MAE 545: Lecture 7 (2/28) Shapes of growing sheets

Reminder: no lecture on Thursday (3/2)

Shapes of flowers and leaves

saddles

wrinkled edges

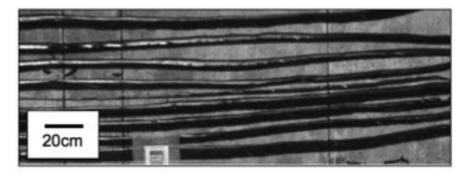
helices

bull kelp (seaweed)

Slow water flow environment (v~0.5 m/s)

Carlon Concernantia Concernanti

Fast water flow environment (v~1.5 m/s)

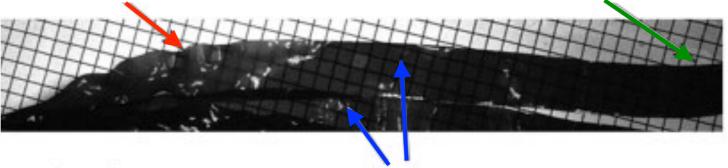


old growth before

transplanted (flat)

new growth after transplantation (wrinkled)

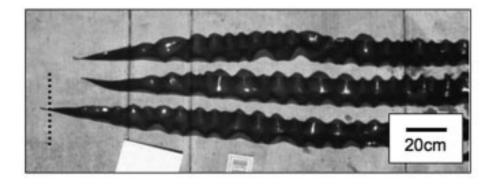
Transplantation of blade from one environment to the other changes morphology!



blades

bull kelp (seaweed)

Slow water flow environment (v~0.5 m/s)

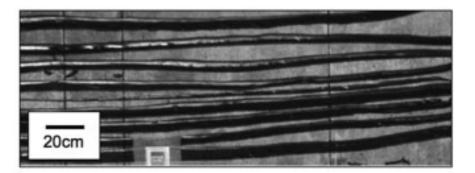


increased drag

blades flap like flags

flapping prevents bundling of blades, which can thus receive more sunlight (photosynthesis)

Fast water flow environment (v~1.5 m/s)



reduced drag to prevent detachment from base (=death)

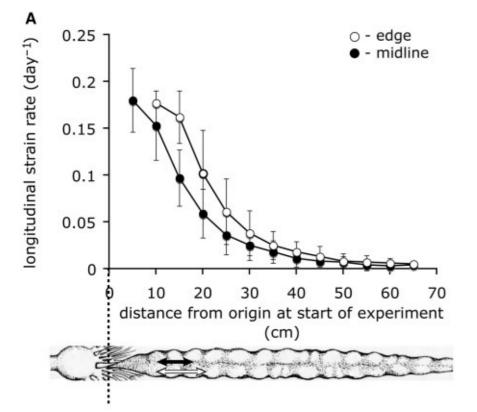
minimal flapping

blades bundle together and some blades on the bottom receive less sunlight

5

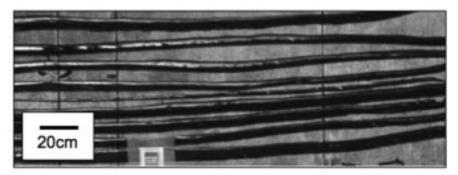
Slow water flow environment (v~0.5 m/s)

edges of blades grow faster than the midline

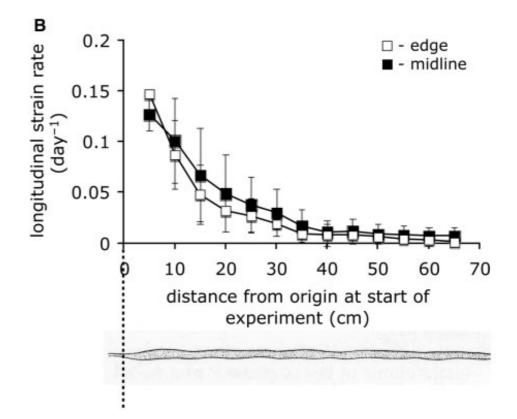


What is the effect of differential growth rate between the edge and the midline of the blade?

Fast water flow environment (v~1.5 m/s)



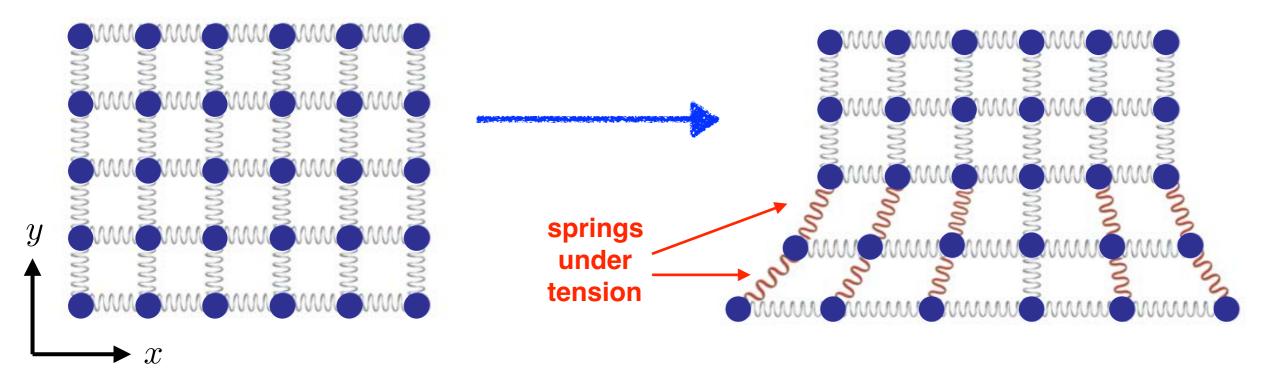
edges of blades grow at the same speed as the midline



Differential growth produces internal stress

before growth

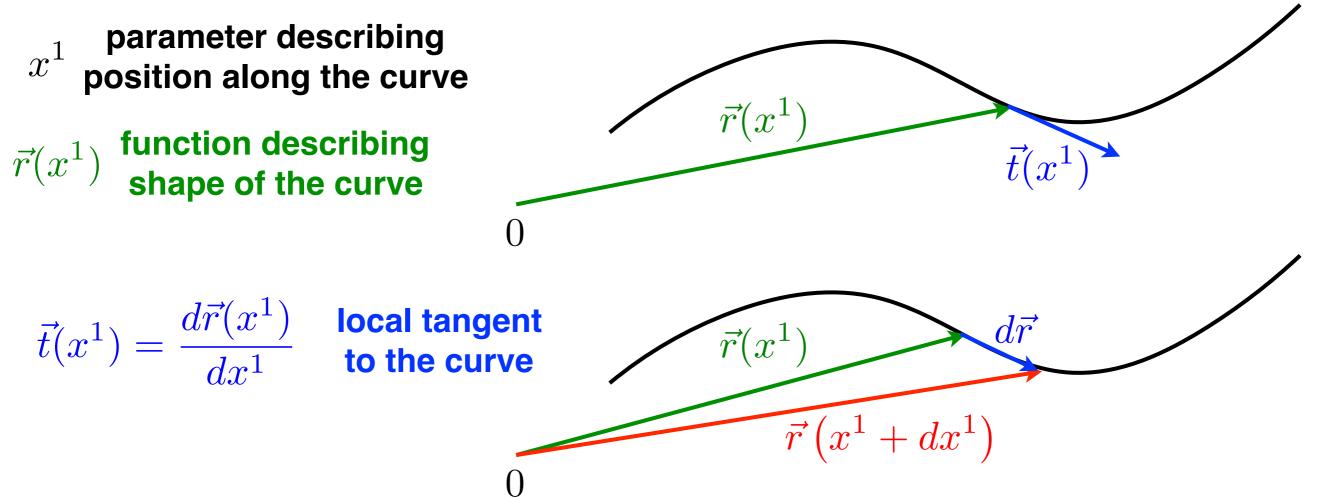
faster growth of the bottom edge in x direction



Differential growth produces internal stresses, which can be partially released via bending!

Next: Short detour to differential geometry.

Metric for measuring distances along curves

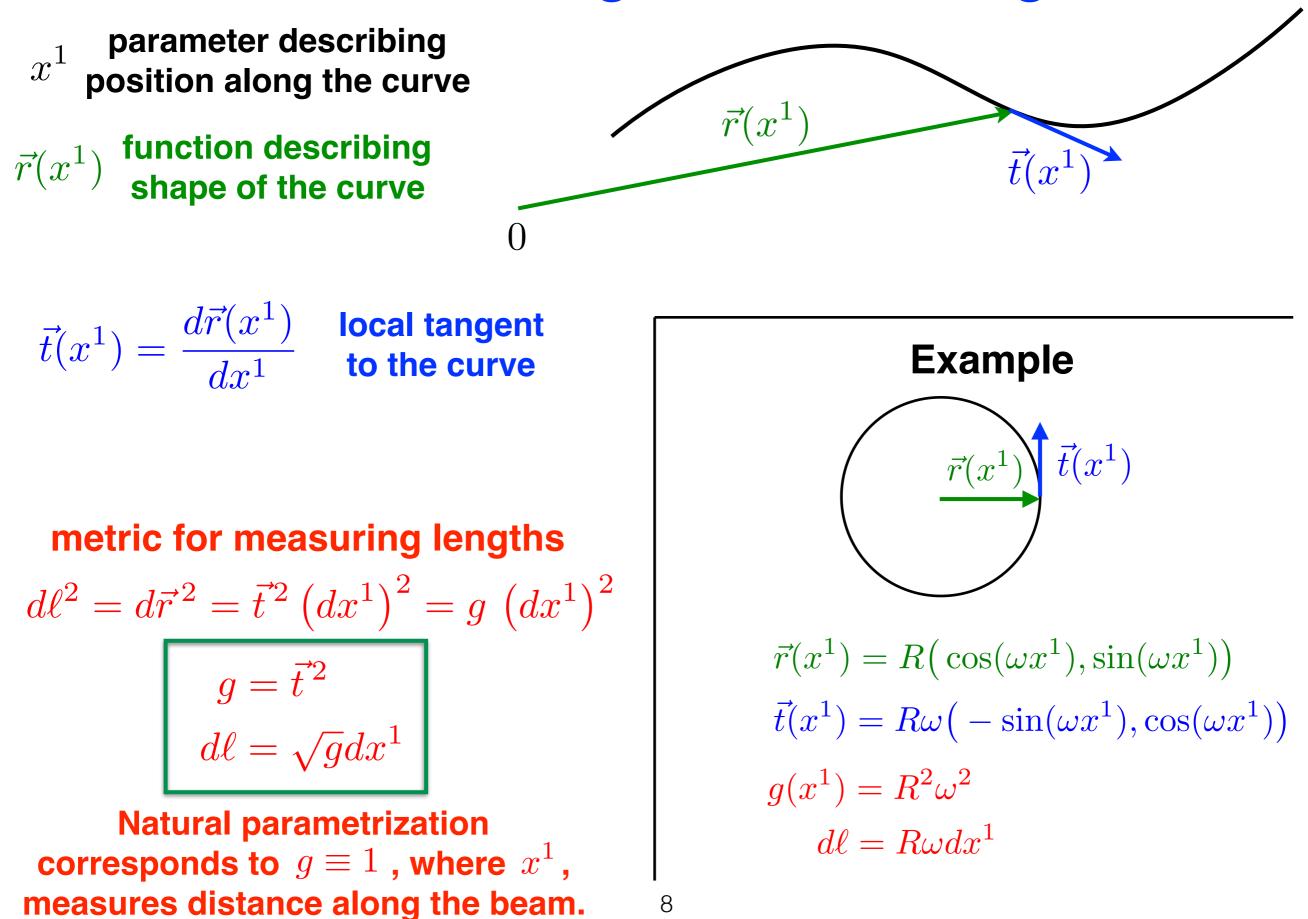


metric for measuring lengths

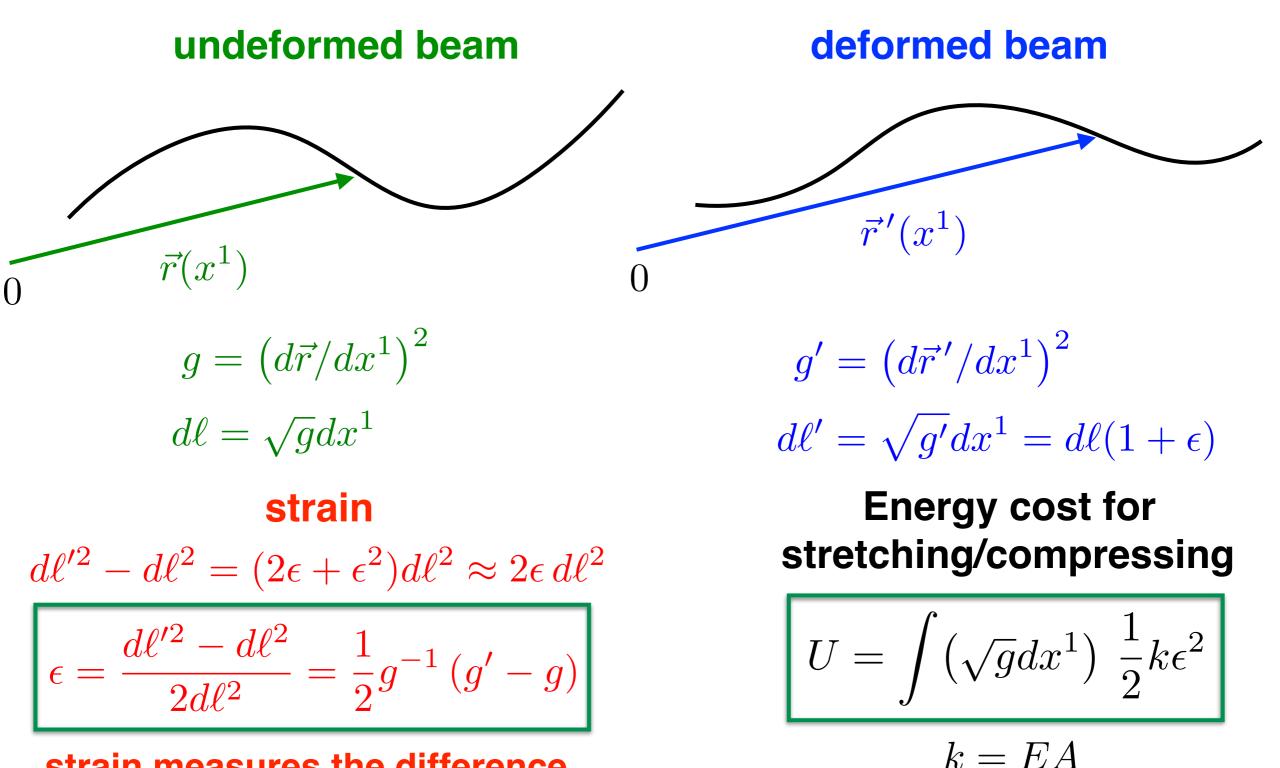
$$d\ell^{2} = d\vec{r}^{2} = \vec{t}^{2} (dx^{1})^{2} = g (dx^{1})^{2}$$
$$g = \vec{t}^{2}$$
$$d\ell = \sqrt{g} dx^{1}$$

Natural parametrization corresponds to $g \equiv 1$, where x^1 , measures distance along the beam.

Metric for measuring distances along curves



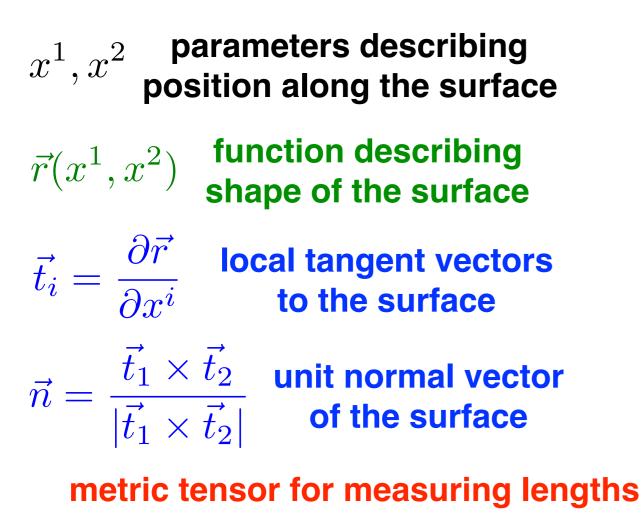
Strain and energy of beam deformations



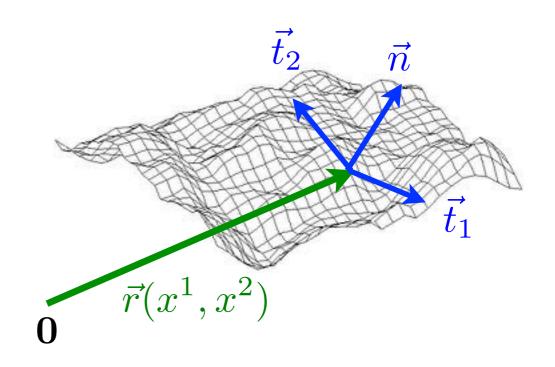
strain measures the difference of metric g' for deformed beam from the preferred metric g !

- E 3D Young's modulus
- A beam cross-section area

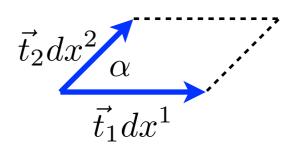
Metric tensor for measuring distances on surfaces



$$d\ell^2 = d\vec{r}^2 = \sum_{i,j} \vec{t}_i \cdot \vec{t}_j dx^i dx^j = \sum_{i,j} g_{ij} dx^i dx^j$$
$$g_{ij} = \vec{t}_i \cdot \vec{t}_j = \begin{pmatrix} \vec{t}_1 \cdot \vec{t}_1, & \vec{t}_1 \cdot \vec{t}_2 \\ \vec{t}_2 \cdot \vec{t}_1 & \vec{t}_2 \cdot \vec{t}_2 \end{pmatrix}$$
$$g = \det(g_{ij}) = |\vec{t}_1 \times \vec{t}_2|^2$$



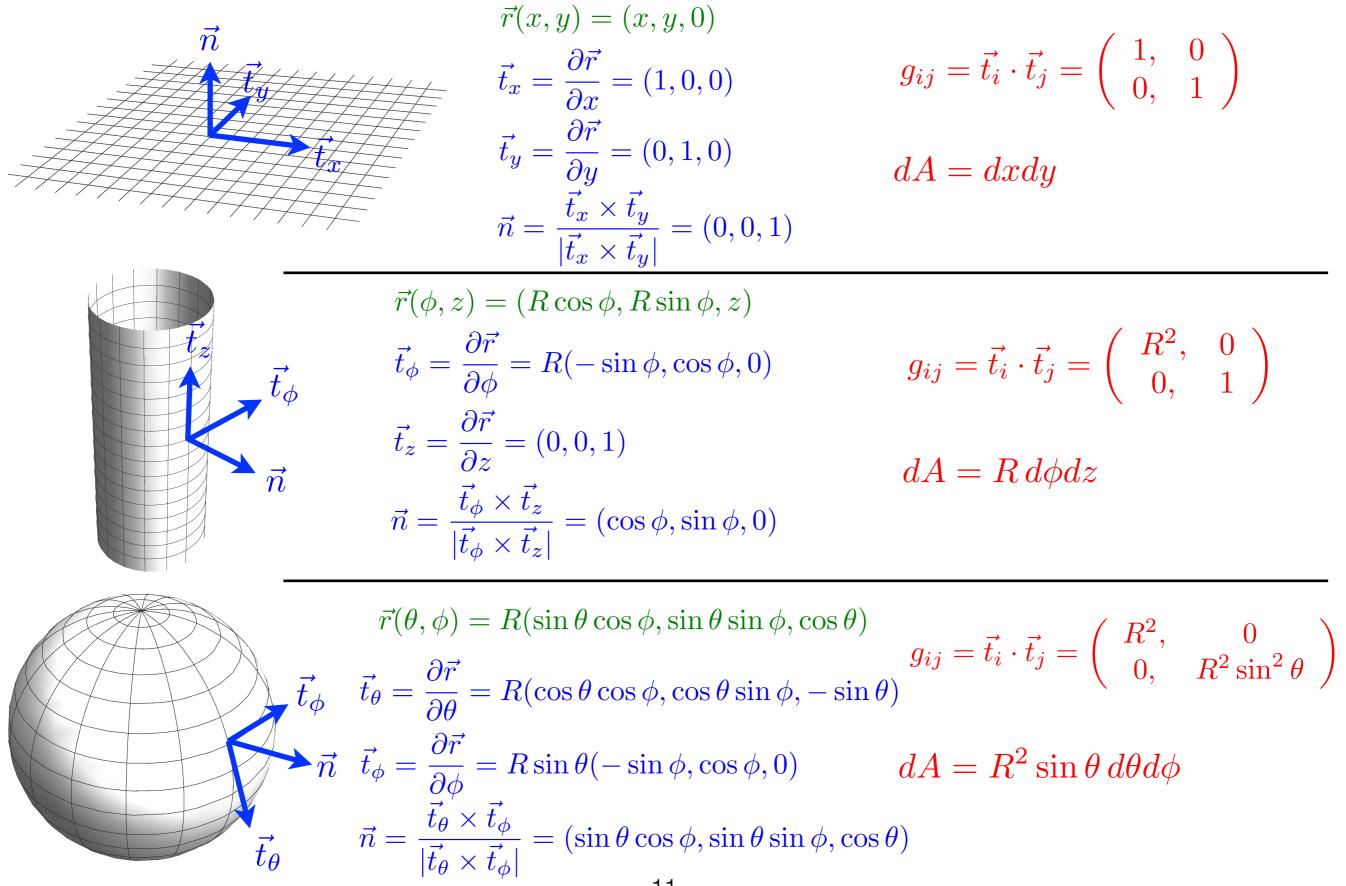
area element



$$dA = |\vec{t_1}| |\vec{t_2}| \sin \alpha dx^1 dx^2$$

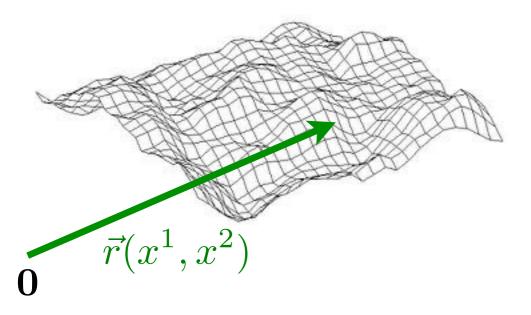
$$dA = \sqrt{g} \, dx^1 dx^2$$

Examples



Strain tensor and energy of shell deformations

undeformed shell



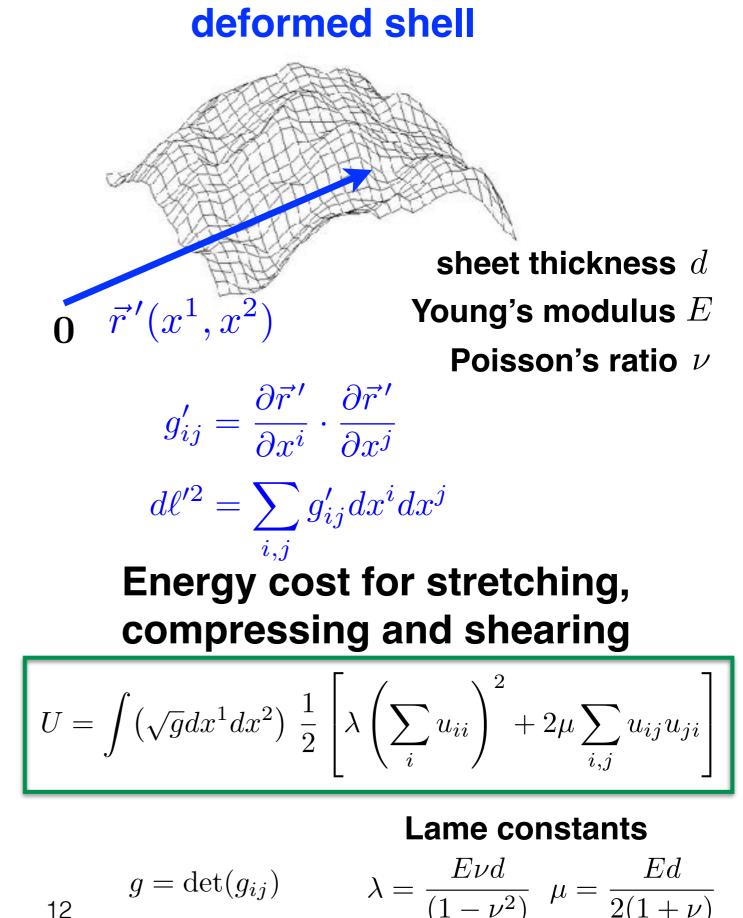
$$g_{ij} = \frac{\partial \vec{r}}{\partial x^i} \cdot \frac{\partial \vec{r}}{\partial x^j}$$
$$d\ell^2 = \sum_{i,j} g_{ij} dx^i dx^j$$

strain tensor

$$u_{ij} = \frac{1}{2} \sum_{k} (g^{-1})_{ik} (g'_{kj} - g_{kj})$$

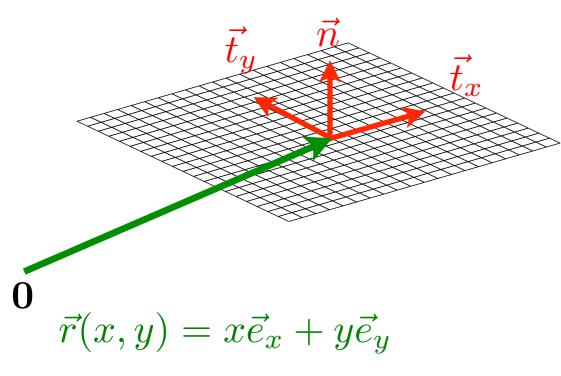
inverse metric tensor

$$\sum_{k} (g^{-1})_{ik} g_{kj} = \sum_{k} g_{ik} (g^{-1})_{kj} = \delta_{ij}$$



Strain tensor for deformation of flat plates

undeformed plate



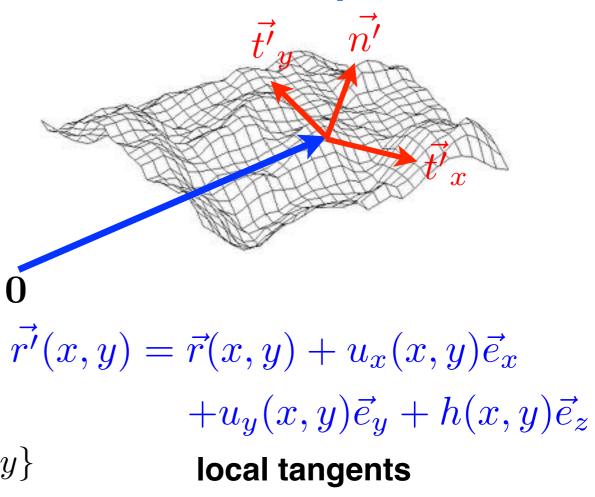
local tangents $i, j, k \in \{x, y\}$

$$\vec{t}_i = \partial_i \vec{r} \equiv \frac{\partial \vec{r}}{\partial i} = \vec{e}_i$$

metric tensor

$$g_{ij} = \vec{t}_i \cdot \vec{t}_j = \delta_{ij} \equiv \begin{pmatrix} 1, & 0\\ 0, & 1 \end{pmatrix}$$

deformed plate



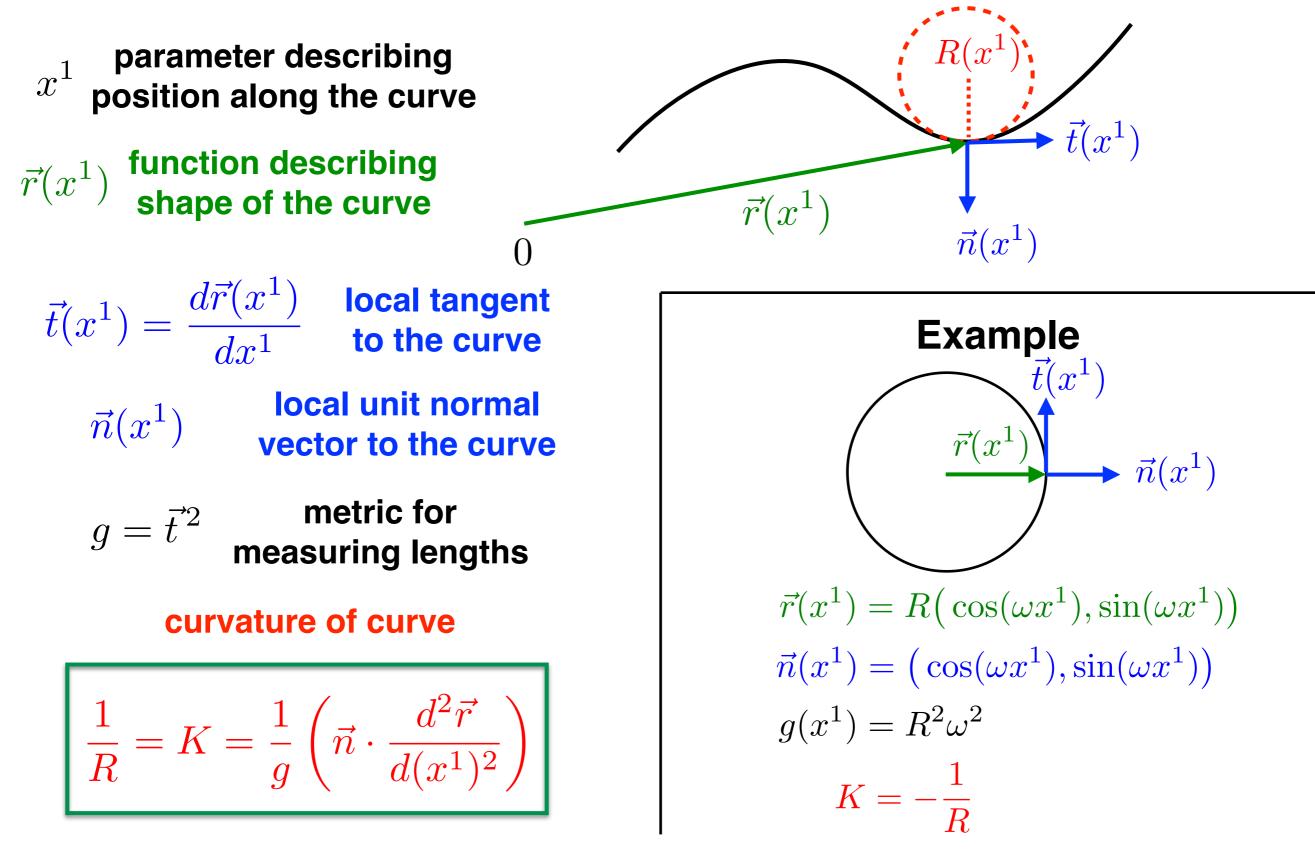
$$\vec{t'_i} = \partial_i \vec{r'} = \vec{e_i} + \sum_k (\partial_i u_k) \vec{e_k} + (\partial_i h) \vec{e_z}$$

strain tensor

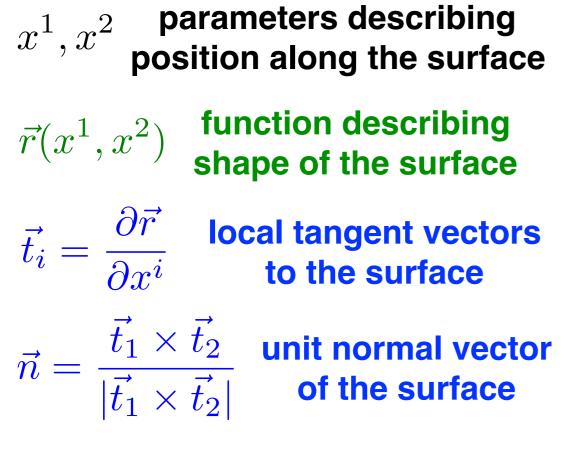
$$u_{ij} = \frac{1}{2} \left(g'_{ij} - \delta_{ij} \right)$$

$$2u_{ij} = \left(\partial_i u_j + \partial_j u_i \right) + \sum_k \partial_i u_k \partial_j u_k + \partial_i h \partial_j h$$

Curvature of curves



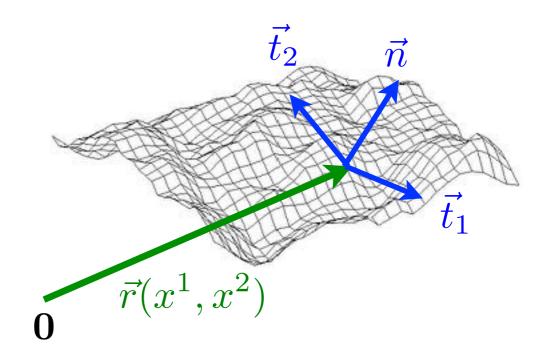
Curvature tensor for surfaces



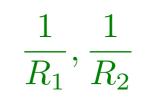
 $g_{ij} = \vec{t}_i \cdot \vec{t}_j$ metric tensor for measuring lengths

curvature tensor for surfaces

$$K_{ij} = \sum_{k} \left(g^{-1} \right)_{ik} \left(\vec{n} \cdot \frac{\partial^2 \vec{r}}{\partial x^k \partial x^j} \right)$$



principal curvatures correspond to the eigenvalues of curvature tensor



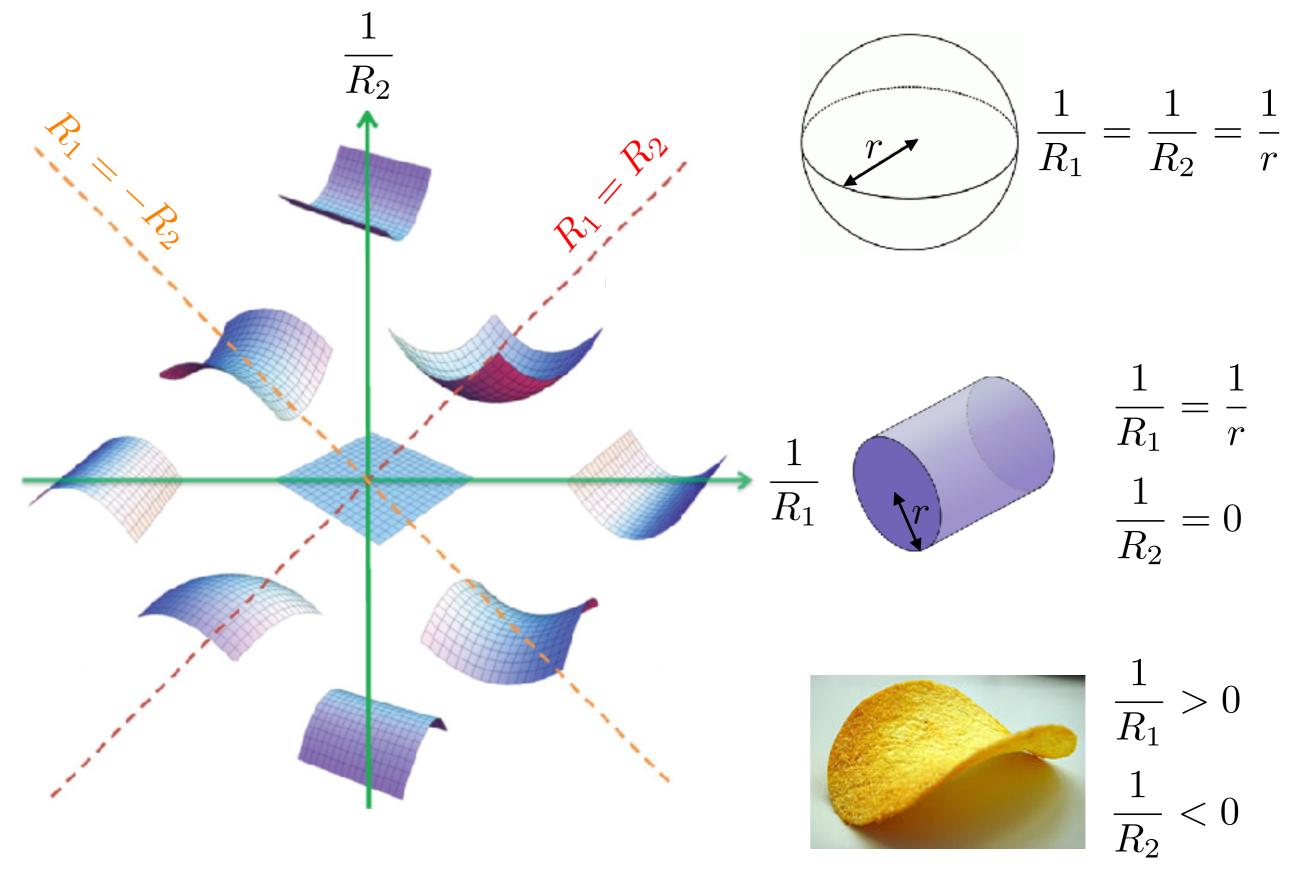
mean curvature

$$\frac{1}{2}\left(\frac{1}{R_1} + \frac{1}{R_2}\right) = \frac{1}{2}\sum_i K_{ii} = \frac{1}{2}\operatorname{tr}(K_{ij})$$

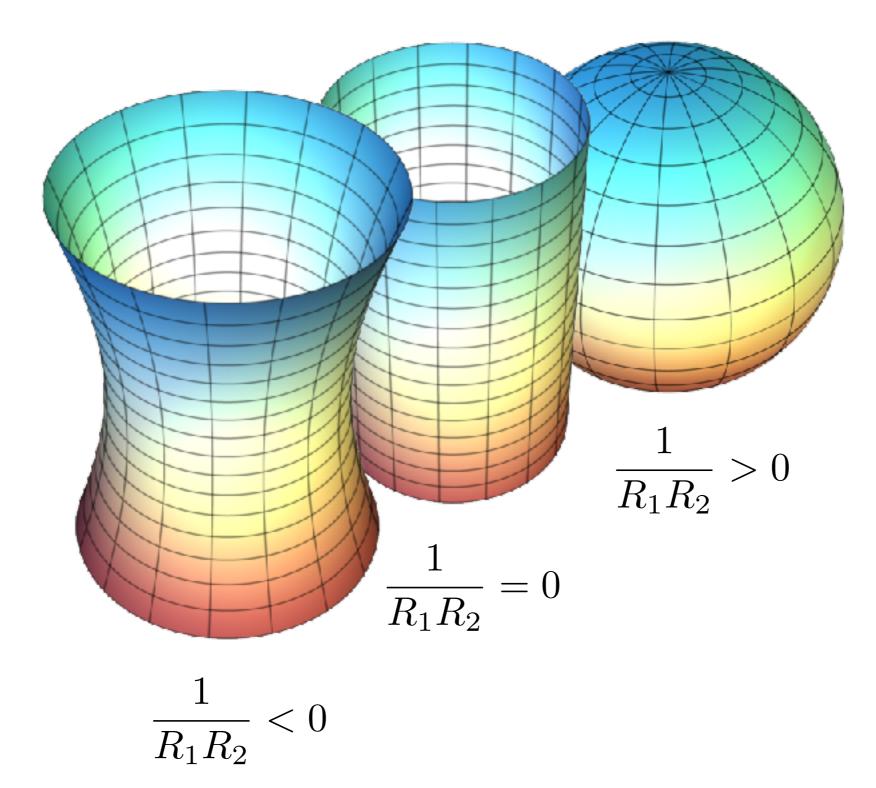
Gaussian curvature

$$\frac{1}{R_1 R_2} = \det(K_{ij})$$

Surfaces of various principal curvatures



Examples for Gaussian curvature



Examples

 $\vec{r}(x,y) = (x,y,0)$

 $\vec{t}_x = \frac{\partial \vec{r}}{\partial x} = (1, 0, 0)$

$$K_{ij} = \sum_{k} \left(g^{-1} \right)_{ik} \left(\vec{n} \cdot \frac{\partial^2 \vec{r}}{\partial x^k \partial x^j} \right)$$

$$g_{ij} = \vec{t}_i \cdot \vec{t}_j = \begin{pmatrix} 1, & 0 \\ 0, & 1 \end{pmatrix}$$
$$K_{ij} = \begin{pmatrix} 0, & 0 \\ 0, & 0 \end{pmatrix}$$

 \vec{t}_{θ}

 \vec{n}

$$\vec{t}_{y} = \frac{\partial \vec{t}}{\partial y} = (0, 1, 0)$$

$$\vec{t}_{y} = \frac{\partial \vec{r}}{\partial y} = (0, 1, 0)$$

$$\vec{n} = \frac{\vec{t}_{x} \times \vec{t}_{y}}{|\vec{t}_{x} \times \vec{t}_{y}|} = (0, 0, 1)$$

$$\vec{r}(\phi, z) = (R \cos \phi, R \sin \phi, z)$$

$$\vec{t}_{\phi} = \frac{\partial \vec{r}}{\partial \phi} = R(-\sin \phi, \cos \phi, 0)$$

$$g_{ij} = \vec{t}_{i} \cdot \vec{t}_{j} = \begin{pmatrix} R^{2}, & 0 \\ 0, & 1 \end{pmatrix}$$

$$\vec{t}_{z} = \frac{\partial \vec{r}}{\partial z} = (0, 0, 1)$$

$$\vec{n} = \frac{\vec{t}_{\phi} \times \vec{t}_{z}}{|\vec{t}_{\phi} \times \vec{t}_{z}|} = (\cos \phi, \sin \phi, 0)$$

$$K_{ij} = \begin{pmatrix} -\frac{1}{R}, & 0 \\ 0, & 0 \end{pmatrix}$$

$$\vec{r}(\theta,\phi) = R(\sin\theta\cos\phi,\sin\theta\sin\phi,\cos\theta)$$

$$\vec{t}_{\phi} \quad \vec{t}_{\theta} = \frac{\partial \vec{r}}{\partial \theta} = R(\cos\theta\cos\phi,\cos\theta\sin\phi,-\sin\theta)$$

$$g_{ij} = \vec{t}_i \cdot \vec{t}_j = \begin{pmatrix} R^2, & 0 \\ 0, & R^2\sin^2\theta \end{pmatrix}$$

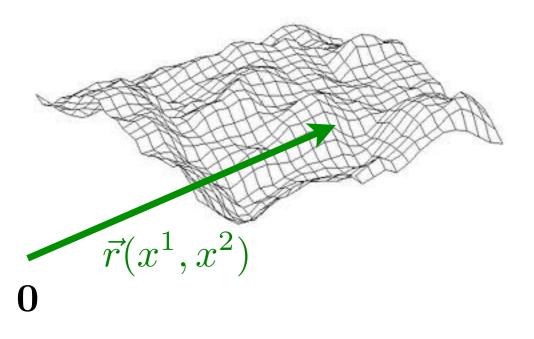
$$\vec{n} \quad \vec{t}_{\phi} = \frac{\partial \vec{r}}{\partial \phi} = R\sin\theta(-\sin\phi,\cos\phi,0)$$

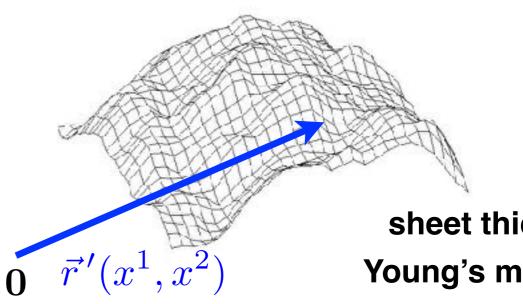
$$K_{ij} = \begin{pmatrix} -\frac{1}{R}, & 0 \\ 0, & -\frac{1}{R} \end{pmatrix}$$

$$\vec{n} = \frac{\vec{t}_{\theta} \times \vec{t}_{\phi}}{|\vec{t}_{\theta} \times \vec{t}_{\phi}|} = (\sin\theta\cos\phi,\sin\theta\sin\phi,\cos\theta)$$

Bending energy for deformation of shells

undeformed shell





deformed shell

sheet thickness dYoung's modulus EPoisson's ratio ν

$$K_{ij} = \sum_{k} \left(g^{-1} \right)_{ik} \left(\vec{n} \cdot \frac{\partial^2 \vec{r}}{\partial x^k \partial x^j} \right)$$

bending strain tensor

$$b_{ij} = K'_{ij} - K_{ij}$$

(local measure of deviation from preferred curvature)

Energy cost of bending

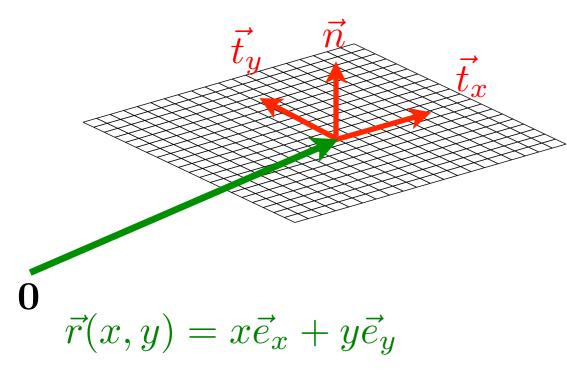
 $K'_{ij} = \sum_{k} \left(g'^{-1} \right)_{ik} \left(\vec{n}' \cdot \frac{\partial^2 \vec{r}'}{\partial x^k \partial x^j} \right)$

$$U = \int \left(\sqrt{g} dx^1 dx^2\right) \left[\frac{1}{2}\kappa \left(\operatorname{tr}(b_{ij})\right)^2 + \kappa_G \det(b_{ij})\right]$$

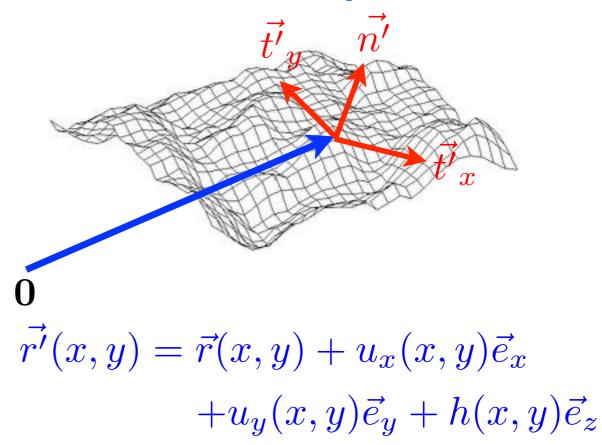
$$\kappa = \frac{Ed^3}{12(1-\nu^2)} \quad \kappa_G = -\frac{Ed^3}{12(1+\nu)}$$

Bending strain for deformation of flat plates

undeformed plate



deformed plate



local normal

$$\vec{n} = \frac{\vec{t}_x \times \vec{t}_y}{|\vec{t}_x \times \vec{t}_y|} = \vec{e}_z$$

reference curvature tensor

$$K_{ij} = \vec{n} \cdot \partial_i \partial_j \vec{r} = 0$$

local normal (neglecting in-plane deformations)

$$\vec{n'} \approx \frac{\vec{e}_z - (\partial_x h) \vec{e}_x - (\partial_y h) \vec{e}_y}{\sqrt{1 + (\partial_x h)^2 + (\partial_y h)^2}}$$

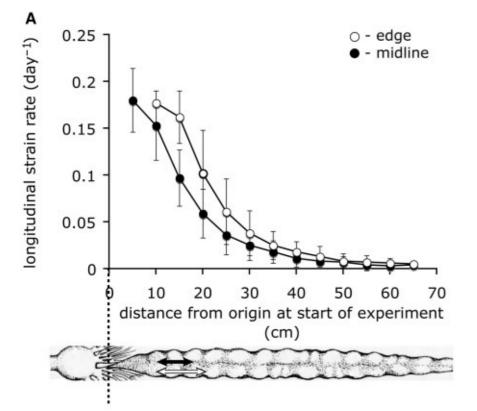
bending strain tensor

$$b_{ij} = K'_{ij} \approx \partial_i \partial_j h + \cdots$$

21

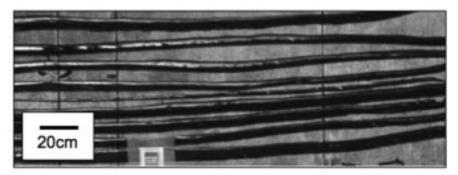
Slow water flow environment (v~0.5 m/s)

edges of blades grow faster than the midline

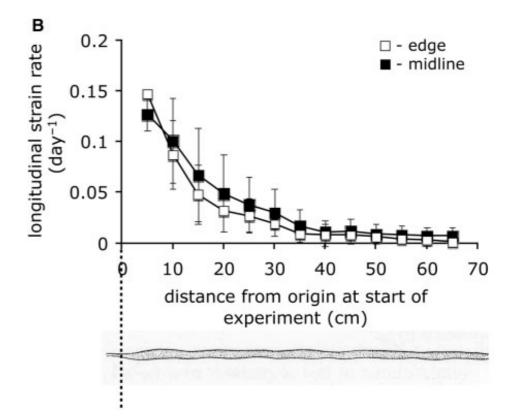


What is the effect of differential growth rate between the edge and the midline of the blade?

Fast water flow environment (v~1.5 m/s)



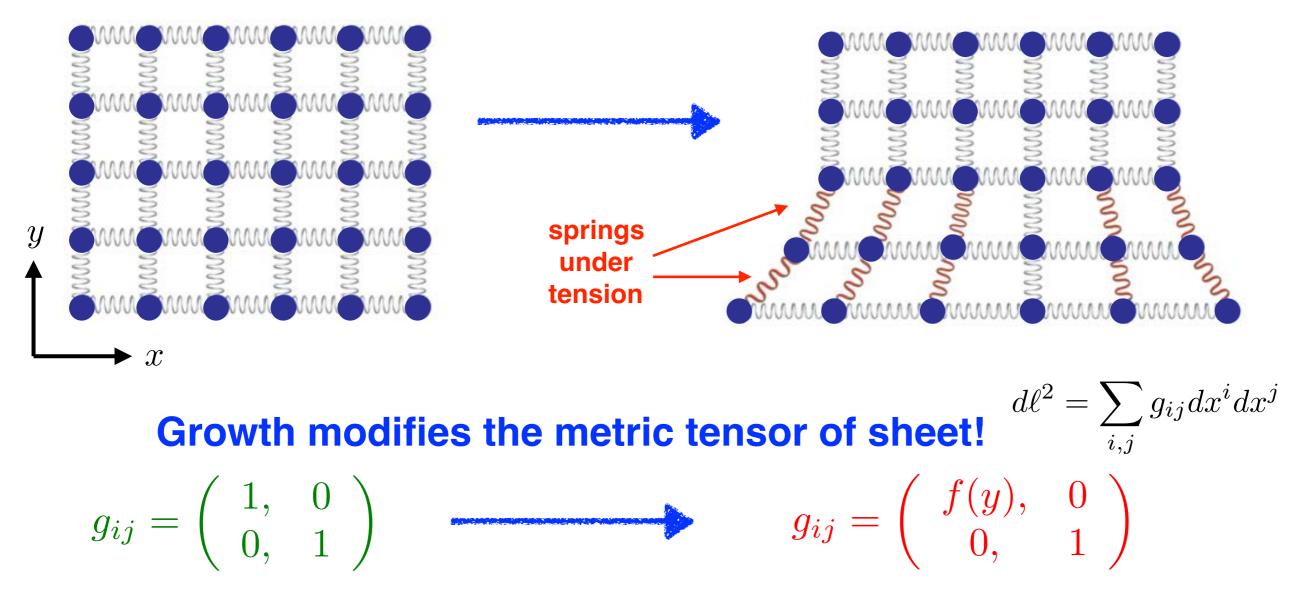
edges of blades grow at the same speed as the midline



Differential growth produces internal stress

before growth

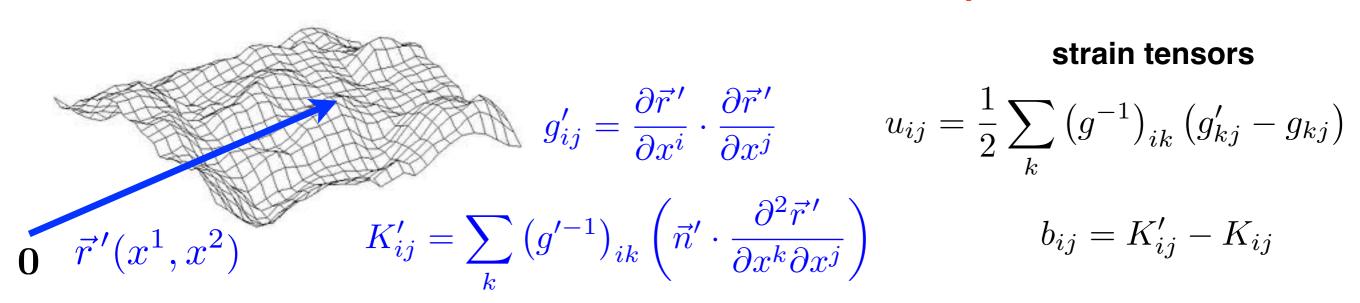
faster growth of the bottom edge in x direction



Note: If growth is different between the top and bottom of the sheet, then the curvature tensor K_{ij} is modified as well!

Mechanics of growing sheets

Growth defines preferred metric tensor g_{ij} , and preferred curvature tensor K_{ij} .



The equilibrium membrane shape $\vec{r}'(x^1, x^2)$ corresponds to the minimum of elastic energy:

$$U = \int \left(\sqrt{g} dx^1 dx^2\right) \left[\frac{1}{2}\lambda \left(\sum_i u_{ii}\right)^2 + \mu \sum_{i,j} u_{ij} u_{ji} + \frac{1}{2}\kappa \left(\operatorname{tr}(b_{ij})\right)^2 + \kappa_G \operatorname{det}(b_{ij})\right]$$

Growth can independently tune the metric tensor g_{ij} and the curvature tensor K_{ij} , which may not be compatible with any surface shape that would produce zero energy cost!

Zero energy shape exists only when preferred metric tensor g_{ij} and preferred curvature tensor K_{ij} satisfy Gauss-Codazzi-Mainardi relations!

Mechanics of growing membranes

One of the Gauss-Codazzi-Mainardi equations (Gauss's Theorema Egregium) relates the Gauss curvature to metric tensor

$$\det(K'_{ij}) = \mathcal{F}(g'_{ij})$$

The equilibrium membrane shape $\vec{r}'(x^1, x^2)$ corresponds to the minimum of elastic energy:

$$U = \int \left(\sqrt{g} dx^1 dx^2\right) \left[\frac{1}{2}\lambda\left(\sum_i u_{ii}\right)^2 + \mu \sum_{i,j} u_{ij} u_{ji} + \frac{1}{2}\kappa\left(\operatorname{tr}(b_{ij})\right)^2 + \kappa_G \operatorname{det}(b_{ij})\right]$$

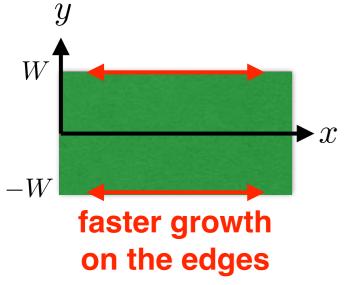
scaling with membrane thickness d

 $\lambda, \mu \sim Ed$ $\kappa, \kappa_G \sim Ed^3$

For very thin membranes the equilibrium shape matches the preferred metric tensor to avoid stretching, compressing and shearing. This also specifies the Gauss curvature!

$$g'_{ij} = g_{ij}$$
$$\det(K'_{ij}) = \mathcal{F}(g_{ij})$$

Example



Assume that differential growth in x direction produces metric tensor of the form

$$g_{ij} = \begin{pmatrix} f(y), & 0\\ 0, & 1 \end{pmatrix} \qquad f(y) = 1 + c e^{(|y| - W)/\lambda}$$

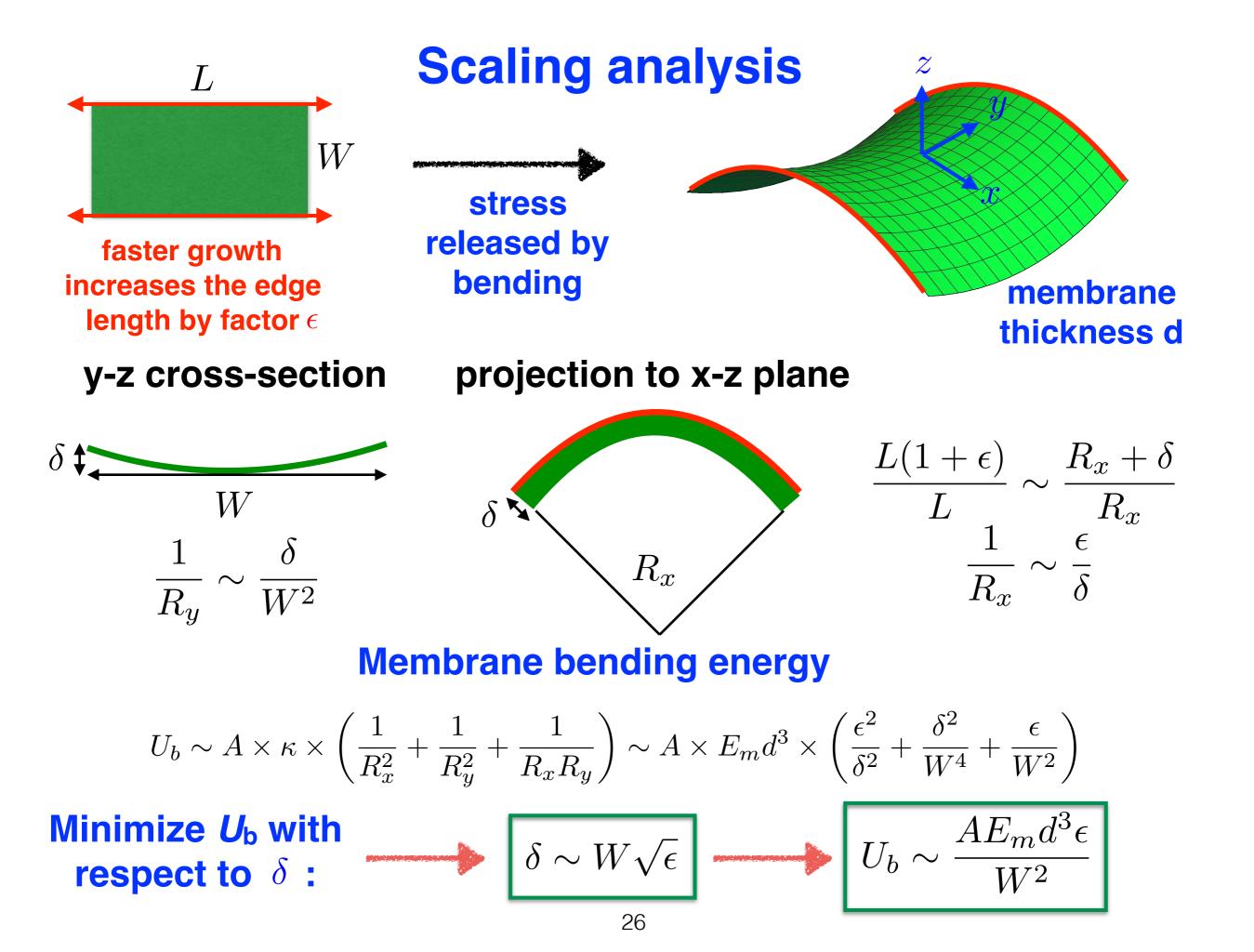
For thin membranes the metric tensor wants to be matched $g_{ij}^\prime = g_{ij}$

f(y), 0

Gauss's Theorema Egregium provides Gauss curvature

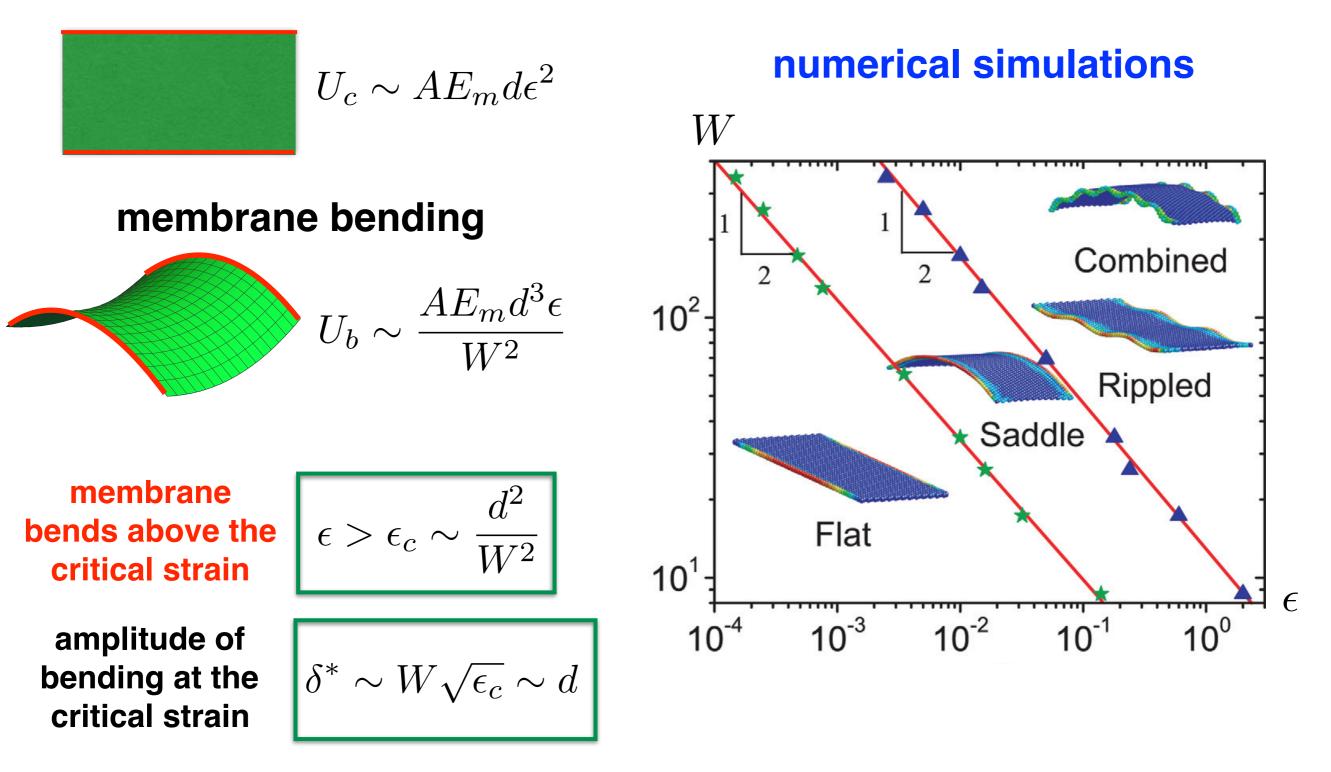
$$\det(K'_{ij}(y)) = \mathcal{F}(g_{ij}) = -\frac{1}{f} \frac{d^2 f(y)}{dy^2} = -\frac{1}{\lambda^2} \times \frac{c e^{(|y| - W)/\lambda}}{(1 + c e^{(|y| - W)/\lambda})} < 0$$

For thin membranes faster growth on edges produces shapes that locally look like saddles!



Scaling analysis

membrane compression



H. Liang and L. Mahadevan, PNAS 106, 22049 (2009)

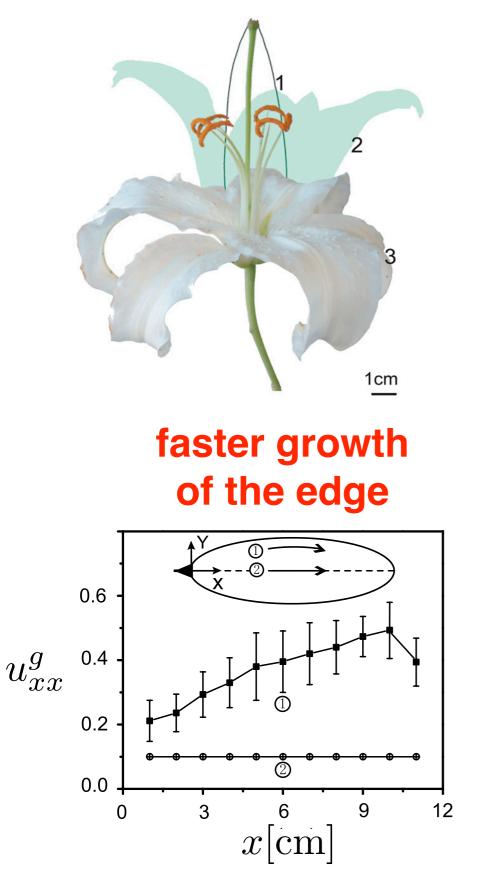
Shapes of flowers and leaves

Faster growth of the edge is consistent with observed saddles and edge wrinkles, which indeed correspond to the negative Gauss curvature!

saddles

wrinkled edges (+saddles)

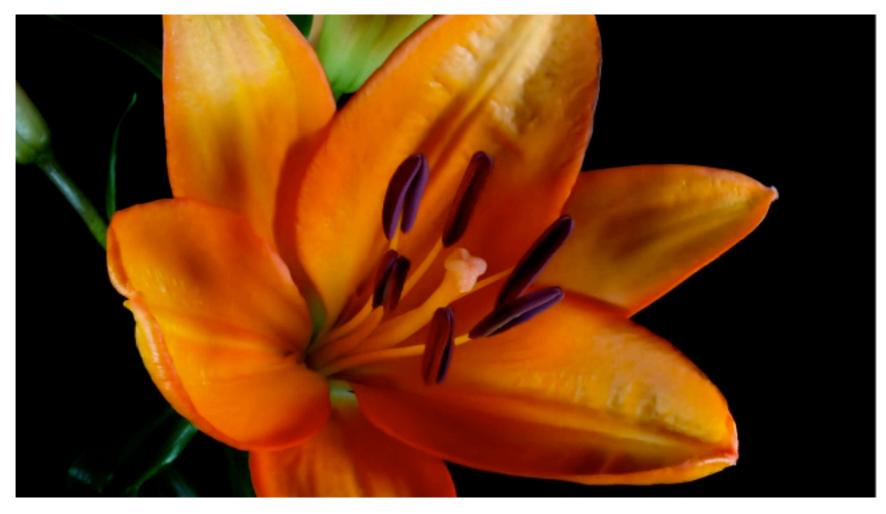
Growth of a blooming lily



in lab blooming takes 4.5 days under constant fluorescent light (1 frame/min)

H. Liang and L. Mahadevan, PNAS 108, 5516 (2011)

How flowers open in the morning and close in the evening?



https://vimeo.com/98276732

When temperature increases in the morning, flowers regulate their growth pattern to grow more new cells on the inside of flower leaves. This results in curling of leaves and opening of flowers. When temperature drops in the evening, flowers regulate their growth pattern to grow more new cells on the outside of flower leaves. This results in straightening of leaves and closing of flowers.