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Structural Color and Wrinkled Surfaces
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Structural colors on periodic structures
Morpho butterfly

Marble berry

cuticle and air9,10 (Fig. 3b, c). Photonic structures of reduced dimen-
sions, present in certain Coliasbutterflies, effect intense UV visibility11.
In other species of butterfly, orientational adjustments to the align-
ment of such discrete multilayers produce strong angle-dependent
iridescence that provides high-contrast colour flicker with minimal
wing movement12 or strong iridescence at grazing incidence when
viewed posteriorly13.

The discrete layering in the examples above contrasts with the
more continuous layering, which appears to have developed primarily
to induce cryptic colouration, in other butterfly species. In certain
architectures, this may not only bring about colour stimulus
synthesis14 but also strong linearly polarized reflection of a specific
colour, an effect that contributes to intraspecific communication15.
Several species accomplish this using a multilayered structure
embedded in 2D arrays of deep concavities (Fig. 4a, b); this design
enables the reflection of yellow light at normal incidence from the
base of each concavity and blue light through a double reflection
from opposite and perpendicularly inclined sides of each concavity
(Fig. 4c) to produce a blue annulus with a yellow centre16 (Fig. 4d).
The juxtaposition of these two colours synthesizes the green coloura-
tion perceived by the human eye—and possibly by the predator’s.

Certain Coleoptera, however, exhibit continuously layered exo-
cuticle that strongly reflects circularly polarized light through an
analogue of optically active cholesteric liquid crystalline structures.
The helical arrangement of chitin microfibrils that make up such
exocuticle, and which are systematically rotated by a small amount
across successive planes, creates a periodicity that produces circularly
polarized coloured reflection17. In other words, the polarized reflec-
tion is not derived from optical rotation at a molecular level from the
L-amino acids of the cuticle protein and the D-amino sugars of the
chitin; instead it arises at the supermolecular level and is similar to
that exhibited by a cholesteric liquid crystal from the rotation of the
local average alignment direction of the liquid crystal molecules (the
director). Although similar helical structures are found in many
other iridescent species, they are rarely responsible for similarly
strong colouration and anomalous polarization properties4.

Structurally coloured avian feather barbs and integument,
although they exhibit less structural diversity than scales of Lepi-
doptera, are no less remarkable. Recent analyses suggest that such

colour as is seen in many Avian orders, is the product of coherent,
rather than incoherent, scatter from the spatial variation in refractive
index of medullary keratin in feather barbs or of collagen fibres in the
dermis18. 

Photonics in flora 
Advanced photonic development is not limited to fauna. Certain
anomalous species of flora also show partial PBGs that underpin an
often vivid structural colour19 (Fig. 5a). Invariably this is mediated by
variations in 1D multilayering (although more complex structural
designs are also thought to exist), producing iridescence in vascular
plant leaves, fruits and marine algae4. Periodicity is generally formed
by laminations of hydrated cellulose, which are usually located close
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Figure 2 Iridescent setae from polychaete worms. a, Scanning electron micrograph
(SEM) and b–d, transmission electron micrograph (TEM) images of transverse sections
through a single iridescent seta. Bars, a, 2 !m; b, 5 !m; c, 1 !m; d, 120 nm.
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Figure 3 Iridescence in the butterfly Morpho rhetenor. a, Real colour image of the blue
iridescence from a M. rhetenor wing. b, Transmission electron micrograph (TEM) images
showing wing-scale cross-sections of  M. rhetenor. c, TEM images of a wing-scale
cross-section of the related species M. didius reveal its discretely configured multilayers.
The high occupancy and high  layer number of M. rhetenor in b creates an intense
reflectivity that contrasts with the more diffusely coloured appearance of M. didius, in
which an overlying second layer of scales effects strong diffraction4. Bars, a, 1 cm; b,
1.8 !m; c, 1.3 !m.
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Figure 4 Iridiscence in Papilo palinurus. a, SEM of an iridescent scale showing its array
of concavities, each with a section that exhibits the curved multilayering shown by
transmission electron micrography in b. This structure produces two simultaneous
structural colours c, yellow and blue . d, The blue annulus is created by a double
reflection from opposite and perpendicular concavity sides. d also schematically
illustrates the way in which incident linearly polarized blue light has its e-vector (dotted
lines) rotated by this double reflection. Bars, a, 15 !m; b, 1 !m; c, 6 !m.
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Chrysochroa raja beetle

and then proceed to find their fixed point. This gives rise to
the optical band structure.

A. Background and notation

The reflection coefficient of a wave incident on the inter-
face between two materials with indices of refraction n1 and
n2 is given by18

r1!2 ¼
n1 " n2

n1 þ n2
: (1)

Notice that when the wave comes from a lower refractive
index material the relative phase changes by p, since the
coefficient is negative. For a wave with wavenumber k, the
spatial dependence of the phase is given by e6ikx for a wave
propagating to the right/left. The transmission coefficient for
the same scenario is

t1!2 ¼
2n1

n1 þ n2
: (2)

We shall denote the wavenumbers in the two materials k1

and k2. The harmonic time dependence of the waves (e"ixt)
will be assumed but not explicitly written.

B. Reflectance from a single layer

Let us begin by considering the basic structure depicted in
Fig. 3. This particular “unit cell” was chosen so that the
structure is symmetric; this fact will be used in Sec. II C to
simplify the calculations.

It is a standard calculation to find the reflectance and
transmittance of this structure by considering the multiple
reflections inside the slab n2 as is usually done in the context
of analyzing the Fabry-Perot interferometer.18 This calcula-
tion leads to the following sums of complex numbers for the
transmittance and reflectance, where the geometric series
represents an infinite number of internal reflections:

t¼ t1!2t2!1eiðk1l1þk2l2Þ½1þðr2!1eik2l2Þ2þðr2!1eik2l2Þ4…';
(3)

r¼ r1!2eik1l1 þ t1!2r2!1t2!1eiðk1l1þ2k2l2Þ½1þðr2!1eik2l2Þ2

þðr2!1eik2l2Þ4… ': ð4Þ

Figure 4 shows one of the possible paths of a wave in the op-
tical structure. Together, these paths lead to the infinite sums
in Eqs. (3) and (4).

It is important to point out that in Eqs. (3) the transmit-
tance coefficient t is the amplitude of the wave traveling to
the right of the form teikðx"xrÞ, where xr ¼ l1 þ l2 describes
the position of the right end of the single unit cell “Fabry-
Perot interferometer.” In many cases, a different notation is
used, where t is the prefactor of teikx; clearly t in the two
notations will differ by a phase eikxr . We will adhere to the
above notation throughout this article as it will simplify the
resulting equations.

Summing up the trigonometric series, we find that in the
case of n¼ 1 unit cells,

t ¼ t1!2t2!1eiðk1l1þk2l2Þ

1" ðr2!1eik2l2Þ2
; (5)

Fig. 1. (Color online) Photographs of the beetles (a) Torynorhina flammea,
(b) Chrysochroa raja, and (c) Gastrophysa viridula. Photographs are cour-
tesy of (a) Richard Bartz, (b) Didier Descouens, and (c) James Lindsey at
Ecology of Commanster. TEM cross-sections of the multilayers responsible
for these colors are shown in (d) through (f) for T. flammea, C. raja, and G.
viridula, respectively. Reflection spectra taken from the elytra of these three
structurally colored green beetles, normalized with respect to each other, are
shown in (g): dotted line, T. flammea; dashed line, C. raja; and solid line, G.
viridula.

Fig. 2. The one-dimensional, periodic optical structure that leads to the for-
mation of optical stop bands. The dashed rectangle outlines a unit cell. Fig. 3. The unit cell of the structure of Fig. 2.
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the integrating-sphere analysis, the leaf of Ficus macrophylla
macrophylla showed a similar reflectance pattern to that of C.
grayanus in terms of wavelength and reflectivity (Fig. 3).

A. parvulus and C. grayanus are structurally coloured as a
result of multilayer reflectors in their cuticle, as determined
from SEM and TEM analyses. C. grayanus possesses a regular
‘non-ideal’ reflector, in the sense that the optical thicknesses
of all layers are not equal. Twelve layers each of high- and
low-index material are present in the reflector, but the
thickness of the high-index layers is 50 nm, whereas the low-
index layers are 200 nm thick. A. parvulus possesses a chirped
multilayer reflector where the optical thickness of each layer
decreases with depth in the structure. The actual thickness of
all high-index layers and, separately, all low-index layers,
decreases with depth, while the refractive indices remain equal
for each layer type. A micrograph of a gold beetle

(Aspidomorpha tecta) chirped reflector is shown in Fig. 4,
from Neville (1977). Using our program and the refractive
indices 1.73 and 1.40, the colour predicted from this reflector
was found to be yellow with a green tinge in reflected light
[Commission Internationale de l’Eclairage (C.I.E.) colour
coordinates: x=0.371, y=0.423, luminosity=70.28] and purple
in transmitted light, i.e. the colours actually observed. The
calculated reflectance for this reflector is shown in Fig. 5.
Recalculation using 1.56 as the high refractive index did not
modify the colour (new C.I.E. colour coordinates: x=0.349,
y=0.436, luminosity=30.0), only the reflectivity varied
(decreased from 91 to 52 %).

In C. grayanus, the epicuticle (external layer of cuticle) is
irregularly wrinkled, at the micrometre level, at its exterior
surface and is composed of irregularly arranged ‘fibrils’,
approximately 0.5–1.0µm thick. In comparison, the epicuticle
of A. parvulus has a smooth external surface (excluding the
sensory ‘pits’) and is smooth in cross section (no ‘fibrils’
evident). The reflectors of both C. grayanus and A. parvulus
are summarised in Fig. 6 from numerous electron microscopic
examinations (many micrographs were taken because the
cuticles, and hence the reflectors, tended to split).

Discussion
Although we have no experimental evidence of the function

of the structural colour of Anoplognathus parvulus and
Calloodes grayanus, on the basis of their optical effects we
consider that in A. parvulus the colour will provide
conspicuousness (probably for conspecific recognition) against
a leaf background, and in C. grayanus that the colour will
provide camouflage because its reflection closely matches that
of a leaf (Fig. 3). Another major difference in the reflectance
from A. parvulus and C. grayanus, other than the proportional
reflectance and colour, is that in A. parvulus only part of its
body appears coloured from any one direction, whereas in C.
grayanus its entire body appears equally coloured from every
direction (a property required for camouflage). Considering the

A. R. PARKER, D. R. MCKENZIE AND M. C. J. LARGE

Fig. 4. Transmission electron micrograph of a section cut vertically
through the cuticle of the gold beetle Aspidomorpha tecta. The
external surface is uppermost. A ‘chirped’ reflector is evident in the
endocuticle. See Fig. 5 for reflectance graph. Photograph by H. E.
Hinton, taken from Neville (1977). Scale bar, 1µm.
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Fig. 5. Graph showing the calculated reflectance from the ‘chirped’
reflector of the gold beetle Aspidomorpha tecta shown in Fig. 4.
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Animal multilayer reflectors that are approximated as per-
iodic can be theoretically characterized using a ‘quarter-wave
stack’ analytical model in which both the high- and low-
index layers in the reflector have optical thickness equal to a
quarter of the peak reflection wavelength [3,4,31]. In addition,
a modern analogy is sometimes drawn between periodic
animal multilayer reflectors and one-dimensional photonic
crystals [32,33]. The spectral bandwidth of the high reflection
region is associated with the ‘photonic band-gap’, which
describes the spectral region where light cannot propagate
within the structure [34,35]. By contrast, the theoretical charac-
terization of the reflectivity from animal reflectors that contain a
higher level of disorder cannot be approximated to a ‘quater-
wave stack’. Calculations of the reflectivity have been reliant
upon numerical modelling, and consequently, some commonly
occuring optical properties, such as the presence of unbroken
broadband ‘silvery’ reflection spectra [3,21,22,24] or polariz-
ation-insensitive reflectivity [13,22,36], lack an explanation in
terms of the propagation of light within the reflective structure.

A physical parallel between random stack models of animal
multilayer reflectors and Anderson localization has been
suggested in two previous biophotonic studies [20,21], although
has yet to be explored in any detail. The theory of Anderson
localization explains how waves become spatially confined in
a disordered medium. It was originally conceived as a way to
explain the transport properties of electrons in a semiconductor
and the related behaviour of the quantum wave function [37].
The theory is now, however, understood to be a universal
wave phenomenon that also applies to electromagnetic waves
[38–40], matter waves [41] and acoustic waves [42]. The physical
origin of Anderson localization is entirely due to multiple scat-
tering and coherent interference [40]. In one-dimensional

random stack systems (which includes optical multilayer reflec-
tors), the theory of Anderson localization predicts an
exponential decay in the amplitude of the transmitted wave as
a function of the system length; an effect that is quantified by
the localization length [43,44]. In random optical multilayers, the
exponential decay in transmission provides a general explanation
for the production of broadband mirror-like reflectivity [45].

In this paper, we illustrate that the theory of Anderson
localization and the property of the localization length enables
the reflectivity from animal multilayer reflectors with vary-
ing degrees of disorder to be understood within a common
theoretical framework. Our paper should not be seen as a demon-
stration of a new way of calculating reflection spectra, more
an illustration that a diversity of optical properties (including
‘coloured’, ‘silvery’ and polarization-insensitive reflectivity) can
be explained by the same coherent interference process. We sum-
marize the trends in layer thickness disorder in animal reflectors
(§2), and then describe how the reflectivity and localization
length can be calculated (§3). We then illustrate how, from the
perspective of localization theory, disordered animal multilayer
reflectors can control the spectral properties (§4) and the polari-
zation properties (§5) of reflection. Finally, we discuss the
consequences of our study for both biologists and physicists (§6).

2. Thickness disorder in animal multilayer
reflectors

Throughout this paper, we use guanine–cytoplasm reflec-
tors (common to fish and spiders) as a model system. These
reflectors have been well described in the previous literature
[3,16,21–25]. Figure 1a is a transmission electron micrograph

(a)

5 mm

2 mm

(b)

(c)

Figure 1. (a) A transmission electron microscopy section of a disordered guanine – cytoplasm multilayer reflector in the skin of Lepidoptus caudatus [21]. (b) An
individual guanine crystal in solution from Cyprinus carpio [23]. (c) An individual guanine crystal in situ from Cy. carpio [23].
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Fig. 2 (a) The comb-jellyfish (ctenophore) Beroë cucumis—the bright colouration from its comb-rows results
from photonic crystals within the combs. Image by Kevin Raskoff, reproduced with permission; (b) Trans-
mission electron micrograph of one of the colour-producing photonic crystals; (c) The reflectance spectrum
calculated from the photonic crystals in the comb-rows of this species (images first published in Welch et al.
2005)

Fig. 3 2-Dimensional photonic
crystal with rectangular packing
from the comb-jellyfish
Hormiphora cucumis

Approximately 100 species of extant comb-jellyfish have been described, all of which
posses comb-rows. It seems, therefore, likely that numerous other currently undescribed 2-D
biological photonic crystals exist within this group.

3.3 Domains

Most butterfly photonic crystals are divided into domains or crystallites. The crystal’s
geometry does not usually vary between domains, although there are examples of this, but
the orientation does. In some cases (Fig. 4), the domains are joined to one another with small
areas of slightly distorted lattice in the linking regions, whilst in other cases, the domains are
separate (Parker et al. 2003). The significance of domains is twofold; firstly, if it transpires
that all photonic crystals have smaller crystallites, this may lead us to inferences about their
bio-assembly (photonic crystal assembly is discussed at length elsewhere (Ghiradella 1989,
1998)); secondly, the domains have differing orientations within the scales and are too small
to be resolved individually by the naked eye, meaning that an observer sees light of a range
of wavelengths from any vantage point—thus, the perceived colour of the animal is the result
of spatial averaging, or “pointillism”. On a practical level, this results in biological photonic
crystals having broad reflectance spectra from any given angle c.f. other biological colour-
producing structures, such as multilayer reflectors. Pointillism has been described in multi-
layer reflectors (e.g. Knisley and Schultz 1997), however, it is comparatively rare in them
and is far more common in 3-D photonic crystals. Until recently, it appeared that all three

123

1µm

Comb jelly Beating cilia are changing crystal orientation

Constructive interference for waves with different 
wavelengths occurs in different crystal planes! 
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spectrum by the transmittance of a 150-mm-thick layer of skin29

(identical, in this spectral range, to that of water30), we produce a
reflectance spectrum (green curve in Fig. 3c) that matches the
shape of the measured reflectivity spectrum (black dashed curve
in Fig. 3c) in the range 900–2,500 nm. The match below
wavelengths of 900 nm is substantially less good, as we
exclusively consider the D-iridophore crystals in our Fourier
power spectrum analysis, that is, we ignore pigments and
S-iridophores, which both strongly influence the measured
reflectivity in the visible range. Hence, the thick layer of
D-iridophores has the potential to play in some species, such as
the panther chameleon, a substantial role in thermal protection.
Comparative analyses with similar measurements in chameleonid
and non-chameleonid species (for example, see Supplementary
Fig. 4 and refs 31,32) is warranted to identify whether reflectivity
in the near-infrared range is substantially and systematically
higher in chameleons than in other lizards. It is noteworthy that
the iridophores found in non-chameleonid lizards can exhibit
guanine crystals with diverse sizes, shapes and organizations
(some of which generate structural colours14) but are not
organized into two superposed layers of functionally different
iridophores (Fig. 3a).

Discussion
Combining experimental methods from biology and physics,
as well as optical modelling, we have shown that panther
chameleons rapidly change colour (hue) by actively tuning the
photonic response of a lattice of small guanine nanocrystals in
S-iridophores. The molecular mechanisms involved in this
process remain to be determined; however, given that iridophores
share the same neural-crest origin as pigmented chromatophores,
the active tuning of guanine crystal spacing we describe here
could be considered analogous to movements of pigment-
containing organelles in other types of chromatophores, possibly

through similar neural or hormonal mechanisms33. In
chameleons, these S-iridophores are positioned on the top of a
second thick layer of D-iridophores, with larger, flatter and
somewhat disorganized guanine crystals, which reflects a
substantial proportion of direct and indirect sun radiations,
especially in the near-infrared range.

Chameleons form a highly derived monophyletic group of
iguanian lizards that originated in post-Gondwanan Africa
around 90 million years ago34,35. Undoubtedly, some species of
chameleons occupy quite open environments where they are
exposed to high levels of sunlight. In particular, panther
chameleons and veiled chameleons (studied here) occur in dry,
hot environments (Northern Madagascar and Yemen,
respectively) and are highly exposed to sunlight such that the
45% decrease in sunlight absorption caused by D-iridophores
(Fig. 3b,c) is likely to be advantageous for survival. However, the
ancestral function of D-iridophores might not be associated with
passive thermal protection, because extant species of the basal
lineages in the phylogeny of chameleons34 are dense-forest
dwellers (that is, not exposed to a dry and sunny environment),
suggesting that the common ancestor of chameleons might have
exhibited a similar ecology (but see alternative evolutionary
scenarios in Supplementary Discussion).

The organization of iridophores into two superposed layers
constitutes an evolutionary novelty for chameleons that allows
some species to combine efficient camouflage with spectacular
display. Additional analyses are warranted to identify whether the
deep layer of iridophores in chameleons further provide them
with improved resistance to variable sunlight exposure.

Methods
Animals. Maintenance of and experiments on animals were approved by the
Geneva Canton ethical regulation authority (authorization 1008/3421/1R) and
performed according to the Swiss law.
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Figure 2 | In-vivo skin colour change in chameleons is reproduced ex vivo. (a) TEM images of the lattice of guanine nanocrystals in S-iridophores
from the same individual in a relaxed and excited state (two biopsies separated by a distance o1 cm, scale bar, 200 nm). This transformation and
corresponding optical response is recapitulated ex vivo by manipulation of white skin osmolarity (from 236 to 1,416 mOsm): (b) reflectivity of a skin
sample (for clarity, the 19 reflectivity curves are shifted by 0.02 units along the y axis) and (c) time evolution (in the CIE chromaticity chart) of the colour of
a single cell (insets i–vi; Supplementary Movie 4); both exhibit a strong blue shift (red dotted arrow in b) as observed in vivo during behavioural colour
change. Dashed white line: optical response in numerical simulations (cf. Fig. 1b) with lattice parameter indicated with dashed arrows. Note that increased
osmotic pressure corresponds to behavioural relaxation; hence, the reverse order (white arrowhead in CIE colour chart) of red to green to blue time
evolution in comparison with Fig. 1b. (d) Variation of simulated colour photonic response for each vertex of the irreducible first Brillouin zone (colour
outside of the Brillouin zone indicates the average among all directions) shown for four lattice parameter values (from Supplementary Movie 5)
of the modelled photonic crystal. L-U-K-W-X are standard symmetry points.
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(identical, in this spectral range, to that of water30), we produce a
reflectance spectrum (green curve in Fig. 3c) that matches the
shape of the measured reflectivity spectrum (black dashed curve
in Fig. 3c) in the range 900–2,500 nm. The match below
wavelengths of 900 nm is substantially less good, as we
exclusively consider the D-iridophore crystals in our Fourier
power spectrum analysis, that is, we ignore pigments and
S-iridophores, which both strongly influence the measured
reflectivity in the visible range. Hence, the thick layer of
D-iridophores has the potential to play in some species, such as
the panther chameleon, a substantial role in thermal protection.
Comparative analyses with similar measurements in chameleonid
and non-chameleonid species (for example, see Supplementary
Fig. 4 and refs 31,32) is warranted to identify whether reflectivity
in the near-infrared range is substantially and systematically
higher in chameleons than in other lizards. It is noteworthy that
the iridophores found in non-chameleonid lizards can exhibit
guanine crystals with diverse sizes, shapes and organizations
(some of which generate structural colours14) but are not
organized into two superposed layers of functionally different
iridophores (Fig. 3a).

Discussion
Combining experimental methods from biology and physics,
as well as optical modelling, we have shown that panther
chameleons rapidly change colour (hue) by actively tuning the
photonic response of a lattice of small guanine nanocrystals in
S-iridophores. The molecular mechanisms involved in this
process remain to be determined; however, given that iridophores
share the same neural-crest origin as pigmented chromatophores,
the active tuning of guanine crystal spacing we describe here
could be considered analogous to movements of pigment-
containing organelles in other types of chromatophores, possibly

through similar neural or hormonal mechanisms33. In
chameleons, these S-iridophores are positioned on the top of a
second thick layer of D-iridophores, with larger, flatter and
somewhat disorganized guanine crystals, which reflects a
substantial proportion of direct and indirect sun radiations,
especially in the near-infrared range.

Chameleons form a highly derived monophyletic group of
iguanian lizards that originated in post-Gondwanan Africa
around 90 million years ago34,35. Undoubtedly, some species of
chameleons occupy quite open environments where they are
exposed to high levels of sunlight. In particular, panther
chameleons and veiled chameleons (studied here) occur in dry,
hot environments (Northern Madagascar and Yemen,
respectively) and are highly exposed to sunlight such that the
45% decrease in sunlight absorption caused by D-iridophores
(Fig. 3b,c) is likely to be advantageous for survival. However, the
ancestral function of D-iridophores might not be associated with
passive thermal protection, because extant species of the basal
lineages in the phylogeny of chameleons34 are dense-forest
dwellers (that is, not exposed to a dry and sunny environment),
suggesting that the common ancestor of chameleons might have
exhibited a similar ecology (but see alternative evolutionary
scenarios in Supplementary Discussion).

The organization of iridophores into two superposed layers
constitutes an evolutionary novelty for chameleons that allows
some species to combine efficient camouflage with spectacular
display. Additional analyses are warranted to identify whether the
deep layer of iridophores in chameleons further provide them
with improved resistance to variable sunlight exposure.

Methods
Animals. Maintenance of and experiments on animals were approved by the
Geneva Canton ethical regulation authority (authorization 1008/3421/1R) and
performed according to the Swiss law.
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Figure 2 | In-vivo skin colour change in chameleons is reproduced ex vivo. (a) TEM images of the lattice of guanine nanocrystals in S-iridophores
from the same individual in a relaxed and excited state (two biopsies separated by a distance o1 cm, scale bar, 200 nm). This transformation and
corresponding optical response is recapitulated ex vivo by manipulation of white skin osmolarity (from 236 to 1,416 mOsm): (b) reflectivity of a skin
sample (for clarity, the 19 reflectivity curves are shifted by 0.02 units along the y axis) and (c) time evolution (in the CIE chromaticity chart) of the colour of
a single cell (insets i–vi; Supplementary Movie 4); both exhibit a strong blue shift (red dotted arrow in b) as observed in vivo during behavioural colour
change. Dashed white line: optical response in numerical simulations (cf. Fig. 1b) with lattice parameter indicated with dashed arrows. Note that increased
osmotic pressure corresponds to behavioural relaxation; hence, the reverse order (white arrowhead in CIE colour chart) of red to green to blue time
evolution in comparison with Fig. 1b. (d) Variation of simulated colour photonic response for each vertex of the irreducible first Brillouin zone (colour
outside of the Brillouin zone indicates the average among all directions) shown for four lattice parameter values (from Supplementary Movie 5)
of the modelled photonic crystal. L-U-K-W-X are standard symmetry points.
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Dynamic structural colors

J. Teyssier et al., Nat. Comm. 6, 6368 (2015)

Chameleon (speed 8x)

Changes in osmotic concentration lead to the 
swelling of cells in excited chameleon. This 
changes the spacing of periodic structure 
from which the ambient light is reflected.

https://www.youtube.com/watch?v=Qy90d0XvJlE

Comb Jelly (real time)

298 V. L. Welch and J.-P. Vigneron

Fig. 2 (a) The comb-jellyfish (ctenophore) Beroë cucumis—the bright colouration from its comb-rows results
from photonic crystals within the combs. Image by Kevin Raskoff, reproduced with permission; (b) Trans-
mission electron micrograph of one of the colour-producing photonic crystals; (c) The reflectance spectrum
calculated from the photonic crystals in the comb-rows of this species (images first published in Welch et al.
2005)

Fig. 3 2-Dimensional photonic
crystal with rectangular packing
from the comb-jellyfish
Hormiphora cucumis

Approximately 100 species of extant comb-jellyfish have been described, all of which
posses comb-rows. It seems, therefore, likely that numerous other currently undescribed 2-D
biological photonic crystals exist within this group.

3.3 Domains

Most butterfly photonic crystals are divided into domains or crystallites. The crystal’s
geometry does not usually vary between domains, although there are examples of this, but
the orientation does. In some cases (Fig. 4), the domains are joined to one another with small
areas of slightly distorted lattice in the linking regions, whilst in other cases, the domains are
separate (Parker et al. 2003). The significance of domains is twofold; firstly, if it transpires
that all photonic crystals have smaller crystallites, this may lead us to inferences about their
bio-assembly (photonic crystal assembly is discussed at length elsewhere (Ghiradella 1989,
1998)); secondly, the domains have differing orientations within the scales and are too small
to be resolved individually by the naked eye, meaning that an observer sees light of a range
of wavelengths from any vantage point—thus, the perceived colour of the animal is the result
of spatial averaging, or “pointillism”. On a practical level, this results in biological photonic
crystals having broad reflectance spectra from any given angle c.f. other biological colour-
producing structures, such as multilayer reflectors. Pointillism has been described in multi-
layer reflectors (e.g. Knisley and Schultz 1997), however, it is comparatively rare in them
and is far more common in 3-D photonic crystals. Until recently, it appeared that all three

123

1µm

Rainbow color waves are produced by the beating 
of cilia, which change the orientation of periodic 

structure from which the ambient light is reflected.

crystal size and a range of lattice parameter (distance) values
measured on TEM images of various excited and unexcited
male panther chameleon skin samples of different colours
(Supplementary Table 1). The irreducible Brillouin zone was
meshed (Fig. 2d) and the photonic band structure was computed
for each vertex using block-iterative frequency-domain
methods26 (Supplementary Fig. 3). As no preferential
orientation of photonic crystals relative to skin surface was
observed in S-iridophores, we also computed the average among
all directions. Reflectivity was set to unity in the gapped region
and convolution with standard X, Y, Z spectral functions returned
simulated colours (Supplementary Movie 5) that closely match
those observed in vivo (Fig. 1b) and during osmotic pressure
experiments (Fig. 2c).

Function of D-iridophores. In addition, we investigated the
second thick layer of iridophores (Fig. 1e), hereafter called deep
(D-) iridophores, which contain larger brick-shaped and some-
what disorganized guanine crystals (length 200–600 nm, height
90–150 nm). This population of D-iridophores is present in all
panther chameleons (regardless of sex or age) and in the three
distantly related chameleon species we investigated (Figs 1e
and 3a), and is particularly thick in comparison with the layer of

iridophores observed in other (non-chameleonid) lizards. In
chameleons, we never found this layer to change colour (in the
visible range) during osmotic pressure experiments, suggesting
that the main function of D-iridophores is not associated to shifts
in hue. Our measurements indicate that the reflectivity (R) in the
near-infrared region (700–1,400 nm) is particularly high (Fig. 3b),
causing a substantial decrease in the absorption of sunlight.
Multiplying the sun radiance27 (blue curve in Fig. 3b) by 1!R, to
yield the amount of light transmitted by the dermis (hence
absorbed by the peritoneum or deeper tissues; red curve in
Fig. 3b), indicates that B45% of the radiation energy in that
spectral range is screened in panther chameleons by reflection on
the dermis. To test whether this infrared reflectivity is probably
due to coherent scattering on guanine crystals in D-iridophores,
we generated two-dimensional Fourier spectra28 on extensive
TEM image assemblies of panther chameleon D-iridophores (see
online Methods). Note that the disorder of guanine crystals inside
D-iridophores prevents the use of more rigorous modelling. We
then used the computed Fourier power spectrum as an estimate
of the spectral shape (red curve in Fig. 3c) of the light back-
scattered by deep iridophores. This shows that the D-iridophore
layer is a broad-band reflector in the near infrared region, as the
power spectrum is essentially a step function going from 0 below
400 nm to a plateau above 900 nm. Multiplying the power
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Figure 1 | Colour change and iridophore types in panther chameleons. (a) Reversible colour change is shown for two males (m1 and m2): during excitation
(white arrows), background skin shifts from the baseline state (green) to yellow/orange and both vertical bars and horizontal mid-body stripe shift from
blue to whitish (m1). Some animals (m2 and Supplementary Movie 2) have their blue vertical bars covered by red pigment cells. (b) Red dots: time
evolution in the CIE chromaticity chart of a third male with green skin in a high-resolution video (Supplementary Movie 3); dashed white line: optical
response in numerical simulations using a face-centred cubic (FCC) lattice of guanine crystals with lattice parameter indicated with black arrows.
(c) Haematoxylin and eosin staining of a cross-section of white skin showing the epidermis (ep) and the two thick layers of iridophores (see also
Supplementary Fig. 1). (d) TEM images of guanine nanocrystals in S-iridophores in the excited state and three-dimensional model of an FCC lattice (shown
in two orientations). (e) TEM image of guanine nanocrystals in D-iridophores. Scale bars, 20mm (c); 200 nm (d,e).
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Structural colors

H. Wang and K-Q. Zhang, 
Sensors 13, 4192 (2013)

V. Saranathan et al.,
J. R. Soc. Interface 9, 2563 (2012)

Structural colors of animals and plants appear due to the selective 
reflection of ambient light on structural features underneath the surface.



Sound from airplanes that are landing and taking off is 
reflected from artificial barriers into the atmosphere.
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strain, leading to the formation of a periodic array of elongated,
almost closed ellipses, as shown in Fig. 2D for 3 ¼ "0.21. Since
the specimens are made of an elastomeric material, the process
is fully reversible and repeatable. Upon release of the applied
vertical displacement, the deformed structures recover their
original congurations.

Interestingly, Figs. 2C–D clearly shows that the porous
structures 3.6.3.6 and 3.4.6.4 buckle into a chiral pattern, while
the initially expanded congurations are non-chiral. Therefore,
in these two systems buckling acts as a reversible chiral
symmetry breaking mechanism. Despite many studies on
pattern formation induced by mechanical instabilities,15

relatively little is known about the use of buckling as a reversible
chiral symmetry breaking mechanism. Although several
processes have been recently reported to form chiral
patterns,19–23 all of these work only at a specic length-scale,
preventing their use for the formation of chiral structures over a
wide range of length scales, as required by applications.
Furthermore, most of these chiral symmetry breaking processes
are irreversible19–21 and only few systems have been demon-
strated to be capable of reversibly switching between non-chiral
and chiral congurations.22,23 Remarkably, since the mecha-
nism discovered here exploits a mechanical instability that is
scale independent, our results raise opportunities for reversible
chiral symmetry breaking over a wide range of length scales.

Both experiments and simulations reported in Fig. 2 clearly
indicate that the onset of instability is strongly affected by the
arrangement of the holes. A more quantitative comparison
between the response of the structures investigated in this
paper can be made by inspecting the evolution of stress during
both experiments and simulations (see Fig. 3). Although all
structures are characterized by roughly the same porosity, the

hole arrangement is found to strongly affect both the effective
modulus Ē (calculated as the initial slope of the stress–strain
curves reported in Fig. 3) and the critical strain 3cr (calculated as
the strain at which the stress–strain curves reported in Fig. 3
plateau), demonstrating that through a careful choice of the

Fig. 2 Numerical (left) and experimental (right) images of all four structures (4.4.4.4, 3.3.3.3.3.3, 3.6.3.6 and 3.4.6.4) at different levels of deformation: (A) 3¼ 0.00, (B)
3 ¼ "0.07, (C) 3 ¼ "0.15 and (D) 3 ¼ "0.21. All configurations are characterized by an initial void-volume-fraction j z 0.5. Scale bars: 20 mm.

Fig. 3 (A) Experimental and numerical stress–strain curves for the four struc-
tures. S denotes the nominal stress (calculated as force divided by the cross-
sectional area in the undeformed configuration). Dashed lines correspond to
experiments and solid lines to simulations. Note that for 3 < "0.20 the porous
structure 4.4.4.4. shows a stiffening behavior due to densification. A similar
response is observed also for the other three structures, but for larger values of
applied strain 3. (B) Table summarizing the mechanical properties of the four
periodic structures measured from experiments and simulations.
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undeformed structure

P. Wang, J. Shim and K. Bertoldi, 
PRB 88, 014304 (2013)

deformed structure

Controllable sound filters
In periodic structures sound waves of certain frequencies (within a “band 
gap”) cannot propagate. The range of “band gap” frequencies depends 
on material properties, the geometry of structure and the external load.

strain, leading to the formation of a periodic array of elongated,
almost closed ellipses, as shown in Fig. 2D for 3 ¼ "0.21. Since
the specimens are made of an elastomeric material, the process
is fully reversible and repeatable. Upon release of the applied
vertical displacement, the deformed structures recover their
original congurations.

Interestingly, Figs. 2C–D clearly shows that the porous
structures 3.6.3.6 and 3.4.6.4 buckle into a chiral pattern, while
the initially expanded congurations are non-chiral. Therefore,
in these two systems buckling acts as a reversible chiral
symmetry breaking mechanism. Despite many studies on
pattern formation induced by mechanical instabilities,15

relatively little is known about the use of buckling as a reversible
chiral symmetry breaking mechanism. Although several
processes have been recently reported to form chiral
patterns,19–23 all of these work only at a specic length-scale,
preventing their use for the formation of chiral structures over a
wide range of length scales, as required by applications.
Furthermore, most of these chiral symmetry breaking processes
are irreversible19–21 and only few systems have been demon-
strated to be capable of reversibly switching between non-chiral
and chiral congurations.22,23 Remarkably, since the mecha-
nism discovered here exploits a mechanical instability that is
scale independent, our results raise opportunities for reversible
chiral symmetry breaking over a wide range of length scales.

Both experiments and simulations reported in Fig. 2 clearly
indicate that the onset of instability is strongly affected by the
arrangement of the holes. A more quantitative comparison
between the response of the structures investigated in this
paper can be made by inspecting the evolution of stress during
both experiments and simulations (see Fig. 3). Although all
structures are characterized by roughly the same porosity, the

hole arrangement is found to strongly affect both the effective
modulus Ē (calculated as the initial slope of the stress–strain
curves reported in Fig. 3) and the critical strain 3cr (calculated as
the strain at which the stress–strain curves reported in Fig. 3
plateau), demonstrating that through a careful choice of the

Fig. 2 Numerical (left) and experimental (right) images of all four structures (4.4.4.4, 3.3.3.3.3.3, 3.6.3.6 and 3.4.6.4) at different levels of deformation: (A) 3¼ 0.00, (B)
3 ¼ "0.07, (C) 3 ¼ "0.15 and (D) 3 ¼ "0.21. All configurations are characterized by an initial void-volume-fraction j z 0.5. Scale bars: 20 mm.

Fig. 3 (A) Experimental and numerical stress–strain curves for the four struc-
tures. S denotes the nominal stress (calculated as force divided by the cross-
sectional area in the undeformed configuration). Dashed lines correspond to
experiments and solid lines to simulations. Note that for 3 < "0.20 the porous
structure 4.4.4.4. shows a stiffening behavior due to densification. A similar
response is observed also for the other three structures, but for larger values of
applied strain 3. (B) Table summarizing the mechanical properties of the four
periodic structures measured from experiments and simulations.
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for a 2D random Poisson distribution,σðRÞ∝R2 is proportional
to the window area, whereas hyperuniform structures, including
crystals and quasicrystals, have σðRÞ∝R. Because of these two fea-
tures, the photonic design pattern has uniform nearest-neighbor
connectivity and hyperuniform long-range density fluctuations
[or, equivalently, a structure factor with the property SðkÞ→ 0 for
wavenumber k→0 ] (22) similar to crystals; at the same time, the
pattern exhibits random positional order, isotropy, and a circularly
symmetric diffuse structure factor S(k) similar to a glass.

Results
Demonstration of Isotropic Band Gap Formation. Our study focuses
on a subclass of 2D hyperuniform patterns with the largest band
gaps for a given dielectric contrast (19); these designs, referred
to as “stealthy” (23), have a structure factor S(k) precisely equal
to zero for a finite range of wavenumbers k < kC for some pos-
itive kC. We have constructed a physical realization of a hyper-
uniform stealthy design (Fig. 1) using commercially available
Al2O3 cylinders and walls cut to the designed heights and widths.
For the band gap measurements, the transmission is defined as

the ratio between transmitted intensity with and without the
sample in place. We first used the hyperuniform disordered
structure shown in Fig. 1B and plotted the measured trans-
mission normal to its boundary as the blue curves in Fig. 2A (TE)
and Fig. 2C (TM). Next, to check the angular dependence of the
photonic properties, cylinders and walls were removed from the
corners of the samples to construct a nearly circular boundary of
diameter 13a, where a is the average intercell spacing. The
samples were rotated along the axis perpendicular to the pat-
terned plane, and the transmission was recorded every 2° from 0–
180° for both TE and TM polarizations. The average trans-
mission over all incident angles is plotted as the red curves in Fig.
2A (TE) and Fig. 2C (TM). The regions of low transmission (20-
dB relative drop compared with the measured maximum band
pass transmission) agree well with the calculated TE and TM
band gaps (see below). The calculated upper boundary of the
TM band gap and lower boundary of the TE band gap, defining
the complete PBG region, are indicated with vertical dash–
dot lines.
In Fig. 3, we use color contour plots to present the measured

transmission, T, as a function of frequency and incident angle.
Between the calculated boundaries (white lines) of the complete
PBG, the measured transmission through the hyperuniform
structure for TE (Fig. 3A) and TM (Fig. 3B) polarizations shows
an isotropic complete PBG (horizontal blue stripes), with a rel-
ative gap contrast deeper than −20dB. A similar square lattice
constructed with the same Al2O3 cylinders and Al2O3 walls of the
same thickness is measured for comparison. As expected, in the
square-lattice photonic crystal, stop gaps due to Bragg scattering
occur along the Brillouin zone boundaries, are anisotropic, and

change frequency in different directions. For TM polarization
(Fig. 3D), the stop gaps in different directions are wide enough
to overlap and form a PBG, whereas there is no band gap for TE
polarization (Fig. 3C). As a further comparison, our direct band
simulation shows that the champion photonic crystal structure (a
triangular lattice of air holes in dielectric), with the same di-
electric constant contrast of 8.76:1 and filling fraction of 27%,
has a complete gap of 5.2%, slightly larger than the 4.1% com-
plete gap found in our disordered structure. The triangular
structure maintains the anisotropy characteristic of periodic
structures: the central frequency and the width of the stop gaps
along different directions vary by 24% and 44%, respectively. In
contrast, for the hyperuniform disordered structure, the central
frequency and the width of the stop gaps in different directions
are statistically identical. The measured transmitted power at any
frequency is much lower for TM polarization than for TE po-
larization, in both our hyperuniform sample and our square-
lattice sample. For each polarization, the transmitted power is
limited by the horn geometry, namely the rectangular shape,
asymmetric radiation pattern, and relatively small radiation ac-
ceptance angle of 15°. Nevertheless, for both polarizations, we
observe the aforementioned 20-dB reduction of transmission,
confirming the existence of the PBG.
Our experimental results are compared with theoretical band

structure calculations obtained using a supercell approximation
and the conventional plane–wave expansion method (24). The
size of the supercell used in the simulations is 22a × 22a (the
entire region of Fig. 1A). The calculated density of states (DOS;
green curves in Fig. 2 B and D) for both TE and TM modes is
zero within the PBG. Finite-difference time-domain simulations
of the transmission spectrum through a finite sample of 22a ×
22a (blue curves in Fig. 2 B and D) show regions of considerably
reduced transmission in the spectral region of the PBGs and
overlap our experimental results. As the result of background
dark noise (around −40 dB) and the finite size of 13a× 13a, the
experiment is limited to detecting a gap contrast of no more than
30 dB, although the simulations of the finite sample indicate
suppression by six orders of magnitude.

Demonstration of the Effective Freeform Waveguiding. To test
whether light can be guided through our hyperuniform disor-
dered structure, a straight channel was created by removing
cylinders and walls within a straight strip of width 2a, as shown in
Fig. 4A. The horn antennas were placed directly against the ends
of the channel for the transmission measurement. The TM
transmission spectrum for the open channel is shown in Fig. 4B.
The calculated TM-polarization gap is highlighted with shading.
Our measurements clearly demonstrate that a broad band of
frequencies is guided through the open channel. The transmission
values presented in Fig. 4 are simply the ratio of the detected

Fig. 1. Design and photographs of the hyperuniform disordered structure. (A) Cross-section of the 2D hyperuniform disordered structure, decorated with
cylinders and walls. The area enclosed in the red box is the structure used for our experimental study. Side view (B) and top view (C) of the hyperuniform
disordered structure used in our experiment, assembled with Al2O3 cylinders and walls.
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approximate plane waves. Absorbing materials are used around the samples
to reduce noise.

Our theoretical band structure calculations were obtained using a super-
cell approximation and the conventional plane–wave expansion method (3,
24). The size of the supercell used in the simulations is 5001/2a × 5001/2a (the
entire region of Fig.1A). We solve the vectorial Maxwell equations, assuming
the structure is infinitely long in the vertical direction. The supercell’s first
Brillouin zone then is discretized in 64 × 64 k-points, and the band structure
is evaluated on the k-space mesh. The calculated band structures for the TE
and TM modes of our system are included in Fig. S1. Band gap boundaries
are determined from these band structures and were confirmed to converge
with several different realizations of hyperuniform disorder and larger

supercell sizes up to 63a × 63a. We use a Brillouin-zone integration scheme,
similar to the one presented in ref. 36, to evaluate the DOS.
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through the S-shaped channel. (I) Measured transmission of a similar bending channel in the square-lattice photonic crystal (sketched in Inset), created by
removing one row of cylinders and their connected walls. The transmission is significantly lower and narrower than that through the bending channels in the
hyperuniform structure, under the same coupling conditions.
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approximate plane waves. Absorbing materials are used around the samples
to reduce noise.

Our theoretical band structure calculations were obtained using a super-
cell approximation and the conventional plane–wave expansion method (3,
24). The size of the supercell used in the simulations is 5001/2a × 5001/2a (the
entire region of Fig.1A). We solve the vectorial Maxwell equations, assuming
the structure is infinitely long in the vertical direction. The supercell’s first
Brillouin zone then is discretized in 64 × 64 k-points, and the band structure
is evaluated on the k-space mesh. The calculated band structures for the TE
and TM modes of our system are included in Fig. S1. Band gap boundaries
are determined from these band structures and were confirmed to converge
with several different realizations of hyperuniform disorder and larger

supercell sizes up to 63a × 63a. We use a Brillouin-zone integration scheme,
similar to the one presented in ref. 36, to evaluate the DOS.
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Channels inside structures can be used as guides for waves with 
wavelengths that are totally reflected from a complete structure!

Note: channels can have arbitrary bends!



Waveguides in periodic structures
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Note: channels with certain bends act as waveguides only for 
those waves that are completely reflected at these angles!

In periodic 
structures waves 

are completely 
reflected only at 
certain angles.



Further reading about structural colors
and photonic crystals

http://ab-initio.mit.edu/book/
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curvature, and themagnitude of the applied swelling stress. The
presence of curvature introduces several advantages. First, the
magnitude of the curvature can be a control parameter to
dictate the wrinkle morphology independent of other experi-
mental conditions (Fig. 1a). Second, the connement of the
curved surfaces leads to improved ordering of hexagonal
dimples. Finally, wrinkled curved structures are inherently
hierarchical, a key advantage for the design of many specialty
and biomimetic structured materials.

Background

In 2008, Cao and colleagues25,26 identied four dimensionless
parameters which can describe wrinkling on spherical surfaces
comprised of a lm of uniform thickness, t, supported on a so

elastic substrate with radius of curvature, R: the ratio R/t of
curvature to lm thickness, the modulus mismatch Ef/Es (where
the subscripts f and s refer to the lm and substrate, respec-
tively), the applied overstress, dened as the ratio of the applied
stress to the critical wrinkling stress (s/sc), and the aspect ratio
of the axes of the spheroid. Following Cai, et al.,24 the rst two
parameters may be combined into a single dimensionless
curvature parameter given by:

U ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"
1" nf 2

#q
ðt=RÞðE"f=3E

"
sÞ2=3 (1)

where !E represents the plane strain modulus E/(1 " n2) with n

equal to the Poisson's ratio of the material. For wrinkling
spheres at small overstress, Cao, et al. reported26 formation of
dimple features at large U, while small U values tended to form
ridge-based labyrinthine patterns. They also showed that the
applied overstress affects the amplitude of wrinkling and plays a
strong role in determining the selection between ridges and
dimples, holding everything else constant.

Furthermore, the level of overstress is inherently related to
the curvature. This dependence stems from the relationship
between radial displacement of the shell and the stretching
energy incurred in the shell. The introduction of curvature
changes this dependence from a quadratic to a linear relation-
ship,28 which in turn impacts the critical wrinkling stress. Thus,
when curvature is present, the stretching energy makes a rela-
tively larger contribution to the overall energy. For this reason,
the overstress most relevant to curved surface buckling is s/sRc ,
the ratio of the applied stress to the critical stress of a spherical
surface with radius of curvature R. The denition of the curved
critical stress sRc was presented by Cai et al.24 following the
approach of Hutchinson29 for buckling of hollow spherical
shells. In brief, similar to the case of understanding instabilities
in a at system, critical deformation modes of the following
form were considered:

w ¼ xtcos(b1kx1)cos(b2kx2) (2)

where w is the vertical displacement of the lm, x is the
amplitude of the deection, and k ¼ t"1(3!Es/!Ef)1/3. b1 and b2
represent free variables relating to the periodicity of the solu-
tions, and all modes which satisfy b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1

2 þ b2
2

p
are critical

modes. The associated critical buckling stress for these critical
deformation modes is given by:24

sR
c ¼ 1

3

"
b2 þ 2b"1 þ 3U2b"2

#
sflat
c

"
subject to b4 " b" 3U2 ¼ 0

# (3)

where

sflat
c ¼ E

"
f

4
ð3E"s=E

"
fÞ2=3 (4)

In the limit where the wrinkle wavelength, l ¼ 2p/k, is much
smaller than R, the critical stress may be approximated by24

sR
c

sflat
c

z1 þ U2 (5)

Fig. 1 Dimple–ridge transitions effected through independent control of various
system parameters. (a) Varying radius at constant UVO time (60 min) and ethanol
concentration (100%). (b) Varying UVO treatment time at constant radius (381
mm) and ethanol concentration (100%). (c) Varying ethanol concentration at
constant UVO time (60 min) and cap radius (522 mm). All scale bars 250 mm.
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Why do we get wrinkled surfaces?

equilibrated by using the finite element method. While creases are

readily observed in daily life (e.g., Fig. 3), their scientific under-

standing is at its beginning.29–37 Because the initial creases are

localized in space, the onset of each crease is autonomous, when

a material particle reaches a critical state of strain. The set of

critical states of strain can be determined, independent of specific

boundary-value problems. We will ascertain this autonomy by

comparing the critical condition for creasing on the curved

surface of the void to that on the flat surface of a block.

We will study the transition between buckling and creasing.

For a void in a large block of an elastomer, we find that the

critical value of the internal tension to initiate creasing is lower

than that to initiate buckling. As osmosis builds up the internal

tension, the void initially shrinks but retains the cylindrical or

spherical shape, and then creases set in. By contrast, for a void in

an elastomer of a sufficiently small thickness, we find that the

critical value of the internal tension to initiate creasing is higher

than that to initiate buckling. The void buckles when the internal

tension exceeds the critical value. As the internal tension

increases further, the void deforms in the buckled shape, and

then forms creases.

The elastomer is taken to be permeable to water molecules. As

water molecules permeate out, the void reduces size, and the

liquid water inside the void builds up tension. A full analysis of

this process involves the kinetics of permeation. Attention in this

paper will be restricted to the state of equilibrium, when the

chemical potential of water has equalized between the liquid

water inside the void and the water vapor outside the elastomer.

Furthermore, we will neglect swelling of the elastomer due to the

absorption of water. This simplification may be justified in

practice, because the magnitude of the internal tension is

relatively high, and elastomers used in experiments are often

heavily crosslinked.

2. Tension in liquid water caused by osmosis

With reference to Fig. 1, in equilibrium, the tension in the liquid

water inside the void can be related to the humidity outside the

elastomer by the method of thermodynamics. When liquid water

equilibrates with its own vapor, in the absence of any other

species of molecules, the pressure in the coexistent liquid and

vapor is denoted by p0. (At room temperature, p0¼ 3.2 kPa.) The

coexistent liquid and vapor are taken as the state of reference, in

which the chemical potential of water is set to be zero. We next

list the chemical potentials of water in several idealized systems.

The air outside the elastomer has several molecular species,

and is modeled as an ideal gas. The chemical potential of water in

the gas is

m ¼ kTlog(p/p0) (1)

where kT is the temperature in the unit of energy, and p the

partial pressure of water molecules in the gas. The ratio p/p0

defines the relative humidity of the gas.

For a gas in a closed environment, the relative humidity can be

set by placing in the environment an aqueous solution. In a dilute

aqueous solution, the chemical potential of water is given by the

van’t Hoff equation:

m ¼ "UckT (2)

where U is the volume per water molecule (U ¼ 3.0 # 10"29 m3), c

is the concentration of the solution (i.e., the number of solute

particles per unit volume of the solution). When the gas equili-

brates with the solution, the chemical potential of water in the

gas equals that in the solution. A comparison of (1) and (2)

relates the partial pressure of water in the gas to the concentra-

tion of the solution.

When pure liquid water is subject to a triaxial stress s, the

chemical potential of water is

m ¼ "U(s + p0) (3)

We adopt the sign convention that the stress in the liquid water is

a tension if s > 0, and is a pressure if s < 0. Eqn (3) recovers the

state of reference: the chemical potential vanishes when s ¼ "p0.

Often the magnitude of the vapor pressure p0 is negligible

compared to the magnitude of the stress s in the liquid water, so

that we may drop p0 from (3).

Fig. 2 The tension in the liquid water causes the elastomer to deform. Illustrated are three types of deformation: breathing, buckling, and creasing.

Fig. 3 Constrained in a bowl, a rising dough forms creases (courtesy of

Michael D. Thouless).

This journal is ª The Royal Society of Chemistry 2010 Soft Matter, 2010, 6, 5770–5777 | 5771
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Compression of stiff thin sheets 
on liquid and soft elastic substrates

for applications in optics,37 microuidics,38 stretchable elec-
tronics39–42 or for metrology in nanometric lms.43–47

Most of the aforementioned natural systems can be idealized
as being composed of a thin and stiff membrane attached to a
thick and so material. However, these systems are oen
characterized by a complex geometry. In order to study carefully
the properties of the emerging structures, we focus on bilayer
systems compressed uniaxially in the plane of the rigid
membrane that have been intensively studied.48–63 Notice,
however, that more complex geometries have already been
studied by considering biaxial/radial stresses (with or without
substrate) or curved substrates64–71 where wrinkle to fold tran-
sitions can also be observed for large enough deformations of
the systems.72–74

Here we consider the case of a sufficiently strong adhesion
between layers to avoid delamination75–77 and discuss in detail
the uniaxial compression of a rigid membrane resting either on
a liquid foundation78,79 or on an elastic solid substrate.80 Before
starting this discussion, let us recall qualitatively the basic steps
of the system deformation.

For small enough connement, compressed sheets stay
planar and preserve the system symmetry. As it is much easier to
bend a thin sheet than to stretch or compress it, there exists
some connement threshold beyond which the membrane
buckles to release the stored compression energy. The
membrane undulates out of its initial plane breaking sponta-
neously the system symmetry. The foundation is then also
deformed following the undulations of the sheet. The bending

energy of the sheet, being proportional to the square of the
curvature, favors the emergence of large length-scales such as
the system size. However, the surface deformation energy of the
bulk substrate favors vanishing length-scales. The total energy
is thus minimized for some intermediate length-scale, l0,
independent of the system size. This behavior is observed for
both liquid and elastic foundations.

For larger connement, the evolution of the membrane
morphology differs strongly according to the nature of the
substrate.

! For a liquid foundation, the amplitude of the initial wrin-
kles rst grows uniformly across the sheet. Further connement
leads to the formation of a single fold where all of the defor-
mation is focused within a narrow region of the sheet (see Fig. 1
le panels). The folding can appear downward, i.e. toward the
substrate, or upward. The system is thus characterized by an
up–down symmetry which is broken spontaneously by the
emergence of the instability.

! For an elastic foundation, the amplitude of the initial
wrinkles also rst grows uniformly across the sheet. However,
beyond a second threshold for the connement, a dramatic
change in the morphology is observed: one wrinkle grows in
amplitude at the expense of its neighbors leading to a period-
doubling instability with the emergence of a subharmonic
mode characterized by a wavelength 2l0 (see Fig. 1 right panels).
The periodic folding appears always downward and never
upward. Consequently the up–down symmetry is broken
explicitly by the system.

Fig. 1 Qualitative comparison between the evolution with respect to confinement of the morphology of compressed sheets resting on a liquid78 (left panels,
l0 " 1.6 cm) and on an elastic foundation (right panels, l0 " 70 mm). The confinement increases from panels a to panels c.
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Buckling vs wrinkling

for applications in optics,37 microuidics,38 stretchable elec-
tronics39–42 or for metrology in nanometric lms.43–47

Most of the aforementioned natural systems can be idealized
as being composed of a thin and stiff membrane attached to a
thick and so material. However, these systems are oen
characterized by a complex geometry. In order to study carefully
the properties of the emerging structures, we focus on bilayer
systems compressed uniaxially in the plane of the rigid
membrane that have been intensively studied.48–63 Notice,
however, that more complex geometries have already been
studied by considering biaxial/radial stresses (with or without
substrate) or curved substrates64–71 where wrinkle to fold tran-
sitions can also be observed for large enough deformations of
the systems.72–74

Here we consider the case of a sufficiently strong adhesion
between layers to avoid delamination75–77 and discuss in detail
the uniaxial compression of a rigid membrane resting either on
a liquid foundation78,79 or on an elastic solid substrate.80 Before
starting this discussion, let us recall qualitatively the basic steps
of the system deformation.

For small enough connement, compressed sheets stay
planar and preserve the system symmetry. As it is much easier to
bend a thin sheet than to stretch or compress it, there exists
some connement threshold beyond which the membrane
buckles to release the stored compression energy. The
membrane undulates out of its initial plane breaking sponta-
neously the system symmetry. The foundation is then also
deformed following the undulations of the sheet. The bending

energy of the sheet, being proportional to the square of the
curvature, favors the emergence of large length-scales such as
the system size. However, the surface deformation energy of the
bulk substrate favors vanishing length-scales. The total energy
is thus minimized for some intermediate length-scale, l0,
independent of the system size. This behavior is observed for
both liquid and elastic foundations.

For larger connement, the evolution of the membrane
morphology differs strongly according to the nature of the
substrate.

! For a liquid foundation, the amplitude of the initial wrin-
kles rst grows uniformly across the sheet. Further connement
leads to the formation of a single fold where all of the defor-
mation is focused within a narrow region of the sheet (see Fig. 1
le panels). The folding can appear downward, i.e. toward the
substrate, or upward. The system is thus characterized by an
up–down symmetry which is broken spontaneously by the
emergence of the instability.

! For an elastic foundation, the amplitude of the initial
wrinkles also rst grows uniformly across the sheet. However,
beyond a second threshold for the connement, a dramatic
change in the morphology is observed: one wrinkle grows in
amplitude at the expense of its neighbors leading to a period-
doubling instability with the emergence of a subharmonic
mode characterized by a wavelength 2l0 (see Fig. 1 right panels).
The periodic folding appears always downward and never
upward. Consequently the up–down symmetry is broken
explicitly by the system.

Fig. 1 Qualitative comparison between the evolution with respect to confinement of the morphology of compressed sheets resting on a liquid78 (left panels,
l0 " 1.6 cm) and on an elastic foundation (right panels, l0 " 70 mm). The confinement increases from panels a to panels c.
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Compressed thin sheets buckle

Compressed thin sheets on liquid 
and soft elastic substrates wrinkle

for applications in optics,37 microuidics,38 stretchable elec-
tronics39–42 or for metrology in nanometric lms.43–47

Most of the aforementioned natural systems can be idealized
as being composed of a thin and stiff membrane attached to a
thick and so material. However, these systems are oen
characterized by a complex geometry. In order to study carefully
the properties of the emerging structures, we focus on bilayer
systems compressed uniaxially in the plane of the rigid
membrane that have been intensively studied.48–63 Notice,
however, that more complex geometries have already been
studied by considering biaxial/radial stresses (with or without
substrate) or curved substrates64–71 where wrinkle to fold tran-
sitions can also be observed for large enough deformations of
the systems.72–74

Here we consider the case of a sufficiently strong adhesion
between layers to avoid delamination75–77 and discuss in detail
the uniaxial compression of a rigid membrane resting either on
a liquid foundation78,79 or on an elastic solid substrate.80 Before
starting this discussion, let us recall qualitatively the basic steps
of the system deformation.

For small enough connement, compressed sheets stay
planar and preserve the system symmetry. As it is much easier to
bend a thin sheet than to stretch or compress it, there exists
some connement threshold beyond which the membrane
buckles to release the stored compression energy. The
membrane undulates out of its initial plane breaking sponta-
neously the system symmetry. The foundation is then also
deformed following the undulations of the sheet. The bending

energy of the sheet, being proportional to the square of the
curvature, favors the emergence of large length-scales such as
the system size. However, the surface deformation energy of the
bulk substrate favors vanishing length-scales. The total energy
is thus minimized for some intermediate length-scale, l0,
independent of the system size. This behavior is observed for
both liquid and elastic foundations.

For larger connement, the evolution of the membrane
morphology differs strongly according to the nature of the
substrate.

! For a liquid foundation, the amplitude of the initial wrin-
kles rst grows uniformly across the sheet. Further connement
leads to the formation of a single fold where all of the defor-
mation is focused within a narrow region of the sheet (see Fig. 1
le panels). The folding can appear downward, i.e. toward the
substrate, or upward. The system is thus characterized by an
up–down symmetry which is broken spontaneously by the
emergence of the instability.

! For an elastic foundation, the amplitude of the initial
wrinkles also rst grows uniformly across the sheet. However,
beyond a second threshold for the connement, a dramatic
change in the morphology is observed: one wrinkle grows in
amplitude at the expense of its neighbors leading to a period-
doubling instability with the emergence of a subharmonic
mode characterized by a wavelength 2l0 (see Fig. 1 right panels).
The periodic folding appears always downward and never
upward. Consequently the up–down symmetry is broken
explicitly by the system.

Fig. 1 Qualitative comparison between the evolution with respect to confinement of the morphology of compressed sheets resting on a liquid78 (left panels,
l0 " 1.6 cm) and on an elastic foundation (right panels, l0 " 70 mm). The confinement increases from panels a to panels c.
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In compressed thin sheets on liquid and soft elastic 
substrates global buckling is suppressed, because it 

would result in very large energy cost associated with 
deformation of the liquid or soft elastic substrate!
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Brief intro to mechanics:
Young’s modulus
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undeformed
material element

F
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A = LxLy

Robert Hooke 
(1635-1703)

Thomas Young 
(1773-1829)

Hooke’s law
(small deformations)

F

A
= E

�Lz

Lz

normal stress: � = F/A

Young’s modulus: E

normal strain: ✏ = �Lz/Lz

Elastic energy of deformation

U =
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2
V E✏2

V = LxLyLzelement volume:
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Young’s modulus of materials

http://www-materials.eng.cam.ac.uk/mpsite/physics/introduction/

http://www-materials.eng.cam.ac.uk/mpsite/physics/introduction/
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Poisson’s ratio

Simeon Poisson 
(1781-1840)
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Typically material shrinks (expands) in the transverse 
direction of the axial tension (compression)!
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✏z

�z �|�z|

✏z =
�z

E
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undeformed
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Effective negative Poisson’s ratio for structures
Certain structures behave like they have effective 

negative Poisson’s ratio, even though they are made 
of materials with positive Poisson’s ratio!
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Bulk modulus
undeformed 

material element Hooke’s law
(small deformations)

hydrostatic stress:
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volumetric strain:

Elastic energy of deformation

hydrostatic stress

p

p

p p

p

p

L
L

L

L0

�V

V
=� p

K

p

K =
E

3(1� 2⌫)

�V

V
⇡ 3

�L

L

U =
1

2
V K

✓
�V

V

◆2

⇠ V E

✓
�L

L

◆2

L0

L0



24

Shear

�

Note: shear does not 
change the volume of 

material element!

F

undeformed material element A = LxLy

Hooke’s law
(small deformations)
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Arbitrary deformation of 3D solid element

undeformed element deformed element
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Ly(1 + ✏y)

Lz(1 + ✏z)

⇣⇡
2
� �xz

⌘

⇣⇡
2
� �yz

⌘

⇣⇡
2
� �xy

⌘

Arbitrary deformation can be decomposed to 
the volume change and the shear deformation.

U = Ubulk + Ushear
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In plane deformations of thin sheets
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Curvature of surfaces

R. Phillips et al., Physical 
Biology of the Cell

curvature
of space curves
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use the variable h to characterize the height of the membrane above
that plane at the point of interest. The geometry of the membrane is
captured by its height h(x, y) at every point in the plane. Note that in
cases where the deformations of the membrane are sufficiently severe
(that is, there are folds and overlaps), this simple description will
not suffice and we would have to work using an intrinsic treatment
of the geometry without reference to the planar reference coordinates
described here.
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Figure 11.14: The height function
h(x, y). The surface of the membrane is
characterized by a height at each point
(x, y). This height function tells us how
the membrane is disturbed locally from
its preferred flat reference state.

Once we have the height function in hand, we can then compute
the curvature, which we will see is the key way that we will cap-
ture the extent of bending deformations. As with our treatment of
beams, we are going to see that the energetics of bending a lipid
bilayer membrane will depend upon the curvature of the membrane.
To explore the idea of membrane curvature, we take the approach
shown in Figure 11.15. We can cut through our surface with a plane,
and in so doing, the intersection of the surface with that plane
results in a curve. We compute the curvature of that space curve
in exactly the same way we did in Chapter 10 (see Figure 10.4 on
p. 386) by finding the circle that best fits the curve at the point
of interest. However, there is a problem with this story. The value
we get for the curvature depends upon the orientation of the plane
we use to cut the surface. Each such plane will result in a differ-
ent curve and a correspondingly different curvature. The way around
this impasse is a beautiful theorem that states that there is one par-
ticular choice of two orthogonal planes for which the curvature will
take two extreme values, one high and one low. These are the so-
called principal curvatures. This theorem guarantees that it takes two
numbers to capture the curvature of a surface, as opposed to the
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Figure 11.15: The curvature of space curves and surfaces. (A) The curvature of a curve is found by making the best fit of a circle
to the point at which we are computing the curvature. (B) The curvature of a surface is obtained by finding the best circle along
two orthogonal directions on the surface. This figure shows the intersection between a surface and a plane parallel to the y-axis
and a second intersection between the surface and a plane parallel to the x-axis.
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in exactly the same way we did in Chapter 10 (see Figure 10.4 on
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we get for the curvature depends upon the orientation of the plane
we use to cut the surface. Each such plane will result in a differ-
ent curve and a correspondingly different curvature. The way around
this impasse is a beautiful theorem that states that there is one par-
ticular choice of two orthogonal planes for which the curvature will
take two extreme values, one high and one low. These are the so-
called principal curvatures. This theorem guarantees that it takes two
numbers to capture the curvature of a surface, as opposed to the

h

h

hx

x

y

y

x

R(x)

R1 (x,y)

R2 (x,y)

(A) (B)

Figure 11.15: The curvature of space curves and surfaces. (A) The curvature of a curve is found by making the best fit of a circle
to the point at which we are computing the curvature. (B) The curvature of a surface is obtained by finding the best circle along
two orthogonal directions on the surface. This figure shows the intersection between a surface and a plane parallel to the y-axis
and a second intersection between the surface and a plane parallel to the x-axis.

442 Chapter 11 BIOLOGICAL MEMBRANES



28

Surfaces of various principal curvatures
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Bending energy cost for thin sheets

bending rigidity
(flexural rigidiy)
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Compression of stiff thin sheets 
on liquid and soft elastic substrates

for applications in optics,37 microuidics,38 stretchable elec-
tronics39–42 or for metrology in nanometric lms.43–47

Most of the aforementioned natural systems can be idealized
as being composed of a thin and stiff membrane attached to a
thick and so material. However, these systems are oen
characterized by a complex geometry. In order to study carefully
the properties of the emerging structures, we focus on bilayer
systems compressed uniaxially in the plane of the rigid
membrane that have been intensively studied.48–63 Notice,
however, that more complex geometries have already been
studied by considering biaxial/radial stresses (with or without
substrate) or curved substrates64–71 where wrinkle to fold tran-
sitions can also be observed for large enough deformations of
the systems.72–74

Here we consider the case of a sufficiently strong adhesion
between layers to avoid delamination75–77 and discuss in detail
the uniaxial compression of a rigid membrane resting either on
a liquid foundation78,79 or on an elastic solid substrate.80 Before
starting this discussion, let us recall qualitatively the basic steps
of the system deformation.

For small enough connement, compressed sheets stay
planar and preserve the system symmetry. As it is much easier to
bend a thin sheet than to stretch or compress it, there exists
some connement threshold beyond which the membrane
buckles to release the stored compression energy. The
membrane undulates out of its initial plane breaking sponta-
neously the system symmetry. The foundation is then also
deformed following the undulations of the sheet. The bending

energy of the sheet, being proportional to the square of the
curvature, favors the emergence of large length-scales such as
the system size. However, the surface deformation energy of the
bulk substrate favors vanishing length-scales. The total energy
is thus minimized for some intermediate length-scale, l0,
independent of the system size. This behavior is observed for
both liquid and elastic foundations.

For larger connement, the evolution of the membrane
morphology differs strongly according to the nature of the
substrate.

! For a liquid foundation, the amplitude of the initial wrin-
kles rst grows uniformly across the sheet. Further connement
leads to the formation of a single fold where all of the defor-
mation is focused within a narrow region of the sheet (see Fig. 1
le panels). The folding can appear downward, i.e. toward the
substrate, or upward. The system is thus characterized by an
up–down symmetry which is broken spontaneously by the
emergence of the instability.

! For an elastic foundation, the amplitude of the initial
wrinkles also rst grows uniformly across the sheet. However,
beyond a second threshold for the connement, a dramatic
change in the morphology is observed: one wrinkle grows in
amplitude at the expense of its neighbors leading to a period-
doubling instability with the emergence of a subharmonic
mode characterized by a wavelength 2l0 (see Fig. 1 right panels).
The periodic folding appears always downward and never
upward. Consequently the up–down symmetry is broken
explicitly by the system.

Fig. 1 Qualitative comparison between the evolution with respect to confinement of the morphology of compressed sheets resting on a liquid78 (left panels,
l0 " 1.6 cm) and on an elastic foundation (right panels, l0 " 70 mm). The confinement increases from panels a to panels c.
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Compression of stiff thin 
membranes on liquid substrates

�

L

�
2h0

d

�

L

d

L

d
initial undeformed configuration

Consider the energy cost for two different scenarios:
1.) thin membrane is compressed (no bending)

2.) thin membrane is wrinkled (no compression)
+ additional potential energy of liquid
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Compression of stiff thin 
membranes on liquid substrates

strain

compression energy of thin membrane
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⇢

Note: upon compression the liquid surface also raises, but we 
will measure the potential energy relative to this new height!
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Compression of stiff thin 
membranes on liquid substrates
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Compression of stiff thin 
membranes on liquid substrates
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Compression of stiff thin 
membranes on liquid substrates

F. Brau et al., Soft Matter 9, 8177 (2013)
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3 Liquid substrate

When the substrate is a liquid the effective stiffness is given by
K¼ rg where r is the liquid mass density and g the gravitational
acceleration. From eqn (10) with a ¼ 0 and K ¼ !K ¼ rg, we
obtain

l0 ¼ 2p

!
B

rg

"1=4

: (11)

This relation is in very good agreement with available experi-
mental data found in ref. 67 and 78 and gathered in Fig. 3.
Consequently, eqn (7) governing the membrane morphology,
obtained from an expansion at the lowest order of the
Lagrangian (2), captures well the physics of this system near the
buckling threshold. This length-scale l0 emerges as soon as the
applied load reaches the critical value P0 ¼ P(2p/l0) whose
expression is obtained from eqn (8)

P0 ¼ 2(Brg)1/2. (12)

To describe the subsequent evolution of the membrane
morphology, we need to derive the complete nonlinear equation
from the Lagrangian (2) with the full expression for the defor-
mation energy of the substrate us ¼ y2cos q. We consider the
ideal case of an innitely long sheet L/Nwith y¼ q¼ _q¼ 0 for
s / "N. As shown below, this approximation gives a satis-
factory description of this system and allows us to obtain an
explicit exact solution. The Euler–Lagrange eqn (4) gives the
following system of equations

Bq€þ K

2
y 2sin qþ Psin qþQcos q¼ 0 (13)

Kycos q$ _Q ¼ 0. (14)

Differentiating (13) with respect to s and using eqn (14) to
eliminate _Q together with _y ¼ sin q, we obtain

Bq
.
þ Ky þ K

2
y 2 _qcos qþ P _qcos q$Q _qsin q¼ 0 (15)

Since the Lagrangian L has no explicit dependence on
the independent variable s, the Hamiltonian, H, is a constant
(dH/ds ¼ 0). The expression of the Hamiltonian is given by

H ¼
P
i

_qi
vL
v _qi

$ L

¼ B

2
_q2 $ K

2
y 2cos qþ Pð1$ cos qÞ þQsin q¼ 0; (16)

where the constant has been set to 0 to satisfy the boundary
conditions at s / "N. The Lagrange multiplier Q is nally
eliminated by multiplying the expression (16) of H by _q and
adding the result to eqn (15):

Bq
.
þ B

2
_q
3 þ P _qþ Ky ¼ 0: (17)

Eqn (17) coincides with Euler's elastica problem. It expresses
the balance of normal forces on an innitesimal section of
the sheet. The last term, which usually corresponds to an
external normal force,83 arises here from hydrostatic pressure.
Differentiation of eqn (17) leads to an equation depending
only on q:

Bqzþ 3 B

2
_q
2
q€þ Pq€þ Ksin q¼ 0: (18)

Notice that this equation, or the equivalent one written in
terms of y and its derivatives,84 is invariant against the change
y / $y. This system is thus characterized by an up–down
symmetry meaning that the folding takes place either toward
the substrate or upward. Indeed, any deformation or its
symmetric one obtained from y / $y is equivalent for the
sheet. Pulling out the liquid from its initial equilibrium state or
pushing it down in a symmetric way is also energetically
equivalent.

At rst glance, it seems unlikely that this nonlinear eqn (18)
possesses explicit exact solutions. However, as indicated in ref.
79, it is characterized by a high level of symmetry. Simple
algebraic manipulations allow us to obtain the value of y and
all its derivatives at s ¼ 0 which hints that the problem may be
integrable. Moreover, this equation can be derived from the
integrable physical-pendulum equation, €q + k2sin q¼ 0, which
is another indication that exact solutions may exist. From this
relation between these two seemingly unrelated systems, one
can show that the following solution of the pendulum
equation

!q(a,k;s) ¼ 4tan$1(ae"iks) (19)

Fig. 3 Circular and triangular symbols correspond to data for liquid foundations
from ref. 67 and 78 with K ¼ rg. PE stands for polyester and PS stands for poly-
styrene. Square and diamond symbols correspond to data for elastic substrates
from ref. 39, 88 and 89 with K ¼ Es/3. PMMA stands for polymethyl methacrylate
and Si stands for silicon. Experiments using PVDF thin sheets of thickness 9 and 25
mm and partially cross-linked PDMS substrate have been performed to extend the
spanned experimental domain (E¼ 2.5" 0.5 GPa and s¼ 0.35 for PVDF90 and E¼
25 " 5 kPa and s ¼ 0.5 for PDMS). The bending modulus B of polystyrene sheets
used in ref. 67 has been computed using E ¼ 3 " 1 GPa and s ¼ 0.35.81,82 When
not displayed, error bars have sizes similar to symbol sizes. SI units are used for l0
and the ratio B/K.
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