MAE 545: Lecture 17 (4/10) Random walks

Random walks

Polymer random coils

Brownian motion Swimming of E. coli

or cell nucleus (in eukaryotes). Compare with figure 9(*A*) which shows confined DNA. (*B*) The **Protein search for a binding site on DNA**

Brownian motion of small particles

1827 Robert Brown: observed irregular motion of small pollen grains suspended in water

<https://www.youtube.com/watch?v=R5t-oA796to>

1905-06 Albert Einstein, Marian Smoluchowski: microscopic description of Brownian motion and relation to diffusion equation

At each step particle jumps to the right with probability q and to the left with probability 1-q.

What is the probability *p(x,N)* **that we find particle at position** *x* **after** *N* **jumps?**

Probability that particle makes *k* **jumps to the right and** *N-k* **jumps to the left obeys the binomial distribution**

$$
p(k, N) = {N \choose k} q^{k} (1-q)^{N-k}
$$

Relation between *k* **and particle position** *x***:**

$$
x = k\ell - (N - k)\ell = (2k - N)\ell
$$

$$
k = \frac{1}{2}\left(N + \frac{x}{\ell}\right)
$$

Gaussian approximation for p(x,N)

 $\langle x \rangle$

Position *x* **after** *N* **jumps can be expressed Position** *x* after *N* jumps can be exp as the sum of individual jumps $x_i \in$

Mean value averaged over all possible random walks

expressed

\n
$$
x_i \in \{-\ell, \ell\}, \qquad x = \sum_{i=1}^{N} x_i
$$
\n
$$
\langle x \rangle = \sum_{i=1}^{N} \langle x_i \rangle = N \langle x_1 \rangle = N \left(q\ell - (1 - q)\ell \right)
$$
\n
$$
\langle x \rangle = N\ell \left(2q - 1 \right)
$$

Variance averaged over all possible random walks

$$
\sigma^2 = \langle x^2 \rangle - \langle x \rangle^2 = N\sigma_1^2 = N\left(\langle x_1^2 \rangle - \langle x_1 \rangle^2\right)
$$

$$
\sigma^2 = N\left(q\ell^2 + (1-q)\ell^2 - \langle x_1 \rangle^2\right)
$$

$$
\sigma^2 = 4N\ell^2q(1-q)
$$

Gaussian distribution for large N: 77 According to the central limit theorem p(x,N) approaches

$$
p(x, N) \approx \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\langle x \rangle)^2/(2\sigma^2)}
$$

Number of distinct sites visited by unbiased random walks

Total number of sites inside explored region after *N* **steps**

$$
\textbf{1D} \quad N_{\rm tot} \propto \sqrt{N}
$$

2D $N_{\rm tot} \propto N$

In 1D and 2D every site gets visited after a long time

In 3D some sites are never visited even after a very long time!

Shizuo Kakutani: "A drunk man will find his way home, but a drunk bird may get lost forever."

 $N_{\rm tot} \propto N \sqrt{\ }$ $3\textsf{D}$ $N_{\text{tot}} \propto N\sqrt{N}$

8

Number of distinct visited sites after *N* **steps**

 $N_{\rm vis} \approx \sqrt{8N/\pi}$ $N_{\rm vis} \approx \pi N / \ln(8N)$ $N_{\rm vis} \approx 0.66N$ **1D 2D 3D**

Master equation provides recursive relation for the evolution of probability distribution, where ⇧(*x, y*) describes probability for a jump from y to x .

$$
p(x, N+1) = \sum_{y} \Pi(x, y) p(y, N)
$$

For our example the master equation reads:

$$
p(x, N + 1) = q p(x - \ell, N) + (1 - q) p(x + \ell, N)
$$

Initial condition: $p(x, 0) = \delta(x)$

Probability distribution *p***(***x***,***N***) can be easily obtained numerically by iteratively advancing the master equation.**

Master equation: Assume that jumps occur in regular small time intervals: Δt

$$
p(x, t + \Delta t) = q p(x - \ell, t) + (1 - q) p(x + \ell, t)
$$

In the limit of small jumps and small time intervals, we can Taylor expand the master equation to derive an approximate drift-diffusion equation:

$$
p + \Delta t \frac{\partial p}{\partial t} = q \left(p - \ell \frac{\partial p}{\partial x} + \frac{1}{2} \ell^2 \frac{\partial^2 p}{\partial x^2} \right) + (1 - q) \left(p + \ell \frac{\partial p}{\partial x} + \frac{1}{2} \ell^2 \frac{\partial^2 p}{\partial x^2} \right)
$$

\n**Fokker-Planck equation:**
\n
$$
\frac{\partial p}{\partial t} = -v \frac{\partial p}{\partial x} + D \frac{\partial^2 p}{\partial x^2}
$$
\n
$$
\text{drift velocity } v = (2q - 1) \frac{\ell}{\Delta t}
$$
\n
$$
\text{coefficient } D = \frac{\ell^2}{2\Delta t}
$$

 $\Pi(s|x)$ In general the probability distribution Π of jump **lengths** *s* **can depend on the particle position** *x*

Generalized master equation:

$$
p(x, t + \Delta t) = \sum \Pi(s|x - s)p(x - s, t)
$$

11

s **Again Taylor expand the master equation above to derive the Fokker-Planck equation:**

$$
\frac{\partial p(x,t)}{\partial t} = -\frac{\partial}{\partial x} \left[v(x)p(x,t) \right] + \frac{\partial^2}{\partial x^2} \left[D(x)p(x,t) \right]
$$

drift velocity diffusion coefficient

$$
v(x) = \sum_{s} \frac{s}{\Delta t} \Pi(s|x) = \frac{\langle s(x) \rangle}{\Delta t}
$$

(external fluid flow, external potential) (e.g. position dependent temperature)

$$
D(x) = \sum_{s} \frac{s^2}{2\Delta t} \Pi(s|x) = \frac{\langle s^2(x) \rangle}{2\Delta t}
$$

Lévy flights

 $\int A_D s_0^2, \quad \alpha > D+2$

 $\infty, \quad \alpha < D+2$

Probability of jump lengths in *D* **dimensions**

z
Z

 ${\bf Normalization} \int d^Ds \, \Pi(\vec{s}) = 1 \implies \alpha > D$

$$
\prod(\vec{s}) = \begin{cases} C|\vec{s}|^{-\alpha}, & |\vec{s}| > s_0 \\ 0, & |\vec{s}| < s_0 \end{cases}
$$

$$
d^D \vec{s} \Pi(\vec{s}) = 1 \longrightarrow \alpha > D
$$

Moments of distribution

Lévy flights are better strategy than random walk for finding prey that is scarce

 $\langle \vec{s} \rangle = 0 \quad \langle \vec{s}^2 \rangle =$

2D random walk trajectory

 $\alpha = 3.5, D = 2$

Lévy flight

trajectory

Probability current

Fokker-Planck equation

$$
\frac{\partial p(x,t)}{\partial t} = -\frac{\partial}{\partial x} \left[v(x)p(x,t) \right] + \frac{\partial^2}{\partial x^2} \left[D(x)p(x,t) \right]
$$

\n**Conservation law of probability**
\n**(no particles created/removed)**
\n
$$
\frac{\partial p(x,t)}{\partial t} = -\frac{\partial J(x,t)}{\partial x}
$$

\n**Probability current:**
\n
$$
J(x,t) = v(x)p(x,t) - \frac{\partial}{\partial x} \left[D(x)p(x,t) \right]
$$

Note that for the steady state distribution, where $\partial p^*(x,t)/\partial t \equiv 0$ **the steady state current is constant and independent of** *x*

$$
J^* \equiv v(x)p^*(x) - \frac{\partial}{\partial x} \left[D(x)p^*(x) \right] = \text{const}
$$

If we don't create/remove particles at boundaries then $J^*=0$

Equilibrium probability distribution:

$$
\sum_{13} p^*(x) \propto \frac{1}{D(x)} \exp\left[\int_{-\infty}^x dy \frac{v(y)}{D(y)}\right]
$$

Translational and rotational diffusion for particles suspended in liquid

Translational diffusion

 $\langle r^2 \rangle = 2D\pi t$

Rotational diffusion

 $\left\langle \theta^2 \right\rangle = 2D_R t$

$$
\begin{array}{c}\n\sqrt{2} & -2 \\
\end{array}
$$

Stokes viscous drag: $\lambda_T = 6\pi\eta R$

Einstein - Stokes relation

$$
D_T = \frac{k_B T}{6 \pi \eta R}
$$

Time to move one body length in water at room temperature

$$
\langle x^2 \rangle \sim R^2 \longrightarrow t \sim \frac{3\pi \eta R^3}{k_B T}
$$

$$
R \sim 1\mu \longrightarrow t \sim 1s
$$

$$
R \sim 1 \text{mm} \longrightarrow t \sim 100 \text{ years}
$$

Stokes viscous drag: $\lambda_R = 8\pi\eta R^3$

Einstein - Stokes relation

$$
D_R = \frac{k_B T}{8\pi\eta R^3}
$$

Time to rotate by 900 in water at room temperature

$$
\left<\theta^2\right>\sim 1 \implies t \sim \frac{4\pi\eta R^3}{k_BT}
$$

15 water viscosity $\eta \approx 10^{-3} \text{kg m}^{-1}\text{s}^{-1}$ **Boltzmann constant** $k_B = 1.38 \times 10^{-23} \text{J/K}$ **room temperature** $T = 300$ K

Fick's laws

Adolf Fick 1855

N noninteracting Brownian particles

Local concentration of particles $c(x,t) = Np(x,t)$

J \bar{J}

 $= c\vec{v} - D\nabla$

 $\bar{\bar{\nabla}}$

c

Fick's laws are equivalent to Fokker-Plank equation First Fick's law

Flux of particles

$$
J = vc - D\frac{\partial c}{\partial x}
$$

Second Fick's law

Diffusion of particles

$$
\frac{\partial c}{\partial t} = -\frac{\partial J}{\partial x} = -\frac{\partial}{\partial x} \left[vc \right] + \frac{\partial}{\partial x} \left[D \frac{\partial c}{\partial x} \right]
$$

Generalization to higher dimensions

$$
\frac{\partial c}{\partial t} = -\vec{\nabla}J = -\vec{\nabla}\cdot(c\vec{v}) + \vec{\nabla}\cdot(D\vec{\nabla}c)
$$

Further reading

Crispin Gardiner

Springer

SPRINGER SERIES Springer:
IN SYNERGETICS COMPLEXITY

Stochastic
Methods

A Handbook for the Natural and Social Sciences

STOCHASTIC PROCESSES IN PHYSICS AND CHEMISTRY

Third edition

NORTH-HOLLAND PERSONAL LIBRARY

