MAE 545: Lecture 6 (2/23) Wrinkled surfaces

Compression of stiff thin sheets on liquid and soft elastic substrates

Uniform compression of stiff thin membranes on soft elastic substrates

S. Cai et al., <u>J. Mech. Phys. Solids</u> **59**, 1094 (2011)

4.) differential growth in biology5.) differential expansion due to temperature, electric field, etc.

red gel swells more than the green gel

Compression of stifference members of stifference and the members of a spherical soft substrates

Compression of stiff thin membranes on a spherical soft substrates

Soft Matter 9, 3624 (2013)

Modifying radius *R* (fixed thickness *d*)

$R = 805 \,\mu \text{m}$ Modifying membrane thickness *d*

$$R = 381 \mu m$$

Modifying swelling strain ϵ

6

Tuning drag coefficient via wrinkling

Self-cleaning property of lotus leaves

Lotus leaves repel water (hydrophobicity) due to the rough periodic microstructure

M. N. Costa et al., <u>Nanotechnology</u> **25**, 094006 (2014)

Viev

Tuning wetting angle via wrinkling

side view

side view

Water droplet on a flat surface

front view

Water droplet on a wrinkled surface (wrinkling increases contact angle)

front view

J. Y. Chung et al., <u>Soft Matter</u> **3**, 1163 (2007)

Tuning adhesion via wrinkling

Flat complaint surface has enhanced adhesion (larger contact area)

Wrinkling reduces adhesion (smaller contact area)

 \sim

P.-C. Lin et al., <u>Soft Matter</u> **4**, 1830 (2008)

Wrinkled structures can be used for flexible electronics

B. Xu et al., <u>Adv. Mater.</u> 28, 4462 (2016)

How are villi formed in guts?

Villi increase internal surface area of intestine for faster absorption of digested nutrients.

Lumen patterns in chick embryo

DAPI marks cell nuclei

aSMA marks smooth muscle actin

E...: age of chick embryo in days

Stiff muscles grow slower than softer mesenchyme and endoderm layers

radial compression due to differential growth produces striped wrinkles

endoderm mesenchyme muscle

13 A. Shyer et al., <u>Science</u> **342**, 212 (2013)

Lumen patterns in chick embryo

endoderm mesenchyme muscle

14 A. Shyer et al., <u>Science</u> **342**, 212 (2013)

Lumen patterns in chick embryo

Villi start forming at E16 because of the faster growth in valleys

Zigzag Twisting

g Bulges

The same mechanism for villi formation also works in other organisms!

15 A. Shyer et al., <u>Science</u> **342**, 212 (2013)

Why are guts shaped like that?

© 2003 Encyclopædia Britannica, Inc.

Guts in chick embryo

Surgically removed guts from chick embryo

Tube straightens after separation from mesentery

Tube grows faster than mesentery sheet!

17

T. Savin et al., <u>Nature</u> **476**, 57 (2011)

Synthetic analog of guts

Rubber model of guts

Chick guts at E12

What is the wavelength of this oscillations?

Compression of stiff tube on soft elastic mesentery sheet

 \mathbf{L}

assumed profile $h(s) = h_0 \cos(2\pi s/\lambda)$

deformation of the soft mesentery decays exponentially away from the surface

 $h(s, y) \approx h_0 \cos(2\pi s/\lambda) e^{-2\pi y/\lambda}$

y

 $2r_0$

w

 $2r_i$

amplitude of wrinkles

$$h_0 = \frac{\lambda}{\pi} \sqrt{\frac{\Delta}{L}} = \frac{\lambda\sqrt{\epsilon}}{\pi}$$

bending energy of stiff tube

$$U_b \sim L \times \kappa_t \times \frac{1}{R^2} \sim L \times E_t I_t \times \frac{h_0^2}{\lambda^4} \sim \frac{L E_t I_t \epsilon}{\lambda^2}$$

deformation energy of soft mesentery

$$U_m \sim A \times E_m d \times \epsilon_m^2 \sim L\lambda \times E_m d \times \frac{h_0^2}{\lambda^2} \sim LE_m d\lambda \epsilon$$

minimize total energy (U_b+U_m) with respect to λ

$$\lambda \sim \left(\frac{E_t I_t}{E_m d}\right)^{1/3}$$

bending stiffness of tube $\kappa_t = E_t I_t$ $\kappa_t \propto E_t (r_0^4 - r_i^4)$

Wavelength of oscillations in guts

mouse

20

finch

quail

chick

 $E_{\rm m}$

T. Savin et al., <u>Nature</u> 476, 57 (2011)

npre

erial

When soft elastic material is compressed by more than 35% surface forms sharp creases. This is effect of nonlinear elasticity!

Swelling of thin membranes on elastic substrates

22 T. Tallinen et al., <u>PNAS</u> **111**, 12667 (2014)

Cortical convolutions in brains

Migration of neurons to the cortex leads to "swelling" of gray matter!

Formation of cortical convolutions in developing brains

Magnetic resonance images (MRI) of fetal brains

GW 22-23

GW 25-26 GW 28-29

GW 33-34

GW 36-37

gestational week (GW): age of fetus in weeks

Numerical simulations of developing brain

Initial condition: shape from MRI image of fetal brain at GW 22.

²⁴ T. Tallinen et al., <u>Nature Physics</u> **12**, 588 (2016)

Formation of cortical convolutions in developing brains

Magnetic resonance images (MRI) of fetal brains

GW 22-23

GW 25-26 GW 28-29

GW 33-34

GW 36-37

gestational week (GW): age of fetus in weeks

GW 29

Numerical simulations of developing brain

GW 22

GW 34

GW 40

adult

From GW 22 to adult stage:

brain volume increases 20-fold from 60 ml to 1,200 ml cortical area increases 30-fold from 80 cm² to 2,400 cm²

²⁵ T. Tallinen et al., <u>Nature Physics</u> **12**, 588 (2016)

Formation of cortical convolutions in developing brains

Magnetic resonance images (MRI) of fetal brains

GW 22-23

GW 28-29 GW 25-26

GW 33-34

GW 36-37

gestational week (GW): age of fetus in weeks

Swelling of gel models of brain

26

In experiments only the thin coated layer swells by absorbing a liquid!

replicated gel-brain

gel-brain coated with thin layer

T. Tallinen et al., <u>Nature Physics</u> **12**, 588 (2016)

²⁷ T. Tallinen et al., <u>Nature Physics</u> **12**, 588 (2016)

Formation of cortical convolutions in developing brains

Magnetic resonance images (MRI) of brains

GW 40

adult

Numerical simulations of developing brain

GW 34

22GW 29GW 34GW 40acSwelling of gel models of brain

GW 22 GW 29 GW 34 (t=0) (t=9 min) (t=16 min)

28 T. Tallinen et al., <u>Nature Physics</u> **12**, 588 (2016)

Brains for various organisms

brain parameters

R: brain size

T: thickness of gray matter

tangential expansion

area of convex hull

T. Tallinen et al., <u>PNAS</u> **111**, 12667 (2014)

30

PNAS 97, 5621 (2000)

Brain malformations

lissencephaly pachygyria (small number of larger gyri)

Reduced neuronal migration to cortex

Gray matter is thicker and it swells less!

polymicrogyria

(large number of smaller gyri)

Typically gray matter has only four rather than six layers in the affected areas.

Strong adhesion between membrane and substrate

Weak adhesion between membrane and substrate

thin membrane delaminates/buckles!

The morphology of compressed structures can be obtained by minimizing the total energy

Experimental protocol

Computationally predicted phase diagram

34 Q. Wang and X. Zhao, <u>Sci. Rep.</u> **5**, 8887 (2015)

Very strong adhesion ($\Gamma/(E_s d) \gg 1$)

35 Q. Wang and X. Zhao, <u>Sci. Rep.</u> 5, 8887 (2015)

Compression of thin membranes on elastic substrates with finite adhesion Strong adhesion

40 Q. Wang and X. Zhao, <u>Sci. Rep.</u> **5**, 8887 (2015)

 $\frac{1}{E_s d} = 3.99$

Moderate adhesion

$$\frac{\Gamma}{E_s d} = 0.81$$

"Ridge" and "Period-double" phases disappear

delamination/buckling of folds

 $\frac{\Gamma}{E_s d} = 0.46$

"Ridge" and "Period-double" phases disappear

delamination/buckling of wrinkles

41 Q. Wang and X. Zhao, <u>Sci. Rep.</u> **5**, 8887 (2015)

Weak adhesion

$$\frac{\Gamma}{E_s d} = 0.28$$

"Ridge", "Period-double" and

"Fold" phases disappear

 $\frac{\Gamma}{E_s d} = 0.13$

delaminatied/buckled phase almost completely takes over the other phases delamination/buckling of flat phase

