
MAE 545: Lecture 2 (2/8)
Structural colors

cuticle and air9,10 (Fig. 3b, c). Photonic structures of reduced dimen-
sions, present in certain Coliasbutterflies, effect intense UV visibility11.
In other species of butterfly, orientational adjustments to the align-
ment of such discrete multilayers produce strong angle-dependent
iridescence that provides high-contrast colour flicker with minimal
wing movement12 or strong iridescence at grazing incidence when
viewed posteriorly13.

The discrete layering in the examples above contrasts with the
more continuous layering, which appears to have developed primarily
to induce cryptic colouration, in other butterfly species. In certain
architectures, this may not only bring about colour stimulus
synthesis14 but also strong linearly polarized reflection of a specific
colour, an effect that contributes to intraspecific communication15.
Several species accomplish this using a multilayered structure
embedded in 2D arrays of deep concavities (Fig. 4a, b); this design
enables the reflection of yellow light at normal incidence from the
base of each concavity and blue light through a double reflection
from opposite and perpendicularly inclined sides of each concavity
(Fig. 4c) to produce a blue annulus with a yellow centre16 (Fig. 4d).
The juxtaposition of these two colours synthesizes the green coloura-
tion perceived by the human eye—and possibly by the predator’s.

Certain Coleoptera, however, exhibit continuously layered exo-
cuticle that strongly reflects circularly polarized light through an
analogue of optically active cholesteric liquid crystalline structures.
The helical arrangement of chitin microfibrils that make up such
exocuticle, and which are systematically rotated by a small amount
across successive planes, creates a periodicity that produces circularly
polarized coloured reflection17. In other words, the polarized reflec-
tion is not derived from optical rotation at a molecular level from the
L-amino acids of the cuticle protein and the D-amino sugars of the
chitin; instead it arises at the supermolecular level and is similar to
that exhibited by a cholesteric liquid crystal from the rotation of the
local average alignment direction of the liquid crystal molecules (the
director). Although similar helical structures are found in many
other iridescent species, they are rarely responsible for similarly
strong colouration and anomalous polarization properties4.

Structurally coloured avian feather barbs and integument,
although they exhibit less structural diversity than scales of Lepi-
doptera, are no less remarkable. Recent analyses suggest that such

colour as is seen in many Avian orders, is the product of coherent,
rather than incoherent, scatter from the spatial variation in refractive
index of medullary keratin in feather barbs or of collagen fibres in the
dermis18. 

Photonics in flora 
Advanced photonic development is not limited to fauna. Certain
anomalous species of flora also show partial PBGs that underpin an
often vivid structural colour19 (Fig. 5a). Invariably this is mediated by
variations in 1D multilayering (although more complex structural
designs are also thought to exist), producing iridescence in vascular
plant leaves, fruits and marine algae4. Periodicity is generally formed
by laminations of hydrated cellulose, which are usually located close
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Figure 2 Iridescent setae from polychaete worms. a, Scanning electron micrograph
(SEM) and b–d, transmission electron micrograph (TEM) images of transverse sections
through a single iridescent seta. Bars, a, 2 !m; b, 5 !m; c, 1 !m; d, 120 nm.
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Figure 3 Iridescence in the butterfly Morpho rhetenor. a, Real colour image of the blue
iridescence from a M. rhetenor wing. b, Transmission electron micrograph (TEM) images
showing wing-scale cross-sections of  M. rhetenor. c, TEM images of a wing-scale
cross-section of the related species M. didius reveal its discretely configured multilayers.
The high occupancy and high  layer number of M. rhetenor in b creates an intense
reflectivity that contrasts with the more diffusely coloured appearance of M. didius, in
which an overlying second layer of scales effects strong diffraction4. Bars, a, 1 cm; b,
1.8 !m; c, 1.3 !m.
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Figure 4 Iridiscence in Papilo palinurus. a, SEM of an iridescent scale showing its array
of concavities, each with a section that exhibits the curved multilayering shown by
transmission electron micrography in b. This structure produces two simultaneous
structural colours c, yellow and blue . d, The blue annulus is created by a double
reflection from opposite and perpendicular concavity sides. d also schematically
illustrates the way in which incident linearly polarized blue light has its e-vector (dotted
lines) rotated by this double reflection. Bars, a, 15 !m; b, 1 !m; c, 6 !m.
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structural color

Structural colors of animals and plants appear due to the selective 
reflection of ambient light on structural features underneath the surface.

White light coming from the 
sun consists of all colors.



White light coming from the 
sun contains electromagnetic 

waves of all wavelengths!
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Electromagnetic waves

electric field
speed  of light

magnetic field

�

wavelength �
frequency ⌫

c0 = �⌫ = 3⇥ 108m/s

c2 ~B0 = ~c⇥ ~E0
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Wave equation
@2u

@t2
= c2r2u

Solutions are 
traveling waves 
with velocity c.

electromagnetic waves

sound waves 

c =

s
K

⇢

bulk modulus
mass density

K

⇢

c =

s
F

⇢A

waves in ropes under tension

tensile force
mass density⇢

cross-section areaA

F

permittivity
permeability

c =
1

p
✏µ

✏

µ

c =

r
µ

⇢

shear modulus
mass density⇢

µ

shear waves

c =
p

gh

waves on liquid surfaces
shallow water

deep water

c =

r
g�

2⇡
gravitational const.
water depth
wavelength

g

h

�
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Plane waves

�

Solutions of wave equation 
can be described as a linear 

superposition of plane waves:

u(x, t) =
X

~k

A~ke
i(~k·~r�!t)

wavevectork =
2⇡

�

! = 2⇡⌫ angular frequency

Planes of constant phases:

~k · ~r = const

Plane waves travel in 
direction of     with velocity:~k

c =
!

k
= �⌫

Note: velocity of plane 
waves may depend on 
the wavevector          !c(~k)
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Propagation of light in medium

�0 �

vacuum medium with index
of refraction n>1

x1 x2

speed of light c0 = 3⇥ 108m/s c = c0/n

frequency ⌫0

wavelength �0

c0 = ⌫0�0

⌫ = ⌫0

� = �0/n

c = ⌫�

total number 
of cycles

x1

�0
+

x2

�
=

x1 + nx2

�0

Optical path length is 
geometric distance multiplied 

by the index of refraction!
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Reflection of waves
light rope heavy rope

incoming pulse

amplitude of
reflected

pulse

amplitude of 
transmitted

pulse

ur

ui
=

c2 � c1
c1 + c2

ut

ui
=

2c2
c1 + c2

ui

transmitted pulse

reflected pulse

ur

ut

incoming pulse

ui

reflected pulsetransmitted pulse

ut ur
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Wave equation for rope under tension

x

y

Forces acting on a small rope element:

F0 F0

shape profile: h(x, t)

Assume small deformations and 
ignore movement in x direction!

F0

Fy(x+ dx, t)
F0

Fy(x, t)

F (
x,
t)

F (x
+ dx,

t)

Forces act only in direction of the rope:

Fy(x, t)

F0
=

@h(x, t)

@x

Second Newton’s law for a 
small rope element:

⇢Adx
@2h

@t2
= Fy(x+ dx, t)� Fy(x, t)

⇢A
@2h

@t2
=

@Fy

@x
= F0

@2h

@x2

@2h

@t2
=

F0

⇢A

@2h

@x2
⌘ c2

@2h

@x2

Wave equation:

dx
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Boundary conditions between 
connected ropes

x

y

F0 F0

shape profiles:
hb(x, t) hg(x, t)

x0

Continuity: ropes are connected

hb(x0, t) = hg(x0, t)

Forces acting on the massless 
point, where ropes are connected:

Fb

Fb
Fb,y

Fg,yF0

F0

Fg,y�Fb,y = ma = 0

Newton’s law for this massless point:
@hb

@x
(x0, t) =

@hg

@x
(x0, t)

Force balance:
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Reflection of waves on ropes

incoming pulse

transmitted pulsereflected pulse

ui

ur

wave speed in
black rope

wave speed in
green rope

x0 = 0

ub(x, t) =
X

!

⇣
A!e

i(k1x�!t) +B!e
i(�k1x�!t)

⌘incoming pulse reflected pulse

utc1 =
!

k1
c2 =

!

k2

Solutions of wave equations can be expanded in Fourier series:

transmitted pulse

ug(x, t) =
X

!

⇣
C!e

i(k2x�!t)
⌘

boundary conditions:
ub(0, t) = ug(0, t)

@ub

@x
(0, t) =

@ug

@x
(0, t)

A! +B! = C!

ik1(A! �B!) = ik2C!

amplitudes of reflected 
and transmitted waves:

C! = A!
2c2

(c1 + c2)

B! = A!
(c2 � c1)

(c1 + c2)
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Reflection of light at the interface between two media

incoming wave Ei

transmitted wave Et

reflected wave Er

amplitude of
reflected

electric field

amplitude of 
transmitted
electric field

boundary conditions for incident 
waves normal to the interface:

c1 = c0/n1 c2 = c0/n2

r ⌘ Er

Ei
=

n1 � n2

n1 + n2

E1 = E2

t ⌘ Et

Ei
=

2n1

n1 + n2

energy density of 
electromagnetic waves

/ n|E|2

reflectance transmittance

R ⌘ n1|Er|2

n1|Ei|2
= |r|2 T ⌘ n2|Et|2

n1|Ei|2
= |t|2n2

n1
= 1�R

H1 = H2 ! @E1

@x
=

@E2

@x
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Reflection of light at the interface 
between two media

incoming wave Ei

transmitted wave Et

reflected wave
(opposite phase)

Er

incoming wave Ei

reflected wave
(same phase)

Ertransmitted wave
Et

Er

Ei
=

n1 � n2

n1 + n2

Et

Ei
=

2n1

n1 + n2

amplitude of
reflected

electric field

amplitude of 
transmitted
electric field

cg = c0/ng cb = c0/nb < cg (nb > ng)
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Interference
constructive
interference

destructive
interference

+

= =

+ �/2

Constructive interference occurs 
when the two waves are in phase:

waves offset by        ,             

Destructive interference occurs when 
the two waves are out of phase:

waves offset by                     ,             

�

m = 0,±1,±2, . . . m = 0,±1,±2, . . .
m� (m+ 1/2)�

eik(m+1/2)� = ei(2⇡m+⇡) = �1

|B|ei(~k·~r�!t+⇡)

(|A|� |B|) ei(~k·~r�!t)

|A|ei(~k·~r�!t)

eikm� = ei2⇡m = +1

|A|ei(~k·~r�!t)

|B|ei(~k·~r�!t)

(|A|+ |B|) ei(~k·~r�!t)
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Interference on thin films

n1

n2

n3

Constructive interference of 
reflected rays results in 

strongly reflected rays with 
very little transmission. 

Deconstructive interference of 
reflected rays results in 

almost perfectly transmitted 
rays with very little reflection. 

mirrors

antireflective 
coatings



15

Interference on thin films

n1

n2

n3

d

incident ray
ray reflected on 

interface 1-2
ray reflected on 

interface 2-3

transmitted ray

difference between optical path 
lengths of the two reflected rays

OPD = 2n2d

n1 < n2 < n3 n1 > n2 > n3

no additional phase 
difference due to reflections

constructive 
interference of 
reflected rays

OPD = m�

destructive 
interference of 
reflected rays

m = 0,±1,±2, . . .

OPD =

✓
m+

1

2

◆
�

additional     phase 
difference due to reflections

constructive 
interference of 
reflected rays

OPD = m�

destructive 
interference of 
reflected rays

OPD =

✓
m+

1

2

◆
�

⇡
n1 > n2 < n3 n1 < n2 > n3

What happens for
other wavelengths?
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Transfer matrices

n0 n1 n2

d1

E0,R

E0,L E2,L

E2,R

How can we relate the amplitudes of electromagnetic 
waves in the region 0 (white) to the amplitudes of 

electromagnetic waves in the region 2 (blue)?

E1,L

E1,R
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Transfer matrices
n0 n1 n2

d1

E0,R

E0,L E2,L

E2,R

E1,L

E1,R

E0(x, t) = E0,Re
i(k0x�!t) + E0,Le

i(�k0x�!t)

E1(x, t) = E1,Re
i(k1x�!t) + E1,Le

i(�k1x�!t)

E2(x, t) = E2,Re
i(k2x�!t) + E2,Le

i(�k2x�!t)

x

Electromagnetic waves 
in different regions:

0 d1

Boundary conditions:
E0(0, t) = E1(0, t) E1(d1, t) = E2(d1, t)

@E0

@x
(0, t) =

@E1

@x
(0, t)

@E1

@x
(d1, t) =

@E2

@x
(d1, t)

ka =
2⇡na

�
=

na!

c0
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Transfer matrices
n0 n1 n2

d1

E0,R

E0,L E2,L

E2,R

E1,L

E1,R

x
0 d1Boundary conditions:

E0(0, t) = E1(0, t) E1(d1, t) = E2(d1, t)

@E0

@x
(0, t) =

@E1

@x
(0, t)

@E1

@x
(d1, t) =

@E2

@x
(d1, t)

We would like to relate boundary conditions at 
two different interfaces via a transfer matrix M1:

✓
E2(d1, t)
@E2
@x (d1, t)

◆
= M1

✓
E0(0, t)
@E0
@x (0, t)

◆
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Transfer matrices
n0 n1 n2

d1

E0,R

E0,L E2,L

E2,R

E1,L

E1,R

x
0 d1
E1(x, t) = E1,Re

i(k1x�!t) + E1,Le
i(�k1x�!t)Electromagnetic 

waves in regions 1:
Relation between boundary conditions:

✓
E1,Reik1d1 + E1,Le�ik1d1

ik1E1,Reik1d1 � ik1E1,Le�ik1d1

◆
= M1

✓
E1,R + E1,L

ik1E1,R � ik1E1,L

◆

Transfer matrix M1 can be obtained 
by solving equations above: M1 =

✓
cos(k1d1),

sin(k1d1)
k1

�k1 sin(k1d1), cos(k1d1)

◆

✓
E1(d1, t)
@E1
@x (d1, t)

◆
=

✓
E2(d1, t)
@E2
@x (d1, t)

◆
= M1

✓
E0(0, t)
@E0
@x (0, t)

◆
= M1

✓
E1(0, t)
@E1
@x (0, t)

◆
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Transfer matrices
n0 n1

E0,R

E0,L

x
0

d1

Transfer matrix for m layers:

d2

n2

dm

nm nm+1

· · · Em+1,R

Em+1,L

x1 x2 xmxm�1· · ·

M = Mm · . . . ·M2 ·M1

Ma =

✓
cos(kada),

sin(kada)
ka

�ka sin(kada), cos(kada)

◆

ka =
2⇡na

�
=

na!

c0

✓
Em+1(xm, t)
@Em+1

@x (xm, t)

◆
= M

✓
E0(0, t)
@E0
@x (0, t)

◆ Note:

det(M) = det(Ma) = 1

✓
Em+1(xm, t)
@Em+1

@x (xm, t)

◆
= Mm

✓
Em(xm�1, t)
@Em
@x (xm�1, t)

◆
= MmMm�1

✓
Em�1(xm�2, t)
@Em�1

@x (xm�2, t)

◆
= ...
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Transfer matrices
n1

x
0

d1

Incoming and outgoing electromagnetic waves:

d2

n2

dm

nm

· · ·

x1 x2 xmxm�1

E0

rE0

tE0

nin nout

Ein(x, t) = E0e
i(kinx�!t) + rE0e

i(�kinx�!t)

Eout(x, t) = tE0e
i(koutx�!t)

✓
Eout(xm, t)
@Eout
@x (xm, t)

◆
=

✓
M11, M12

M21, M22

◆✓
Ein(0, t)
@Ein
@x (0, t)

◆

Amplitudes of reflected 
and transmitted waves:

r =
(M21 + kinkoutM12) + i(kinM22 � koutM11)

(�M21 + kinkoutM12) + i(koutM11 + kinM22)

t =
2ikine�ixmkout

(�M21 + kinkoutM12) + i(koutM11 + kinM22)

· · ·



22

Example: antireflective coating

400 500 600 700

wavelength �[nm]

We would like to design a thin film coating for 
glasses that minimizes reflection of visible light. 

nair ⇡ 1

Assume that thin film is made of MgF2 that can be 
easily applied with physical vapor deposition:

nglass = 1.52

nfilm dfilm

spectrum of visible light

nfilm = 1.38

2dfilmnfilm =

✓
m+

1

2

◆
�0

m = 0, 1, 2, . . .

Note: the condition for deconstructive 
interference of reflected rays can be satisfied 

only for discrete set of wavelengths      :�0
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400 500 600 700

nair ⇡ 1

nglass = 1.52

dfilm

spectrum of visible light

nfilm = 1.38

wavelength �[nm]

Use film thickness that corresponds 
to the destructive interference for the 

wavelength in the middle of the 
visible spectrum                           :�target = 550 nm

dfilm =
�target

4nfilm
= 100 nm

400 450 500 550 600 650 700
0

0.01

0.02

0.03

0.04

0.05

0.06
no coating
1 layer

� [nm]wavelength 

re
fle

ct
an

ce
 R

Example: antireflective coating



200 400 600 800 1000
0

0.01

0.02

0.03

0.04

0.05

0.06
no coating
1 layer
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400 500 600 700

nair ⇡ 1

nglass = 1.52

dfilm

spectrum of visible light

nfilm = 1.38

wavelength �[nm]

� [nm]wavelength 

re
fle

ct
an

ce
 R

Example: antireflective coating

dfilm =
�target

4nfilm
= 100 nm

�target = 550 nm

2nfilmdfilm = (m+ 1/2)�

deconstructive interference

constructive interference
2nfilmdfilm = m�
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400 500 600 700

nair ⇡ 1

nglass = 1.52

spectrum of visible light

wavelength �[nm]

Example: antireflective coating
n1 = 1.38

n2 = 2.2

n3 = 1.7

d1

d2

d3

Use film thicknesses that correspond 
to the destructive interference for the 

wavelength in the middle of the 
visible spectrum                           :�target = 550 nm

d1 = �target/(4n1)
d2 = �target/(2n2)
d3 = �target/(4n3)

note the additional 
phase difference!

400 450 500 550 600 650 700
0

0.01

0.02

0.03

0.04

0.05

0.06
no coating
1 layer
3 layers

re
fle

ct
an

ce
 R

� [nm]wavelength 

Multiple layers of coating significantly 
reduce the reflectance of visible spectrum!



200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25
no coating
1 layer
3 layers
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400 500 600 700

nair ⇡ 1

nglass = 1.52

spectrum of visible light

wavelength �[nm]

Example: antireflective coating
n1 = 1.38

n2 = 2.2

n3 = 1.7

d1

d2

d3

d1 = �target/(4n1)
d2 = �target/(2n2)
d3 = �target/(4n3)

re
fle

ct
an

ce
 R

� [nm]wavelength �target = 550 nm

Multiple layers of coating significantly 
enhance reflectance of certain wavelengths 

outside the visible spectrum!

Additional peaks (minima) correspond to the 
constructive (deconstructive) interference for rays 
scattered on different combination of interfaces.
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Example: structural color

wavelength 
400 500 600 700

Chrysochroa raja bettle

and then proceed to find their fixed point. This gives rise to
the optical band structure.

A. Background and notation

The reflection coefficient of a wave incident on the inter-
face between two materials with indices of refraction n1 and
n2 is given by18

r1!2 ¼
n1 " n2

n1 þ n2
: (1)

Notice that when the wave comes from a lower refractive
index material the relative phase changes by p, since the
coefficient is negative. For a wave with wavenumber k, the
spatial dependence of the phase is given by e6ikx for a wave
propagating to the right/left. The transmission coefficient for
the same scenario is

t1!2 ¼
2n1

n1 þ n2
: (2)

We shall denote the wavenumbers in the two materials k1

and k2. The harmonic time dependence of the waves (e"ixt)
will be assumed but not explicitly written.

B. Reflectance from a single layer

Let us begin by considering the basic structure depicted in
Fig. 3. This particular “unit cell” was chosen so that the
structure is symmetric; this fact will be used in Sec. II C to
simplify the calculations.

It is a standard calculation to find the reflectance and
transmittance of this structure by considering the multiple
reflections inside the slab n2 as is usually done in the context
of analyzing the Fabry-Perot interferometer.18 This calcula-
tion leads to the following sums of complex numbers for the
transmittance and reflectance, where the geometric series
represents an infinite number of internal reflections:

t¼ t1!2t2!1eiðk1l1þk2l2Þ½1þðr2!1eik2l2Þ2þðr2!1eik2l2Þ4…';
(3)

r¼ r1!2eik1l1 þ t1!2r2!1t2!1eiðk1l1þ2k2l2Þ½1þðr2!1eik2l2Þ2

þðr2!1eik2l2Þ4… ': ð4Þ

Figure 4 shows one of the possible paths of a wave in the op-
tical structure. Together, these paths lead to the infinite sums
in Eqs. (3) and (4).

It is important to point out that in Eqs. (3) the transmit-
tance coefficient t is the amplitude of the wave traveling to
the right of the form teikðx"xrÞ, where xr ¼ l1 þ l2 describes
the position of the right end of the single unit cell “Fabry-
Perot interferometer.” In many cases, a different notation is
used, where t is the prefactor of teikx; clearly t in the two
notations will differ by a phase eikxr . We will adhere to the
above notation throughout this article as it will simplify the
resulting equations.

Summing up the trigonometric series, we find that in the
case of n¼ 1 unit cells,

t ¼ t1!2t2!1eiðk1l1þk2l2Þ

1" ðr2!1eik2l2Þ2
; (5)

Fig. 1. (Color online) Photographs of the beetles (a) Torynorhina flammea,
(b) Chrysochroa raja, and (c) Gastrophysa viridula. Photographs are cour-
tesy of (a) Richard Bartz, (b) Didier Descouens, and (c) James Lindsey at
Ecology of Commanster. TEM cross-sections of the multilayers responsible
for these colors are shown in (d) through (f) for T. flammea, C. raja, and G.
viridula, respectively. Reflection spectra taken from the elytra of these three
structurally colored green beetles, normalized with respect to each other, are
shown in (g): dotted line, T. flammea; dashed line, C. raja; and solid line, G.
viridula.

Fig. 2. The one-dimensional, periodic optical structure that leads to the for-
mation of optical stop bands. The dashed rectangle outlines a unit cell. Fig. 3. The unit cell of the structure of Fig. 2.
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reflectance of target wavelength                   !�0 = 500 nm

In periodic structures high reflectance is 
achieved for a range of wavelengths around the 

target wavelength. This range is called band gap.


