
MAE 545: Lecture 14 (3/29)

Shapes of vesicles and cells
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Area difference between lipid layers
Length difference for 2D example on the left

ters of the system, we first present expressions for the
relevant contributions to the system’s mechanical energy.
We then describe the rather unique shape behavior of lipid
vesicles. The emphasis will be on providing a qualitative
understanding of the dependence of shape on the param-
eters of the system. Therefore, we avoid any description of
the formalisms that are used in theoretical determina-
tions of vesicle shape (Svetina and Žekš, 1996; Seifert,
1997). In the second part we discuss some biologically
important vesicle phenomena to which lipid vesicle shape
behavior can be related. Special attention is given to the
relationship between vesicle shape transformations and
vesicle fission and fusion processes, and to the phenome-
non of cellular polarity. We also discuss the functional
significance of the shape of the red blood cell. We conclude
by suggesting that some biological processes may have
their origin in the general shape behavior of closed lamel-
lar membranes.

MECHANICAL BASIS OF LIPID VESICLE
SHAPE FORMATION

Lipid vesicles form when lipid molecules, because of
their amphiphilic nature and geometry, associate in an
aqueous environment to form membranes. Typical of
these lipid membranes are phospholipid membranes. In
these membranes an adequate contact of phospholipid
molecules with water is established by arrangement of
their polar heads at the membrane surface, and by their
hydrophobic tails oriented in the direction of the mem-
brane interior. The thermodynamically stable bilayer
membrane is obtained by the hydrophobic side of one such
monolayer being covered by the hydrophobic side of an-
other, oppositely-oriented monolayer. A piece of a bilayer
membrane would have the hydrophobic parts of the mol-
ecules at its edges still in contact with the water. How-
ever, because the membrane of a vesicle forms a closed
surface, there are no edges; consequently, vesicles are
more stable than membrane pieces. In an unilamellar
phospholipid vesicle, a single bilayer membrane separates
the external and internal water solutions (Fig. 1). There
are different prescribed conditions for the spontaneous
formation of phospholipid vesicles from a mixing of water
and phospholipids (Lasic, 1993). The resulting vesicles
may thus have different sizes: !10 nm for small phospho-
lipid vesicles (SPVs), !0.1 "m for large phospholipid ves-
icles (LPVs), and !10 "m for giant phospholipid vesicles
(GPVs). The size influences vesicle behavior by phenom-
ena that depend, for example, on both vesicle volume and
membrane area, as is the case with the characteristic time
for transmembrane diffusion transport, or on the ratio
between the membrane thickness (!5 nm) and vesicle
diameter. Among vesicles of different sizes, GPVs deserve
special attention because their dimensions are compara-
ble to the dimensions of cells. As such, they can also be
visualized by an optical microscope.

For a given area of the vesicle membrane (A), the vesicle
volume (V), being practically equal to the volume of the
internal solution, can have any value between nothing and
the volume of a sphere with radius Rs # (A/4$)1/2. Vesicle
volume may be the result of the process of vesicle forma-
tion and the processes occurring during its subsequent
history. It can also be monitored by the osmotic state of
the inside and outside solutions. For any vesicle volume
smaller than the volume of the sphere, the vesicle is flac-
cid and can assume an infinite number of shapes. How-

ever, experimental determination of shapes indicates that
they are limited to certain distinct shape types. In Figure
2 are the cross-sections of some characteristic GPV shapes
that have been obtained from optical microscopy. Two
characteristic oblate shapes are the disc shapes (shape 4)
and cup shapes (shapes 1–3), and two characteristic pro-
late shapes are the cigar shapes (shape 5) and pear shapes
(shapes 6–8). Shapes 9–12 are characteristic of shapes
with lower volumes, and shapes 13–16 are those with
narrow necks. It can be seen that phospholipid vesicle
shapes exhibit some symmetry characteristics, which in-
dicates that their formation obeys certain rules. It can also
be deduced from Figure 2 that different shapes can exist
at the same vesicle volume. This implies that there are
systemic properties other than the vesicle volume that
influence vesicle shape.

Elastic Properties of a Membrane Described as
an Elastic Sheet

The outside and inside vesicle solutions are liquids;
therefore, the formation of vesicle shapes can be, in the
absence of external forces, related only to the mechanical
properties of their membranes (Evans and Skalak, 1980).
Because of their relatively small thickness, phospholipid
membranes as a mechanical system resemble a thin elas-

Fig. 1. A schematic representation of a phospholipid vesicle. a: The
cross-section of a spherical vesicle. b: The axial cross-section of a
vesicle with an axisymmetric shape exhibiting a protuberance and re-
sembling a pear. Rs is the radius of the sphere and R m is the meridianal
principal radius. The two examples of Rm indicate that the membrane
principal radii are defined to be positive at the convex parts of the
membrane and negative at its concave parts. In both vesicles the struc-
tural features of phospholipid membranes are shown schematically for
the indicated membrane section. Phospholipid molecules are shown as
composed of heads (circles) and two tails. Dashed lines represent neu-
tral surfaces of the membrane monolayers, with their positions defined
through the requirement of independent lateral expansion and bending
deformational modes. The distance between the neutral surfaces is
denoted by h. The arrows in the section of vesicle b indicate the relative
shifts of the positions of phospholipid molecules in the two monolayers
when the protuberance forms.
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Total elastic energy for cells (vesicles)
Shape of cells (vesicles) can be obtained by 

minimizing the total elastic energy
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Minimal model: minimization of 
bending energy for lipid vesicles

Find the shape of vesicles that 
minimize bending energy by 

constraining the volume to v<1.

U. Seifert et al., PRA 44, 1182 (1991)

compressed, but rather assumes a nonspherical shape.
This happens because the energy cost due to membrane
bending is in general much smaller than the energy cost
needed for membrane lateral compression.

When a vesicle is not spherical, its membrane is curved
differently at different locations on the vesicle surface.
The two principal curvatures (C1 ! 1/R1 and C2 ! 1/R2,
with R1 and R2 being the principal radii) thus differ and
vary over the vesicle surface (Fig. 1b). The vesicle bending
energy, which can be expressed in terms of principal cur-
vatures, is therefore obtained by integrating the local
bending contributions over the whole membrane area. For
a thin sheet with isotropic elastic properties, this integra-
tion is the sum of the local bending term (Wb) and the
Gaussian bending term (WG) (Helfrich, 1973):

Wb " G ! Wb " WG !
1
2kc!(C1 " C2 # C0)2dA

" kG!C1C2dA [2]

where kc is the local bending modulus, kG the Gaussian
bending modulus, and C0 the spontaneous curvature. The
nonzero spontaneous curvature C0 reflects the possible
intrinsic property of the membrane that would cause its
unsupported piece to assume mechanical equilibrium at a
curved membrane conformation.

Spontaneous Curvature Model
of Vesicle Shapes

It has been proposed that the shapes of vesicular struc-
tures, such as phospholipid vesicles, correspond to the
smallest possible value of the membrane bending energy
(Canham, 1970). Such shapes can be predicted by a math-
ematical procedure (Deuling and Helfrich, 1976) in which
the shape with the minimum energy is found essentially
by scanning theoretically over all possible shapes. In the
minimization procedure, the only role is played by the first
term in Eq. [2], Wb, because for a vesicle of given topology
the Gaussian contribution to the bending energy has a
constant value. However, it has to be kept in mind that
this value can be finite (WG ! 4$kG for the spherical
topology) and therefore it must be taken into consider-
ation in processes in which the number of vesicles is
changing, as, for example, in vesicle fission and fusion
processes. In the flaccid vesicle the membrane area is
scarcely expanded. It is therefore possible for flaccid ves-
icles to assume that A % A0, and to obtain their shapes by
minimizing the membrane local bending energy Wb under
the constraint of constant membrane area. It can also be
recognized that the minimum energy shape does not de-
pend on the value of the bending constant kc which is just
a constant factor in the varied local bending energy term.
The shapes are also usually determined under the con-
straint of a fixed vesicle volume. Therefore, in their deter-
mination of a catalogue of vesicle shapes by minimizing
Eq. [2], Deuling and Helfrich (1976) could express their
results in terms of the reduced volume v ! 3V/4$Rs

3, with
Rs the radius of the sphere now corresponding to the area
of the unextended membrane (A0/4$)1/2, and the reduced
spontaneous curvature c0 ! C0Rs. The shapes of vesicles

in this, the so-called “spontaneous curvature” model, thus
depend only on the values of v and c0. In Figure 3 the
bending energies are shown, expressed in terms of the
bending energy of the sphere, wb ! Wb/8$kc, together with
some calculated shape cross-sections of vesicles, with the
smallest possible bending energy as a function of the re-
duced volume v for the value of the reduced spontaneous
curvature c0 ! 0.

Nonlocal Bending Energy
In a more complete description of shapes of phospholipid

vesicles, the fact that phospholipid membranes are com-
posed of two monolayers has to be taken into consideration
(Fig. 1). The two monolayers of a phospholipid bilayer can,
in the first approximation, be considered as composition-
ally independent, because the transbilayer movement of
phospholipids is slow, with typical half-times for phospho-
lipid equilibrium exchange being on the order of hours or
days (Wimley and Thompson, 1991). As already stated,
because of the hydrophobic effect, the two monolayers are
in a contact. Thus their positions are geometrically related
in that they are aligned in a parallel manner. By assuming
that the distance between the neutral surfaces of the two
monolayers is the same all over the membrane surface,
the area of the neutral surface of the outer layer (A2) is
larger than the area of the neutral surface of the inner
layer (A1) by the integral of the sum of the membrane
principal curvatures over the whole surface, multiplied by
the distance between the two neutral surfaces (h). The
difference between the areas of the two monolayers is thus

&A ! A2 # A1 ! h!(C1 " C2)dA. [3]

Integration is over the membrane area (A % A1 % A2) of
the vesicle.

Fig. 3. Membrane local bending energy in units of the bending en-
ergy of the sphere (wb ! Wb/8$kc) as a function of the reduced vesicle
volume for minimum energy shapes in the spontaneous curvature model
(adapted from Svetina and Žekš, 1989). The value of the spontaneous
curvature c0 is taken to be zero. The three curves represent cigar-, disc-,
and cup-shape classes. Typical examples of the corresponding shapes
are presented.
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v

S. Svetina and B. Zeks, 
Anat. Rec. 268, 215 (2002)

S QF VESICI.ES pHASE .SFQRMATIQNSHAPE TRAN &)91

sketched in App
' ram is divide

endixD
' ' ed into two

suits is
1f of the phase d»g

' o tinuous trans1-y t e
olate-dumb e

1 t -dumbbell
between

Above D, the p
h oblate-

n the p«e
rolate-branches-

r than
yte

ending energy
d been de-

low
1 it has aire y

a
ones. As U g

boundary app
oes to

a roac es
cyte o

y y
1 value cp= ——,critica

'"=2.08, a' h ' )=2.06
t v =0.

and cpC, W1t C0
DP betwee

1bell shapes occlate-dumbbe c
' les have

int.
-sha ed vesic esp - p

ie
metric to pea-frontinuous tran

hoximation to
sto

con

d
b t een these statesus transition e w

inFig. 1 t e
continuous

h b d

of course be ex e
Thous transition D . n o m

disc usse in
r as illustrate d 1n F1gs.

ityisbrie y
FOE' Co )2+2, bll ln

D'pearCp cp"
Dpro

0

Theare negative.
parts b"', the function

1. Th iih 1o 11 bl .which is, t us,
oblate-discocy

es. rive
s the symmetric o

and disappear or

discb d
d bbell —the obrolate- ump

11 th lo9 thsto ~0 5
.65, the oblate shapes have

U Ug)

r . Sincet eo
ture is necessary i

st
se no spontane

as revious y
as

g
'ze biconca

StO(U (
es of lowest bending r sevep

1

values of U. isc

s h energy barrier gso that the ener
n

f om Fig
d'fference be1

1

ote
W find EFb
s t' "'it

p

h thermal energy.
bl te discocy
bl "

difference AFb
the "metasta

the energy i e
the transition

tion will then ta e p a
m arab e o

branc esh the activa-dth obl t
diagram of

the prolate an
m the energy icannot e
the pro a ep

hes at constant Ulate branches a
shapes.

hase diagramB. Complete p a

tion the phase diagraam for
C %0 as displayed in Fig.0

0.2 0.4 0.6 0.8

0.05 0.3 0.591 0.592 0.651 0.6522 0.8 0.95

D and D'"1 values of u. D
1

FIG. . c
1 1

e area.h hres ective y.transitions, r

s ontaneous-curvature Iode1.
pof r a given sea e

' ns where t e p
t energy are

The regions
tes have 1owest e

U.

and stomatocytes
contin uou

d cocytes,

d scontinuou
denote app o

p
rs Th li

SI' and
g
1 ity. 8 yop
d states occur.intersecte s
ot yet known.gram is no

Minimum energy configurations
prolatesoblatesstomatocytes

v

e =

Z
da

4

✓
1

r1
+

1

r2

◆2



6

S. Svetina and B. Zeks, 
Anat. Rec. 268, 215 (2002)

Bilayer couple model of vesicles

tic sheet. Thin sheets can be treated elastically in terms of
independent elastic deformational modes, i.e., their in-
plane elasticity and bending. The in-plane elasticity of
phospholipid membranes is specific, in that phospholipid
molecules can exchange their lateral positions and can
therefore move freely within the plane of the membrane.
Consequently, phospholipid membranes behave as two-
dimensional liquids. As such they do not exhibit in-plane
shear and are laterally isotropic. However, membranes
exhibit compressibility properties. When a membrane is
laterally compressed or expanded, its elastic energy in-
creases in a way that can be approximated by the area
expansion energy term

WA !
K

2A0
(A " A0)2 [1]

where K is the area expansivity modulus (reciprocal of the
compressibility modulus), and A0 the equilibrium area of
the membrane.

The area expansion energy term (Eq. [1]) is particularly
important when a vesicle is in a swollen state, i.e., its
volume is larger than the volume of the sphere with an
area of the unextended membrane A0. In the opposite
case, when vesicle volume is smaller than this volume, the
membrane does not respond correspondingly by being

Fig. 2. A series of vesicle shapes as observed by phase contrast
microscopy. This microscopy senses the parts of vesicles in which the
path of the optical beam through the membrane is the longest; therefore,
the equatorial contours of vesicles are seen representing the equatorial
cross-sections of vesicles. In the first row are three shapes belonging to
the cup-shape class (1–3) and a shape belonging to the disc-shape class
(4). In the second row are shapes belonging to the cigar-shape (5) and
pear-shape (6–8) classes. In the third row are some examples of shapes
with a relatively small vesicle volume/membrane area ratio. Shape 9 is
termed a codocyte, shape 10 is a torocyte, shape 11 is a starfish, and

shape 12 is a worm shape. The fourth row shows shapes characterized
by narrow necks connecting nearly spherical vesicle parts. Shape 13 has
two invaginated spheres within a large sphere. Shape 14 is composed of
a large sphere and two small evaginated spheres. Shape 15 has a small
sphere in between two large spheres, whereas shape 16 has (in addition
to a large mother sphere) five small spheres arranged in a row and a
single small sphere connected to it at another position. Data are from:
shapes 1–4, 13, and 14 (Käs and Sackmann, 1992), 5–8 (Käs et al.,
1993), 9 and 16 (Svetina et al., 2001), 10–12 (J. Majhenc, unpublished
data), and 14 (Farge and Devaux, 1992).

217SHAPE BEHAVIOR OF LIPID VESICLES

are different. The shape classes can be defined as the
domains within the v-!a phase diagram where shapes of
the same symmetry are obtained by continuous shape
transformations caused by continuously varying parame-
ters v and !a (Svetina and Žekš, 1989; Seifert et al., 1991).
In Figure 4 some regions in the v-!a phase diagram are
presented in which, in the strict bilayer couple model, the
shapes of some shape classes have the lowest values of the
local bending energy. To date, the shape classes have been
well characterized primarily for the v and !a values in
regions that are not too far from the point representing
the sphere (!a " 1, v " 1). For smaller reduced volumes v,
only some types of shapes have been characterized theo-
retically (Wintz et al., 1996). Some, but not all, shape
classes are comprised of axisymmetric shapes, including
those shapes that have also equatorial mirror symmetry
(e.g., disc and cigar shapes), and those without such sym-
metry (e.g., pear and cup shapes). In the intermediate
region between the oblate (lower !a) and prolate (higher
!a) shapes, there is the region of nonaxisymmetric shapes
(Heinrich et al., 1993).

In order to provide more detailed insight into the char-
acteristics of vesicle shape behavior, we present the strict
bilayer couple predictions for the shape behavior of the
cigar- and pear-shape classes. In Figure 5 the bending
energies of these two classes are given as a function of the
area difference !a for two values of the reduced volume v
(0.85 and 0.95). The axial cross-sections of the shapes of
the corresponding shape series are also presented in this
figure. For both considered reduced volumes the shape

with the absolute minimum energy belongs to the more
symmetric cigar class. However, at continuously increas-
ing !a, a point is reached where there is a continuous
transition to the pear shape, i.e., the shape with the lower
symmetry, because it has no equatorial mirror symmetry.
Another significant feature of the system is that limiting
shapes at higher !a boundaries of the pear-shape class are
composed of a large and a small (evaginated) sphere con-
nected by an infinitesimally small neck (Fig. 5, shapes 6
and 12).

We now show that for the finite values of the ratio kr/kc,
i.e., within the generalized bilayer couple model (Heinrich
et al., 1993; Miao et al., 1994), some of the stable shapes of
the strict bilayer couple model become unstable. For this
purpose we have to solve Eq. [7]. It is convenient and
instructive to do this graphically. In the same graph (Fig.
6) we plot the derivative of the local bending energy ob-
tained numerically from the results for the wb(!a) depen-
dence as presented in Figure 4 (in Fig. 6 the results are
shown only for v " 0.85), and the line with the slope –
2kr/kc, which intersects the abscissa at a point defined by
the chosen values of !a0 and c0. The solutions of Eq. [7]
are the points at which the derivative dwb(!a)/d!a and
the line intersect. In Figure 6 this procedure is performed
separately for three values of the ratio kr/kc. For kr/kc " 20
(Fig. 5c) there is a single intersection of the two curves and
thus a single solution of Eq. [7] at all relevant values of
!a0 and c0. At kr/kc " 6 (Fig. 5b) there are, within a
certain interval of the values of !a0 and c0, three solutions
of Eq. [7]. The intersections show that one of these solu-

Fig. 4. The v-!a phase diagram of vesicle shapes. The regions are
shown where in the strict bilayer couple model, the shapes with the
lowest local membrane bending energy belong to cup-, pear-, nonaxi-
symmetrical-, cigar-, and pear-shape classes (Svetina and Žekš, 1989,
1990; Heinrich et al., 1993). One set of class boundaries are the lines that
give for the limiting shapes the dependence of their reduced volume (v)
on their reduced area difference (!a). They are drawn by full lines and are
given for (A–F) some indicated limiting shapes. The limiting shapes
shown are compositions of spheres connected by infinitesimally narrow

necks. Limiting shapes at !a # 1 (A and B) have invaginated spheres.
Other sets of class boundaries are the symmetry-breaking lines defined
by the v and !a values where the shapes with an equatorial mirror
symmetry (disc and cigar shapes) become unstable. They are drawn by
dashed lines. Points 1–16 represent the positions in the v-!a phase
diagram of the shapes presented in Fig. 2. The positions of shapes 1–9
are obtained by comparison of the observed shapes with the corre-
sponding calculated shapes. Positions of other vesicles are estimated.
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Shape of red blood cells

G. Lim et al., PNAS 99, 16766 (2002)

whenever the membrane is not flat, a purely geometrical differ-
ence !A is induced between the areas of the inner and outer
leaflets. If !A is not identical to !A0, then elastic energy is

required to make them conform. The shape–free–energy func-
tional that incorporates these two effects is

FADE"S# !
"b

2 !
S

dA$2H # C0%
2 $

"!
2

%

AD2 $!A # !A0%
2, [1]

where D is the membrane thickness," A is the membrane area, "b
and "! are known bending elastic moduli, and the integral is over
the surface S of the closed vesicle. Eq. 1 defines the so-called
area–difference–elasticity (ADE) model (13). Mechanically sta-
ble shapes of fixed area and volume correspond to constrained
energy minima. For appropriately chosen parameters, the ADE
model does exhibit discocytic shapes, which become unstable
and transform to stomatocytic shapes when !A0 is decreased,
in accordance with the bilayer-couple hypothesis. However,

"More precisely, D is the separation between the neutral surfaces of the two bilayer leaflets
and is assumed independent of bending. The neutral surface of the leaflet is the plane
about which the net bending moment caused by the stress profile vanishes.

Fig. 1. Representative shapes from the main stomatocyte–discocyte–
echinocyte sequence, including (top to bottom) stomatocyte III, II, and I;
discocyte; and echinocyte I, II, and III. (Left) Laboratory images reproduced
with permission from refs. 31 (Copyright 1956, Grune & Stratton), 32 (Copy-
right 1980, Academic Press), 33 (Copyright 1975, Biophysical Society), and 2
(Copyright 1973, Springer). (Right) Minimum-energy shapes calculated from
our model with v0 & 0.950 and !a0 of (top to bottom in percentages) ' 0.858,
' 0.358, 0.072, 0.143, 1.717, 1.788, and 2.003 with all other parameters re-
maining fixed.

Fig. 2. A sample of observed non-main-sequence shapes, including (top to
bottom) nonaxisymmetric discocyte, stomatocyte with triangular mouth, and
knizocyte. (Left) Laboratory images reproduced with permission from refs. 27
(Copyright 1981, Biophysical Society), 32 (Copyright 1980, Academic Press),
and 2 (Copyright 1973, Springer). (Right) Minimum-energy shapes calculated
from our model with values of v0 and !a0 of 0.989 and 0.215%, 0.950 and
' 0.858%, and 1.000 and 1.144% (from top to bottom) with all other param-
eters remaining fixed.

Lim et al. PNAS # December 24, 2002 # vol. 99 # no. 26 # 16767
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In the usual environment red blood cells 
have discocyte shape. Modifying cell 

environment can induce different shapes.
⇠ 7µm
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low pH, cholesterol depletion
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Sickle-cell disease (anaemia)

Wikipedia

Sickle cells are much stiffer and 
cannot deform in order to pass 

through small capillaries. 

In low oxygen environment 
hemoglobin proteins inside sickle cells 

polymerize and form long strands. 
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Protein aggregation and diseases
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(A) Figure 14.22: Protein folding and
aggregation. A protein folded in
its native state sequesters
hydrophobic domains on the inside to
hide the hydrophobic core.
Denaturation disrupts the native
structure, exposing these
hydrophobic patches. (A) When the
protein is allowed to refold in very
dilute solution, the hydrophobic
patches within a single molecule
self-associate to reform the native
hydrophobic core. (B) At high
concentration, the hydrophobic patch
of one protein molecule may associate
with the hydrophobic patch of
another, triggering protein
aggregation rather than native
refolding. Hydrophobic residues are
shown in red, while hydrophilic
residues are shown in blue.concentrations of both substrate and enzyme are known and the

turnover rate of the enzyme has been accurately measured.

Protein Folding Is Facilitated by Chaperones

Another case where dilute in vitro biochemical experiments fail to
accurately represent the complexities of protein behavior inside cells
is in the study of protein folding. Many small proteins of rela-
tively simple structure can be purified and denatured with harsh
chemical agents such as urea or guanidinium chloride. When the
denaturing agents are removed, the proteins refold in vitro to their
original native structure. These kinds of experiments are successful
only when the protein concentration is several orders of magnitude
lower than the actual concentrations of protein inside of cells. In
more crowded solutions, denatured proteins tend to aggregate by
intermolecular association of their hydrophobic patches or domains,
preventing proper intramolecular association of these domains to
form the protein’s hydrophobic core as shown in Figure 14.22.

How do cells prevent aggregation of proteins as they are synthesized
from ribosomes in the highly crowded cytoplasmic environment? Spe-
cialized proteins called chaperones facilitate protein folding both by
increasing its rate and by preventing aggregation of partially folded
protein intermediates. These chaperones come in two flavors. Cham-
bered chaperones such as GroEL in bacteria and TRiC in eukaryotic
cells actually form a tiny private room in which an individual polypep-
tide chain is free to fold with no danger of random collision with
the hydrophobic patches of others. These chambered chaperones con-
sume ATP in the process of opening and closing the door to the room.
The second class of chaperone, exemplified by small heat-shock pro-
teins such as HSP70, tend not to require ATP for their action. These
bind to the hydrophobic domains of nascent proteins as they emerge
from the ribosome and prevent their aggregation until the entire
protein domain has been translated and is ready to fold.

14.3.2 Diffusion in Crowded Environments

As was illustrated in Figures 14.4 and 14.5, diffusion in crowded
environments is more subtle than its dilute-solution counterpart.
Theoretical responses to this challenging problem are usually all built
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hydrophilic 
amino acids
hydrophobic 
amino acids

R. Phillips et al., Physical 
Biology of the Cell

(A) In dilute solution misfolded proteins 
refold back into their native state.

Cells have special proteins called chaperons, which assist proteins 
folding into their native state and thus prevent aggregation.

Protein aggregation is a cause of many 
diseases (Alzheimer’s, Parkinson’s, …)

(B) In concentrated solution misfolded proteins tend to form aggregates.
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Protein aggregates are associated with diseases
Parkinson’s disease

Substantia 
nigra

!-synuclein aggregates 
in dopamine producing 

nerve cells

Loss of dopamine 
neurotransmitters results 
in movement disorders

Alzheimer’s disease
healthy 
brain

diseased 
brain

microtubules

tau proteins

healthy neurons diseased neurons
amyloid 

plaques (toxic)

tau tangles 
(disintegration 

of microtubules)

normal 
neuron
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by Parkinson’s

dopamine receptors
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DNA structure
DNA stores genetic 

information encoded 
with sequence of bases

chromosome

DNA

nucleosome

histone

gene

nucleotide

Nucleotide
base pairs:

Guanine
Cytosine
Adenine
Thymine
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Production of new proteins
Transcription of DNAtranscription

factors

Transcription factors are proteins, which bind to specific locations 
on DNA, and they help recruiting RNA polymerase (RNAP) that 

makes a messenger RNA (mRNA) copy of certain DNA segment.

Translation of mRNA

mRNA

protein

Note: some transcription factors (repressors) also prevent transcription.

DNA
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Chaperons assist with protein folding  
and prevent protein aggregation

B. Alberts et al., Molecular Biology of the Cell

ribosome translation 
of mRNA to proteins

chaperons bind to translated 
protein and protect them from 

interactions with other 
proteins to prevent 

aggregation of proteins

isolated proteins in chaperonin 
chambers fold into their 

compact native state
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Chaperons assist with disassembly
of protein aggregates

S. M. Doyle et al., Nat. Rev. Mol. Cell Biol. 14, 617 (2013)

Nature Reviews | Molecular Cell Biology

Hsp104

Refolded
substrate

J-domain
protein (Hsp40)

Hsp70Large aggregate Binding of substrate
to Hsp104

Release of unfolded
substrate

ATP

ATP

ATP ATP

Interaction of J-domain protein,
Hsp70 and aggregate

Unfolding and translocation
of substrate by Hsp104

Prion propagation and amyloid disaggregation
In yeast, Hsp104 is required for the inheritance of nearly 
all known prions, which are insoluble amyloid protein 
aggregates29,32,33,121–124. There are many yeast prions, 
including [PSI+], [URE3], [RNQ+] and [SWI+]29,32,121,124. 
In their native conformations, prion forming proteins 
have diverse biological functions. However, they all pos-
sess the ability to adopt a prion conformation that assem-
bles into ordered amyloid fibres. Prion-forming proteins 
contain a Gln- and Asp-rich region that is required and 
sufficient for prion formation and propagation31,32,121. 
This region forms a cross-β-sheet structure125 (amyloid), 
and the prion ‘grows’ by incorporating soluble monomers 
into the amyloid at the ends of the fibre121,124,126,127 (FIG. 6a).

Prion propagation (that is, prion inheritance) involves 
severing of the amyloid fibres into smaller fibres20,121,124,128 
(FIG. 6a). During cell division, severed fibres, referred to 
as amyloid seeds, partition between the mother and 
daughter cell. The amyloid seeds then act as templates 
for further prion growth20,129 (FIG. 6a). The proposed role 
of Hsp104 in prion propagation is to promote the sever-
ing of the large amyloid fibres into smaller fibres29,124,130,131 
(FIG. 6a). Yeast Hsp70 (Ssa1), Hsp40 (Sis1) and a yeast NEF 
(Sse1) are also involved in prion propagation, although 
the requirement varies depending on the prion113,124,132–137. 
Disruption of protein homeostasis by high expression 
levels of Hsp104 results in the elimination of [PSI+], the 
prion form of the Sup35 translation terminator protein, 
but not other prions124,134,136,138,139. One possible explana-
tion is that high levels of Hsp104 cause an increase in 
the number of partially remodelled Sup35 amyloid inter-
mediates, probably by extracting a single β-strand from 

the cross-β-sheet region of the prion. These partially 
unfolded inter mediates may promote strand-swapping 
between amyloid fibres and ultimately the assembly of 
very large particles136,138. The formation of these large par-
ticles would decrease the number of amyloid seeds and 
potentially lead to a decreased efficiency of transmission 
to daughter cells136,138.

Recent in vitro and in vivo studies have shown that 
Hsp104 can interact directly with Sup35 in the prion 
conformation113,136,140. The interaction between Hsp104 
and Sup35 does not require the Hsp70 system and is 
unique to the Sup35 prion113. In addition, several in vitro 
studies have shown that Hsp104 acts in ATP-dependent 
reactions to disassemble amyloid fibres in the absence 
of co-chaperon e components93,139,141. However, these 
observations have been difficult to reproduce110,140,142,143. 
It has also been reported, both in vitro and in vivo, that 
amyloid disassembly by Hsp104 is stimulated by the 
combined action of yeast Hsp70 (Ssa1) and yeast Hsp40 
(Sis1 or Ydj1)20,93,108,132. Moreover, an in vivo study indi-
cated that Ssa1 targets Hsp104 to the surface of multiple 
prion fibrils20.

E. coli ClpB, when expressed from a plasmid, has 
recently been shown to propagate prions in yeast cells 
lacking Hsp104 (REF. 33). Propagation also requires 
exo  genously supplied E. coli DnaK and GrpE, which 
confirms the specificity between ClpB and DnaK and 
suggests the importance of nucleotide exchange33. 
Moreover, ClpB and DnaK collaborated with the yeast 
J-domain protein Sis1, but not Ydj1 in prion propaga-
tion. This work demon strates that Hsp104 is not the only 
member of the family of HSP100 disaggregases that has 

Figure 5 | Mechanism of disaggregation by Hsp104 and the Hsp70 system. J-domain protein (yellow) interacts with 

aggregated substrates and recruits heat shock protein 70 (Hsp70) (blue) to the aggregate. Hsp104 is probably targeted 

to the aggregate by Hsp70 via direct interactions between the middle domain (M-domain) of Hsp104 and the 
nucleotide-binding domain of Hsp70. Hsp70 coordinates ATP hydrolysis by Hsp104 and additionally assists in presenting 

the substrates to Hsp104. Hsp104 disaggregates the aggregate by extracting polypeptides. Hsp104 forces polypeptides 

through its central channel using the energy from ATP hydrolysis, and the polypeptides are unfolded during this process. 

The unfolded polypeptides are released to refold spontaneously or with assistance of other chaperones, which might 

include Hsp70. By the same mechanism, ClpB and the DnaK system disaggregate large protein aggregates in bacteria.
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chaperons: Hsp40, Hsp70, Hsp104

Under normal cell conditions, protein 
aggregates are small and short lived!


