MAE 545: Lecture 11 (3/15)

Self-folding
origami and robots

Helices




Shrinky-Dinks

Shrinky-Dinks are sheets made of optically transparent, pre-strained
polystyrene that shrink if heated to the glass transition temperature.
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Shrinky-Dinks

Shrinky-Dinks are sheets made of optically transparent, pre-strained
polystyrene that shrink if heated to the glass transition temperature.

Localized heating and shrinking of
Shrinky-Dinks can be achieved with
patterning of black ink that absorb light.
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of ink and with the exposure time of light.
3 J. Liu et al., Soft Mater 8, 1764 (2012)




Shrinky-Dinks origami

sSize ~Ccm

J. Liu et al., Soft Mater 8, 1764 (2012)




Sequential folding of Shrinky-Dinks origami

_Different ink CO!OI’S have blue light red light
different absorption spectra activates activates
for red, green and blue light. yellow fold blue fold
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red light blue light
: activates activates
blue fold yellow fold
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J. Liu et al., Sci. Adv. 3, €1602417 (2017) 5




Sequential folding of Shrinky-Dinks origami

The order of folding corresponds to the amount
of absorbed blue light (black > red > walnut)
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Note: red ink is thicker
than the walnut ink!
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Sequential folding of Shrinky-Dinks origami

Converting 2D sheets to 3D objects sequentially
using only light

J. Liu et al., Sci. Adv. 3, €1602417 (2017)



Self-folding robots (in 4 min)
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S. Felton et al., Science 345, 644 (2014)
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Robot assembly

Chemical etching
of copper outside

the ink mask
copper
A

B

“Shrinky-Dinks”

A Crank Arm
\ : : ’ P|n _

| | oy Motors

Alignment
Tab

Laser cutting
of layers

Gluing of
layers
Laser cutting

7’7 B \(\

—————

installment of
electrical components,
motors, and batteries

S. Felton et al., Science 345, 644 (2014)



Folding of robot

electric current through patterned
copper network locally heats up and
shrinks the “Shrinky-Dinks” layer

|

copper

Motors )

Alignment
Locking > Tab

How can we actuate the
S. Felton et al., Science 345, 644 (2014) 10 assembled robot?



Structures with mechanisms
Structures composed of bars and hinges, which
have fewer constraints than degrees of freedom,

have specific mechanisms (=modes of deformations)

scissor lift precise robotic surgeries

{

amplifying/reducing amplitude of motion

;
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Crank slider mechanism

Crank slider mechanism converts linear to rotary motion!

B

path of C
path of B

Crank slider mechanism in car engines

12 https://en.wikipedia.org/wiki/Crank_(mechanism)



Robot actuation

sequential folding enables hinge
locking of the crank arm to
the robot structure

A A crank
motor arm pin
> |
crank 2"\ ﬂ i
arm alignment [
tab §
" notch |
'\'<_Iocking :
= tab

rotary motor moves the crank

arm, which controls the
movement of robot legs via a
specific structure mechanism —

S. Felton et al., Science 345, 644 (2014) 13




Helices in plants

How are helices formed?
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Differential growth or differential shrinking

produces spontaneous curvature
L(1+¢€)

faster growth
of the top layer

, more shrinking
of the bottom layer

Differential growth (shrinking) of the two
layers produces spontaneous curvature
K—l— € L(l+e¢) RA4W
T ROW L R

Filaments that are longer than L > 27 R

form helices to avoid steric interactions.
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Helix

Mathematical description
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Helix

7(s) = (m cos(s/\), ro sin(s /), Q%s>
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Cucumber tendril climbing via helical coiling

Cucumber tendrils
want to puli
themselves up above
other plants in order
to get more sunlight.

Already studied by
Charles Darwin in 1865:

e

S. J. Gerbode et al., Science 337, 1087 (2012)
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Helical coiling of cucumber tendril

tendril cross-section

young
tendril

old
tendril

extracted
fiber ribbon

lignified g-fiber cells

Coiling in older tendrils is due to a thin layer of stiff, lignified
gelatinous fiber cells, which are also found in wood.

19  S. J. Gerbode et al., Science 337, 1087 (2012)



Helical coiling of cucumber tendril

Drying of fibber ribbon Drying of tendril Rehydrating of tendril
increases coiling increases coiling reduces coiling

outside
layer

During the lignification of g-fiber cells
water is expelled, which causes shrinking.

The inside layer is more lignified and
therefore shrinks more and is also
stiffer than the outside layer.

20 S.J. Gerbode et al., Science 337, 1087 (2012)



Coiling of tendrils in opposite directions

perversion

/
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Jeft-handed

helix helix

perversion

right-handed -
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Ends of the tendril are fixed and
cannot rotate. This constraints
the linking number.

Link = Twist + Writhe




Twist, Writhe and Linking nhumbers

Ln=Tw+Wr linking number: total number of turns of a particular end
Tw twist: number of turns due to twisting the beam
Wr writhe: number of crossings when curve is projected on a plane

| * o0 I ‘ 5 EC

I— _I Twist = -1, Writhe = 0. I_ ——I Twist = +1, Writhe = 0.
]

I@I Twist = 0, Writhe = -1. I:@ Twist = 0, Writhe = +1.

i J|720° i ;):I720°
ly;-/~i/:4| Twist = -2, Writhe = 0. lm-_,—\_.j—\c;.q Twist = +2, Writhe = 0.

' '
l© =((")> )y I=))(‘g 2 Twist = 0, Writhe = -2. l‘-@@l I‘—@El

Toroidal Plectonemic Toroidal Plectonemic

Twist = 0, Writhe = +2.
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Coiling of tendrils in opposite directions

Ends of the tendril are fixed and
cannot rotate. This constraints
perversion the linking number.

Link = Twist + Writhe

Coiling in the same direction
o & Increases Writhe, which needs to
left-handed right-handed - be compensated by the twist.

h I. h I' . = 5 - -
elix S In order to minimize the twisting

8 energy tendrils combine two helical
coils of opposite handedness
(=opposite Writhe).

perversion

Note: there is no bending energy
when the curvature of two helices
correspond to the spontaneous
curvature due to the differential
shrinking of fiber.
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Overwinding of tendril colls

Old tendrils overwind when stretiched. n Rubber model unwinds when stretched.

relaxed
relaxed

stretched

stretched

24 S.J. Gerbode et al., Science 337, 1087 (2012)



Overwinding of tendril coils

Preferred curved state Flattened state
A Iy
I

In tendrils the red inner layer  High bending energy cost
is much stiffer then the associated with stretching
outside blue layer. of the stiff inner layer!

Tendrils try to keep the preferred
curvature when stretched!

In rubber models both layers Small bending energy.
have similar stiffness.

o5 S. J. Gerbode et al., Science 337, 1087 (2012)



Overwinding of rubber models with an
additional stiff fabric on the inside layers

relaxed

soft rubber

|

stiff fabric

stretched




0verwmd|ng of helix with infinite bending modulus
Mathematical description
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0verwmd|ng of helix with infinite bending modulus
Helix pitch and radius
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Further reading

ON GROWTH
AND FORM

The Complete Revised Edition B. Audoly
_ Y. Pomeau

Elasticity

~Geometry

om Hai Curls to the
linear Response of Shelis

DArcy Wentworth Thompson
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