Lz/Lz

Elastic energy of deformation

U =
1

2
V E✏2

V = L
x

L
y

L
z

element volume:
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Young’s modulus of materials

http://www-materials.eng.cam.ac.uk/mpsite/physics/introduction/

http://www-materials.eng.cam.ac.uk/mpsite/physics/introduction/
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Poisson’s ratio

Simeon Poisson 
(1781-1840)

L
x

Ly

Lz

L0
x

L0
y

L0
z

L00
x

L00
y

L00
z

Typically material shrinks (expands) in the transverse 
direction of the axial tension (compression)!
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✏
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✏z =
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E
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Li

undeformed

normal strains:
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Effective negative Poisson’s ratio for structures
Certain structures behave like they have effective 

negative Poisson’s ratio, even though they are made 
of materials with positive Poisson’s ratio!
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Bulk modulus
undeformed 

material element Hooke’s law
(small deformations)

hydrostatic stress:

bulk modulus:

volumetric strain:

Elastic energy of deformation

hydrostatic stress
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Shear

�

Note: shear stress does 
not change the volume of 

material element!

F

undeformed material element A = L
x

L
y

Hooke’s law
(small deformations)

L
x
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L
x

shear stress:

shear modulus:

shear strain:
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Arbitrary deformation of 3D solid element

undeformed element deformed element
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2
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2
� �yz

⌘
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2
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⌘

Arbitrary deformation can be decomposed to 
the volume change and the shear deformation.

U = Ubulk + Ushear
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In plane deformations of thin sheets

isotropic
deformation

undeformed
square patch
of thin sheet 
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Curvature of surfaces

R. Phillips et al., Physical 
Biology of the Cell

curvature
of space curves

“chap11.tex” — page 442[#16] 5/10/2012 16:41

use the variable h to characterize the height of the membrane above
that plane at the point of interest. The geometry of the membrane is
captured by its height h(x, y) at every point in the plane. Note that in
cases where the deformations of the membrane are sufficiently severe
(that is, there are folds and overlaps), this simple description will
not suffice and we would have to work using an intrinsic treatment
of the geometry without reference to the planar reference coordinates
described here.

x

y
h

Figure 11.14: The height function
h(x, y). The surface of the membrane is
characterized by a height at each point
(x, y). This height function tells us how
the membrane is disturbed locally from
its preferred flat reference state.

Once we have the height function in hand, we can then compute
the curvature, which we will see is the key way that we will cap-
ture the extent of bending deformations. As with our treatment of
beams, we are going to see that the energetics of bending a lipid
bilayer membrane will depend upon the curvature of the membrane.
To explore the idea of membrane curvature, we take the approach
shown in Figure 11.15. We can cut through our surface with a plane,
and in so doing, the intersection of the surface with that plane
results in a curve. We compute the curvature of that space curve
in exactly the same way we did in Chapter 10 (see Figure 10.4 on
p. 386) by finding the circle that best fits the curve at the point
of interest. However, there is a problem with this story. The value
we get for the curvature depends upon the orientation of the plane
we use to cut the surface. Each such plane will result in a differ-
ent curve and a correspondingly different curvature. The way around
this impasse is a beautiful theorem that states that there is one par-
ticular choice of two orthogonal planes for which the curvature will
take two extreme values, one high and one low. These are the so-
called principal curvatures. This theorem guarantees that it takes two
numbers to capture the curvature of a surface, as opposed to the
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Figure 11.15: The curvature of space curves and surfaces. (A) The curvature of a curve is found by making the best fit of a circle
to the point at which we are computing the curvature. (B) The curvature of a surface is obtained by finding the best circle along
two orthogonal directions on the surface. This figure shows the intersection between a surface and a plane parallel to the y-axis
and a second intersection between the surface and a plane parallel to the x-axis.
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use the variable h to characterize the height of the membrane above
that plane at the point of interest. The geometry of the membrane is
captured by its height h(x, y) at every point in the plane. Note that in
cases where the deformations of the membrane are sufficiently severe
(that is, there are folds and overlaps), this simple description will
not suffice and we would have to work using an intrinsic treatment
of the geometry without reference to the planar reference coordinates
described here.

x

y
h

Figure 11.14: The height function
h(x, y). The surface of the membrane is
characterized by a height at each point
(x, y). This height function tells us how
the membrane is disturbed locally from
its preferred flat reference state.

Once we have the height function in hand, we can then compute
the curvature, which we will see is the key way that we will cap-
ture the extent of bending deformations. As with our treatment of
beams, we are going to see that the energetics of bending a lipid
bilayer membrane will depend upon the curvature of the membrane.
To explore the idea of membrane curvature, we take the approach
shown in Figure 11.15. We can cut through our surface with a plane,
and in so doing, the intersection of the surface with that plane
results in a curve. We compute the curvature of that space curve
in exactly the same way we did in Chapter 10 (see Figure 10.4 on
p. 386) by finding the circle that best fits the curve at the point
of interest. However, there is a problem with this story. The value
we get for the curvature depends upon the orientation of the plane
we use to cut the surface. Each such plane will result in a differ-
ent curve and a correspondingly different curvature. The way around
this impasse is a beautiful theorem that states that there is one par-
ticular choice of two orthogonal planes for which the curvature will
take two extreme values, one high and one low. These are the so-
called principal curvatures. This theorem guarantees that it takes two
numbers to capture the curvature of a surface, as opposed to the
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Figure 11.15: The curvature of space curves and surfaces. (A) The curvature of a curve is found by making the best fit of a circle
to the point at which we are computing the curvature. (B) The curvature of a surface is obtained by finding the best circle along
two orthogonal directions on the surface. This figure shows the intersection between a surface and a plane parallel to the y-axis
and a second intersection between the surface and a plane parallel to the x-axis.
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Surfaces of various principal curvatures
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Bending energy cost for thin sheets
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Compression of stiff thin sheets 
on liquid and soft elastic substrates

for applications in optics,37 microuidics,38 stretchable elec-
tronics39–42 or for metrology in nanometric lms.43–47

Most of the aforementioned natural systems can be idealized
as being composed of a thin and stiff membrane attached to a
thick and so material. However, these systems are oen
characterized by a complex geometry. In order to study carefully
the properties of the emerging structures, we focus on bilayer
systems compressed uniaxially in the plane of the rigid
membrane that have been intensively studied.48–63 Notice,
however, that more complex geometries have already been
studied by considering biaxial/radial stresses (with or without
substrate) or curved substrates64–71 where wrinkle to fold tran-
sitions can also be observed for large enough deformations of
the systems.72–74

Here we consider the case of a sufficiently strong adhesion
between layers to avoid delamination75–77 and discuss in detail
the uniaxial compression of a rigid membrane resting either on
a liquid foundation78,79 or on an elastic solid substrate.80 Before
starting this discussion, let us recall qualitatively the basic steps
of the system deformation.

For small enough connement, compressed sheets stay
planar and preserve the system symmetry. As it is much easier to
bend a thin sheet than to stretch or compress it, there exists
some connement threshold beyond which the membrane
buckles to release the stored compression energy. The
membrane undulates out of its initial plane breaking sponta-
neously the system symmetry. The foundation is then also
deformed following the undulations of the sheet. The bending

energy of the sheet, being proportional to the square of the
curvature, favors the emergence of large length-scales such as
the system size. However, the surface deformation energy of the
bulk substrate favors vanishing length-scales. The total energy
is thus minimized for some intermediate length-scale, l0,
independent of the system size. This behavior is observed for
both liquid and elastic foundations.

For larger connement, the evolution of the membrane
morphology differs strongly according to the nature of the
substrate.

! For a liquid foundation, the amplitude of the initial wrin-
kles rst grows uniformly across the sheet. Further connement
leads to the formation of a single fold where all of the defor-
mation is focused within a narrow region of the sheet (see Fig. 1
le panels). The folding can appear downward, i.e. toward the
substrate, or upward. The system is thus characterized by an
up–down symmetry which is broken spontaneously by the
emergence of the instability.

! For an elastic foundation, the amplitude of the initial
wrinkles also rst grows uniformly across the sheet. However,
beyond a second threshold for the connement, a dramatic
change in the morphology is observed: one wrinkle grows in
amplitude at the expense of its neighbors leading to a period-
doubling instability with the emergence of a subharmonic
mode characterized by a wavelength 2l0 (see Fig. 1 right panels).
The periodic folding appears always downward and never
upward. Consequently the up–down symmetry is broken
explicitly by the system.

Fig. 1 Qualitative comparison between the evolution with respect to confinement of the morphology of compressed sheets resting on a liquid78 (left panels,
l0 " 1.6 cm) and on an elastic foundation (right panels, l0 " 70 mm). The confinement increases from panels a to panels c.
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Compression of stiff thin 
membranes on liquid substrates
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Consider the energy cost for two different scenarios:
1.) thin membrane is compressed (no bending)

2.) thin membrane is wrinkled (no compression)
+ additional potential energy of liquid
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Compression of stiff thin 
membranes on liquid substrates
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Compression of stiff thin 
membranes on liquid substrates
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Compression of stiff thin 
membranes on liquid substrates
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Compression of stiff thin 
membranes on liquid substrates

F. Brau et al., Soft Matter 9, 8177 (2013)
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3 Liquid substrate

When the substrate is a liquid the effective stiffness is given by
K¼ rg where r is the liquid mass density and g the gravitational
acceleration. From eqn (10) with a ¼ 0 and K ¼ !K ¼ rg, we
obtain

l0 ¼ 2p

!
B

rg

"1=4

: (11)

This relation is in very good agreement with available experi-
mental data found in ref. 67 and 78 and gathered in Fig. 3.
Consequently, eqn (7) governing the membrane morphology,
obtained from an expansion at the lowest order of the
Lagrangian (2), captures well the physics of this system near the
buckling threshold. This length-scale l0 emerges as soon as the
applied load reaches the critical value P0 ¼ P(2p/l0) whose
expression is obtained from eqn (8)

P0 ¼ 2(Brg)1/2. (12)

To describe the subsequent evolution of the membrane
morphology, we need to derive the complete nonlinear equation
from the Lagrangian (2) with the full expression for the defor-
mation energy of the substrate us ¼ y2cos q. We consider the
ideal case of an innitely long sheet L/Nwith y¼ q¼ _q¼ 0 for
s / "N. As shown below, this approximation gives a satis-
factory description of this system and allows us to obtain an
explicit exact solution. The Euler–Lagrange eqn (4) gives the
following system of equations

Bq€þ K

2
y2sin qþ Psin qþQcos q ¼ 0 (13)

Kycos q $ _Q ¼ 0. (14)

Differentiating (13) with respect to s and using eqn (14) to
eliminate _Q together with _y ¼ sin q, we obtain

Bq
.
þ Kyþ K

2
y2 _qcos qþ P _qcos q$Q _qsin q ¼ 0 (15)

Since the Lagrangian L has no explicit dependence on
the independent variable s, the Hamiltonian, H, is a constant
(dH/ds ¼ 0). The expression of the Hamiltonian is given by

H ¼
P
i

_qi
vL
v _qi

$ L

¼ B

2
_q2 $ K

2
y2cos qþ Pð1$ cos qÞ þQsin q ¼ 0; (16)

where the constant has been set to 0 to satisfy the boundary
conditions at s / "N. The Lagrange multiplier Q is nally
eliminated by multiplying the expression (16) of H by _q and
adding the result to eqn (15):

Bq
.
þ B

2
_q
3 þ P _qþ Ky ¼ 0: (17)

Eqn (17) coincides with Euler's elastica problem. It expresses
the balance of normal forces on an innitesimal section of
the sheet. The last term, which usually corresponds to an
external normal force,83 arises here from hydrostatic pressure.
Differentiation of eqn (17) leads to an equation depending
only on q:

Bqzþ 3B

2
_q
2
q€þ Pq€þ Ksin q ¼ 0: (18)

Notice that this equation, or the equivalent one written in
terms of y and its derivatives,84 is invariant against the change
y / $y. This system is thus characterized by an up–down
symmetry meaning that the folding takes place either toward
the substrate or upward. Indeed, any deformation or its
symmetric one obtained from y / $y is equivalent for the
sheet. Pulling out the liquid from its initial equilibrium state or
pushing it down in a symmetric way is also energetically
equivalent.

At rst glance, it seems unlikely that this nonlinear eqn (18)
possesses explicit exact solutions. However, as indicated in ref.
79, it is characterized by a high level of symmetry. Simple
algebraic manipulations allow us to obtain the value of y and
all its derivatives at s ¼ 0 which hints that the problem may be
integrable. Moreover, this equation can be derived from the
integrable physical-pendulum equation, €q + k2sin q ¼ 0, which
is another indication that exact solutions may exist. From this
relation between these two seemingly unrelated systems, one
can show that the following solution of the pendulum
equation

!q(a,k;s) ¼ 4tan$1(ae"iks) (19)

Fig. 3 Circular and triangular symbols correspond to data for liquid foundations
from ref. 67 and 78 with K ¼ rg. PE stands for polyester and PS stands for poly-
styrene. Square and diamond symbols correspond to data for elastic substrates
from ref. 39, 88 and 89 with K ¼ Es/3. PMMA stands for polymethyl methacrylate
and Si stands for silicon. Experiments using PVDF thin sheets of thickness 9 and 25
mm and partially cross-linked PDMS substrate have been performed to extend the
spanned experimental domain (E¼ 2.5" 0.5 GPa and s¼ 0.35 for PVDF90 and E¼
25 " 5 kPa and s ¼ 0.5 for PDMS). The bending modulus B of polystyrene sheets
used in ref. 67 has been computed using E ¼ 3 " 1 GPa and s ¼ 0.35.81,82 When
not displayed, error bars have sizes similar to symbol sizes. SI units are used for l0
and the ratio B/K.
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Compression of stiff thin 
membranes on liquid substrates

F. Brau et al., Soft Matter 9, 8177 (2013)

for applications in optics,37 microuidics,38 stretchable elec-
tronics39–42 or for metrology in nanometric lms.43–47

Most of the aforementioned natural systems can be idealized
as being composed of a thin and stiff membrane attached to a
thick and so material. However, these systems are oen
characterized by a complex geometry. In order to study carefully
the properties of the emerging structures, we focus on bilayer
systems compressed uniaxially in the plane of the rigid
membrane that have been intensively studied.48–63 Notice,
however, that more complex geometries have already been
studied by considering biaxial/radial stresses (with or without
substrate) or curved substrates64–71 where wrinkle to fold tran-
sitions can also be observed for large enough deformations of
the systems.72–74

Here we consider the case of a sufficiently strong adhesion
between layers to avoid delamination75–77 and discuss in detail
the uniaxial compression of a rigid membrane resting either on
a liquid foundation78,79 or on an elastic solid substrate.80 Before
starting this discussion, let us recall qualitatively the basic steps
of the system deformation.

For small enough connement, compressed sheets stay
planar and preserve the system symmetry. As it is much easier to
bend a thin sheet than to stretch or compress it, there exists
some connement threshold beyond which the membrane
buckles to release the stored compression energy. The
membrane undulates out of its initial plane breaking sponta-
neously the system symmetry. The foundation is then also
deformed following the undulations of the sheet. The bending

energy of the sheet, being proportional to the square of the
curvature, favors the emergence of large length-scales such as
the system size. However, the surface deformation energy of the
bulk substrate favors vanishing length-scales. The total energy
is thus minimized for some intermediate length-scale, l0,
independent of the system size. This behavior is observed for
both liquid and elastic foundations.

For larger connement, the evolution of the membrane
morphology differs strongly according to the nature of the
substrate.

! For a liquid foundation, the amplitude of the initial wrin-
kles rst grows uniformly across the sheet. Further connement
leads to the formation of a single fold where all of the defor-
mation is focused within a narrow region of the sheet (see Fig. 1
le panels). The folding can appear downward, i.e. toward the
substrate, or upward. The system is thus characterized by an
up–down symmetry which is broken spontaneously by the
emergence of the instability.

! For an elastic foundation, the amplitude of the initial
wrinkles also rst grows uniformly across the sheet. However,
beyond a second threshold for the connement, a dramatic
change in the morphology is observed: one wrinkle grows in
amplitude at the expense of its neighbors leading to a period-
doubling instability with the emergence of a subharmonic
mode characterized by a wavelength 2l0 (see Fig. 1 right panels).
The periodic folding appears always downward and never
upward. Consequently the up–down symmetry is broken
explicitly by the system.

Fig. 1 Qualitative comparison between the evolution with respect to confinement of the morphology of compressed sheets resting on a liquid78 (left panels,
l0 " 1.6 cm) and on an elastic foundation (right panels, l0 " 70 mm). The confinement increases from panels a to panels c.
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Compression of stiff thin 
membranes on liquid substrates
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F. Brau et al., Soft Matter 9, 8177 (2013)

is also a solution of eqn (18) provided P ¼ Bk2 + Kk"2 for any a.
Consequently, eqn (19) gives complex solutions for eqn (18),
with the complex wave vectors

k ¼ #kþ # ik"; k# ¼ 1

2

!
K

B

"1=4!
2# Pffiffiffiffiffiffiffiffi

BK
p

"1=2

: (20)

Real exact solutions can, however, be constructed using
these complex expressions. The equation to solve being
nonlinear, linear combinations of the complex solutions are no
longer solutions. Nevertheless eqn (18) is the third member of
the stationary-sine–Gordon-modied-Korteweg–de Vries hier-
archy where the sine–Gordon and the physical-pendulum are
the two rst ones.85 Knowing three solutions, !q0, !q1, !q2, of the
pendulum equation, one can construct another solution, q,
using the following nonlinear combination:86 tan[(q " !q0)/4] ¼
[(k1 + k2)/(k1 " k2)]tan[(!q1 " !q2)/4]. These three solutions are
obtained from eqn (19) by using the relation (20) between k
and P, which connects the pendulum equation to eqn (18),
and by xing the appropriate value for the arbitrary amplitude
a. Choosing !q0(a0 ¼ 0,k0;s) ¼ 0, !q1(a1 ¼ 1,k1 ¼ k+ " ik";s) and
!q2(a2 ¼ 1,k2 ¼ "k+ " ik";s) we obtain

q ¼ 4 tan"1

"
k"sinðkþsÞ
kþcoshðk"sÞ

#

(21)

corresponding to an even prole for the membrane.† Substi-
tution of this function into eqn (18) conrms that it indeed
solves it exactly. The expression (21) together with the denition
of k# (20) give the evolution of the shape of the membrane with
respect to the applied load P. The applied load can be related to
the connement D using eqn (1) with L / N:

D ¼ 8

!
B

K

"1=2

k" ¼ 2l0
p

!
2" Pffiffiffiffiffiffiffiffi

BK
p

"1=2

; (22)

whereweused eqn (11) to introduce l0. Consequently the applied
load evolves with the connement following a quadratic law,

Pffiffiffiffiffiffiffiffi
BK

p ¼ 2" p2

4

!
D

l0

"2

; (23)

which coincides perfectly with numerical calculations per-
formed for a nite system in ref. 78.

Even if this exact solution has been obtained in the ideal case
of an innitely long sheet, folding is a localized deformation
which should be rather independent of the system size. This is
illustrated in Fig. 4 where the experimental evolution of two
wrinkle amplitudes, A0 and A1, for nite sheets78 is compared to
the evolution predicted by the exact solution obtained
for innite sheets. When the folding of the sheet is signicant
(D/l0 T 0.3), the agreement is remarkable. Fig. 5 shows a
comparison between experimental and theoretical proles
conrming that the innite sheet approximation gives a satis-
factory description of nite sheet morphology especially for
large enough connement.

4 Elastic substrate

When the substrate is an elastomer the normal force induced by
the foundation on the membrane is given by !KH ( _y(s)) for small
connement with

!K ¼ 2Es(1 " ss)/(1 + ss)(3 " 4ss), (24)

where Es and ss are the Young's modulus and the Poisson's ratio
of the substrate respectively.80 This expression is valid for an
arbitrary shape of the membrane, y. The operator H is the
Hilbert transform.87‡ For a periodic deformation characterized
by a wavenumber k, the effective stiffness is thus given by !Kk.
From eqn (10) with a ¼ 1, we obtain

l0 ¼ 2p

!
2B
!K

"1=3

¼ 2p

!
3B

Es

"1=3

; (25)

Fig. 4 (a) Definitions of the amplitudes A0 and A1. (b) Comparison between the
experimental evolutionofA0 andA1 (rescaledby l0)with the confinement forfinite
sheets78 and the evolution predicted by the exact solution (21) obtained for an
infinite sheet. Inset: representative membrane profiles for various values of D/l0.

Fig. 5 Comparison between experimental78 and theoretical profiles for D/l0 ¼
0.15 (a), 0.30 (b) and 0.80 (c).

† An energetically equivalent odd prole is obtained by choosing !q0 ¼ 0, !q1(i,k+ "
ik";s) and !q2(i,"k+ " ik";s).

‡ The action of this linear operator on trigonometric functions is quite simple:
H (cos(kx)) ¼ sin(kx) and H (sin(kx)) ¼ "cos(kx).

This journal is ª The Royal Society of Chemistry 2013 Soft Matter, 2013, 9, 8177–8186 | 8181

Review Soft Matter

Pu
bl

is
he

d 
on

 0
5 

Ju
ly

 2
01

3.
 D

ow
nl

oa
de

d 
by

 P
rin

ce
to

n 
U

ni
ve

rs
ity

 o
n 

25
/1

1/
20

15
 1

5:
19

:2
7.

 

View Article Online

predicted to grow continuously in amplitude as
ffiffiffi

D
p

, which is in agreement with our observations.
The total energy for a wrinkled state scales as

U ~ (BK)
1=2D and is distributed across the entire

undulating surface. The specific energyU/L has a
finite value for a given applied external strain D/L
independent of the system size. Furthermore, a
constant pressure is necessary to confine a film
in a wrinkled state p = ∂DU ~ (BK)

1=2 (where
∂DU is the derivative of the energy with respect
to the horizontal displacement), independent of
the amount of lateral displacement so long as
the system size is large (20). Thus, the conclu-
sions from the linear analysis are that once a
wrinkled surface appears, it is the stationary
solution. Further confinement leads to a simple
increase in amplitude that gives rise to an in-
crease in energy for the system.

Whereas the above linear analysis explains
the wrinkled state, it does not provide insight into
the wrinkle-to-fold transition. To examine the
transition into the strongly confined state where
fold localization begins, we experimentally
studied a thin polyester film on water and nu-
merically analyzed the lowest energy solutions
to the energy functional defined earlier. The
insets in Fig. 3, A and C, show profiles of the
physical and numerical sheets as compression
is increased. N = L/l and d = D/l are the only
dimensionless parameters in the problem (here,
N is the number of wrinkles, and d is the di-
mensionless lateral displacement). A1 is chosen
as the amplitude of the wrinkle that decays and
A0 as the amplitude of the one that grows (Fig.
2A). Both the physical and numerical systems
show divergence of the amplitudes from the
square root dependence on displacement seen
in uniform wrinkles beyond a certain confine-
ment (Fig. 2B). Notably, around d = D/l ≈ 0.3
(i.e., D ≈ l/3), A0 begins to increase linearly, and
the buttressing wrinkle amplitude A1 begins to
decay. This is the hallmark of the wrinkle-to-fold
transition.

The amplitude data also bring forth an emer-
gent size independence within the folding regime.
The wrinkle amplitude derived above depends on
strain (D/L); however, the fold amplitude depends
only on D. The fact that the wrinkle-to-fold tran-
sition occurs at d ≈ 0.3 thus gives rise to the in-
creased scatter in the data for d < 0.3 and a
collapse of the data onto linear curves beyond
this critical point (Fig. 2B).

To avoid the finite size effect at low com-
pression, one can look at the ratio of the two
amplitudes, A0/A1, that acts as an effective order
parameter for the transition. For a uniformly
wrinkled state, the order parameter should fluc-
tuate around one. However, as confinement in-
creases above a critical point, the order parameter
must diverge. Figure 3A shows the overlay of
physical (circles) and numerical (solid blue line)
data for the order parameter. When d < 0.3, both
sets lie on the line A0/A1 ≈ 1. As compression is
increased beyond this point, there is a seemingly
asymptotic divergence.

The theoretical data in Fig. 3A represent an
upper bound to the data for the order parameter,
which can be explained by considering the final
fold shape. In the numerical analysis, up/down as
well as S and anti-S folds are seen as final states
(Fig. 3B). However, in the polyester experiments,
S and anti-S folds eventually relax toward an
up/down geometry upon further compression
(22). In Figs. 2B and 3A, the data are divided
between membranes that formed intermediate S
and anti-S folds (gray symbols) and those that
did not (black symbols). The untwisting is driven
by line tension at the polyester/water/air inter-
face, not accounted for in the numerical analysis,
and occurs at higher values of d; thus, some
physical data are slightly shifted to the right as
shown in Fig. 3A (gray circles).

The correspondence between the numerical
and physical data attests that the essential
physics of the phenomenon is captured in the
simulation. Both experiments show that a
wrinkled surface should be stable against further
confinement by a third of its wavelength (l/3),
beyond which the surface geometry becomes
unstable toward the new localized folded state.
The fold eventually collapses as two nonad-
jacent parts of the surfacemake self-contact, and

confinement approaches the initial wrinkle
wavelength.

We now provide a physical interpretation
of the transition in the original unscaled var-
iables. For a fold with a maximum curvature at
its tip ḟmax, the energy is localized inside a pe-
rimeter of l ∼ 1=ḟmax so that the bending en-
ergy of the fold scales as UB ~ B/l. The height
of the fold is proportional to the applied dis-
placement D; hence, the potential energy must
scale as UK ~ K lD2. We have not considered
the nonlinear effect due to the factor cosf in the
potential energy. This term represents the pro-
jection of the fold shape along the horizontal
direction. Writing the inextensibility constraint
as the sum of linear and nonlinear terms, we

obtain ∫
L

0

dlð1 − cosfÞ ¼ D. The potential energy

can similarly be divided, UK ¼ ðK=2Þ∫
L

0

dly2 −

ðK=2Þ∫
L

0

dlð1 − cos fÞy2. This yields the scaling

UK ∼ KlD2 − KD2∫
L

0

dlð1− cosfÞ ∼ KlD2 −KD3:

The size of the fold l is obtained by
minimizing the total energy ∂l (UB + UK) = 0,
giving l ~ (B/K)

1=2(1/D), which is confirmed by
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Fig. 2. (A) The figure defines A0 and A1 and the geometrical parameters describing a confined
sheet. The deformation can be described by using a two-dimensional coordinate system. Here t and
n are the tangent and normal to the surface, respectively. f gives the position of the tangent with
respect to the horizontal direction. (B) Experimental results for polyester on water for A0 (squares)
and A1 (circles). Experimental data were taken for several membrane sizes, including when N = 3.5,
4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, and 8.0. Dark solid lines show numerical results for a sheet
with L = 3.5l. Both the physical polyester and numerical data are made dimensionless. A1, A0, and
D are scaled to l. (Inset) A1 versus horizontal displacement for several numerical systems of
different sizes (solid blue lines). The dashed line is the theoretical curve A = [(

ffiffiffi

2
p

)/p]l
ffiffiffiffiffiffiffiffiffiffiffiffiffi

(d/3:5)p
(20)

that follows the numerical curve for N = 3.5 and d << 1. In both numerical and physical cases, the
data are more scattered for d < 0.3 and then collapse onto more compact (perfectly so in nu-
merical case) curves past this point. This behavior is indicative of the size-dependent behavior in
the wrinkling (d < 0.3) regime and size-independent behavior in the folding (d > 0.3) regime.
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is also a solution of eqn (18) provided P ¼ Bk2 + Kk"2 for any a.
Consequently, eqn (19) gives complex solutions for eqn (18),
with the complex wave vectors

k ¼ #kþ # ik"; k# ¼ 1

2

!
K

B

"1=4!
2# Pffiffiffiffiffiffiffiffi

BK
p

"1=2

: (20)

Real exact solutions can, however, be constructed using
these complex expressions. The equation to solve being
nonlinear, linear combinations of the complex solutions are no
longer solutions. Nevertheless eqn (18) is the third member of
the stationary-sine–Gordon-modied-Korteweg–de Vries hier-
archy where the sine–Gordon and the physical-pendulum are
the two rst ones.85 Knowing three solutions, !q0, !q1, !q2, of the
pendulum equation, one can construct another solution, q,
using the following nonlinear combination:86 tan[(q " !q0)/4] ¼
[(k1 + k2)/(k1 " k2)]tan[(!q1 " !q2)/4]. These three solutions are
obtained from eqn (19) by using the relation (20) between k
and P, which connects the pendulum equation to eqn (18),
and by xing the appropriate value for the arbitrary amplitude
a. Choosing !q0(a0 ¼ 0,k0;s) ¼ 0, !q1(a1 ¼ 1,k1 ¼ k+ " ik";s) and
!q2(a2 ¼ 1,k2 ¼ "k+ " ik";s) we obtain

q ¼ 4 tan"1

"
k"sinðkþsÞ
kþcoshðk"sÞ

#

(21)

corresponding to an even prole for the membrane.† Substi-
tution of this function into eqn (18) conrms that it indeed
solves it exactly. The expression (21) together with the denition
of k# (20) give the evolution of the shape of the membrane with
respect to the applied load P. The applied load can be related to
the connement D using eqn (1) with L / N:

D ¼ 8

!
B

K

"1=2

k" ¼ 2l0
p

!
2" Pffiffiffiffiffiffiffiffi

BK
p

"1=2

; (22)

whereweused eqn (11) to introduce l0. Consequently the applied
load evolves with the connement following a quadratic law,

Pffiffiffiffiffiffiffiffi
BK

p ¼ 2" p2

4

!
D

l0

"2

; (23)

which coincides perfectly with numerical calculations per-
formed for a nite system in ref. 78.

Even if this exact solution has been obtained in the ideal case
of an innitely long sheet, folding is a localized deformation
which should be rather independent of the system size. This is
illustrated in Fig. 4 where the experimental evolution of two
wrinkle amplitudes, A0 and A1, for nite sheets78 is compared to
the evolution predicted by the exact solution obtained
for innite sheets. When the folding of the sheet is signicant
(D/l0 T 0.3), the agreement is remarkable. Fig. 5 shows a
comparison between experimental and theoretical proles
conrming that the innite sheet approximation gives a satis-
factory description of nite sheet morphology especially for
large enough connement.

4 Elastic substrate

When the substrate is an elastomer the normal force induced by
the foundation on the membrane is given by !KH ( _y(s)) for small
connement with

!K ¼ 2Es(1 " ss)/(1 + ss)(3 " 4ss), (24)

where Es and ss are the Young's modulus and the Poisson's ratio
of the substrate respectively.80 This expression is valid for an
arbitrary shape of the membrane, y. The operator H is the
Hilbert transform.87‡ For a periodic deformation characterized
by a wavenumber k, the effective stiffness is thus given by !Kk.
From eqn (10) with a ¼ 1, we obtain

l0 ¼ 2p

!
2B
!K

"1=3

¼ 2p

!
3B

Es

"1=3

; (25)

Fig. 4 (a) Definitions of the amplitudes A0 and A1. (b) Comparison between the
experimental evolutionofA0 andA1 (rescaledby l0)with the confinement forfinite
sheets78 and the evolution predicted by the exact solution (21) obtained for an
infinite sheet. Inset: representative membrane profiles for various values of D/l0.

Fig. 5 Comparison between experimental78 and theoretical profiles for D/l0 ¼
0.15 (a), 0.30 (b) and 0.80 (c).

† An energetically equivalent odd prole is obtained by choosing !q0 ¼ 0, !q1(i,k+ "
ik";s) and !q2(i,"k+ " ik";s).

‡ The action of this linear operator on trigonometric functions is quite simple:
H (cos(kx)) ¼ sin(kx) and H (sin(kx)) ¼ "cos(kx).
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Consequently, eqn (19) gives complex solutions for eqn (18),
with the complex wave vectors

k ¼ #kþ # ik"; k# ¼ 1

2

!
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2# Pffiffiffiffiffiffiffiffi

BK
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"1=2

: (20)

Real exact solutions can, however, be constructed using
these complex expressions. The equation to solve being
nonlinear, linear combinations of the complex solutions are no
longer solutions. Nevertheless eqn (18) is the third member of
the stationary-sine–Gordon-modied-Korteweg–de Vries hier-
archy where the sine–Gordon and the physical-pendulum are
the two rst ones.85 Knowing three solutions, !q0, !q1, !q2, of the
pendulum equation, one can construct another solution, q,
using the following nonlinear combination:86 tan[(q " !q0)/4] ¼
[(k1 + k2)/(k1 " k2)]tan[(!q1 " !q2)/4]. These three solutions are
obtained from eqn (19) by using the relation (20) between k
and P, which connects the pendulum equation to eqn (18),
and by xing the appropriate value for the arbitrary amplitude
a. Choosing !q0(a0 ¼ 0,k0;s) ¼ 0, !q1(a1 ¼ 1,k1 ¼ k+ " ik";s) and
!q2(a2 ¼ 1,k2 ¼ "k+ " ik";s) we obtain

q ¼ 4 tan"1

"
k"sinðkþsÞ
kþcoshðk"sÞ
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(21)

corresponding to an even prole for the membrane.† Substi-
tution of this function into eqn (18) conrms that it indeed
solves it exactly. The expression (21) together with the denition
of k# (20) give the evolution of the shape of the membrane with
respect to the applied load P. The applied load can be related to
the connement D using eqn (1) with L / N:

D ¼ 8
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k" ¼ 2l0
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; (22)

whereweused eqn (11) to introduce l0. Consequently the applied
load evolves with the connement following a quadratic law,
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BK

p ¼ 2" p2
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which coincides perfectly with numerical calculations per-
formed for a nite system in ref. 78.

Even if this exact solution has been obtained in the ideal case
of an innitely long sheet, folding is a localized deformation
which should be rather independent of the system size. This is
illustrated in Fig. 4 where the experimental evolution of two
wrinkle amplitudes, A0 and A1, for nite sheets78 is compared to
the evolution predicted by the exact solution obtained
for innite sheets. When the folding of the sheet is signicant
(D/l0 T 0.3), the agreement is remarkable. Fig. 5 shows a
comparison between experimental and theoretical proles
conrming that the innite sheet approximation gives a satis-
factory description of nite sheet morphology especially for
large enough connement.

4 Elastic substrate

When the substrate is an elastomer the normal force induced by
the foundation on the membrane is given by !KH ( _y(s)) for small
connement with

!K ¼ 2Es(1 " ss)/(1 + ss)(3 " 4ss), (24)

where Es and ss are the Young's modulus and the Poisson's ratio
of the substrate respectively.80 This expression is valid for an
arbitrary shape of the membrane, y. The operator H is the
Hilbert transform.87‡ For a periodic deformation characterized
by a wavenumber k, the effective stiffness is thus given by !Kk.
From eqn (10) with a ¼ 1, we obtain

l0 ¼ 2p
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"1=3

¼ 2p
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; (25)

Fig. 4 (a) Definitions of the amplitudes A0 and A1. (b) Comparison between the
experimental evolutionofA0 andA1 (rescaledby l0)with the confinement forfinite
sheets78 and the evolution predicted by the exact solution (21) obtained for an
infinite sheet. Inset: representative membrane profiles for various values of D/l0.

Fig. 5 Comparison between experimental78 and theoretical profiles for D/l0 ¼
0.15 (a), 0.30 (b) and 0.80 (c).

† An energetically equivalent odd prole is obtained by choosing !q0 ¼ 0, !q1(i,k+ "
ik";s) and !q2(i,"k+ " ik";s).

‡ The action of this linear operator on trigonometric functions is quite simple:
H (cos(kx)) ¼ sin(kx) and H (sin(kx)) ¼ "cos(kx).
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Compression of stiff thin membranes 
on soft elastic substrates
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2h0
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d
initial undeformed configuration

Consider the energy cost for two different scenarios:
1.) thin membrane is compressed (no bending)

2.) thin membrane is wrinkled (no compression)
additional elastic energy for deformed substrate
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Compression of stiff thin membranes 
on soft elastic substrates

strain

compression energy of thin membrane

Uc ⇠ A⇥ Emd⇥ ✏2
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area
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3D Young’s 

modulus
Em

✏ =
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3D Young’s 
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Note: soft elastic substrate is also compressed, but we will 
measure the substrate elastic energy relative to this base value!
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y

deformation of the soft substrate decays 
exponentially away from the surface

h(s, y) ⇡ h0 cos(2⇡s/�)e
�2⇡y/�

F. Brau et al., Nat. Phys. 7, 56 (2010)
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L

�
2h0

d

3 Liquid substrate

When the substrate is a liquid the effective stiffness is given by
K¼ rg where r is the liquid mass density and g the gravitational
acceleration. From eqn (10) with a ¼ 0 and K ¼ !K ¼ rg, we
obtain

l0 ¼ 2p

!
B

rg

"1=4

: (11)

This relation is in very good agreement with available experi-
mental data found in ref. 67 and 78 and gathered in Fig. 3.
Consequently, eqn (7) governing the membrane morphology,
obtained from an expansion at the lowest order of the
Lagrangian (2), captures well the physics of this system near the
buckling threshold. This length-scale l0 emerges as soon as the
applied load reaches the critical value P0 ¼ P(2p/l0) whose
expression is obtained from eqn (8)

P0 ¼ 2(Brg)1/2. (12)

To describe the subsequent evolution of the membrane
morphology, we need to derive the complete nonlinear equation
from the Lagrangian (2) with the full expression for the defor-
mation energy of the substrate us ¼ y2cos q. We consider the
ideal case of an innitely long sheet L/Nwith y¼ q¼ _q¼ 0 for
s / "N. As shown below, this approximation gives a satis-
factory description of this system and allows us to obtain an
explicit exact solution. The Euler–Lagrange eqn (4) gives the
following system of equations

Bq€þ K

2
y2sin qþ Psin qþQcos q ¼ 0 (13)

Kycos q $ _Q ¼ 0. (14)

Differentiating (13) with respect to s and using eqn (14) to
eliminate _Q together with _y ¼ sin q, we obtain

Bq
.
þ Kyþ K

2
y2 _qcos qþ P _qcos q$Q _qsin q ¼ 0 (15)

Since the Lagrangian L has no explicit dependence on
the independent variable s, the Hamiltonian, H, is a constant
(dH/ds ¼ 0). The expression of the Hamiltonian is given by

H ¼
P
i

_qi
vL
v _qi

$ L

¼ B

2
_q2 $ K

2
y2cos qþ Pð1$ cos qÞ þQsin q ¼ 0; (16)

where the constant has been set to 0 to satisfy the boundary
conditions at s / "N. The Lagrange multiplier Q is nally
eliminated by multiplying the expression (16) of H by _q and
adding the result to eqn (15):

Bq
.
þ B

2
_q
3 þ P _qþ Ky ¼ 0: (17)

Eqn (17) coincides with Euler's elastica problem. It expresses
the balance of normal forces on an innitesimal section of
the sheet. The last term, which usually corresponds to an
external normal force,83 arises here from hydrostatic pressure.
Differentiation of eqn (17) leads to an equation depending
only on q:

Bqzþ 3B

2
_q
2
q€þ Pq€þ Ksin q ¼ 0: (18)

Notice that this equation, or the equivalent one written in
terms of y and its derivatives,84 is invariant against the change
y / $y. This system is thus characterized by an up–down
symmetry meaning that the folding takes place either toward
the substrate or upward. Indeed, any deformation or its
symmetric one obtained from y / $y is equivalent for the
sheet. Pulling out the liquid from its initial equilibrium state or
pushing it down in a symmetric way is also energetically
equivalent.

At rst glance, it seems unlikely that this nonlinear eqn (18)
possesses explicit exact solutions. However, as indicated in ref.
79, it is characterized by a high level of symmetry. Simple
algebraic manipulations allow us to obtain the value of y and
all its derivatives at s ¼ 0 which hints that the problem may be
integrable. Moreover, this equation can be derived from the
integrable physical-pendulum equation, €q + k2sin q ¼ 0, which
is another indication that exact solutions may exist. From this
relation between these two seemingly unrelated systems, one
can show that the following solution of the pendulum
equation

!q(a,k;s) ¼ 4tan$1(ae"iks) (19)

Fig. 3 Circular and triangular symbols correspond to data for liquid foundations
from ref. 67 and 78 with K ¼ rg. PE stands for polyester and PS stands for poly-
styrene. Square and diamond symbols correspond to data for elastic substrates
from ref. 39, 88 and 89 with K ¼ Es/3. PMMA stands for polymethyl methacrylate
and Si stands for silicon. Experiments using PVDF thin sheets of thickness 9 and 25
mm and partially cross-linked PDMS substrate have been performed to extend the
spanned experimental domain (E¼ 2.5" 0.5 GPa and s¼ 0.35 for PVDF90 and E¼
25 " 5 kPa and s ¼ 0.5 for PDMS). The bending modulus B of polystyrene sheets
used in ref. 67 has been computed using E ¼ 3 " 1 GPa and s ¼ 0.35.81,82 When
not displayed, error bars have sizes similar to symbol sizes. SI units are used for l0
and the ratio B/K.
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on soft elastic substrates

F. Brau et al., Soft Matter 9, 8177 (2013)

for applications in optics,37 microuidics,38 stretchable elec-
tronics39–42 or for metrology in nanometric lms.43–47

Most of the aforementioned natural systems can be idealized
as being composed of a thin and stiff membrane attached to a
thick and so material. However, these systems are oen
characterized by a complex geometry. In order to study carefully
the properties of the emerging structures, we focus on bilayer
systems compressed uniaxially in the plane of the rigid
membrane that have been intensively studied.48–63 Notice,
however, that more complex geometries have already been
studied by considering biaxial/radial stresses (with or without
substrate) or curved substrates64–71 where wrinkle to fold tran-
sitions can also be observed for large enough deformations of
the systems.72–74

Here we consider the case of a sufficiently strong adhesion
between layers to avoid delamination75–77 and discuss in detail
the uniaxial compression of a rigid membrane resting either on
a liquid foundation78,79 or on an elastic solid substrate.80 Before
starting this discussion, let us recall qualitatively the basic steps
of the system deformation.

For small enough connement, compressed sheets stay
planar and preserve the system symmetry. As it is much easier to
bend a thin sheet than to stretch or compress it, there exists
some connement threshold beyond which the membrane
buckles to release the stored compression energy. The
membrane undulates out of its initial plane breaking sponta-
neously the system symmetry. The foundation is then also
deformed following the undulations of the sheet. The bending

energy of the sheet, being proportional to the square of the
curvature, favors the emergence of large length-scales such as
the system size. However, the surface deformation energy of the
bulk substrate favors vanishing length-scales. The total energy
is thus minimized for some intermediate length-scale, l0,
independent of the system size. This behavior is observed for
both liquid and elastic foundations.

For larger connement, the evolution of the membrane
morphology differs strongly according to the nature of the
substrate.

! For a liquid foundation, the amplitude of the initial wrin-
kles rst grows uniformly across the sheet. Further connement
leads to the formation of a single fold where all of the defor-
mation is focused within a narrow region of the sheet (see Fig. 1
le panels). The folding can appear downward, i.e. toward the
substrate, or upward. The system is thus characterized by an
up–down symmetry which is broken spontaneously by the
emergence of the instability.

! For an elastic foundation, the amplitude of the initial
wrinkles also rst grows uniformly across the sheet. However,
beyond a second threshold for the connement, a dramatic
change in the morphology is observed: one wrinkle grows in
amplitude at the expense of its neighbors leading to a period-
doubling instability with the emergence of a subharmonic
mode characterized by a wavelength 2l0 (see Fig. 1 right panels).
The periodic folding appears always downward and never
upward. Consequently the up–down symmetry is broken
explicitly by the system.

Fig. 1 Qualitative comparison between the evolution with respect to confinement of the morphology of compressed sheets resting on a liquid78 (left panels,
l0 " 1.6 cm) and on an elastic foundation (right panels, l0 " 70 mm). The confinement increases from panels a to panels c.
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In order to explain period 
doubling (quadrupling, …) 

one has to take into account 
the full nonlinear deformation 

of the soft substrate!

whereas beyond the critical connement, d2, the wrinkle
amplitude A0 grows at the expense of the amplitude A1 of its
neighbors. The shaded areas represent the region spanned by
varying the parameter !K2/!K from 0.25 to 0.27. This small vari-
ation has only a marginal effect on the evolution of the ampli-
tude before the emergence of the period-doubling instability
and cannot be seen in the graph.

5 Summary and discussions

When a rigid thin sheet resting on a liquid foundation is slightly
compressed in its plane, it develops wrinkles regularly spaced
by a distance l0 whose expression in terms of material proper-
ties is given by eqn (11). When the sheet is further compressed,
the amplitude of the wrinkles rst grows before decaying.
Finally, the sheet almost recovers its initial at state except in a
small region where all the deformation is concentrated into a
single fold where self-contact is eventually observed (see Fig. 5).
The single fold state takes place once the horizontal displace-
ment D reaches a value comparable to l0 independently of
the length, L, of the sheet (see Fig. 4). This means that
folding happens for a vanishingly small relative compression
d ¼ D/L x l0/L " 1 for long enough sheets. For such long
sheets, L [ l0, the wrinkle regime might not even be observ-
able. In the ideal case of an innitely long sheet, there is actually
no transition between wrinkle to fold states. The sheet prole is
always localized; the localization length diverges as the
connement vanishes. The sheet morphology evolves thus from
an initial at state to a folded state without undergoing any
secondary instability.

However, the deviation for small connement between the
evolution of the pattern amplitudes extracted from the exact

solution (21) valid for an innite sheet and the data, as seen in
Fig. 4, may hint that there is actually a secondary instability
once the sheet length is nite. Additional accurate measure-
ments of the evolution of the amplitude A near the buckling
threshold (D/l0 ( 0.2) are needed to detect a possible transi-
tion. For example if dA/dD diverges as D tends to 0, it may
suggest that the system undergoes a transition from a periodic
state to a localized state since for a periodic solution A # D1/2.

When a rigid thin sheet resting on an elastic foundation is
compressed, it adopts an undulated morphology similar to the
one observed with a liquid foundation for small enough
connement. The expression of the emerging length-scale, l0,
in terms of material properties is given by eqn (25). However, as
the connement increases, the morphology signicantly devi-
ates from homogeneous wrinkles. Beyond some critical
connement d2 (37) a secondary instability occurs. It takes the
form of a period-doubling instability leading to a transition of
the second order. The membrane displays a periodical folding
where the folds are distanced by 2lx 2l0(1$ d)80 whereas there
is only one fold in a small region of size l0 for a liquid foun-
dation. Because of this periodic folding, the number of folds
increases with the sheet length which can thus accommodate a
larger compression D. This behavior contrasts with the sheet on
liquid systems where the sheet cannot be compressed further
than D # l0 before self-contact occurs.

When the bilayer is further conned, period-quadrupling
can occur80 suggesting that a cascade of spatial period-doubling
bifurcations could be observed when a rigid thin sheet resting
on an elastic foundation is conned. Such a cascade is known to
lead to chaos aer several bifurcations.96,97 There is, however, a
geometric limitation due to the nite thickness of the sheet: the
evolution of the pattern saturates as soon as sharp folds appear
such that self-contact occurs. This prevents reaching high
connement. Nevertheless, it may be possible to go beyond
period-quadrupling (experimentally or at least numerically) and
to measure the values of the connement ratio dn at which each
transition occurs. A ratio like (dn$1 $ dn$2)/(dn $ dn$1) could
eventually converge to the Feigenbaum's constant as n
increases. Such a property would further relate this system to
nonlinear dynamical systems.

Finally, the period-doubling instability occurs because the
system exhibits an explicit up–down symmetry breaking. This
symmetry can be restored by considering a trilayer where a thin
rigid membrane is sandwiched in between two identical so
foundations. Fig. 8 shows the morphology adopted by a rigid
membrane in such a case for d x 0.23. The period-doubling
instability no longer emerges, even for larger compression,
instead the membrane develops a pattern similar to the one

Fig. 7 (a) Definitions of the amplitude A0 and A1. (b) Comparison between
experimental and theoretical evolutions of A0 and A1 (rescaled by l0) as a function
of the relative confinement d. Shaded areas represent the regions spanned by
varying the parameter !K2/!K from 0.25 to 0.27. Data:56 E¼ 0.5 MPa and s¼ 0.5 for
PDMS and E ¼ 3.2 GPa, s¼ 0.35, h ¼ 218 nm for polystyrene (PS). Data:57 E ¼ 130
GPa and s¼ 0.27 for silicon (Si), E¼ 1.8MPa and s¼ 0.48 for PDMS. Data from ref.
57 are plotted as a function of the relative compression, d, of the rigid sheet
instead of the relative prestretching, 3, of the PDMS: d ¼ 3/(1 + 3).

Fig. 8 Comparison between profiles of a compressed membrane resting in
between two identical soft PDMS foundations (trilayer, a) and a compressed
membrane bound to a soft PDMS foundation (bilayer, b) for a similar relative
compression d x 0.23.
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