MAE 545: Lecture 4 (2/15)

Structural Color and Wrinkled Surfaces




Interference on thin films
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Structural colors on periodic structures
Morpho butterfly

Single reflected color on
structures with uniform spacing

incoming reflected
light light
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Silver and gold structural colors

Many colors reflected on

structures with varying spacing
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Bragg scattering on crystal layers

Constructive interference for waves with different
wavelengths occurs in different crystal planes!

constructive
interference condition
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Scattering on disordered structures

Eastern Plum-throated
bluebird Cotinga

Disordered structures with
a characteristic length scale.

This length scale determines
what light wavelengths are
preferentially scattered.

The selectively reflected
wavelengths are the same
in all directions!

This gives rise to blue
colors in these birds.

V. Saranathan et al.,
J. R. Soc. Interface 9, 2563 (2012) ¢



Scattering on disordered structures

Blue jay

keratin
cortex

spongy layer ‘v
(keratin/air matrix)

black melanin layer

https://academy.allaboutbirds.org/how-birds-make-colortful-feathers/
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Dynamic structural colors
Chameleon (speed 8x) Comb Jelly (real time)

J. Teyssier et al., Nat. Comm. 6, 6368 (2015)

Changes in osmotic concentration lead to the https://www.youtube.com/watch?v=Qy90d0XvJIE
swelling of cells in excited chameleon. This
changes the spacing of periodic structure
from which the ambient light is reflected.

Rainbow color waves are produced by the beating
of cilia, which change the orientation of periodic
structure from which the ambient light is reflected.

skin yellow color green color




Structural colors

Structural colors of animals and plants appear due to the selective
reflection of ambient light on structural features underneath the surface.

Photonic

H. Wang and K-Q. Zhang, V. Saranathan et al.,
Sensors 13, 4192 (2013) J. R. Soc. Interface 9, 2563 (2012)



Noise barriers around
the Amsterdam airport

Sound from airplanes that are landing and taking off is

reflected from artificial barriers into the atmosphere.
10



Controllable sound filters

In periodic structures sound waves of certain frequencies (within a “band
gap”) cannot propagate. The range of “band gap” frequencies depends
on material properties, the geometry of structure and the external load.

undeformed structure

reflected
sound

transmitted

incoming sound sound

deformed structure

incoming sound reflected

ke

P. Wang, J. Shim and K. Bertoldi, T ???T? T T T

PRB 88, 014304 (2013)




Waveguides in disordered structures
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Note: channels can have arbitrary bends!

W. Man et al.,

wavelengths that are totally reflected from a complete structure!
PNAS 110, 15886 (2013)

Channels inside structures can be used as guides for waves with



Waveguides in periodic structures
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Note: channels with certain bends act as waveguides only for
those waves that are completely reflected at these angles!




Further reading about structural colors
and photonlc crystals

Pho’romc Crysfols
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http://ab-initio.mit.edu/book/
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Wrinkled surfaces




Why do we get wrinkled surfaces?

Fingers after being exposed
to water for some time

Old apple
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Compression of stiff thin sheets
on liquid and soft elastic substrates

air
stiff sheet ——————

> liquid or —
soft substrate

Liquid substrate Elastic substrate

compression
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10 ym thin sheet of ~10 ym thin PDMS (stiffer) sheet
polyester on water on PDMS (softer) substrate
)\() = 1.6 cm )\() =70 jvant!

L. Pocivavsek et al., Science 320, 912 (2008) F. Brau et al., Soft Matter 9, 8177 (2013)
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Buckling vs wrinkling

Compressed thin sheets buckle

e
e
e

Compressed thin sheets on liquid
and soft elastic substrates wrinkle

Liquid substrate Elastic substrate

In compressed thin sheets on liquid and soft elastic
substrates global buckling is suppressed, because it
would result in very large energy cost associated with
deformation of the liquid or soft elastic substrate!
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Brief intro to mechanics:

Young’s modulus

Hooke’s law
(small deformations)

undeformed F
material element

A=1L,L,

normal stress: 0 = F'/A
Young’s modulus: F

normal strain: e = AL./L,

Robert Hooke  Thomas Young
(1635-1703) (1773-1829)

S N

19

element volume: V' = L, L, L,



Young’s modulus of materials
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http://www-materials.eng.cam.ac.uk/mpsite/physics/introduction/
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http://www-materials.eng.cam.ac.uk/mpsite/physics/introduction/

Poisson’s ratio

undeformed

Typically material shrinks (expands) in the transverse Simeon Poisson
direction of the axial tension (compression)! (1781-1840)

normal strains: €; =
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Effective negative Poisson’s ratio for structures

Certain structures behave like they have effective
negative Poisson’s ratio, even though they are made
of materials with positive Poisson’s ratio!
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Bulk modulus

undeformed _ ,
material element hydrostatic stress Hooke’s law

(small deformations)

p
p
L L/
p p
L D L/T L hydrostatic stress: P
L

b
bulk modulus: K —
b 3(1 — 2v)
volumetric strain: ﬂ ~ 3&
V L

Elastic energy of deformation




Shear

undeformed material element A=1L,L,

/— Hooke’s law

(small deformations)

shear stress: 7= F/A
E

2(1 +v)
shear strain: 7 = arctan (A/L,)
v=A/L,

shear modulus: GG =

Elastic energy of deformation

Note: shear does not
change the volume of
material element! 24

elementvolume: V =L L, L.,



Arbitrary deformation of 3D solid element

undeformed element deformed element
T ’Y:Izy
224
F LZ :
A 1 + ez
2 a z
T ) %y ‘/g 'Vy
9 L, %,;z 1 + €y)
1 + €;)

Arbitrary deformation can be decomposed to
the volume change and the shear deformation.

U = Upuik + Ushear
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In plane deformations of thin sheets

undeformed sheet thickness {
patch area Y , dul
square patch L oung’s modulus £

: A= L? . : :
of thin sheet Poisson’s ratio
L

isotropic shear anisotropic

deformation deformation stretching
L+aL I

L(l —+ 61)
L+ AL

U B [(AA\® B (2AL\" U uy? U B ) )
z—§<7> ”E(T) A= | |aTplatreltylane)

2D bulk modulus 2D shear modulus 1,60 < 1
B — bt =Gt = Lt (shearing can be interpreted

2(1 —v) 2(1+v)  as anisotropic stretching)
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Curvature of surfaces

(A) (B)
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eigenvalues of
curvature tensor
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Bending energy cost for thin sheets

undeformed thin shee deformed thin shee

( thickness 1)
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Compression of stiff thin sheets
on liquid and soft elastic substrates

air
stiff sheet ——————

> liquid or —
soft substrate

Liquid substrate Elastic substrate k s K Em

compression
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10 ym thin sheet of ~10 ym thin PDMS (stiffer) sheet
polyester on water on PDMS (softer) substrate
)\() = 1.6 cm )\() =70 jvant!

L. Pocivavsek et al., Science 320, 912 (2008) F. Brau et al., Soft Matter 9, 8177 (2013)
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Compression of stiff thin
membranes on liquid substrates

initial undeformed configuration

J :
e

> >

L
Consider the energy cost for two different scenarios:
1.) thin membrane is compressed (no bending)

v E
"I -
L

>

2.) thin membrane is wrinkled (no compression)
+ additional potential energy of liquid
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2hg $




Compression of stiff thin
membranes on liquid substrates

v E
N B

< >
L
compression energy of thin membrane

U.~AXE, dx ¢

membrane liquid
membrane 3D Young’s strain density
area modulus A
A=WL Ep, ‘=1 P

Note: upon compression the liguid surface also raises, but we
will measure the potential energy relative to this new height!
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assumed profile

h(s) = hgcos(2ms/\)

Compression of stiff thin

membranes on liquid substrates
4

2ho §

<

L

projected length assuming that membrane doesn’t stretch

b [La/ TR [ o < (1)

amplitude of
wrinkles

bending energy of
stiff membrane

potential energy
of liquid

minimize total
energy (Un+Up)
with respect to )\
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Compression of stiff thin
membranes on liquid substrates

j > €

wrinkles are
stable above the
critical strain

wavelength of
wrinkles

amplitude of
wrinkles at the
critical strain
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Compression of stiff thin
membranes on liquid substrates
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