MAE 545: Lecture 14 (3/29) Shapes of vesicles and cells

Cells in hypotonic and hypertonic solutions

$c_{\text{in}} > c_{\text{out}}$ hypotonic solution

 ΔR *R* = $R\Delta p$ 4*B* = *R* $\frac{1}{4B}k_BT(c_{\text{in}}-c_{\text{out}})$

*c*in *< c*out **hypotonic solution hypertonic solution**

Water flows out of the cell until concentrations become equal.

Thin cell membrane prefers to bend rather than compress

 $c_{\rm in} = c_{\rm out}$

How can we estimate the shape of "deflated" cells?

2

 V_0 = *N c*out

Area difference between lipid layers

Length difference for 2D example on the left

$$
\Delta \ell = \ell_{\text{out}} - \ell_{\text{in}} = (R + w_0/2)\varphi - (R - w_0/2)\varphi
$$

$$
\Delta \ell = w_0 \varphi = \frac{w_0 \ell}{R}
$$

Area difference between lipid layers in 3D

$$
\Delta A = A_{\text{out}} - A_{\text{in}} = w_0 \int dA \left(\frac{1}{R_1} + \frac{1}{R_2} \right)
$$

Lipids can move within a given layer, but flipping between layers is unlikely. This sets a preferred area difference $\,\Delta A_0$.

Non-local bending energy

 w_0

R

 φ

out

in

$$
E = \frac{k_r}{2Aw_0^2} \left(\Delta A - \Delta A_0\right)^2
$$

 $k_r \approx 3\kappa \approx 60k_BT$

Total elastic energy for cells (vesicles)

this term is

constant for a

given topology

Shape of cells (vesicles) can be obtained by minimizing the total elastic energy

 $E =$ z
Z $\int dA$ 1 2 $(B - \mu)u_{ii}^2 + \mu u_{ij}^2 +$ κ 2 (1) *R*¹ $+$ 1 R_{2} $-C_0$ \setminus^2 $+$ κ_G *R*1*R*² $\overline{}$ $+$ *kr* $2A_0w_0^2$ $(\Delta A - \Delta A_0)$ $^{2}+$ 1 2 $k_BT c_{\rm out} V_0$ $\sqrt{\frac{V-V_0}{V}}$ *V*0 \setminus^2

Energetically it is very costly to change the cell volume*V***⁰ and the membrane area** *A***0 (large bulk modulus** *B***)!**

Introduce dimensionless quantities that would be equal to 1 for sphere

definition for sphere radius $R_0 = \sqrt{\frac{A_0}{4\pi}} \quad a = \frac{A_0}{4\pi R_0^2} = 1 \quad v = \frac{V_0}{4\pi R_0^3/3} \quad c_0 = C_0 R_0 \quad \Delta a = \frac{\Delta A}{8\pi w_0 R_0} \quad e = \frac{E}{8\pi \kappa}$

Minimal model: minimization of bending energy for lipid vesicles tion will then take the problem will then take the problem will be a problem will be a problem will be a problem.
The problem will be a problem will b <u>dition thought intern</u> the prolate an p the property of the property

prolates

Find the shape of vesicles that minimize bending energy by constraining the volume to *v***<1.** and perium parties.
B. Complete perium

compressed, but rather assumes a nonspherical shape. This happens because the energy cost due to membrane **Minimum energy configurations**

oblates

 91 | 0.592 0.651 | 0.652 0.87

0.05 0.3 0.591 0.592 0.651 0.652 0.8 0.95

differently at different locations on the vesicle surface. \bigcap with R1 and R1 and R2 being the principal radii $\bigcap_{i=1}^n A_i$ $\bigcap_{i=1}^n \mathbb{Z}^2$, we surface $\bigcap_{i=1}^n \mathbb{Z}^2$, $\bigcap_{i=1}^n \mathbb{Z}^2$, $\bigcap_{i=1}^n \mathbb{Z}^2$ e) $e \rightarrow e$ ($e \rightarrow e$) in the expression of principal current in terms \mathcal{Y} is the contracted by integrating the local distribution of \mathcal{Y} bending contributions over the whole members of \mathcal{C} and the thin sheet with integration \mathcal{A} tion is the sum of the local bending term (Wb) and the

kce de la California de l

where the local bending modulus, and the local bending modulus, and the Gaussian modulus, and bending modulus, and C0 the spontaneous curvature. The spont

 λ d

 $\frac{1}{2}$

$$
e = \int \frac{da}{4} \left(\frac{1}{r_1} + \frac{1}{r_2}\right)^2
$$

U. Seifert *et al.*, PRA 44, 1182 (1991) $\overline{1}$ on $\overline{2}$ $\overline{1}$ and $\overline{2}$ reflects the possible $\overline{1}$ ii., PRA 44, T182 (1991) $\frac{1}{5}$

W " G " W

transitions, respectively. The area of the area. The area of the

 \leftarrow

v

stomatocytes

NOTE:

Anat. Rec. 268, 215 (2002) S. Svetina and B. Zeks,

Bilayer couple model of vesicles

$$
e = \int \frac{da}{4} \left(\frac{1}{r_1} + \frac{1}{r_2} - c_0 \right)^2 + \frac{k_r}{\kappa} \left(\Delta a - \Delta a_0 \right)^2
$$

Phase diagram of vesicle shapes that minimize the free energy for $c_0 = 0$, $k_r/\kappa \to \infty$.

 $s = 0$, where $s = 16$ has $(160 - 16)$

Shape of red blood cells

In the usual environment red blood cells have discocyte shape. Modifying cell environment can induce different shapes.

G. Lim *et al.*, PNAS 99, 16766 (2002) $\sqrt{200-1}$ discocyte; and in the *discocyte I*, DNIAC 00, 1676 α , α in capture α , α , α , α , α , α

Sickle-cell disease (anaemia)

In low oxygen environment hemoglobin proteins inside sickle cells polymerize and form long strands.

Sickle cells are much stiffer and cannot deform in order to pass through small capillaries.

Wikipedia

Protein aggregation and diseases

(B) In concentrated solution misfolded proteins tend to form aggregates. residues are shown in blue. concentrations of both substrate and enzyme are known and the

Cells have special proteins called chaperons, which assist proteins folding into their native state and thus prevent aggregation.

Protein aggregation is a cause of many accurately represent the complexities of protein behavior in the complexities of protein behavior in the comple is in the study of protein folding. Many small proteins of rela**diseases (Alzheimer's, Parkinson's, …)**

Protein aggregates are associated with diseases Parkinson's disease

𝛼**-synuclein aggregates in dopamine producing nerve cells**

Alzheimer's disease

DNA structure

Translation of mRNA

Chaperons assist with protein folding and prevent protein aggregation

ribosome translation

isolated proteins in chaperonin chambers fold into their compact native state

Chaperons assist with disassembly of protein aggregates

chaperons: Hsp40, Hsp70, Hsp104 substraction $\frac{\text{substr}}{\text{substr}}$

to the aggregate by Hsp70 via direct interactions between the middle domain (M-domain) of Hsp104 and the **Under normal cell conditions, protein and additions** $t_{\rm{10}}$ disagregates to Hsp104 disagregates the aggregates the aggregates. Hsp 104 forces polypeptides. Hsp 104 aggregates are small and short lived! The unfolded polypeptides are released to refold spontaneously or with assistance of other chaperones, which might

S. M. Doyle *et al.*, Nat. Rev. Mol. Cell Biol. **14**, 617 (2013) include Hsp \overline{B} and \overline{B} and the DnaH system disaggregate large protein aggregate large protein aggregate large protein and bacteria.