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Shapes of growing and swelling sheets

of Ω(r) at each lattice point according to Eqs. 3
and 4, determining the corresponding value of
flow from the fit of Eq. 2 to the data in Fig. 1H,
and finally setting the size of the dot at that
lattice point according to Eq. 1. Because the
power-law metrics in Eq. 3 diverge or vanish at
the origin, it is necessary to cut out a small re-
gion around the center of each of the two cones.

The shapes adopted by the corresponding gel
sheets (Fig. 2, A to D) are measured by laser scan-
ning confocal fluorescence microscopy (LSCM)
and analyzed as described in the SOM. Each of
the four surfaces shows only small deviations
about an average Gaussian curvature, with the
exception of the regions near the free edges,
where our analysis yields artifactual curvatures
(due to the finite thickness of the gel sheets, the
surface meshing procedure used yields addition-
al points on the edges that do not accurately
reflect the 2D geometries of the sheets). After
excluding regions of the surface within 2h of the
edges to avoid these artifacts, we find the aver-
age Gaussian curvatures of the spherical cap and
saddle to be 6.2 mm−2 and –20.6 mm−2, respec-
tively, with nearly axisymmetric distributions
of curvature (fig. S2A). Both values are in rea-
sonable agreement with the target values, al-
though the tendency of disks with uniform dot
sizes to show slight curvatures (with radii of 2
mm) suggests the presence of slight through-
thickness variations in swelling (see SOM for
details) that may contribute to the observed de-
viations from the programmed curvature. Inter-
estingly, we do not observe a boundary layer
with negative Gaussian curvature around the
edge of the spherical cap as has been reported

for truly smooth metrics (17, 18), possibly re-
flecting the influence of the through-thickness
variations in swelling. For both cones, the av-
erage Gaussian curvatures, excluding regions at
the free edges, are close to zero. Further, Fig. 2E
shows a plot of the deficit angle d measured for
five different cone metrics with power law ex-
ponents −1 ≤ b < 0, which agrees closely with
the programmed value d = −pb.

We next consider metrics of the form

WðrÞ ¼ c½1þ ðr=RÞ2ðn−1Þ&2 ð5Þ

corresponding to Enneper’s minimal surfaces
with n nodes. These surfaces all have zero mean
curvature and so are expected to minimize the
elastic energy for these metrics at vanishing
thickness (18). Although Eq. 5 is axisymmetric,
Enneper's surfaces spontaneously break axial
symmetry by forming n wrinkles. In Fig. 2, G
to J, we demonstrate patterned surfaces with n =
3 to 6, each of which reproduces the targeted
number of wrinkles. As shown in the maps of
curvature in Fig. 2 (and azimuthally averaged
plots in fig. S2B), each surface has small mean
curvature and negative Gaussian curvature that
matches closely with the target profile. For a
given film thickness, increasing n eventually
leads to a saturation in the number of wrinkles,
because the bending energy arising from Gaussian
curvature increases with n (for the films with
h ≈ 7 mm in Fig. 4, a metric with n = 8 yielded
only six wrinkles). However, given the subtle
differences between the metrics plotted in Fig.
2F, the ability to accurately reproduce the pro-
grammed number of wrinkles for n = 3 to 6 is a

strong testament to the fidelity of the metrics
patterned by this technique.

The true power of our approach lies in the
fabrication of nonaxisymmetric swelling pat-
terns. As a simple demonstration, we first con-
sider the problem of how to form a sphere
through growth. For the axisymmetric metric
described in Eq. 4, the maximum value of r/R
to which this metric can be experimentally pat-
terned is restricted by the accessible range of
swelling. In our case, this range is Ωhigh/Ωlow ≈
3.7, limiting the maximum portion of a sphere
that can be obtained to slightly less than half.
Although further improvements in the material
system are likely to increase the available range,
the axisymmetric metric is inherently an ineffi-
cient way to form a sphere, because as one seeks
to go beyond a hemisphere and toward a closed
shape, the required swelling contrast diverges
rapidly. Given access to 2D metrics, however, a
number of well-established conformal mappings
of the sphere onto flat surfaces are known from
the field of map projections. For example, the
Peirce quincuncial projection (27) maps a sphere
of radius R onto a square using the metric

Wðx; yÞ ¼ 2
jdn xþiy
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where sn, cn, and dn are Jacobi elliptic func-
tions, and x and y are the components of r. This
metric still has four cusp-like singularities where
Ω(r) = 0; however, one of its useful properties
as a map projection is that only a small portion

Fig. 2. Halftoned disks
with axisymmetric met-
rics. Patterned sheets pro-
grammed to generate (A)
a piece of saddle surface
(Sa), (B) a cone with an
excess angle (Ce), (C) a
spherical cap (Sp), and
(D) a cone with a deficit
angle (Cd). (Top) 3D re-
constructed images of
swollen hydrogel sheets
and (bottom) top-view
surface plots of Gaussian
curvature. Initial thick-
nesses and disk diame-
ters are 9 and 390 mm,
respectively, although
the apparent thickness
of sheets is enlarged due
to the resolution of the
LSCM. (E) Measured val-
ues of deficit angle d
for cones with five dif-
ferent exponents b (see Eq. 3) (black solid circles) and the programmed
values (blue dashed line). (F) Swelling factors for the target metrics as a
function of normalized radial position on the unswelled disks r/R, with points
plotted at values corresponding to lattice points to indicate the resolu-
tion with which Ω is patterned. (G to J) Patterned sheets programmed to

generate Enneper’s minimal surfaces with n = (G) 3, (H) 4, (I) 5, and (J) 6
wrinkles upon swelling as dictated by Eq. 5. 3D reconstructed images (top)
and top-view surface plots of squared mean curvature H2 and Gaussian
curvature K (bottom). Initial thicknesses and disk diameters are 7 and 390 mm,
respectively.
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Figure 4 | Predictive 4D printing of biomimetic architectures. a–d, A native calla lily flower (a) inspires the mathematically generated model of the
flower (b), with a well-defined curvature (c), that leads to the print path (d) obtained from the curvature model to create the geometry of the flower on
swelling (see text and Supplementary Information). e,f, After swelling, the transformed calla lily (f) exhibits the same gradients of curvature as the
predicted model (e), nozzle size = 410 µm (scale bars, 5 mm).

range of matrices (for example, liquid-crystal elastomers) and
anisotropic fillers (for example, metallic nanorods) that when
combined with flow-induced anisotropy allows us to produce
dynamically reconfigurable materials with tunable functionality.
Through the control of printing parameters, such as filament size,
orientation, and interfilament spacing, we can create mesoscale
bilayer architectures with programmable anisotropy that morph
into given target shapes, predicted by our model, on immersion
in water. All together, owing to our biocompatible and flexible ink
design, our study opens new avenues for creating designer shape-
shifting architectures for tissue engineering, biomedical devices, soft
robotics and beyond.

Methods
Methods and any associated references are available in the online
version of the paper.
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Strain tensor and energy of shell deformations
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Strain tensor for deformation of flat plates
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Curvature of curves
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Curvature tensor for surfaces
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Surfaces of various principal curvatures
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Bending energy for deformation of shells
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Bending strain for deformation of flat plates
undeformed plate deformed plate
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Wrinkled and straight blades in macroalgae

Hollenberg 1976) where they are exposed to tidal
currents and to nonbreaking waves at some sites
(Koehl and Wainwright 1977; Koehl and Alberte
1988; Johnson and Koehl 1994; Gaylord et al. 2003).

The blades of N. luetkeana from sites exposed to
slow flow are wide and ‘‘undulate’’ (ruffled) (Fig. 1A
and B), whereas the blades of those from sites exposed
to rapid currents are flat, narrow, and strap-like

Table 1 Blade shapes in different water flow habitats

Species

Wide in slow flow;

narrow in rapid flow

Thin in slow flow;

thick in rapid flow

Undulate in slow flow;

flat in rapid flow

Heavily corrugated or

bullate in slow flow;

less so in rapid flow

Agarum fimbriatum Duggins et al. (2003)

Costaria costata Duggins et al. (2003)

Dictyotales sp. Stewart and Carpenter (2003)

Durvillaea potatorum Cheshire and Hallam (1989) Cheshire and Hallam (1989)

Ecklonia radiata Fowler-Walker et al. (2006),

Wenberg and Thomsen (2005),

Wing et al. (2007)

Wenberg and Thomsen (2005),

Wing et al. (2007)

Wing et al. (2007)

Eisenia arborea Roberson and

Coyer (2004)

Roberson and Coyer (2004) Roberson and

Coyer (2004)

Fucus vesiculosus Back (1993)

Gigartina radula Jackelman and Bolton (1990) Jackelman and Bolton (1990)

Hedophyllum sessile Armstrong (1989) Armstrong (1989) Armstrong (1989)

Laminaria complanata Duggins et al. (2003)

Laminaria digitata Sundene (1961) Sundene (1961)

Laminaria hyperborean Sjøtun and Fredriksen (1995) Sjøtun and Fredriksen (1995)

Laminaria japonica Kawamata (2001) Kawamata (2001)

Laminaria longicruris Gerard and Mann (1979) Gerard and Mann (1979) Gerard and Mann (1979)

Laminaria saccharina Parke (1948) Parke (1948) Buck and Buchholz (2005)

Macrocystis integrifolia Hurd et al. (1996) Hurd et al. (1996) Hurd et al. (1996),

Hurd et al. (1997)

Hurd et al. (1996)

Nereocystis luetkeana Johnson and Koehl (1994),

Koehl and Alberte (1988)

Johnson and Koehl (1994),

Koehl and Alberte (1988)

Pachydictyon coraceum Haring and Carpenter (2007) Haring and Carpenter (2007)

Saccorhiza polyschides Norton (1969)

Fig. 1 (A) Nereocystis luetkeana bed at SC, the slow-flow habitat. (B) Ruffled, wide blades from a N. luetkeana collected at SC.

The dotted line indicates the blade position defined as the ‘‘origin’’ in growth experiments (the position along a blade where the

blade first widens from a cylindrical string into a flat blade). (C) Nereocystis luetkeana bed at TR, the current-swept habitat.

(D) Flat, narrow blades from a N. luetkeana collected from TR.
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The dotted line indicates the blade position defined as the ‘‘origin’’ in growth experiments (the position along a blade where the

blade first widens from a cylindrical string into a flat blade). (C) Nereocystis luetkeana bed at TR, the current-swept habitat.

(D) Flat, narrow blades from a N. luetkeana collected from TR.
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blades grow more rapidly than others (Figs 3, 4,
and 7). During the course of an experiment, the
segments of the blade move continuously away from
the origin, thus more analysis is needed to show the
total growth of a tissue element over time. Our
analysis of the trajectories of tissue growth and of

growth strains as a function of position will be
presented elsewhere.

Longitudinal strain rates of both undulate
(Fig. 3A) and flat (Fig. 3B) blades are greatest near
the blade’s origin, but continued growth of older
tissues at distances of 30–50 cm from the origin is
evident. In the rapidly growing proximal regions of
ruffled blades, the edges of the blade grew more
rapidly than did the midlines (Fig. 3A). In contrast,
the longitudinal strain rates of the edges and
midlines of flat blades did not differ from each
other (Fig. 3B).

Transverse strain rates of both ruffled and flat
blades are plotted in Fig. 4. As with longitudinal
growth, most growth in width occurs at the proximal
ends of the blades. Ruffled blades growing at the site
with slow flow had higher rates of transverse strain
than did flat blades growing at the exposed site.

In addition to length and width, we also measured
blade thickness to the nearest 0.1 mm with vernier
calipers. Blades of both morphologies were thicker at
their proximal ends than they were distally. At a
position 5 cm from the origin, the mean thickness of
ruffled blades was 0.9 mm (SD¼ 0.15, n¼ 12 kelp)
and the mean thickness of strap-like blades was

Fig. 3 Longitudinal growth strain rates ([!L/Lo]/day) plotted as a

function of the distance from the origin (Fig. 1C) of the proximal

hole marking a blade segment at the start of the experiment

on Day 0 for ruffled blades on N. luetkeana (n¼ 9 kelp) growing

at the slow-flow SC site (A), and for strap-like flat blades on

N. luetkeana (n¼ 5 kelp) growing at the current-swept TR site

(B). Open symbols indicate longitudinal strain rates measured

along the edge of a blade, as indicated by the white arrow on the

blade diagram in (A). Black symbols indicate longitudinal strain

rates measured along the midline of a blade, as illustrated by the

black arrow on the blade diagram in (A). Error bars show 1 SD.

Longitudinal strain rates at the proximal ends of ruffled blades

(starting positions 10 and 15 cm from the origin) were

significantly greater along the blade edges than along their

midlines (ANOVA, P50.05), whereas there was no significant

difference between edge and midline strain rates for the flat

blades.

Fig. 4 Transverse growth strain rates ([!W/Wo]/day) plotted as a

function of the distance from the origin (Fig. 1C) of each

transverse column of holes at the start of the experiment on

Day 0, for wide, ruffled blades on N. luetkeana growing at the

slowflow SC site (black circles, n¼ 9 kelp), and for narrow, flat

blades on N. luetkeana growing at the current-swept TR site

(open squares, n¼ 5 kelp). Error bars represent 1 SD. Transverse

strain rates for the wide, ruffled blades were significantly greater

than those for narrow, flat blades at the proximal ends of the

blades (starting positions of 5, 10, and 15 cm from the origin)

(ANOVA, P50.05).
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What is the effect of differential 
growth rate between the edge 
and the midline of the blade?
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Differential growth produces internal stress

mation. The horizontal springs one row up are also de-
formed, but not as much; their new equilibrium length is 40%
greater than before the deformation. The next row of springs
is deformed even less, and so on up to the top of the network,
which is almost completely unchanged.

A long strip of material deformed in that way is essen-
tially guaranteed to buckle. It is favorable for each material
point to lie at a specific distance from each of its horizontal
and vertical neighbors. If the sheet remains flat, adjacent hor-
izontal rows must slide past one another, stretching the ver-
tical connecting springs more and more for longer and longer
sheets. Something has to give, and what gives is the planar
constraint of an unbuckled structure.

From a formal point of view, assigning a new collection
of equilibrium distances to nearby material points is equiva-
lent to specifying a new target metric; see the details in box 1.
In the target metric tensor for the network shown in figure 3,
only the horizontal component gxx is different from 1, and it
depends only on the vertical position: gxx = gxx(y). We often
assume that once a sheet relaxes to equilibrium, its actual
metric is equal to its target metric, to a first approximation.

For almost any decreasing functional form of the target
metric component gxx(y) of a long sheet, the sheet will spon-
taneously form a structure similar to the one in figure 2b. A
way to show that buckled structures are necessary is to em-
ploy the Theorema Egregium, the most famous result from
Gauss’s 1827 paper, which expresses the Gaussian curvature
K of a surface in terms of the metric. In our case,

(1)

If √gxx decreases in a convex fashion, its second deriva-
tive is positive, so the Gaussian curvature must be negative,
which means that at every point the surface resembles a sad-
dle, as shown in box 2. The only way that every part of a sur-
face can look like a saddle is if the surface buckles.

Sheets can form fascinating patterns even when they are
flat almost everywhere. Origami provides one set of exam-
ples, but even if you lack the dexterity to fold a Kawasaki
rose, you can still do some interesting home experiments by
taking sheets of paper and simply crumpling them. Martine

Ben Amar and Yves Pomeau realized that a fundamental sin-
gularity of crumpled paper, called a d-cone, is generated by
taking an elastic plate and applying forces to its boundary.5

The same type of singularity causes body panels to crumple
and form sharp creases during car accidents.

www.physicstoday.org February 2007    Physics Today 35

Defining a metric on a surface means comparing the surface
in two different states. First, think of a flat sheet of material—
the material in its reference state. Draw a grid of closely
spaced perpendicular lines to form a coordinate system with
the variables x and y. The distance between adjacent lines is
dx along x and dy along y. Now deform the sheet, stretching
or compressing it to change the distances between the lines.
Let the new position in space of a point originally at (x, y) be
called r(x, y). The square of the distance between two points
originally separated by (dx, dy) becomes

(1)

The above computation motivates the definition of the metric
tensor

(2)

where α and β can adopt values x and y.
When discussing physical sheets, two different metric ten-

sors are important. One, the target metric, is derived from the
shape the sheet would take if all neighboring material points
were located at the equilibrium distances preferred by the
imaginary springs of figure 3. The second, the actual metric,
is obtained from the real configuration of the material. The 
difference between the two tensors describes how much the
material is strained and is the starting point of the theory of
nonlinear elasticity. For example, the simplest theory for the
energy per volume U of stretched rubber is that it is propor-
tional to the trace of the actual metric tensor g(x,y) minus the
target metric (a unit tensor):18

U = (G/2)(gxx + gyy − 2), (3)

where G is the shear modulus of the material.

Box 1. Metrics

y

x
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b

Figure 3. (a) Elastic network in equilibrium with all masses 
in the reference state. (b) The equilibrium lengths of horizon-
tal springs in successive rows are increased, but vertical
springs are not changed. In the configuration shown, the red
springs are under tension and are not at their equilibrium
lengths. All configurations of the masses in the plane have
high energy, so the structure will buckle.
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Growth modifies the metric tensor of sheet!
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Note: If growth is different between the top and bottom of 
the sheet, then the curvature tensor         is modified as well!Kij
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Mechanics of growing sheets
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Growth can independently tune the metric tensor       and the 
curvature tensor        , which may not be compatible with any 

surface shape that would produce zero energy cost!
Zero energy shape exists only when preferred metric tensor       and 

preferred curvature tensor         satisfy Gauss-Codazzi-Mainardi relations!
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Mechanics of growing membranes
One of the Gauss-Codazzi-Mainardi equations (Gauss's Theorema 

Egregium) relates the Gauss curvature to metric tensor 

,G ⇠ Ed3

scaling with 
membrane 
thickness d

det(K 0
ij) = F(g0ij)

For very thin membranes the equilibrium 
shape matches the preferred metric tensor to 
avoid stretching, compressing and shearing. 

This also specifies the Gauss curvature!
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Example

x

y

W

�W

Assume that differential growth in x 
direction produces metric tensor of the form

faster growth 
on the edges

gij =

✓
f(y), 0
0, 1

◆
f(y) = 1 + ce(|y|�W )/�

For thin membranes the metric tensor wants to be matched
g0ij = gij

Gauss’s Theorema Egregium provides Gauss curvature

det(K 0
ij(y)) = F(gij) = � 1

f

d2f(y)

dy2
= � 1

�2
⇥ ce(|y|�W )/�

�
1 + ce(|y|�W )/�

� < 0

For thin membranes faster growth 
on edges produces shapes that 

locally look like saddles!
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Scaling analysis
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Eq. 10 that Cκ2
x f − Cβγgκx ≃ 0, i.e., f (w) ≃ β/κx. Then the trans-

verse curvature κy ≃ β/κxw2, and finally κxκy ≃ β/w2, consistent
with our scaling analysis. As the growth strain β is increased fur-
ther, the cross-sectional of the ribbon flattens in the center. We
examine the case of n = 2 for simplicity (see SI Appendix). As
κx increases, the particular solution fp of Eq. 10 becomes negligi-
ble compared with the homogeneous solution, with the result that
f (y) ∼ e−ηz(cos ηz − sin ηz), where z = w − |y|, and the boundary
layer width ξBL = 1/η = 0.78/κ

1/2
x independent of the growth gra-

dient exponent n, i.e., the lateral deflection near the edges decays
rapidly away from it. Indeed, as ξBL ≃ w or κxw2 ≃ 0.6, the rib-
bon shows the appearance of a boundary layer and when βw2 ≃ 80
(β = 40β∗ in Fig. 2C), the lateral shape of the ribbon f (y) develops
a pair of secondary minima. Later, when βw2 ≃ 750 (β = 300β∗ in
Fig. 2C), the ribbon is nearly cylindrical in the interior with a pair
of strongly localized boundary layers along its lateral edges.

Periodic Rippling. We now turn to the case of periodic rippling,
assuming that the vertical deflection is of the form

ζ(x, y) = f (y) sin kx. [13]

Here k is the dimensionless wavenumber, f (y) is the cross-sectional
profile of the surface, and we note that the sheet is on average flat,
unlike for the saddle-shape. Assuming that the in-plane compat-
ibility of Eq. 6 is satisfied, on substituting in Eq. 13 into Eq. 7
and using the boundary conditions in Eq. 5, we get the eigenvalue
problem

f,yyyy − 2k2f,yy +
(

k4 − Cβ∗γgk2
)

f = 0

(f,yyy − (2 − ν)k2f,y)|±w = (f,yy − νk2f )|±w = 0. [14]

We solve the boundary value problem given by Eq. 14 numerically
by using the boundary value problem solver bvp4c in Matlab, with
the scaled width w ∈ [10, 200] to determine the relation between
the critical maximum growth strain β∗ and the wavenumber of the
instability k. In Fig. 3B, we show that the scaled wavenumber kw as
a function of the scaled critical growth strainβ∗w2 falls onto a single
master curve, with three prominent features, a power-law scaling
regime for kw ≪ 1, a plateau in the neighborhood of kew ≃ 0.09,
followed by a jump in the neighborhood of β∗

e w2 ≃ 1.9 and finally
another power-law scaling regime when kw ≫ 1. These transitions
are intimately related to the profile of the ribbon in cross-section.
Indeed when k ≤ ke ≪ 1/w, we see that the cross-sectional pro-
file is almost flat (Top frame in Fig. 3A corresponds to kw = 0.01),
i.e., the ribbon exhibits periodic filament-like buckling of a 1D fil-
ament. Indeed, this follows directly from Eq. 14; when kw ≪ 1,
f,yyyy, f,yy ≪ 1 so that β∗ ∼ k2 which vanishes when k → 0, consis-
tent with our scaling in the limit when the persistence length of
an edge-pinch lp ≫ w (see SI Appendix for an asymptotic analy-
sis of this mode). In the neighborhood of kew ≃ 0.09, there is a
rapid change in β∗w2 ∈ (0.01, 1.9), indicative of a sharp transition
between two different buckling modes because of the large elastic
energy required to trigger the doubly curved periodic ripples seen
when k ≥ ke. Then the ribbon is doubly curved (Middle frame in
Fig. 3a corresponds to kw = 0.5), and there is little variation in
the maximum growth strain with β∗w2 ∈ (1.9, 2.1), whereas the
wavenumber varies enormously with kw ∈ (0.09, 0.6), suggesting
the ease of transformation of the shape of the periodic ripples in
this regime, when lp ∼ w. Finally, when kw ≫ 1, the ribbon is
strongly deformed in the neighborhood of the lateral edges (Bot-
tom frame in Fig. 3A corresponds to kw = 40). In this scaling
regime, β∗ ∼ k2 asymptotically and the persistence length of the
edge-pinch lp ≪ w, so that the edges are essentially independent
of each other.

To probe the role of the boundary conditions in Eq. 14 in charac-
terizing these different periodic modes that couple the deforma-
tions along the ribbon to those perpendicular to it, we consider the

Fig. 4. Numerical simulations yield a phase diagram for the different undu-
latory shapes of a long, growing ribbon as a function of the maximum edge
growth strain β and the scaled width W . The boundaries that demarcate the
different phases follow the scaling β∗ ∼ 1/w2, consistent with our scaling
and analytic estimates (see Eq. 12 and SI Appendix). We use the power law
∈g= β(y/w)10.

alternative conditions f |0 = f,y|0 = 0 along the axis of symmetry of
the ribbon. Then the only possible mode is that of edge-rippling,
shown as the solid blue curve in Fig. 3B, which coincides with
our master curve when kw > 3.0, i.e., the ripples are localized to
the lateral edges. Earlier researchers (4, 5) have studied the self-
similar edge ripples on the boundary of a semi infinite plate but
missed the qualitatively different global saddle-like, filament-like
buckling and doubly curved modes associated with the introduc-
tion of a finite width for the ribbon. Indeed, when we clamp the
center line of the sheet, we find that when kw < 3.0 or lp > w there
is a rapid increase in the scaled critical growth strain β∗, consistent
with the elimination of the soft saddle-shaped modes.

Numerical Simulations
To corroborate and extend our scaling and stability analysis, we
implement the inhomogeneous growth of a lamina in a discrete
numerical model of a finite ribbon of width 2W , length L = 6W
and thickness H ≪ W . This is derived by tiling the ribbon using
equilateral-triangular elements (12) (dimensionless width w =
W/H , length l = L/H and wavenumber k = 2π

#
H). Then the elas-

tic energy is the sum of the stretching energy Fs =
√

3S
4 Σij(rij−a0)2,

where rij is the current spring length and a0 is the rest spring length
and the bending energy Fb = B√

3
Σαβ(n⃗α − n⃗β)2, where n⃗α and n⃗β

are the unit normal vectors of the two facets (see SI Appendix).
The growth strain ϵg is modeled by changing the rest length of the
spring a0 to a0(1 + ϵg(y)), where ϵg(y) = β(y/W )n with n = 10 and
a damped molecular dynamics method (13) is used to minimize
the system energy.

In Fig. 4 we show the resulting stability diagram indicating the
regimes of existence of the flat, saddle, and rippled phases as a
function of the characteristic growth strain β and the scaled width
w. The stability boundary between the flat and saddle phase as well
as that between the saddle and rippled phase both show a power-
law scaling β∗ ∼ 1/w2, consistent with our scaling and analytical
results. To understand why the saddle-shaped morphology appears
first as the growth strain β is increased, we note that the charac-
teristic critical strain for the filament-buckling mode β∗ ∼ k2 is
smaller than that for the saddle-buckling mode β∗ ∼ 1/w2 only
when the wave number k is sufficiently small. Here, the finite
length of our numerical ribbon leads to a finite-size effect or equiv-
alently a cutoff as seen in our numerical simulations. At the onset
of doubly curved buckling shown in Fig. 3B when kew ≃ 0.09,
so that the minimum ribbon length to width ration required
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Growth of a blooming lily

H. Liang and L. Mahadevan, PNAS 108, 5516 (2011)

the longitudinal growth, we also observe a 7% increase in the
width of petals/sepals, that leads to a circumferential hoop stress
on the bud.

Previous investigators have implicated the midrib as being
crucial in the mechanism of blooming (4, 5). Indeed, the midrib
is woodier than the lamina, but measurements of the stiffness of

the midrib and the lamina (SI Text) shows that the leafy part
accounts for 78% and the woody part accounts for 22% of the
total bending stiffness of a shell-like petal; the curvature of the
lamina and its width more than making up for the difference in
the actual Young’s modulus between the woody and leafy parts of
a petal. To find whether midrib is essential for blooming or not,
we shaved the midrib from one sepal and a petal when a lily is
a bud, and find that both the sepal and the petal without the
midrib open normally just like the other petals/sepals; the small
difference in the final curvature is because the stiffness of the
midrib composite is different from that of the petal/sepal. To
further quantify the role of the midrib in flower opening, we
shaved it from a fully bloomed lily and then peeled away the
woody part from the petal (Fig. 2A). We find that the leafy part
is about 4.5% (averaged over 10 samples) longer than the woody
part and induces a spontaneous outward curvature that enhances
flower opening. These observations show unequivocally that the
midrib is neither necessary nor dominant in driving blooming.

Another possibility for the underlying mechanism behind
blooming is the generation of spontaneous curvature due to dif-
ferential growth of the inner (adaxial) surface of the petal/sepal
relative to the outer (abaxial) one. Earlier experimental evidence
(5) shows that cell size on both surfaces of a petal is the same
at the onset of blooming and further that there is no cell prolif-
eration, suggesting that differential growth of the adaxial and
abaxial surface is not likely to play any role in blooming. To
corroborate this on the organ scale, we note that surface differ-
ential growth will cause a shell-like petal will bend outward more
if marginal tissues are removed, because the cross-section of
a petal becomes less curved and the longitudinal bending stiff-
ness decreases dramatically. However, we see both petals/sepals
become less curved when the lateral edges of the petals are cut
away (Figs. S1 and S2), which contradicts the hypothesis that
relative surface expansion drives blooming.

Finally, we observe a slight rotation of the base of the
petal/sepal relative to the flower axis consistent with earlier

Fig. 1. Observations of and experiments on blooming in the asiatic lily
Lilium casablanca. (A) A young green lily bud. The black dots separated by
1 cm allow us to measure growth strains. (B) The cross-section of a lily bud.
(C) A typical opening sequence of a lily flower over a period of 4.5 days.
The black line is the profile in the bud state, the transparently light blue
shows the half-open state, and the white one is the fully open state.

midribs removed rippled petals

woody part alone

leafy

woody

petal base

tipA

B

     midrib
cross section

C

Fig. 2. Anatomy of the lily bud and the role of midrib. (A) The composite
structure of a petal midrib: the Left panel shows a single petal; the Center
panel shows the grooved structure of the midrib; the Right panel shows that
when the leafy part (gray) is peeled away, the woody part straightens out,
a sign that there is some relative growth between the two. (B) When the
midribs are removed from a petal and a sepal, the flower can still bloom
normally, with a slightly different curvature relative to the pristine petals/
sepals. (C) The inner petals have rippled edges in the bud, showing clearly
that their edges are growing relative to the rest of the tissue.

A

B

Fig. 3. Experimental measurement of differential growth and numerical
simulation in a single petal. (A) Longitudinal growth strain εgxx along the
midrib and the edges varies in the lateral (y) direction. The edge growth
strain is averaged over 6 sepals, and the midrib growth strain is averaged
over 10 petals/sepals. This lateral growth gradient is sufficient to drive
blooming. (B) Simulation of the blooming process in a single elliptical petal
that is originally a convex spherical shell. As the edge-growth strain
increases (see text for details), the curvature of the petal first reverses;
i.e., it blooms. and then edge-localized ripples arise. The order of blooming
and rippling can be reversed by changing the relative distribution of growth
strains as can be seen in the inner and outer petals and sepals that follow
opposite paths.
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the longitudinal growth, we also observe a 7% increase in the
width of petals/sepals, that leads to a circumferential hoop stress
on the bud.

Previous investigators have implicated the midrib as being
crucial in the mechanism of blooming (4, 5). Indeed, the midrib
is woodier than the lamina, but measurements of the stiffness of

the midrib and the lamina (SI Text) shows that the leafy part
accounts for 78% and the woody part accounts for 22% of the
total bending stiffness of a shell-like petal; the curvature of the
lamina and its width more than making up for the difference in
the actual Young’s modulus between the woody and leafy parts of
a petal. To find whether midrib is essential for blooming or not,
we shaved the midrib from one sepal and a petal when a lily is
a bud, and find that both the sepal and the petal without the
midrib open normally just like the other petals/sepals; the small
difference in the final curvature is because the stiffness of the
midrib composite is different from that of the petal/sepal. To
further quantify the role of the midrib in flower opening, we
shaved it from a fully bloomed lily and then peeled away the
woody part from the petal (Fig. 2A). We find that the leafy part
is about 4.5% (averaged over 10 samples) longer than the woody
part and induces a spontaneous outward curvature that enhances
flower opening. These observations show unequivocally that the
midrib is neither necessary nor dominant in driving blooming.

Another possibility for the underlying mechanism behind
blooming is the generation of spontaneous curvature due to dif-
ferential growth of the inner (adaxial) surface of the petal/sepal
relative to the outer (abaxial) one. Earlier experimental evidence
(5) shows that cell size on both surfaces of a petal is the same
at the onset of blooming and further that there is no cell prolif-
eration, suggesting that differential growth of the adaxial and
abaxial surface is not likely to play any role in blooming. To
corroborate this on the organ scale, we note that surface differ-
ential growth will cause a shell-like petal will bend outward more
if marginal tissues are removed, because the cross-section of
a petal becomes less curved and the longitudinal bending stiff-
ness decreases dramatically. However, we see both petals/sepals
become less curved when the lateral edges of the petals are cut
away (Figs. S1 and S2), which contradicts the hypothesis that
relative surface expansion drives blooming.

Finally, we observe a slight rotation of the base of the
petal/sepal relative to the flower axis consistent with earlier

Fig. 1. Observations of and experiments on blooming in the asiatic lily
Lilium casablanca. (A) A young green lily bud. The black dots separated by
1 cm allow us to measure growth strains. (B) The cross-section of a lily bud.
(C) A typical opening sequence of a lily flower over a period of 4.5 days.
The black line is the profile in the bud state, the transparently light blue
shows the half-open state, and the white one is the fully open state.
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Fig. 2. Anatomy of the lily bud and the role of midrib. (A) The composite
structure of a petal midrib: the Left panel shows a single petal; the Center
panel shows the grooved structure of the midrib; the Right panel shows that
when the leafy part (gray) is peeled away, the woody part straightens out,
a sign that there is some relative growth between the two. (B) When the
midribs are removed from a petal and a sepal, the flower can still bloom
normally, with a slightly different curvature relative to the pristine petals/
sepals. (C) The inner petals have rippled edges in the bud, showing clearly
that their edges are growing relative to the rest of the tissue.
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Fig. 3. Experimental measurement of differential growth and numerical
simulation in a single petal. (A) Longitudinal growth strain εgxx along the
midrib and the edges varies in the lateral (y) direction. The edge growth
strain is averaged over 6 sepals, and the midrib growth strain is averaged
over 10 petals/sepals. This lateral growth gradient is sufficient to drive
blooming. (B) Simulation of the blooming process in a single elliptical petal
that is originally a convex spherical shell. As the edge-growth strain
increases (see text for details), the curvature of the petal first reverses;
i.e., it blooms. and then edge-localized ripples arise. The order of blooming
and rippling can be reversed by changing the relative distribution of growth
strains as can be seen in the inner and outer petals and sepals that follow
opposite paths.
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in lab blooming takes 4.5 days 
under constant fluorescent light 

(1 frame/min)

faster growth 
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https://vimeo.com/98276732

How flowers open in the morning 
and close in the evening?

When temperature increases in the 
morning, flowers regulate their growth 
pattern to grow more new cells on the 
inside of flower leaves. This results in 

curling of leaves and opening of flowers. 

When temperature drops in the evening, 
flowers regulate their growth pattern to 
grow more new cells on the outside of 

flower leaves. This results in straightening 
of leaves and closing of flowers. 
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Shaping of gel membranes by 
differential shrinking

E. Efrati et al. / Physica D 235 (2007) 29–32 31

Fig. 2. Schematic of the formation of sheets with inducible non-Euclidean
target metric. High and low NIPA concentration solutions are injected into
a Hele–Shaw cell through programmable valves. Polymerization leads to
the generation of a flat disc, having internal radial gradients in monomer
concentration. Once immersed in warm water of temperature T > Tc = 33 �C,
it shrinks differentially, adopting a new, non-Euclidean target metric. As a
result it forms a three-dimensional structure. The illustration shows a surface of
positive Gaussian curvature, generated by increasing monomer concentration
during the injection.

now 2⇡r⌘. The radius is ⇢(r) =
R r

0 ⌘(r 0)dr 0. Thus, the perime-
ter of a circle of radius ⇢ on the shrunk disc is now f (⇢)2⇡⇢,
where f (⇢) is determined by ⌘(⇢) and its integral, and thus
by the monomer concentration profile. Using a polar coordi-
nate system, (⇢, ✓ ), the linear element determined by gtar is
dl2 = d⇢2 + ⇢2 f (⇢)2d✓2, and the prescribed (by Gauss’s the-
orem) target Gaussian curvature reads

Ktar(⇢) = � (⇢ f (⇢))⇢⇢

⇢ f (⇢)
. (1)

The monomer concentration profile, which determines ⌘(⇢),
allows us to set (⇢ f (⇢))⇢⇢ and to prescribe a target Gaussian
curvature: For (⇢ f (⇢))⇢⇢ 6= 0 we have Ktar 6= 0. In this
case, any embedding of gtar cannot be flat. Indeed, sheets with
increasing/decreasing monomer concentration profiles (Fig. 3)
that define Gaussian curvatures, ranging from negative to
positive, attain configurations that correspond to the prescribed
metrics (insets in Fig. 3). The discs of Ktar > 0 are buckled
into dome-like shapes, while the discs of Ktar < 0 are shaped
into wavy structures, reminiscent of the wavy edges of torn
plastic sheets. In both cases, the larger the gradients in NIPA
concentration, the more curved the surfaces are.

Next we perform a quantitative comparison between the
metric of the curved discs and their target metric. The
topography of the discs z(x, y) is measured using an optical
profilometer (Conoscan 3000; inset of Fig. 4) with a resolution
of 25 µm in the lateral, x and y, directions and 5 µm in the
vertical, z, direction. In order to identify points of a given
distance ⇢ from the center, we re-parameterize the surface
onto a semi-geodesic coordinate system z(⇢, ✓). First we plot
radial geodesics (the equivalent of radial lines on a curved
surface) at azimuthal angles ✓ , by solving the geodesic equation
(see [12]) from a central circle. The points at distance ⇢ on
these geodesics form a circle of radius ⇢ on the surface (in
general, these are not circles in the x, y plane). Measurements
of the perimeters of circles of radius ⇢ on the surface are

Fig. 3. The control over the discs’ curvature. The NIPA concentration as
a function of radius on the cold discs (all discs are of initial thickness
t0 = 0.5 mm). Discs with NIPA concentration that increases with radius
(dot–dashed, bold line) result in the prescription of Ktar < 0 and the formation
of wavy configurations (left insets). A flat concentration profile (dotted) results
in Ktar = 0, and thus a flat disc (upper inset), while a decreasing concentration
profile defines Ktar > 0, resulting in the formation of dome-like structures
(right insets). The contact of the discs’ margins with air during polymerization
leads to the formation of a narrow region of Ktar < 0, resulting in the formation
of the observed short wavelength waviness along the margins of the disc of
Ktar = 0.

Fig. 4. The metric of the curved discs. The perimeter of a circle on the surface
of a disc, as a function of its radius (both measured along the surface; lines
as in Fig. 3). The surface topography measurements (insets) are “placed” on
a semi-geodesic coordinate system, allowing the identification of points of a
given radius ⇢, as illustrated for a surface of Ktar < 0 (bottom left inset; the
full color range spans 14 mm). Integration of the length of such circles yields
the perimeter at ⇢. As expected, for the flat disc (dotted) the perimeter equals
2⇡⇢, while for the discs of Ktar < 0/ > 0 the perimeter increases faster/slower
than linearly. The presented data do not include the narrow wavy strips along
the discs’ margins.

presented in Fig. 4. In accordance with the target metric, for
discs of Ktar > 0 the perimeter increases with ⇢ slower than
linearly, while for Ktar < 0 it increases faster than linearly. A
quantitative comparison of the perimeter at ⇢ to f (⇢)2⇡⇢ is
presented for the surfaces of smallest and largest Ktar (Fig. 5).
In both cases, the perimeter at ⇢ closely follows the prescribed
one, and indeed the sheets’ metric (averaged over ✓ ) is very

E. Efrati et al., Physica D 235, 29 (2007)

Computer software controls valves to inject 
a predefined time depend concentration of 

NIPA polymers in water solution.

Active cross-linkers (APS) polymerize the 
polymer solution within one minute, before 
polymers get a chance to diffuse around.

thickness
0.25 or 0.5 mm

Frozen NIPA 
concentration 

profile
C(r)

At higher temperatures 
gel becomes 

hydrophobic and 
expels some water. 

Shrinking depends on 
the concentration of 

NIPA polymers.
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Cross-linking of polymers
result in a solid gel

polymer solution
adding active
cross-linkers

solid gel
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Note: some cross-linkers can be chemically 
activated by UV light exposure. Duration of UV 

light exposure controls the degree of cross-linking 
and therefore the Young’s modulus E for gels. 
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Shaping of gel membranes by 
differential shrinking

E. Efrati et al. / Physica D 235 (2007) 29–32 31

Fig. 2. Schematic of the formation of sheets with inducible non-Euclidean
target metric. High and low NIPA concentration solutions are injected into
a Hele–Shaw cell through programmable valves. Polymerization leads to
the generation of a flat disc, having internal radial gradients in monomer
concentration. Once immersed in warm water of temperature T > Tc = 33 �C,
it shrinks differentially, adopting a new, non-Euclidean target metric. As a
result it forms a three-dimensional structure. The illustration shows a surface of
positive Gaussian curvature, generated by increasing monomer concentration
during the injection.

now 2⇡r⌘. The radius is ⇢(r) =
R r

0 ⌘(r 0)dr 0. Thus, the perime-
ter of a circle of radius ⇢ on the shrunk disc is now f (⇢)2⇡⇢,
where f (⇢) is determined by ⌘(⇢) and its integral, and thus
by the monomer concentration profile. Using a polar coordi-
nate system, (⇢, ✓ ), the linear element determined by gtar is
dl2 = d⇢2 + ⇢2 f (⇢)2d✓2, and the prescribed (by Gauss’s the-
orem) target Gaussian curvature reads

Ktar(⇢) = � (⇢ f (⇢))⇢⇢

⇢ f (⇢)
. (1)

The monomer concentration profile, which determines ⌘(⇢),
allows us to set (⇢ f (⇢))⇢⇢ and to prescribe a target Gaussian
curvature: For (⇢ f (⇢))⇢⇢ 6= 0 we have Ktar 6= 0. In this
case, any embedding of gtar cannot be flat. Indeed, sheets with
increasing/decreasing monomer concentration profiles (Fig. 3)
that define Gaussian curvatures, ranging from negative to
positive, attain configurations that correspond to the prescribed
metrics (insets in Fig. 3). The discs of Ktar > 0 are buckled
into dome-like shapes, while the discs of Ktar < 0 are shaped
into wavy structures, reminiscent of the wavy edges of torn
plastic sheets. In both cases, the larger the gradients in NIPA
concentration, the more curved the surfaces are.

Next we perform a quantitative comparison between the
metric of the curved discs and their target metric. The
topography of the discs z(x, y) is measured using an optical
profilometer (Conoscan 3000; inset of Fig. 4) with a resolution
of 25 µm in the lateral, x and y, directions and 5 µm in the
vertical, z, direction. In order to identify points of a given
distance ⇢ from the center, we re-parameterize the surface
onto a semi-geodesic coordinate system z(⇢, ✓). First we plot
radial geodesics (the equivalent of radial lines on a curved
surface) at azimuthal angles ✓ , by solving the geodesic equation
(see [12]) from a central circle. The points at distance ⇢ on
these geodesics form a circle of radius ⇢ on the surface (in
general, these are not circles in the x, y plane). Measurements
of the perimeters of circles of radius ⇢ on the surface are

Fig. 3. The control over the discs’ curvature. The NIPA concentration as
a function of radius on the cold discs (all discs are of initial thickness
t0 = 0.5 mm). Discs with NIPA concentration that increases with radius
(dot–dashed, bold line) result in the prescription of Ktar < 0 and the formation
of wavy configurations (left insets). A flat concentration profile (dotted) results
in Ktar = 0, and thus a flat disc (upper inset), while a decreasing concentration
profile defines Ktar > 0, resulting in the formation of dome-like structures
(right insets). The contact of the discs’ margins with air during polymerization
leads to the formation of a narrow region of Ktar < 0, resulting in the formation
of the observed short wavelength waviness along the margins of the disc of
Ktar = 0.

Fig. 4. The metric of the curved discs. The perimeter of a circle on the surface
of a disc, as a function of its radius (both measured along the surface; lines
as in Fig. 3). The surface topography measurements (insets) are “placed” on
a semi-geodesic coordinate system, allowing the identification of points of a
given radius ⇢, as illustrated for a surface of Ktar < 0 (bottom left inset; the
full color range spans 14 mm). Integration of the length of such circles yields
the perimeter at ⇢. As expected, for the flat disc (dotted) the perimeter equals
2⇡⇢, while for the discs of Ktar < 0/ > 0 the perimeter increases faster/slower
than linearly. The presented data do not include the narrow wavy strips along
the discs’ margins.

presented in Fig. 4. In accordance with the target metric, for
discs of Ktar > 0 the perimeter increases with ⇢ slower than
linearly, while for Ktar < 0 it increases faster than linearly. A
quantitative comparison of the perimeter at ⇢ to f (⇢)2⇡⇢ is
presented for the surfaces of smallest and largest Ktar (Fig. 5).
In both cases, the perimeter at ⇢ closely follows the prescribed
one, and indeed the sheets’ metric (averaged over ✓ ) is very
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Fig. 2. Schematic of the formation of sheets with inducible non-Euclidean
target metric. High and low NIPA concentration solutions are injected into
a Hele–Shaw cell through programmable valves. Polymerization leads to
the generation of a flat disc, having internal radial gradients in monomer
concentration. Once immersed in warm water of temperature T > Tc = 33 �C,
it shrinks differentially, adopting a new, non-Euclidean target metric. As a
result it forms a three-dimensional structure. The illustration shows a surface of
positive Gaussian curvature, generated by increasing monomer concentration
during the injection.

now 2⇡r⌘. The radius is ⇢(r) =
R r

0 ⌘(r 0)dr 0. Thus, the perime-
ter of a circle of radius ⇢ on the shrunk disc is now f (⇢)2⇡⇢,
where f (⇢) is determined by ⌘(⇢) and its integral, and thus
by the monomer concentration profile. Using a polar coordi-
nate system, (⇢, ✓ ), the linear element determined by gtar is
dl2 = d⇢2 + ⇢2 f (⇢)2d✓2, and the prescribed (by Gauss’s the-
orem) target Gaussian curvature reads

Ktar(⇢) = � (⇢ f (⇢))⇢⇢

⇢ f (⇢)
. (1)

The monomer concentration profile, which determines ⌘(⇢),
allows us to set (⇢ f (⇢))⇢⇢ and to prescribe a target Gaussian
curvature: For (⇢ f (⇢))⇢⇢ 6= 0 we have Ktar 6= 0. In this
case, any embedding of gtar cannot be flat. Indeed, sheets with
increasing/decreasing monomer concentration profiles (Fig. 3)
that define Gaussian curvatures, ranging from negative to
positive, attain configurations that correspond to the prescribed
metrics (insets in Fig. 3). The discs of Ktar > 0 are buckled
into dome-like shapes, while the discs of Ktar < 0 are shaped
into wavy structures, reminiscent of the wavy edges of torn
plastic sheets. In both cases, the larger the gradients in NIPA
concentration, the more curved the surfaces are.

Next we perform a quantitative comparison between the
metric of the curved discs and their target metric. The
topography of the discs z(x, y) is measured using an optical
profilometer (Conoscan 3000; inset of Fig. 4) with a resolution
of 25 µm in the lateral, x and y, directions and 5 µm in the
vertical, z, direction. In order to identify points of a given
distance ⇢ from the center, we re-parameterize the surface
onto a semi-geodesic coordinate system z(⇢, ✓). First we plot
radial geodesics (the equivalent of radial lines on a curved
surface) at azimuthal angles ✓ , by solving the geodesic equation
(see [12]) from a central circle. The points at distance ⇢ on
these geodesics form a circle of radius ⇢ on the surface (in
general, these are not circles in the x, y plane). Measurements
of the perimeters of circles of radius ⇢ on the surface are

Fig. 3. The control over the discs’ curvature. The NIPA concentration as
a function of radius on the cold discs (all discs are of initial thickness
t0 = 0.5 mm). Discs with NIPA concentration that increases with radius
(dot–dashed, bold line) result in the prescription of Ktar < 0 and the formation
of wavy configurations (left insets). A flat concentration profile (dotted) results
in Ktar = 0, and thus a flat disc (upper inset), while a decreasing concentration
profile defines Ktar > 0, resulting in the formation of dome-like structures
(right insets). The contact of the discs’ margins with air during polymerization
leads to the formation of a narrow region of Ktar < 0, resulting in the formation
of the observed short wavelength waviness along the margins of the disc of
Ktar = 0.

Fig. 4. The metric of the curved discs. The perimeter of a circle on the surface
of a disc, as a function of its radius (both measured along the surface; lines
as in Fig. 3). The surface topography measurements (insets) are “placed” on
a semi-geodesic coordinate system, allowing the identification of points of a
given radius ⇢, as illustrated for a surface of Ktar < 0 (bottom left inset; the
full color range spans 14 mm). Integration of the length of such circles yields
the perimeter at ⇢. As expected, for the flat disc (dotted) the perimeter equals
2⇡⇢, while for the discs of Ktar < 0/ > 0 the perimeter increases faster/slower
than linearly. The presented data do not include the narrow wavy strips along
the discs’ margins.

presented in Fig. 4. In accordance with the target metric, for
discs of Ktar > 0 the perimeter increases with ⇢ slower than
linearly, while for Ktar < 0 it increases faster than linearly. A
quantitative comparison of the perimeter at ⇢ to f (⇢)2⇡⇢ is
presented for the surfaces of smallest and largest Ktar (Fig. 5).
In both cases, the perimeter at ⇢ closely follows the prescribed
one, and indeed the sheets’ metric (averaged over ✓ ) is very

30 E. Efrati et al. / Physica D 235 (2007) 29–32

Employing linear elasticity, the bending energy density
of a plate is cubic in the thickness and quadratic in the
principal curvatures. The stretching energy density is linear
in the thickness and quadratic in the in-plane strain, which is
half the difference between the metric tensors of a reference,
stress-free, and current configurations (see [15], p. 1). One
immediate conclusion is that for very thin plates (t ⌧ L),
bending will be energetically favorable over stretching. Thus
equilibrium configurations of thin sheets involve only small in-
plane strains [16].

In this work we study the equilibrium configurations
of growing/shrinking plates. Growing elastic bodies usually
contain internal stresses [13]. Thus, when trying to express
the energy of growing sheets we face the problem of defining
a stress-free configuration, with respect to which strains
are measured. To overcome this difficulty, we use the 2D
approximation formalism and recall that our sheets are plates;
thus their bending is measured with respect to a plane: The
sheets are free of bending energy only in planar configurations
and configurations that are symmetric with respect to a plane
will have the same bending energy. To evaluate the stretching
energy we recall that it results solely from in-plane strain. We,
thus, do not need a (stress-free) reference configuration, but
only a reference metric, with respect to which we measure the
in-plane strain. We use the term “target metric”, gtar (see [10]),
to describe a 2D metric tensor which is prescribed by the local
growth. A sheet adopting a configuration satisfying gtar will be
completely free of in-plane strain.

We are interested in cases where local growth leads to the
formation of 3D configurations. Gauss’s “Theorema Egregium”
provides a link between metrical properties of a surface and
3D configurations in space. It states that the local metric
tensor completely determines the local Gaussian curvature on
a surface. Thus, if gtar is non-Euclidean, it determines non-zero
“target Gaussian curvature”, Ktar. In this case, all configurations
satisfying gtar cannot be flat and the two terms in the energy
functional “aim” at two different types of configurations: The
bending term favors completely flat configurations, while the
stretching term favors 3D configurations with the metric gtar.
The selected configuration is set by the competition between
the two. As explained before, for thin enough sheets, we expect
the equilibrium configurations to be “very close” to embeddings
of gtar.

To conclude the introduction, the shaping scenario that we
study goes as follows: Take a sheet and make it grow, swell,
or shrink laterally, but non-uniformly. This process prescribes
a non-Euclidean gtar on the sheet, which corresponds to a non-
zero target Gaussian curvature, Ktar 6= 0. To minimize its elastic
energy, the sheet finds a configuration – an embedding of some
metric g – that is close to gtar, and thus not flat. However,
buckling of plates costs bending energy that increases with
curvature. The actual stable configurations are, thus, set by the
competition between stretching and bending.

2. Experimental system

We have built an experimental system that allows us
to use and study the mechanism discussed above. We use

Fig. 1. The shrinking of a NIPA gel sheet as a function of its monomer
concentration. The normalized length was obtained by dividing the diameter of
a warm gel disc by its original diameter. Shrinking was obtained by immersing
the discs into a water bath and increasing the temperature up to 45 �C over ten
hours. t0 is the thickness of the cold sheet.

N-isopropylacrylamide (NIPA) gel to construct sheets with
inducible non-Euclidean metrics. The gel is made by mixing
NIPA monomers with bisacrylamide (BIS) (5–10% of NIPA)
cross-linker in water. The addition of 1% ammonium persulfate
(APS) and 0.25% tetramethyl ethylene diamine (TEMED)
initiates polymerization of a cross-linked elastic hydrogel.
This gel undergoes a sharp volume reduction transition at
Tc = 33 �C [17], above which its equilibrium volume
decreases considerably. We measured the shrinking ratios
of homogeneous gel discs of different NIPA concentration.
These measurements show a strong dependence on monomer
concentration: Dilute gels shrink a lot, while concentrated
gels undergo a moderate volume reduction (Fig. 1). The
concentration of cross-linker (within the relevant range of
parameters) hardly affects the gels’ shrinking ratio.

We cast radial discs by injecting the NIPA solution into the
gap between two flat glass plates through a center hole in one
of them (a Hele–Shaw cell; Fig. 2). To impose non-Euclidean
target metrics, we change the NIPA concentration during the
injection. Polymerization takes place within a minute and the
gradients in concentration are “frozen” within the gel. the result
is a disc with internal lateral gradients in NIPA concentration.
Monotonic gradients are generated with a passive gradient
maker, while programmable actuated valves are used to inject
solutions with more complicated radial gradients in monomer
concentration (Fig. 2).

3. Results

The generated plates are flat below Tc, but are “pro-
grammed” to shrink with ratios ⌘(r) at each radius r on the
disc, once the temperature is increased above Tc. This differ-
ential shrinking sets new equilibrium distances between points
on the surface—it determines a new target metric, gtar, on the
sheet. To see the connection between the shrinking profile ⌘(r)

and gtar we consider a closed circle of radius r , on the cold disc.
Following the shrinking with ratio ⌘(r), both perimeter and ra-
dius of the circle are modified. The perimeter that was 2⇡r is
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Fig. 2. Schematic of the formation of sheets with inducible non-Euclidean
target metric. High and low NIPA concentration solutions are injected into
a Hele–Shaw cell through programmable valves. Polymerization leads to
the generation of a flat disc, having internal radial gradients in monomer
concentration. Once immersed in warm water of temperature T > Tc = 33 �C,
it shrinks differentially, adopting a new, non-Euclidean target metric. As a
result it forms a three-dimensional structure. The illustration shows a surface of
positive Gaussian curvature, generated by increasing monomer concentration
during the injection.

now 2⇡r⌘. The radius is ⇢(r) =
R r

0 ⌘(r 0)dr 0. Thus, the perime-
ter of a circle of radius ⇢ on the shrunk disc is now f (⇢)2⇡⇢,
where f (⇢) is determined by ⌘(⇢) and its integral, and thus
by the monomer concentration profile. Using a polar coordi-
nate system, (⇢, ✓ ), the linear element determined by gtar is
dl2 = d⇢2 + ⇢2 f (⇢)2d✓2, and the prescribed (by Gauss’s the-
orem) target Gaussian curvature reads

Ktar(⇢) = � (⇢ f (⇢))⇢⇢

⇢ f (⇢)
. (1)

The monomer concentration profile, which determines ⌘(⇢),
allows us to set (⇢ f (⇢))⇢⇢ and to prescribe a target Gaussian
curvature: For (⇢ f (⇢))⇢⇢ 6= 0 we have Ktar 6= 0. In this
case, any embedding of gtar cannot be flat. Indeed, sheets with
increasing/decreasing monomer concentration profiles (Fig. 3)
that define Gaussian curvatures, ranging from negative to
positive, attain configurations that correspond to the prescribed
metrics (insets in Fig. 3). The discs of Ktar > 0 are buckled
into dome-like shapes, while the discs of Ktar < 0 are shaped
into wavy structures, reminiscent of the wavy edges of torn
plastic sheets. In both cases, the larger the gradients in NIPA
concentration, the more curved the surfaces are.

Next we perform a quantitative comparison between the
metric of the curved discs and their target metric. The
topography of the discs z(x, y) is measured using an optical
profilometer (Conoscan 3000; inset of Fig. 4) with a resolution
of 25 µm in the lateral, x and y, directions and 5 µm in the
vertical, z, direction. In order to identify points of a given
distance ⇢ from the center, we re-parameterize the surface
onto a semi-geodesic coordinate system z(⇢, ✓). First we plot
radial geodesics (the equivalent of radial lines on a curved
surface) at azimuthal angles ✓ , by solving the geodesic equation
(see [12]) from a central circle. The points at distance ⇢ on
these geodesics form a circle of radius ⇢ on the surface (in
general, these are not circles in the x, y plane). Measurements
of the perimeters of circles of radius ⇢ on the surface are

Fig. 3. The control over the discs’ curvature. The NIPA concentration as
a function of radius on the cold discs (all discs are of initial thickness
t0 = 0.5 mm). Discs with NIPA concentration that increases with radius
(dot–dashed, bold line) result in the prescription of Ktar < 0 and the formation
of wavy configurations (left insets). A flat concentration profile (dotted) results
in Ktar = 0, and thus a flat disc (upper inset), while a decreasing concentration
profile defines Ktar > 0, resulting in the formation of dome-like structures
(right insets). The contact of the discs’ margins with air during polymerization
leads to the formation of a narrow region of Ktar < 0, resulting in the formation
of the observed short wavelength waviness along the margins of the disc of
Ktar = 0.

Fig. 4. The metric of the curved discs. The perimeter of a circle on the surface
of a disc, as a function of its radius (both measured along the surface; lines
as in Fig. 3). The surface topography measurements (insets) are “placed” on
a semi-geodesic coordinate system, allowing the identification of points of a
given radius ⇢, as illustrated for a surface of Ktar < 0 (bottom left inset; the
full color range spans 14 mm). Integration of the length of such circles yields
the perimeter at ⇢. As expected, for the flat disc (dotted) the perimeter equals
2⇡⇢, while for the discs of Ktar < 0/ > 0 the perimeter increases faster/slower
than linearly. The presented data do not include the narrow wavy strips along
the discs’ margins.

presented in Fig. 4. In accordance with the target metric, for
discs of Ktar > 0 the perimeter increases with ⇢ slower than
linearly, while for Ktar < 0 it increases faster than linearly. A
quantitative comparison of the perimeter at ⇢ to f (⇢)2⇡⇢ is
presented for the surfaces of smallest and largest Ktar (Fig. 5).
In both cases, the perimeter at ⇢ closely follows the prescribed
one, and indeed the sheets’ metric (averaged over ✓ ) is very
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‘‘printing’’ a wide range of target metrics in a high spatial reso-

lution. An example is presented in Fig. 9.

There are many other materials that can be used for the

construction of NEP and responsive NEP. Materials such as

electro active polymers26 or nematic elastomers27 seem to be

excellent candidates for using the shaping principles, with

responses in different time scales and environments.

Finally, we mention alteration of growth in plants as a way of

constructing ‘‘biological NEP’’. Growth of tissue can be viewed

as a process in which the target metric is constantly updated. It

was shown that genetic manipulation,28 as well as hormone

treatment29 can alter the growth distribution and cause a natu-

rally flat leaf to become non-Euclidean. Similar effects often

occur as a result of fungus attacks, when the leaf tissue grows

without proper control (Fig. 10).

5. Some results and interpretations

After reviewing the theoretical framework and experimental

techniques, we review the main results in this new field.

5.1 Rectangle geometry

Experiments in torn plastic sheets

As described before, in a controlled experiment the target metric,

imposed by the plastic flow around the tear tip, is very simple and

highly symmetric: it determines negative target Gaussian curva-

ture, which is a function only of the distance from the edge, y.

Surprisingly, the configurations of the sheets consist of a

Fig. 7 Non-Euclidean plates and tubes made of NIPA gel. Examples of plates with !K > 0 (a), !K < 0 (b, c) and a disc that contains a central region of !K >

0 and an outer part of !K < 0 (d). (e)-(h) Non-Euclidean tubes. A tube with a metric similar to the one in Fig. 5 in its cold (e) and warm (f) states. Tubes

with negative curvature bellow (g) and above (h) the ‘‘buckling-wrinkling’’ transition (see section 5.3).

Fig. 8 Engineering discs with constant Gaussian curvature. The

perimeter of a circle on a disc as a function of its radius (measured along

the surface) for discs of positive (bottom) and negative (top) constant

| !K | ¼ 0.0011 mm"2. The blue lines are the calculated curves (the relevant

functions are indicated). The red lines are the data measured on the

buckled discs. The dashed line indicates a flat disc: f(r) ¼ 2pr.

Fig. 9 ‘‘Lithography of curvature’’. (a) NIPA solution is inserted into simple mold with a ‘‘mask’’. Polymerization is controlled by a UV activated

initiator (in this case Riboflavin), leading to the generation of a non-uniform gel disc (b). (c) The non-uniform shrinking properties of the gel turn into

a non-Euclidean target metric. In this case the gradients in the metric are sharp, leading to wrinkling of the disc.
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limited resolution of the human eye to provide
the illusion of a homogeneous tone from closely
spaced dots, our approach relies on the elasticity
of the thin polymer sheet to locally smooth out
the sharp contrast between the highly cross-linked
dots and lightly cross-linked matrix, thereby yield-
ing an intermediate degree of swelling.

To calibrate the method, we first explore the
swelling of disks with dots of uniform diameter.
As indicated in Fig. 1H, these disks show globally
homogeneous swelling by an amount Ω that can
be continuously tuned between the two extremes
Ωlow and Ωhigh by changing the area fraction of
low-swelling regions, defined for d ≤ a as

flow ¼ p

2
ffiffiffi
3

p d
a

" #2

ð1Þ

Given that Ω is largely insensitive to flow be-
yond the point when neighboring dots begin to
touch—that is, at flow ≥ 0.91—for simplicity we
restrict dot sizes to d ≤ a without appreciably
restricting the accessible range of swelling.

A simple model to describe swelling comes
from considering the two gel regions as lumped
1D elements in parallel [see the supporting
online material (SOM) for details], yielding the
prediction

flow þ að1 − flowÞ
W1=2

¼ flow
W1=2

low

þ að1 − flowÞ
W1=2

high

ð2Þ

where a is the ratio of the elastic moduli in the
two material regions. Although this model captures

the essential qualitative physics of mutually
constrained swelling, it is too simple to yield
quantitative agreement with material properties;
thus, in practice a is treated as a fitting param-
eter. As shown in Fig. 1H, a value of a = 0.56
provides a good fit to the observed swelling of
halftoned composite gels. As expected based on
the well-known temperature sensitivity of NIPAm
copolymers, at each value of flow the composite
disks deswell with increasing temperature, as
shown in Fig. 1I. However, since the lightly
cross-linked regions show more pronounced de-
swelling, the values of swelling converge to a
narrow range between 1 and 2 at 45° to 50°C.

Whereas the composite disks described in
Fig. 1 behave as homogeneous materials on
length scales longer than the lattice dimension,
the compressive stresses present in the lightly
cross-linked matrix may cause local buckling
when the disks are made sufficiently thin. To pre-
vent this, we expect that the length scale of the
lattice should not be much larger than h. Indeed,
when we vary the dot size and spacing at constant
flow = 0.4, we find a critical lattice spacing, ac =
(7.9 T 0.8)h, below which the sheets remain flat
and above which the high-swelling regions form
buckled ridges spanning neighboring dots (Fig.
1J). Although the prefactor relating ac and h will
depend somewhat on flow, for the remainder of
the discussion we will keep a ≤ 4h, which is
sufficient to avoid local buckling in all cases.

Having established that halftoning provides
access to nearly continuous variations in swell-
ing for disks with homogeneous dot sizes, we

next consider the printing of spatially varying,
axisymmetric, patterns of growth corresponding
to target shapes with constant Gaussian curva-
ture K, as shown in Fig. 2, A to D. Following
Sharon and co-workers (17, 18, 21), we refer to
Ω(r) as the “target metric” encoding the local
equilibrium distances between points on the sur-
face. A sheet of vanishing thickness should adopt
the isometric embedding of this target metric
with the lowest bending energy (18), provided
that such an embedding exists. Written in terms
of the coordinates on the flat, unswelled gel sheet,
the target curvature at a material point r is set by
the swelling factor Ω(r) according to Gauss’s
theorema egregium, K = −∇2 lnΩ/(2Ω) (25).
Thus, where r represents the radial position in a
cylindrical coordinate system and c, R, and b are
constants, swelling factors of the form

WðrÞ ¼ c
r
R

$ %b
ð3Þ

should yield K = 0, whereas those of the form

WðrÞ ¼ c

½1þ ðr=RÞ2&2
ð4Þ

should yield constant K = 4/(cR2). Figure 2F
shows four example metrics: a piece of a saddle
surface with K = −16.8 mm−2, a cone with an
excess angle (26) specified by a swelling power-
law exponent b = 1, a spherical cap with K =
5.7 mm−2, and a cone with a deficit angle spe-
cified by b = −0.4. The corresponding patterns
of dots were computed by evaluating the value

Fig. 1. Halftone gel li-
thography and characteri-
zation of composite disks.
(A) Chemical structure of
the photo-cross-linkable
and temperature-responsive
NIPAm copolymer. (B to
G) A schematic illustration
of halftone gel lithogra-
phy. (B) On a silicon wafer
coated with a sacrificial
layer, (C) the copolymer
film (thickness h = 7 to
17 mm) is solution-cast
and exposed to a small
dose of UV light through
the first photomask and
subsequently (D) a large
dose through the second
photomask. (E) The pat-
terned film is (F) developed
to remove uncross-linked
material and (G) immersed
in aqueous solution to
release it from the sub-
strate and induce swell-
ing. (H) The areal expansion ratio Ω of composite disks at 22°C is plotted
against the area fraction of dots flow. Experimental data (black solid
circles) are fitted with Eq. 2 (blue line). The error bars denote standard
deviations for six independent measurements. (I) The temperature depen-
dence of Ω of the composite disks is shown for four different values of flow.

(J) Below a thickness-dependent critical lattice spacing ac, disks remain
flat, whereas above ac they undergo local buckling between neighboring
dots. The value of ac is plotted for a range of film thicknesses (symbols),
along with a least squares fit of a linear relationship with zero intercept
(dashed line).
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of the thin polymer sheet to locally smooth out
the sharp contrast between the highly cross-linked
dots and lightly cross-linked matrix, thereby yield-
ing an intermediate degree of swelling.
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Given that Ω is largely insensitive to flow be-
yond the point when neighboring dots begin to
touch—that is, at flow ≥ 0.91—for simplicity we
restrict dot sizes to d ≤ a without appreciably
restricting the accessible range of swelling.

A simple model to describe swelling comes
from considering the two gel regions as lumped
1D elements in parallel [see the supporting
online material (SOM) for details], yielding the
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where a is the ratio of the elastic moduli in the
two material regions. Although this model captures

the essential qualitative physics of mutually
constrained swelling, it is too simple to yield
quantitative agreement with material properties;
thus, in practice a is treated as a fitting param-
eter. As shown in Fig. 1H, a value of a = 0.56
provides a good fit to the observed swelling of
halftoned composite gels. As expected based on
the well-known temperature sensitivity of NIPAm
copolymers, at each value of flow the composite
disks deswell with increasing temperature, as
shown in Fig. 1I. However, since the lightly
cross-linked regions show more pronounced de-
swelling, the values of swelling converge to a
narrow range between 1 and 2 at 45° to 50°C.

Whereas the composite disks described in
Fig. 1 behave as homogeneous materials on
length scales longer than the lattice dimension,
the compressive stresses present in the lightly
cross-linked matrix may cause local buckling
when the disks are made sufficiently thin. To pre-
vent this, we expect that the length scale of the
lattice should not be much larger than h. Indeed,
when we vary the dot size and spacing at constant
flow = 0.4, we find a critical lattice spacing, ac =
(7.9 T 0.8)h, below which the sheets remain flat
and above which the high-swelling regions form
buckled ridges spanning neighboring dots (Fig.
1J). Although the prefactor relating ac and h will
depend somewhat on flow, for the remainder of
the discussion we will keep a ≤ 4h, which is
sufficient to avoid local buckling in all cases.

Having established that halftoning provides
access to nearly continuous variations in swell-
ing for disks with homogeneous dot sizes, we

next consider the printing of spatially varying,
axisymmetric, patterns of growth corresponding
to target shapes with constant Gaussian curva-
ture K, as shown in Fig. 2, A to D. Following
Sharon and co-workers (17, 18, 21), we refer to
Ω(r) as the “target metric” encoding the local
equilibrium distances between points on the sur-
face. A sheet of vanishing thickness should adopt
the isometric embedding of this target metric
with the lowest bending energy (18), provided
that such an embedding exists. Written in terms
of the coordinates on the flat, unswelled gel sheet,
the target curvature at a material point r is set by
the swelling factor Ω(r) according to Gauss’s
theorema egregium, K = −∇2 lnΩ/(2Ω) (25).
Thus, where r represents the radial position in a
cylindrical coordinate system and c, R, and b are
constants, swelling factors of the form

WðrÞ ¼ c
r
R

$ %b
ð3Þ

should yield K = 0, whereas those of the form

WðrÞ ¼ c

½1þ ðr=RÞ2&2
ð4Þ

should yield constant K = 4/(cR2). Figure 2F
shows four example metrics: a piece of a saddle
surface with K = −16.8 mm−2, a cone with an
excess angle (26) specified by a swelling power-
law exponent b = 1, a spherical cap with K =
5.7 mm−2, and a cone with a deficit angle spe-
cified by b = −0.4. The corresponding patterns
of dots were computed by evaluating the value

Fig. 1. Halftone gel li-
thography and characteri-
zation of composite disks.
(A) Chemical structure of
the photo-cross-linkable
and temperature-responsive
NIPAm copolymer. (B to
G) A schematic illustration
of halftone gel lithogra-
phy. (B) On a silicon wafer
coated with a sacrificial
layer, (C) the copolymer
film (thickness h = 7 to
17 mm) is solution-cast
and exposed to a small
dose of UV light through
the first photomask and
subsequently (D) a large
dose through the second
photomask. (E) The pat-
terned film is (F) developed
to remove uncross-linked
material and (G) immersed
in aqueous solution to
release it from the sub-
strate and induce swell-
ing. (H) The areal expansion ratio Ω of composite disks at 22°C is plotted
against the area fraction of dots flow. Experimental data (black solid
circles) are fitted with Eq. 2 (blue line). The error bars denote standard
deviations for six independent measurements. (I) The temperature depen-
dence of Ω of the composite disks is shown for four different values of flow.

(J) Below a thickness-dependent critical lattice spacing ac, disks remain
flat, whereas above ac they undergo local buckling between neighboring
dots. The value of ac is plotted for a range of film thicknesses (symbols),
along with a least squares fit of a linear relationship with zero intercept
(dashed line).
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limited resolution of the human eye to provide
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low-swelling regions, defined for d ≤ a as

flow ¼ p

2
ffiffiffi
3

p d
a

" #2

ð1Þ

Given that Ω is largely insensitive to flow be-
yond the point when neighboring dots begin to
touch—that is, at flow ≥ 0.91—for simplicity we
restrict dot sizes to d ≤ a without appreciably
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where a is the ratio of the elastic moduli in the
two material regions. Although this model captures

the essential qualitative physics of mutually
constrained swelling, it is too simple to yield
quantitative agreement with material properties;
thus, in practice a is treated as a fitting param-
eter. As shown in Fig. 1H, a value of a = 0.56
provides a good fit to the observed swelling of
halftoned composite gels. As expected based on
the well-known temperature sensitivity of NIPAm
copolymers, at each value of flow the composite
disks deswell with increasing temperature, as
shown in Fig. 1I. However, since the lightly
cross-linked regions show more pronounced de-
swelling, the values of swelling converge to a
narrow range between 1 and 2 at 45° to 50°C.

Whereas the composite disks described in
Fig. 1 behave as homogeneous materials on
length scales longer than the lattice dimension,
the compressive stresses present in the lightly
cross-linked matrix may cause local buckling
when the disks are made sufficiently thin. To pre-
vent this, we expect that the length scale of the
lattice should not be much larger than h. Indeed,
when we vary the dot size and spacing at constant
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(7.9 T 0.8)h, below which the sheets remain flat
and above which the high-swelling regions form
buckled ridges spanning neighboring dots (Fig.
1J). Although the prefactor relating ac and h will
depend somewhat on flow, for the remainder of
the discussion we will keep a ≤ 4h, which is
sufficient to avoid local buckling in all cases.

Having established that halftoning provides
access to nearly continuous variations in swell-
ing for disks with homogeneous dot sizes, we

next consider the printing of spatially varying,
axisymmetric, patterns of growth corresponding
to target shapes with constant Gaussian curva-
ture K, as shown in Fig. 2, A to D. Following
Sharon and co-workers (17, 18, 21), we refer to
Ω(r) as the “target metric” encoding the local
equilibrium distances between points on the sur-
face. A sheet of vanishing thickness should adopt
the isometric embedding of this target metric
with the lowest bending energy (18), provided
that such an embedding exists. Written in terms
of the coordinates on the flat, unswelled gel sheet,
the target curvature at a material point r is set by
the swelling factor Ω(r) according to Gauss’s
theorema egregium, K = −∇2 lnΩ/(2Ω) (25).
Thus, where r represents the radial position in a
cylindrical coordinate system and c, R, and b are
constants, swelling factors of the form
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should yield K = 0, whereas those of the form
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should yield constant K = 4/(cR2). Figure 2F
shows four example metrics: a piece of a saddle
surface with K = −16.8 mm−2, a cone with an
excess angle (26) specified by a swelling power-
law exponent b = 1, a spherical cap with K =
5.7 mm−2, and a cone with a deficit angle spe-
cified by b = −0.4. The corresponding patterns
of dots were computed by evaluating the value
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(A) Chemical structure of
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and temperature-responsive
NIPAm copolymer. (B to
G) A schematic illustration
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phy. (B) On a silicon wafer
coated with a sacrificial
layer, (C) the copolymer
film (thickness h = 7 to
17 mm) is solution-cast
and exposed to a small
dose of UV light through
the first photomask and
subsequently (D) a large
dose through the second
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terned film is (F) developed
to remove uncross-linked
material and (G) immersed
in aqueous solution to
release it from the sub-
strate and induce swell-
ing. (H) The areal expansion ratio Ω of composite disks at 22°C is plotted
against the area fraction of dots flow. Experimental data (black solid
circles) are fitted with Eq. 2 (blue line). The error bars denote standard
deviations for six independent measurements. (I) The temperature depen-
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of the area of the sphere requires large distor-
tions. Thus, we can approximate the metric by
excising the small regions of the square where
Ω falls below the experimentally accessible range,
as shown in Fig. 3B. The resulting swelled shape
(Fig. 3A) does indeed approximate that of a
sphere (see fig. S3 for plots of surface curvatures)
with four small regions removed, although the
four corners of the square do not quite close.
The reason for the latter behavior remains under
investigation but may arise from the excised
singularities and/or the finite bending energy of
the sheet. Nonetheless, the contrast between the
nearly closed shape achieved in Fig. 3A and the
limited spherical caps that may be obtained for
the same material system with an axisymmetric
metric highlights the importance of 2D pattern-
ing, even for generating axisymmetric shapes.

Beyond fabricating simple shapes with con-
stant target Gaussian curvature, our approach
opens the door to shapes of arbitrary complex-
ity. Although numerous fundamental questions
and practical challenges remain to establishing
the necessary design rules, we take a first step
toward the construction of shapes whose swell-
ing factors are not known a priori by consid-
ering a corrugated surface (Fig. 3C) described
by the height function H(x,y) = H0 [cos(2px/L) +
cos(px/L + √3py/L)], where 2L is the width of
the sheet. We choose H0 = 60 mm and L = 300
mm. Determining an appropriate swelling factor
is equivalent to finding a conformal coordinate
system on the surface (as described in the SOM)
and yields the swelling function shown in Fig.
3H. This example highlights some of the re-
maining challenges in designing arbitrary 3D

shapes, because sheets patterned according to
Fig. 3H often fail to form the desired shape upon
swelling. The three local maxima in growth,
lying along the line cutting diagonally through
the center of the sheet, each represent regions
of positive target Gaussian curvature; however,
each may achieve its desired local curvature by
buckling either upward or downward. Indeed,
rather than buckling in the manner described by
H(x,y), these local maxima in swelling may
instead all buckle in the same direction, as shown
in Fig. 3G (again, possibly reflecting a preference
for buckling in one direction due to slight
through-thickness variations in swelling). How-
ever, in some cases, the sheets do swell into the
corrugated conformation shown in Fig. 3E, which
is very similar to the programmed surface H(x,y),
as can also be seen by comparing the targeted

(Fig. 3D) and measured (Fig. 3F) Gaussian cur-
vatures. The use of a glass micropipette to hold
the patterned sheet against the substrate during
swelling (upon cooling from 40° to 22°C) tends
to constrain the sheet to swell into the corrugated
shape, and initially misfolded sheets can also be
“snapped through” into the desired configura-
tion by application of force to the center-most
region of positive curvature. Thus, we conclude
that such surfaces with complex swelling pat-
terns may in general form multiple different shapes
that are locally metastable and that additional
constraints may therefore be required to ensure
that a specific shape is chosen.

Finally, we demonstrate the responsiveness
of the patterned sheets to changes in temperature
using another nonaxisymmetric metric that com-
bines that for an Enneper’s surface with four

Fig. 3. Nonaxisymmetric swelling patterns. (A) A 3D reconstructed image of
the nearly closed spherical shape formed by the metric of Eq. 6 and shown in
(B); the sizes and positions of open circles correspond to those of the low-
swelling dots. Before swelling, the patterned gel sheet was 9 mm thick, with
lateral dimensions of 600 by 620 mm. (C) The target height profile of the
corrugated surface, also shown in (D) top view. The grid represents the co-
ordinate lines of the conformal coordinate system. (E) 3D reconstructed image

and (F) Gaussian curvature of the sheet swollen into a shape similar to the
target surface. (G) 3D reconstructed image of the shape adopted when each of
the three regions of positive curvature along the center diagonal buckle in the
same direction. (H) The swelling pattern used to generate sheets in (E) to (G).
The sizes and positions of open circles correspond to those of the low-swelling
dots. Before swelling, the patterned gel sheets were 9 mm thick and had
lateral dimensions of 600 by 580 mm.

Fig. 4. Thermal actua-
tion of patterned sheets.
(A) When the tempera-
ture of the aqueous me-
dium is increased, the
hybrid Enneper’s surface
deswells and recovers its
flat shape by 49°C. (B)
Upon lowering the tem-
perature to 22°C, the disk
swells back to the initial
hybrid shape through a
different pathway. Initial
thickness and disk diam-
eter are 7 and 390 mm,
respectively.
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and yields the swelling function shown in Fig.
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of positive target Gaussian curvature; however,
each may achieve its desired local curvature by
buckling either upward or downward. Indeed,
rather than buckling in the manner described by
H(x,y), these local maxima in swelling may
instead all buckle in the same direction, as shown
in Fig. 3G (again, possibly reflecting a preference
for buckling in one direction due to slight
through-thickness variations in swelling). How-
ever, in some cases, the sheets do swell into the
corrugated conformation shown in Fig. 3E, which
is very similar to the programmed surface H(x,y),
as can also be seen by comparing the targeted

(Fig. 3D) and measured (Fig. 3F) Gaussian cur-
vatures. The use of a glass micropipette to hold
the patterned sheet against the substrate during
swelling (upon cooling from 40° to 22°C) tends
to constrain the sheet to swell into the corrugated
shape, and initially misfolded sheets can also be
“snapped through” into the desired configura-
tion by application of force to the center-most
region of positive curvature. Thus, we conclude
that such surfaces with complex swelling pat-
terns may in general form multiple different shapes
that are locally metastable and that additional
constraints may therefore be required to ensure
that a specific shape is chosen.

Finally, we demonstrate the responsiveness
of the patterned sheets to changes in temperature
using another nonaxisymmetric metric that com-
bines that for an Enneper’s surface with four
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the nearly closed spherical shape formed by the metric of Eq. 6 and shown in
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swelling dots. Before swelling, the patterned gel sheet was 9 mm thick, with
lateral dimensions of 600 by 620 mm. (C) The target height profile of the
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same direction. (H) The swelling pattern used to generate sheets in (E) to (G).
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of Ω(r) at each lattice point according to Eqs. 3
and 4, determining the corresponding value of
flow from the fit of Eq. 2 to the data in Fig. 1H,
and finally setting the size of the dot at that
lattice point according to Eq. 1. Because the
power-law metrics in Eq. 3 diverge or vanish at
the origin, it is necessary to cut out a small re-
gion around the center of each of the two cones.

The shapes adopted by the corresponding gel
sheets (Fig. 2, A to D) are measured by laser scan-
ning confocal fluorescence microscopy (LSCM)
and analyzed as described in the SOM. Each of
the four surfaces shows only small deviations
about an average Gaussian curvature, with the
exception of the regions near the free edges,
where our analysis yields artifactual curvatures
(due to the finite thickness of the gel sheets, the
surface meshing procedure used yields addition-
al points on the edges that do not accurately
reflect the 2D geometries of the sheets). After
excluding regions of the surface within 2h of the
edges to avoid these artifacts, we find the aver-
age Gaussian curvatures of the spherical cap and
saddle to be 6.2 mm−2 and –20.6 mm−2, respec-
tively, with nearly axisymmetric distributions
of curvature (fig. S2A). Both values are in rea-
sonable agreement with the target values, al-
though the tendency of disks with uniform dot
sizes to show slight curvatures (with radii of 2
mm) suggests the presence of slight through-
thickness variations in swelling (see SOM for
details) that may contribute to the observed de-
viations from the programmed curvature. Inter-
estingly, we do not observe a boundary layer
with negative Gaussian curvature around the
edge of the spherical cap as has been reported

for truly smooth metrics (17, 18), possibly re-
flecting the influence of the through-thickness
variations in swelling. For both cones, the av-
erage Gaussian curvatures, excluding regions at
the free edges, are close to zero. Further, Fig. 2E
shows a plot of the deficit angle d measured for
five different cone metrics with power law ex-
ponents −1 ≤ b < 0, which agrees closely with
the programmed value d = −pb.

We next consider metrics of the form

WðrÞ ¼ c½1þ ðr=RÞ2ðn−1Þ&2 ð5Þ

corresponding to Enneper’s minimal surfaces
with n nodes. These surfaces all have zero mean
curvature and so are expected to minimize the
elastic energy for these metrics at vanishing
thickness (18). Although Eq. 5 is axisymmetric,
Enneper's surfaces spontaneously break axial
symmetry by forming n wrinkles. In Fig. 2, G
to J, we demonstrate patterned surfaces with n =
3 to 6, each of which reproduces the targeted
number of wrinkles. As shown in the maps of
curvature in Fig. 2 (and azimuthally averaged
plots in fig. S2B), each surface has small mean
curvature and negative Gaussian curvature that
matches closely with the target profile. For a
given film thickness, increasing n eventually
leads to a saturation in the number of wrinkles,
because the bending energy arising from Gaussian
curvature increases with n (for the films with
h ≈ 7 mm in Fig. 4, a metric with n = 8 yielded
only six wrinkles). However, given the subtle
differences between the metrics plotted in Fig.
2F, the ability to accurately reproduce the pro-
grammed number of wrinkles for n = 3 to 6 is a

strong testament to the fidelity of the metrics
patterned by this technique.

The true power of our approach lies in the
fabrication of nonaxisymmetric swelling pat-
terns. As a simple demonstration, we first con-
sider the problem of how to form a sphere
through growth. For the axisymmetric metric
described in Eq. 4, the maximum value of r/R
to which this metric can be experimentally pat-
terned is restricted by the accessible range of
swelling. In our case, this range is Ωhigh/Ωlow ≈
3.7, limiting the maximum portion of a sphere
that can be obtained to slightly less than half.
Although further improvements in the material
system are likely to increase the available range,
the axisymmetric metric is inherently an ineffi-
cient way to form a sphere, because as one seeks
to go beyond a hemisphere and toward a closed
shape, the required swelling contrast diverges
rapidly. Given access to 2D metrics, however, a
number of well-established conformal mappings
of the sphere onto flat surfaces are known from
the field of map projections. For example, the
Peirce quincuncial projection (27) maps a sphere
of radius R onto a square using the metric

Wðx; yÞ ¼ 2
jdn xþiy

R j 1ffiffi
2
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" #

sn xþiy
R j 1ffiffi

2
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h i2 ð6Þ

where sn, cn, and dn are Jacobi elliptic func-
tions, and x and y are the components of r. This
metric still has four cusp-like singularities where
Ω(r) = 0; however, one of its useful properties
as a map projection is that only a small portion

Fig. 2. Halftoned disks
with axisymmetric met-
rics. Patterned sheets pro-
grammed to generate (A)
a piece of saddle surface
(Sa), (B) a cone with an
excess angle (Ce), (C) a
spherical cap (Sp), and
(D) a cone with a deficit
angle (Cd). (Top) 3D re-
constructed images of
swollen hydrogel sheets
and (bottom) top-view
surface plots of Gaussian
curvature. Initial thick-
nesses and disk diame-
ters are 9 and 390 mm,
respectively, although
the apparent thickness
of sheets is enlarged due
to the resolution of the
LSCM. (E) Measured val-
ues of deficit angle d
for cones with five dif-
ferent exponents b (see Eq. 3) (black solid circles) and the programmed
values (blue dashed line). (F) Swelling factors for the target metrics as a
function of normalized radial position on the unswelled disks r/R, with points
plotted at values corresponding to lattice points to indicate the resolu-
tion with which Ω is patterned. (G to J) Patterned sheets programmed to

generate Enneper’s minimal surfaces with n = (G) 3, (H) 4, (I) 5, and (J) 6
wrinkles upon swelling as dictated by Eq. 5. 3D reconstructed images (top)
and top-view surface plots of squared mean curvature H2 and Gaussian
curvature K (bottom). Initial thicknesses and disk diameters are 7 and 390 mm,
respectively.
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of Ω(r) at each lattice point according to Eqs. 3
and 4, determining the corresponding value of
flow from the fit of Eq. 2 to the data in Fig. 1H,
and finally setting the size of the dot at that
lattice point according to Eq. 1. Because the
power-law metrics in Eq. 3 diverge or vanish at
the origin, it is necessary to cut out a small re-
gion around the center of each of the two cones.

The shapes adopted by the corresponding gel
sheets (Fig. 2, A to D) are measured by laser scan-
ning confocal fluorescence microscopy (LSCM)
and analyzed as described in the SOM. Each of
the four surfaces shows only small deviations
about an average Gaussian curvature, with the
exception of the regions near the free edges,
where our analysis yields artifactual curvatures
(due to the finite thickness of the gel sheets, the
surface meshing procedure used yields addition-
al points on the edges that do not accurately
reflect the 2D geometries of the sheets). After
excluding regions of the surface within 2h of the
edges to avoid these artifacts, we find the aver-
age Gaussian curvatures of the spherical cap and
saddle to be 6.2 mm−2 and –20.6 mm−2, respec-
tively, with nearly axisymmetric distributions
of curvature (fig. S2A). Both values are in rea-
sonable agreement with the target values, al-
though the tendency of disks with uniform dot
sizes to show slight curvatures (with radii of 2
mm) suggests the presence of slight through-
thickness variations in swelling (see SOM for
details) that may contribute to the observed de-
viations from the programmed curvature. Inter-
estingly, we do not observe a boundary layer
with negative Gaussian curvature around the
edge of the spherical cap as has been reported

for truly smooth metrics (17, 18), possibly re-
flecting the influence of the through-thickness
variations in swelling. For both cones, the av-
erage Gaussian curvatures, excluding regions at
the free edges, are close to zero. Further, Fig. 2E
shows a plot of the deficit angle d measured for
five different cone metrics with power law ex-
ponents −1 ≤ b < 0, which agrees closely with
the programmed value d = −pb.

We next consider metrics of the form

WðrÞ ¼ c½1þ ðr=RÞ2ðn−1Þ&2 ð5Þ

corresponding to Enneper’s minimal surfaces
with n nodes. These surfaces all have zero mean
curvature and so are expected to minimize the
elastic energy for these metrics at vanishing
thickness (18). Although Eq. 5 is axisymmetric,
Enneper's surfaces spontaneously break axial
symmetry by forming n wrinkles. In Fig. 2, G
to J, we demonstrate patterned surfaces with n =
3 to 6, each of which reproduces the targeted
number of wrinkles. As shown in the maps of
curvature in Fig. 2 (and azimuthally averaged
plots in fig. S2B), each surface has small mean
curvature and negative Gaussian curvature that
matches closely with the target profile. For a
given film thickness, increasing n eventually
leads to a saturation in the number of wrinkles,
because the bending energy arising from Gaussian
curvature increases with n (for the films with
h ≈ 7 mm in Fig. 4, a metric with n = 8 yielded
only six wrinkles). However, given the subtle
differences between the metrics plotted in Fig.
2F, the ability to accurately reproduce the pro-
grammed number of wrinkles for n = 3 to 6 is a

strong testament to the fidelity of the metrics
patterned by this technique.

The true power of our approach lies in the
fabrication of nonaxisymmetric swelling pat-
terns. As a simple demonstration, we first con-
sider the problem of how to form a sphere
through growth. For the axisymmetric metric
described in Eq. 4, the maximum value of r/R
to which this metric can be experimentally pat-
terned is restricted by the accessible range of
swelling. In our case, this range is Ωhigh/Ωlow ≈
3.7, limiting the maximum portion of a sphere
that can be obtained to slightly less than half.
Although further improvements in the material
system are likely to increase the available range,
the axisymmetric metric is inherently an ineffi-
cient way to form a sphere, because as one seeks
to go beyond a hemisphere and toward a closed
shape, the required swelling contrast diverges
rapidly. Given access to 2D metrics, however, a
number of well-established conformal mappings
of the sphere onto flat surfaces are known from
the field of map projections. For example, the
Peirce quincuncial projection (27) maps a sphere
of radius R onto a square using the metric
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where sn, cn, and dn are Jacobi elliptic func-
tions, and x and y are the components of r. This
metric still has four cusp-like singularities where
Ω(r) = 0; however, one of its useful properties
as a map projection is that only a small portion

Fig. 2. Halftoned disks
with axisymmetric met-
rics. Patterned sheets pro-
grammed to generate (A)
a piece of saddle surface
(Sa), (B) a cone with an
excess angle (Ce), (C) a
spherical cap (Sp), and
(D) a cone with a deficit
angle (Cd). (Top) 3D re-
constructed images of
swollen hydrogel sheets
and (bottom) top-view
surface plots of Gaussian
curvature. Initial thick-
nesses and disk diame-
ters are 9 and 390 mm,
respectively, although
the apparent thickness
of sheets is enlarged due
to the resolution of the
LSCM. (E) Measured val-
ues of deficit angle d
for cones with five dif-
ferent exponents b (see Eq. 3) (black solid circles) and the programmed
values (blue dashed line). (F) Swelling factors for the target metrics as a
function of normalized radial position on the unswelled disks r/R, with points
plotted at values corresponding to lattice points to indicate the resolu-
tion with which Ω is patterned. (G to J) Patterned sheets programmed to

generate Enneper’s minimal surfaces with n = (G) 3, (H) 4, (I) 5, and (J) 6
wrinkles upon swelling as dictated by Eq. 5. 3D reconstructed images (top)
and top-view surface plots of squared mean curvature H2 and Gaussian
curvature K (bottom). Initial thicknesses and disk diameters are 7 and 390 mm,
respectively.
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of Ω(r) at each lattice point according to Eqs. 3
and 4, determining the corresponding value of
flow from the fit of Eq. 2 to the data in Fig. 1H,
and finally setting the size of the dot at that
lattice point according to Eq. 1. Because the
power-law metrics in Eq. 3 diverge or vanish at
the origin, it is necessary to cut out a small re-
gion around the center of each of the two cones.

The shapes adopted by the corresponding gel
sheets (Fig. 2, A to D) are measured by laser scan-
ning confocal fluorescence microscopy (LSCM)
and analyzed as described in the SOM. Each of
the four surfaces shows only small deviations
about an average Gaussian curvature, with the
exception of the regions near the free edges,
where our analysis yields artifactual curvatures
(due to the finite thickness of the gel sheets, the
surface meshing procedure used yields addition-
al points on the edges that do not accurately
reflect the 2D geometries of the sheets). After
excluding regions of the surface within 2h of the
edges to avoid these artifacts, we find the aver-
age Gaussian curvatures of the spherical cap and
saddle to be 6.2 mm−2 and –20.6 mm−2, respec-
tively, with nearly axisymmetric distributions
of curvature (fig. S2A). Both values are in rea-
sonable agreement with the target values, al-
though the tendency of disks with uniform dot
sizes to show slight curvatures (with radii of 2
mm) suggests the presence of slight through-
thickness variations in swelling (see SOM for
details) that may contribute to the observed de-
viations from the programmed curvature. Inter-
estingly, we do not observe a boundary layer
with negative Gaussian curvature around the
edge of the spherical cap as has been reported

for truly smooth metrics (17, 18), possibly re-
flecting the influence of the through-thickness
variations in swelling. For both cones, the av-
erage Gaussian curvatures, excluding regions at
the free edges, are close to zero. Further, Fig. 2E
shows a plot of the deficit angle d measured for
five different cone metrics with power law ex-
ponents −1 ≤ b < 0, which agrees closely with
the programmed value d = −pb.
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WðrÞ ¼ c½1þ ðr=RÞ2ðn−1Þ&2 ð5Þ

corresponding to Enneper’s minimal surfaces
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elastic energy for these metrics at vanishing
thickness (18). Although Eq. 5 is axisymmetric,
Enneper's surfaces spontaneously break axial
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3 to 6, each of which reproduces the targeted
number of wrinkles. As shown in the maps of
curvature in Fig. 2 (and azimuthally averaged
plots in fig. S2B), each surface has small mean
curvature and negative Gaussian curvature that
matches closely with the target profile. For a
given film thickness, increasing n eventually
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because the bending energy arising from Gaussian
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2F, the ability to accurately reproduce the pro-
grammed number of wrinkles for n = 3 to 6 is a

strong testament to the fidelity of the metrics
patterned by this technique.
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terns. As a simple demonstration, we first con-
sider the problem of how to form a sphere
through growth. For the axisymmetric metric
described in Eq. 4, the maximum value of r/R
to which this metric can be experimentally pat-
terned is restricted by the accessible range of
swelling. In our case, this range is Ωhigh/Ωlow ≈
3.7, limiting the maximum portion of a sphere
that can be obtained to slightly less than half.
Although further improvements in the material
system are likely to increase the available range,
the axisymmetric metric is inherently an ineffi-
cient way to form a sphere, because as one seeks
to go beyond a hemisphere and toward a closed
shape, the required swelling contrast diverges
rapidly. Given access to 2D metrics, however, a
number of well-established conformal mappings
of the sphere onto flat surfaces are known from
the field of map projections. For example, the
Peirce quincuncial projection (27) maps a sphere
of radius R onto a square using the metric
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where sn, cn, and dn are Jacobi elliptic func-
tions, and x and y are the components of r. This
metric still has four cusp-like singularities where
Ω(r) = 0; however, one of its useful properties
as a map projection is that only a small portion
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rics. Patterned sheets pro-
grammed to generate (A)
a piece of saddle surface
(Sa), (B) a cone with an
excess angle (Ce), (C) a
spherical cap (Sp), and
(D) a cone with a deficit
angle (Cd). (Top) 3D re-
constructed images of
swollen hydrogel sheets
and (bottom) top-view
surface plots of Gaussian
curvature. Initial thick-
nesses and disk diame-
ters are 9 and 390 mm,
respectively, although
the apparent thickness
of sheets is enlarged due
to the resolution of the
LSCM. (E) Measured val-
ues of deficit angle d
for cones with five dif-
ferent exponents b (see Eq. 3) (black solid circles) and the programmed
values (blue dashed line). (F) Swelling factors for the target metrics as a
function of normalized radial position on the unswelled disks r/R, with points
plotted at values corresponding to lattice points to indicate the resolu-
tion with which Ω is patterned. (G to J) Patterned sheets programmed to

generate Enneper’s minimal surfaces with n = (G) 3, (H) 4, (I) 5, and (J) 6
wrinkles upon swelling as dictated by Eq. 5. 3D reconstructed images (top)
and top-view surface plots of squared mean curvature H2 and Gaussian
curvature K (bottom). Initial thicknesses and disk diameters are 7 and 390 mm,
respectively.
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limited resolution of the human eye to provide
the illusion of a homogeneous tone from closely
spaced dots, our approach relies on the elasticity
of the thin polymer sheet to locally smooth out
the sharp contrast between the highly cross-linked
dots and lightly cross-linked matrix, thereby yield-
ing an intermediate degree of swelling.

To calibrate the method, we first explore the
swelling of disks with dots of uniform diameter.
As indicated in Fig. 1H, these disks show globally
homogeneous swelling by an amount Ω that can
be continuously tuned between the two extremes
Ωlow and Ωhigh by changing the area fraction of
low-swelling regions, defined for d ≤ a as

flow ¼ p

2
ffiffiffi
3

p d
a

" #2

ð1Þ

Given that Ω is largely insensitive to flow be-
yond the point when neighboring dots begin to
touch—that is, at flow ≥ 0.91—for simplicity we
restrict dot sizes to d ≤ a without appreciably
restricting the accessible range of swelling.

A simple model to describe swelling comes
from considering the two gel regions as lumped
1D elements in parallel [see the supporting
online material (SOM) for details], yielding the
prediction

flow þ að1 − flowÞ
W1=2

¼ flow
W1=2

low

þ að1 − flowÞ
W1=2

high

ð2Þ

where a is the ratio of the elastic moduli in the
two material regions. Although this model captures

the essential qualitative physics of mutually
constrained swelling, it is too simple to yield
quantitative agreement with material properties;
thus, in practice a is treated as a fitting param-
eter. As shown in Fig. 1H, a value of a = 0.56
provides a good fit to the observed swelling of
halftoned composite gels. As expected based on
the well-known temperature sensitivity of NIPAm
copolymers, at each value of flow the composite
disks deswell with increasing temperature, as
shown in Fig. 1I. However, since the lightly
cross-linked regions show more pronounced de-
swelling, the values of swelling converge to a
narrow range between 1 and 2 at 45° to 50°C.

Whereas the composite disks described in
Fig. 1 behave as homogeneous materials on
length scales longer than the lattice dimension,
the compressive stresses present in the lightly
cross-linked matrix may cause local buckling
when the disks are made sufficiently thin. To pre-
vent this, we expect that the length scale of the
lattice should not be much larger than h. Indeed,
when we vary the dot size and spacing at constant
flow = 0.4, we find a critical lattice spacing, ac =
(7.9 T 0.8)h, below which the sheets remain flat
and above which the high-swelling regions form
buckled ridges spanning neighboring dots (Fig.
1J). Although the prefactor relating ac and h will
depend somewhat on flow, for the remainder of
the discussion we will keep a ≤ 4h, which is
sufficient to avoid local buckling in all cases.

Having established that halftoning provides
access to nearly continuous variations in swell-
ing for disks with homogeneous dot sizes, we

next consider the printing of spatially varying,
axisymmetric, patterns of growth corresponding
to target shapes with constant Gaussian curva-
ture K, as shown in Fig. 2, A to D. Following
Sharon and co-workers (17, 18, 21), we refer to
Ω(r) as the “target metric” encoding the local
equilibrium distances between points on the sur-
face. A sheet of vanishing thickness should adopt
the isometric embedding of this target metric
with the lowest bending energy (18), provided
that such an embedding exists. Written in terms
of the coordinates on the flat, unswelled gel sheet,
the target curvature at a material point r is set by
the swelling factor Ω(r) according to Gauss’s
theorema egregium, K = −∇2 lnΩ/(2Ω) (25).
Thus, where r represents the radial position in a
cylindrical coordinate system and c, R, and b are
constants, swelling factors of the form

WðrÞ ¼ c
r
R

$ %b
ð3Þ

should yield K = 0, whereas those of the form

WðrÞ ¼ c

½1þ ðr=RÞ2&2
ð4Þ

should yield constant K = 4/(cR2). Figure 2F
shows four example metrics: a piece of a saddle
surface with K = −16.8 mm−2, a cone with an
excess angle (26) specified by a swelling power-
law exponent b = 1, a spherical cap with K =
5.7 mm−2, and a cone with a deficit angle spe-
cified by b = −0.4. The corresponding patterns
of dots were computed by evaluating the value

Fig. 1. Halftone gel li-
thography and characteri-
zation of composite disks.
(A) Chemical structure of
the photo-cross-linkable
and temperature-responsive
NIPAm copolymer. (B to
G) A schematic illustration
of halftone gel lithogra-
phy. (B) On a silicon wafer
coated with a sacrificial
layer, (C) the copolymer
film (thickness h = 7 to
17 mm) is solution-cast
and exposed to a small
dose of UV light through
the first photomask and
subsequently (D) a large
dose through the second
photomask. (E) The pat-
terned film is (F) developed
to remove uncross-linked
material and (G) immersed
in aqueous solution to
release it from the sub-
strate and induce swell-
ing. (H) The areal expansion ratio Ω of composite disks at 22°C is plotted
against the area fraction of dots flow. Experimental data (black solid
circles) are fitted with Eq. 2 (blue line). The error bars denote standard
deviations for six independent measurements. (I) The temperature depen-
dence of Ω of the composite disks is shown for four different values of flow.

(J) Below a thickness-dependent critical lattice spacing ac, disks remain
flat, whereas above ac they undergo local buckling between neighboring
dots. The value of ac is plotted for a range of film thicknesses (symbols),
along with a least squares fit of a linear relationship with zero intercept
(dashed line).
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swelling depends on T

Temperature controls swelling
and thus the deformed shape

of the area of the sphere requires large distor-
tions. Thus, we can approximate the metric by
excising the small regions of the square where
Ω falls below the experimentally accessible range,
as shown in Fig. 3B. The resulting swelled shape
(Fig. 3A) does indeed approximate that of a
sphere (see fig. S3 for plots of surface curvatures)
with four small regions removed, although the
four corners of the square do not quite close.
The reason for the latter behavior remains under
investigation but may arise from the excised
singularities and/or the finite bending energy of
the sheet. Nonetheless, the contrast between the
nearly closed shape achieved in Fig. 3A and the
limited spherical caps that may be obtained for
the same material system with an axisymmetric
metric highlights the importance of 2D pattern-
ing, even for generating axisymmetric shapes.

Beyond fabricating simple shapes with con-
stant target Gaussian curvature, our approach
opens the door to shapes of arbitrary complex-
ity. Although numerous fundamental questions
and practical challenges remain to establishing
the necessary design rules, we take a first step
toward the construction of shapes whose swell-
ing factors are not known a priori by consid-
ering a corrugated surface (Fig. 3C) described
by the height function H(x,y) = H0 [cos(2px/L) +
cos(px/L + √3py/L)], where 2L is the width of
the sheet. We choose H0 = 60 mm and L = 300
mm. Determining an appropriate swelling factor
is equivalent to finding a conformal coordinate
system on the surface (as described in the SOM)
and yields the swelling function shown in Fig.
3H. This example highlights some of the re-
maining challenges in designing arbitrary 3D

shapes, because sheets patterned according to
Fig. 3H often fail to form the desired shape upon
swelling. The three local maxima in growth,
lying along the line cutting diagonally through
the center of the sheet, each represent regions
of positive target Gaussian curvature; however,
each may achieve its desired local curvature by
buckling either upward or downward. Indeed,
rather than buckling in the manner described by
H(x,y), these local maxima in swelling may
instead all buckle in the same direction, as shown
in Fig. 3G (again, possibly reflecting a preference
for buckling in one direction due to slight
through-thickness variations in swelling). How-
ever, in some cases, the sheets do swell into the
corrugated conformation shown in Fig. 3E, which
is very similar to the programmed surface H(x,y),
as can also be seen by comparing the targeted

(Fig. 3D) and measured (Fig. 3F) Gaussian cur-
vatures. The use of a glass micropipette to hold
the patterned sheet against the substrate during
swelling (upon cooling from 40° to 22°C) tends
to constrain the sheet to swell into the corrugated
shape, and initially misfolded sheets can also be
“snapped through” into the desired configura-
tion by application of force to the center-most
region of positive curvature. Thus, we conclude
that such surfaces with complex swelling pat-
terns may in general form multiple different shapes
that are locally metastable and that additional
constraints may therefore be required to ensure
that a specific shape is chosen.

Finally, we demonstrate the responsiveness
of the patterned sheets to changes in temperature
using another nonaxisymmetric metric that com-
bines that for an Enneper’s surface with four

Fig. 3. Nonaxisymmetric swelling patterns. (A) A 3D reconstructed image of
the nearly closed spherical shape formed by the metric of Eq. 6 and shown in
(B); the sizes and positions of open circles correspond to those of the low-
swelling dots. Before swelling, the patterned gel sheet was 9 mm thick, with
lateral dimensions of 600 by 620 mm. (C) The target height profile of the
corrugated surface, also shown in (D) top view. The grid represents the co-
ordinate lines of the conformal coordinate system. (E) 3D reconstructed image

and (F) Gaussian curvature of the sheet swollen into a shape similar to the
target surface. (G) 3D reconstructed image of the shape adopted when each of
the three regions of positive curvature along the center diagonal buckle in the
same direction. (H) The swelling pattern used to generate sheets in (E) to (G).
The sizes and positions of open circles correspond to those of the low-swelling
dots. Before swelling, the patterned gel sheets were 9 mm thick and had
lateral dimensions of 600 by 580 mm.

Fig. 4. Thermal actua-
tion of patterned sheets.
(A) When the tempera-
ture of the aqueous me-
dium is increased, the
hybrid Enneper’s surface
deswells and recovers its
flat shape by 49°C. (B)
Upon lowering the tem-
perature to 22°C, the disk
swells back to the initial
hybrid shape through a
different pathway. Initial
thickness and disk diam-
eter are 7 and 390 mm,
respectively.
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Note different intermediate shapes!
By slowly varying the temperature 
we stay in a local energy minimum!
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Gaussian curvature does not 
uniquely specify the shape!

of the area of the sphere requires large distor-
tions. Thus, we can approximate the metric by
excising the small regions of the square where
Ω falls below the experimentally accessible range,
as shown in Fig. 3B. The resulting swelled shape
(Fig. 3A) does indeed approximate that of a
sphere (see fig. S3 for plots of surface curvatures)
with four small regions removed, although the
four corners of the square do not quite close.
The reason for the latter behavior remains under
investigation but may arise from the excised
singularities and/or the finite bending energy of
the sheet. Nonetheless, the contrast between the
nearly closed shape achieved in Fig. 3A and the
limited spherical caps that may be obtained for
the same material system with an axisymmetric
metric highlights the importance of 2D pattern-
ing, even for generating axisymmetric shapes.

Beyond fabricating simple shapes with con-
stant target Gaussian curvature, our approach
opens the door to shapes of arbitrary complex-
ity. Although numerous fundamental questions
and practical challenges remain to establishing
the necessary design rules, we take a first step
toward the construction of shapes whose swell-
ing factors are not known a priori by consid-
ering a corrugated surface (Fig. 3C) described
by the height function H(x,y) = H0 [cos(2px/L) +
cos(px/L + √3py/L)], where 2L is the width of
the sheet. We choose H0 = 60 mm and L = 300
mm. Determining an appropriate swelling factor
is equivalent to finding a conformal coordinate
system on the surface (as described in the SOM)
and yields the swelling function shown in Fig.
3H. This example highlights some of the re-
maining challenges in designing arbitrary 3D

shapes, because sheets patterned according to
Fig. 3H often fail to form the desired shape upon
swelling. The three local maxima in growth,
lying along the line cutting diagonally through
the center of the sheet, each represent regions
of positive target Gaussian curvature; however,
each may achieve its desired local curvature by
buckling either upward or downward. Indeed,
rather than buckling in the manner described by
H(x,y), these local maxima in swelling may
instead all buckle in the same direction, as shown
in Fig. 3G (again, possibly reflecting a preference
for buckling in one direction due to slight
through-thickness variations in swelling). How-
ever, in some cases, the sheets do swell into the
corrugated conformation shown in Fig. 3E, which
is very similar to the programmed surface H(x,y),
as can also be seen by comparing the targeted

(Fig. 3D) and measured (Fig. 3F) Gaussian cur-
vatures. The use of a glass micropipette to hold
the patterned sheet against the substrate during
swelling (upon cooling from 40° to 22°C) tends
to constrain the sheet to swell into the corrugated
shape, and initially misfolded sheets can also be
“snapped through” into the desired configura-
tion by application of force to the center-most
region of positive curvature. Thus, we conclude
that such surfaces with complex swelling pat-
terns may in general form multiple different shapes
that are locally metastable and that additional
constraints may therefore be required to ensure
that a specific shape is chosen.

Finally, we demonstrate the responsiveness
of the patterned sheets to changes in temperature
using another nonaxisymmetric metric that com-
bines that for an Enneper’s surface with four

Fig. 3. Nonaxisymmetric swelling patterns. (A) A 3D reconstructed image of
the nearly closed spherical shape formed by the metric of Eq. 6 and shown in
(B); the sizes and positions of open circles correspond to those of the low-
swelling dots. Before swelling, the patterned gel sheet was 9 mm thick, with
lateral dimensions of 600 by 620 mm. (C) The target height profile of the
corrugated surface, also shown in (D) top view. The grid represents the co-
ordinate lines of the conformal coordinate system. (E) 3D reconstructed image

and (F) Gaussian curvature of the sheet swollen into a shape similar to the
target surface. (G) 3D reconstructed image of the shape adopted when each of
the three regions of positive curvature along the center diagonal buckle in the
same direction. (H) The swelling pattern used to generate sheets in (E) to (G).
The sizes and positions of open circles correspond to those of the low-swelling
dots. Before swelling, the patterned gel sheets were 9 mm thick and had
lateral dimensions of 600 by 580 mm.

Fig. 4. Thermal actua-
tion of patterned sheets.
(A) When the tempera-
ture of the aqueous me-
dium is increased, the
hybrid Enneper’s surface
deswells and recovers its
flat shape by 49°C. (B)
Upon lowering the tem-
perature to 22°C, the disk
swells back to the initial
hybrid shape through a
different pathway. Initial
thickness and disk diam-
eter are 7 and 390 mm,
respectively.
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of the area of the sphere requires large distor-
tions. Thus, we can approximate the metric by
excising the small regions of the square where
Ω falls below the experimentally accessible range,
as shown in Fig. 3B. The resulting swelled shape
(Fig. 3A) does indeed approximate that of a
sphere (see fig. S3 for plots of surface curvatures)
with four small regions removed, although the
four corners of the square do not quite close.
The reason for the latter behavior remains under
investigation but may arise from the excised
singularities and/or the finite bending energy of
the sheet. Nonetheless, the contrast between the
nearly closed shape achieved in Fig. 3A and the
limited spherical caps that may be obtained for
the same material system with an axisymmetric
metric highlights the importance of 2D pattern-
ing, even for generating axisymmetric shapes.

Beyond fabricating simple shapes with con-
stant target Gaussian curvature, our approach
opens the door to shapes of arbitrary complex-
ity. Although numerous fundamental questions
and practical challenges remain to establishing
the necessary design rules, we take a first step
toward the construction of shapes whose swell-
ing factors are not known a priori by consid-
ering a corrugated surface (Fig. 3C) described
by the height function H(x,y) = H0 [cos(2px/L) +
cos(px/L + √3py/L)], where 2L is the width of
the sheet. We choose H0 = 60 mm and L = 300
mm. Determining an appropriate swelling factor
is equivalent to finding a conformal coordinate
system on the surface (as described in the SOM)
and yields the swelling function shown in Fig.
3H. This example highlights some of the re-
maining challenges in designing arbitrary 3D

shapes, because sheets patterned according to
Fig. 3H often fail to form the desired shape upon
swelling. The three local maxima in growth,
lying along the line cutting diagonally through
the center of the sheet, each represent regions
of positive target Gaussian curvature; however,
each may achieve its desired local curvature by
buckling either upward or downward. Indeed,
rather than buckling in the manner described by
H(x,y), these local maxima in swelling may
instead all buckle in the same direction, as shown
in Fig. 3G (again, possibly reflecting a preference
for buckling in one direction due to slight
through-thickness variations in swelling). How-
ever, in some cases, the sheets do swell into the
corrugated conformation shown in Fig. 3E, which
is very similar to the programmed surface H(x,y),
as can also be seen by comparing the targeted

(Fig. 3D) and measured (Fig. 3F) Gaussian cur-
vatures. The use of a glass micropipette to hold
the patterned sheet against the substrate during
swelling (upon cooling from 40° to 22°C) tends
to constrain the sheet to swell into the corrugated
shape, and initially misfolded sheets can also be
“snapped through” into the desired configura-
tion by application of force to the center-most
region of positive curvature. Thus, we conclude
that such surfaces with complex swelling pat-
terns may in general form multiple different shapes
that are locally metastable and that additional
constraints may therefore be required to ensure
that a specific shape is chosen.

Finally, we demonstrate the responsiveness
of the patterned sheets to changes in temperature
using another nonaxisymmetric metric that com-
bines that for an Enneper’s surface with four
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the nearly closed spherical shape formed by the metric of Eq. 6 and shown in
(B); the sizes and positions of open circles correspond to those of the low-
swelling dots. Before swelling, the patterned gel sheet was 9 mm thick, with
lateral dimensions of 600 by 620 mm. (C) The target height profile of the
corrugated surface, also shown in (D) top view. The grid represents the co-
ordinate lines of the conformal coordinate system. (E) 3D reconstructed image

and (F) Gaussian curvature of the sheet swollen into a shape similar to the
target surface. (G) 3D reconstructed image of the shape adopted when each of
the three regions of positive curvature along the center diagonal buckle in the
same direction. (H) The swelling pattern used to generate sheets in (E) to (G).
The sizes and positions of open circles correspond to those of the low-swelling
dots. Before swelling, the patterned gel sheets were 9 mm thick and had
lateral dimensions of 600 by 580 mm.
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hybrid Enneper’s surface
deswells and recovers its
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different pathway. Initial
thickness and disk diam-
eter are 7 and 390 mm,
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of the area of the sphere requires large distor-
tions. Thus, we can approximate the metric by
excising the small regions of the square where
Ω falls below the experimentally accessible range,
as shown in Fig. 3B. The resulting swelled shape
(Fig. 3A) does indeed approximate that of a
sphere (see fig. S3 for plots of surface curvatures)
with four small regions removed, although the
four corners of the square do not quite close.
The reason for the latter behavior remains under
investigation but may arise from the excised
singularities and/or the finite bending energy of
the sheet. Nonetheless, the contrast between the
nearly closed shape achieved in Fig. 3A and the
limited spherical caps that may be obtained for
the same material system with an axisymmetric
metric highlights the importance of 2D pattern-
ing, even for generating axisymmetric shapes.

Beyond fabricating simple shapes with con-
stant target Gaussian curvature, our approach
opens the door to shapes of arbitrary complex-
ity. Although numerous fundamental questions
and practical challenges remain to establishing
the necessary design rules, we take a first step
toward the construction of shapes whose swell-
ing factors are not known a priori by consid-
ering a corrugated surface (Fig. 3C) described
by the height function H(x,y) = H0 [cos(2px/L) +
cos(px/L + √3py/L)], where 2L is the width of
the sheet. We choose H0 = 60 mm and L = 300
mm. Determining an appropriate swelling factor
is equivalent to finding a conformal coordinate
system on the surface (as described in the SOM)
and yields the swelling function shown in Fig.
3H. This example highlights some of the re-
maining challenges in designing arbitrary 3D

shapes, because sheets patterned according to
Fig. 3H often fail to form the desired shape upon
swelling. The three local maxima in growth,
lying along the line cutting diagonally through
the center of the sheet, each represent regions
of positive target Gaussian curvature; however,
each may achieve its desired local curvature by
buckling either upward or downward. Indeed,
rather than buckling in the manner described by
H(x,y), these local maxima in swelling may
instead all buckle in the same direction, as shown
in Fig. 3G (again, possibly reflecting a preference
for buckling in one direction due to slight
through-thickness variations in swelling). How-
ever, in some cases, the sheets do swell into the
corrugated conformation shown in Fig. 3E, which
is very similar to the programmed surface H(x,y),
as can also be seen by comparing the targeted

(Fig. 3D) and measured (Fig. 3F) Gaussian cur-
vatures. The use of a glass micropipette to hold
the patterned sheet against the substrate during
swelling (upon cooling from 40° to 22°C) tends
to constrain the sheet to swell into the corrugated
shape, and initially misfolded sheets can also be
“snapped through” into the desired configura-
tion by application of force to the center-most
region of positive curvature. Thus, we conclude
that such surfaces with complex swelling pat-
terns may in general form multiple different shapes
that are locally metastable and that additional
constraints may therefore be required to ensure
that a specific shape is chosen.

Finally, we demonstrate the responsiveness
of the patterned sheets to changes in temperature
using another nonaxisymmetric metric that com-
bines that for an Enneper’s surface with four

Fig. 3. Nonaxisymmetric swelling patterns. (A) A 3D reconstructed image of
the nearly closed spherical shape formed by the metric of Eq. 6 and shown in
(B); the sizes and positions of open circles correspond to those of the low-
swelling dots. Before swelling, the patterned gel sheet was 9 mm thick, with
lateral dimensions of 600 by 620 mm. (C) The target height profile of the
corrugated surface, also shown in (D) top view. The grid represents the co-
ordinate lines of the conformal coordinate system. (E) 3D reconstructed image

and (F) Gaussian curvature of the sheet swollen into a shape similar to the
target surface. (G) 3D reconstructed image of the shape adopted when each of
the three regions of positive curvature along the center diagonal buckle in the
same direction. (H) The swelling pattern used to generate sheets in (E) to (G).
The sizes and positions of open circles correspond to those of the low-swelling
dots. Before swelling, the patterned gel sheets were 9 mm thick and had
lateral dimensions of 600 by 580 mm.

Fig. 4. Thermal actua-
tion of patterned sheets.
(A) When the tempera-
ture of the aqueous me-
dium is increased, the
hybrid Enneper’s surface
deswells and recovers its
flat shape by 49°C. (B)
Upon lowering the tem-
perature to 22°C, the disk
swells back to the initial
hybrid shape through a
different pathway. Initial
thickness and disk diam-
eter are 7 and 390 mm,
respectively.
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