### MAE 545: Lectures 7,8 (2/27)

# Wrinkled surfaces

# Shapes of growing sheets





# How are villi formed in guts?



Villi increase internal surface area of intestine for faster absorption of digested nutrients.



# Lumen patterns in chick embryo

### DAPI marks cell nuclei

aSMA marks smooth muscle actin

E...: age of chick embryo in days



Stiff muscles grow slower than softer mesenchyme and endoderm layers



radial compression due to differential growth produces striped wrinkles

endoderm mesenchyme muscle



3 A. Shyer et al., <u>Science</u> **342**, 212 (2013)

# Lumen patterns in chick embryo



endoderm mesenchyme muscle



4

A. Shyer et al., <u>Science</u> **342**, 212 (2013)

# Lumen patterns in chick embryo



Villi start forming at E16 because of the faster growth in valleys

Zigzag Twisting

### ng Bulges

The same mechanism for villi formation also works in other organisms!



5 A. Shyer et al., <u>Science</u> **342**, 212 (2013)

# Why are guts shaped like that?



© 2003 Encyclopædia Britannica, Inc.



# **Guts in chick embryo**

#### Surgically removed guts from chick embryo



Tube straightens after separation from mesentery

Tube grows faster than mesentery sheet!





7



T. Savin et al., <u>Nature</u> **476**, 57 (2011)

# Synthetic analog of guts

8



#### **Rubber model of guts**



#### Chick guts at E12



# What is the wavelength of this oscillations?

# Compression of stiff tube on soft elastic mesentery sheet

$$2h_0$$

assumed profile  $h(s) = h_0 \cos(2\pi s/\lambda)$ 

deformation of the soft mesentery decays exponentially away from the surface

y

 $2r_0$ 

w

 $2r_i$ 

amplitude of wrinkles

$$h_0 = \frac{\lambda}{\pi} \sqrt{\frac{\Delta}{L}} = \frac{\lambda\sqrt{\epsilon}}{\pi}$$

 $h(s,y) \approx h_0 \cos(2\pi s/\lambda) e^{-2\pi y/\lambda}$ 

bending energy of stiff tube

$$U_b \sim L \times \kappa_t \times \frac{1}{R^2} \sim L \times E_t I_t \times \frac{h_0^2}{\lambda^4} \sim \frac{L E_t I_t \epsilon}{\lambda^2}$$

deformation energy of soft mesentery

$$U_m \sim A \times E_m d \times \epsilon_m^2 \sim L\lambda \times E_m d \times \frac{h_0^2}{\lambda^2} \sim LE_m d\lambda \epsilon$$

minimize total energy ( $U_b+U_m$ ) with respect to  $\lambda$ 

$$\lambda \sim \left(\frac{E_t I_t}{E_m d}\right)^{1/3}$$

bending stiffness of tube  $\kappa_t = E_t I_t$  $\kappa_t \propto E_t (r_0^4 - r_i^4)$ 

# Wavelength of oscillations in guts









chick



quail

finch



 $E_{\rm m}$ 

T. Savin et al., <u>Nature</u> 476, 57 (2011)

10

mouse

### npre

### erial

When soft elastic material is compressed by more than 35% surface forms sharp creases. This is effect of nonlinear elasticity!



# Swelling of thin membranes on elastic substrates



12 T. Tallinen et al., <u>PNAS</u> **111**, 12667 (2014)

## **Cortical convolutions in brains**



#### Migration of neurons to the cortex leads to "swelling" of gray matter!



# Formation of cortical convolutions in developing brains

### Magnetic resonance images (MRI) of fetal brains











GW 22-23

GW 25-26 GW 28-29

GW 33-34

GW 36-37

gestational week (GW): age of fetus in weeks

### Numerical simulations of developing brain

# Initial condition: shape from MRI image of fetal brain at GW 22.





<sup>14</sup> T. Tallinen et al., <u>Nature Physics</u> **12**, 588 (2016)

# Formation of cortical convolutions in developing brains

### Magnetic resonance images (MRI) of fetal brains











GW 22-23

GW 25-26 GW 28-29

GW 33-34

GW 36-37

gestational week (GW): age of fetus in weeks

Numerical simulations of developing brain





GW 22



**GW 29** 

GW 34

GW 40

adult

### From GW 22 to adult stage:

brain volume increases 20-fold from 60 ml to 1,200 ml cortical area increases 30-fold from 80 cm<sup>2</sup> to 2,400 cm<sup>2</sup>

<sup>15</sup> T. Tallinen et al., <u>Nature Physics</u> **12**, 588 (2016)

# Formation of cortical convolutions in developing brains

### Magnetic resonance images (MRI) of fetal brains











GW 22-23

GW 28-29 GW 25-26

GW 33-34

GW 36-37

### gestational week (GW): age of fetus in weeks

### Swelling of gel models of brain

16





In experiments only the thin coated layer swells by absorbing a liquid!



replicated gel-brain

gel-brain coated with thin layer





T. Tallinen et al., <u>Nature Physics</u> **12**, 588 (2016)



T. Tallinen et al., <u>Nature Physics</u> **12**, 588 (2016)

# Formation of cortical convolutions in developing brains



### Magnetic resonance images (MRI) of brains







**GW 40** 



adult

Numerical simulations of developing brain

**GW 34** 



22GW 29GW 34GW 40acSwelling of gel models of brain



GW 22 GW 29 GW 34 (t=0) (t=9 min) (t=16 min)

18 T. Tallinen et al., <u>Nature Physics</u> **12**, 588 (2016)

# **Brains for various organisms**



measurements of brain parameters



**R**: brain size

*T:* thickness of gray matter

tangential expansion



19 T. Tallinen et al., <u>PNAS</u> **111**, 12667 (2014)



20

#### PNAS 97, 5621 (2000)

# **Brain malformations**

### lissencephaly pachygyria (small number of larger gyri)



Reduced neuronal migration to cortex

Gray matter is thicker and it swells less!

### polymicrogyria

(large number of smaller gyri)



Typically gray matter has only four rather than six layers in the affected areas.



Weak adhesion between membrane and substrate



thin membrane delaminates/buckles!

The morphology of compressed structures can be obtained by minimizing the total energy



### **Experimental protocol**



**Computationally predicted phase diagram** 



24 Q. Wang and X. Zhao, <u>Sci. Rep.</u> **5**, 8887 (2015)

Very strong adhesion (  $\Gamma/(E_s d) \gg 1$  )



25 Q. Wang and X. Zhao, <u>Sci. Rep.</u> 5, 8887 (2015)









### Compression of thin membranes on elastic substrates with finite adhesion Strong adhesion





30 Q. Wang and X. Zhao, <u>Sci. Rep.</u> 5, 8887 (2015)

 $\frac{1}{E_s d} = 3.99$ 

**Moderate adhesion** 

$$\frac{\Gamma}{E_s d} = 0.81$$

### "Ridge" and "Period-double" phases disappear

### delamination/buckling of folds



$$\frac{\Gamma}{E_s d} = 0.46$$

"Ridge" and "Period-double" phases disappear

### delamination/buckling of wrinkles



31 Q. Wang and X. Zhao, <u>Sci. Rep.</u> 5, 8887 (2015)

Weak adhesion

$$\frac{\Gamma}{E_s d} = 0.28$$

"Ridge", "Period-double" and

"Fold" phases disappear

 $\frac{\Gamma}{E_s d} = 0.13$ 

delaminatied/buckled phase almost completely takes over the other phases delamination/buckling of flat phase



# Shapes of growing/swelling sheets and coiling of rods







# **Shapes of flowers and leaves**

saddles

wrinkled edges

helices



# Wrinkled and straight blades in macroalgae



bull kelp (seaweed)

Slow water flow environment (v~0.5 m/s)

#### Fast water flow environment (v~1.5 m/s)



old growth before

transplanted (flat)

### new growth after transplantation (wrinkled)

Transplantation of blade from one environment to the other changes morphology!



### blades

M. Koehl et al., Integ. Comp. Biol. 48, 834 (2008)

# Wrinkled and straight blades in macroalgae

bull kelp (seaweed)



Slow water flow environment (v~0.5 m/s)



increased drag

#### blades flap like flags

flapping prevents bundling of blades, which can thus receive more sunlight (photosynthesis)

#### Fast water flow environment (v~1.5 m/s)



reduced drag to prevent detachment from base (=death)

#### minimal flapping

blades bundle together and some blades on the bottom receive less sunlight

> M. Koehl et al., Integ. Comp. Biol. 48, 834 (2008)

### Wrinkled and straight blades in macroalgae

37

#### Slow water flow environment (v~0.5 m/s)



### edges of blades grow faster than the midline



What is the effect of differential growth rate between the edge and the midline of the blade?

Fast water flow environment (v~1.5 m/s)



# edges of blades grow at the same speed as the midline



M. Koehl et al., Integ. Comp. Biol. 48, 834 (2008)

# **Differential growth produces internal stress**

### before growth

# faster growth of the bottom edge in x direction



Differential growth produces internal stresses, which can be partially released via bending!

### Next: Short detour to differential geometry.

# Metric for measuring distances along curves



metric for measuring lengths

$$d\ell^{2} = d\vec{r}^{2} = \vec{t}^{2} (dx^{1})^{2} = g (dx^{1})^{2}$$
$$g = \vec{t}^{2}$$
$$d\ell = \sqrt{g} dx^{1}$$

Natural parametrization corresponds to  $g \equiv 1$ , where  $x^1$  measures distance along the beam.

# Metric for measuring distances along curves



# Strain and energy of beam deformations



strain measures the difference of metric g' for deformed beam from the preferred metric g !

- E 3D Young's modulus
- A beam cross-section area

# Metric tensor for measuring distances on surfaces



$$d\ell^2 = d\vec{r}^2 = \sum_{i,j} \vec{t}_i \cdot \vec{t}_j dx^i dx^j = \sum_{i,j} g_{ij} dx^i dx^j$$
$$g_{ij} = \vec{t}_i \cdot \vec{t}_j = \begin{pmatrix} \vec{t}_1 \cdot \vec{t}_1, & \vec{t}_1 \cdot \vec{t}_2 \\ \vec{t}_2 \cdot \vec{t}_1 & \vec{t}_2 \cdot \vec{t}_2 \end{pmatrix}$$
$$g = \det(g_{ij}) = |\vec{t}_1 \times \vec{t}_2|^2$$



area element



$$dA = |\vec{t_1}| |\vec{t_2}| \sin \alpha dx^1 dx^2$$

$$dA = \sqrt{g} \, dx^1 dx^2$$

## **Examples**



# Strain tensor and energy of shell deformations

#### undeformed shell



$$g_{ij} = \frac{\partial \vec{r}}{\partial x^i} \cdot \frac{\partial \vec{r}}{\partial x^j}$$
$$d\ell^2 = \sum_{i,j} g_{ij} dx^i dx^j$$

### strain tensor

$$u_{ij} = \frac{1}{2} \sum_{k} (g^{-1})_{ik} (g'_{kj} - g_{kj})$$

#### inverse metric tensor

$$\sum_{k} (g^{-1})_{ik} g_{kj} = \sum_{k} g_{ik} (g^{-1})_{kj} = \delta_{ij}$$



# Strain tensor for deformation of flat plates

### undeformed plate



deformed plate



local tangents

$$\vec{t_i} = \partial_i \vec{r} \equiv \frac{\partial \vec{r}}{\partial i} = \vec{e_i}$$

metric tensor

$$g_{ij} = \vec{t}_i \cdot \vec{t}_j = \delta_{ij} \equiv \begin{pmatrix} 1, & 0\\ 0, & 1 \end{pmatrix}$$

$$\vec{r'} = \vec{e_i} + \sum (\partial_i u_k) \vec{e_k}$$

$$\vec{t'_i} = \partial_i \vec{r'} = \vec{e_i} + \sum_k (\partial_i u_k) \vec{e_k} + (\partial_i h) \vec{e_z}$$
  
strain tensor

$$u_{ij} = \frac{1}{2} \left( g'_{ij} - \delta_{ij} \right)$$
  
$$2u_{ij} = \left( \partial_i u_j + \partial_j u_i \right) + \sum_k \partial_i u_k \partial_j u_k + \partial_i h \partial_j h$$

# **Curvature of curves**



# **Curvature tensor for surfaces**



 $g_{ij} = \vec{t}_i \cdot \vec{t}_j$  metric tensor for measuring lengths

#### curvature tensor for surfaces

$$K_{ij} = \sum_{k} \left( g^{-1} \right)_{ik} \left( \vec{n} \cdot \frac{\partial^2 \vec{r}}{\partial x^k \partial x^j} \right)$$



principal curvatures correspond to the eigenvalues of curvature tensor



mean curvature

$$\frac{1}{2}\left(\frac{1}{R_1} + \frac{1}{R_2}\right) = \frac{1}{2}\sum_i K_{ii} = \frac{1}{2}\operatorname{tr}(K_{ij})$$

**Gaussian curvature** 

$$\frac{1}{R_1 R_2} = \det(K_{ij})$$

## **Surfaces of various principal curvatures**



### **Examples for Gaussian curvature**



# **Examples**

 $\vec{r}(x,y) = (x,y,0)$ 

 $\vec{t}_x = \frac{\partial \vec{r}}{\partial x} = (1, 0, 0)$ 

$$K_{ij} = \sum_{k} \left( g^{-1} \right)_{ik} \left( \vec{n} \cdot \frac{\partial^2 \vec{r}}{\partial x^k \partial x^j} \right)$$

$$g_{ij} = \vec{t}_i \cdot \vec{t}_j = \begin{pmatrix} 1, & 0 \\ 0, & 1 \end{pmatrix}$$
$$K_{ij} = \begin{pmatrix} 0, & 0 \\ 0, & 0 \end{pmatrix}$$

 $\vec{t}_{\theta}$ 

 $\vec{n}$ 

$$\vec{t}_{y} = \frac{\partial \vec{r}}{\partial y} = (0, 1, 0)$$

$$\vec{t}_{y} = \frac{\partial \vec{r}}{\partial y} = (0, 1, 0)$$

$$\vec{n} = \frac{\vec{t}_{x} \times \vec{t}_{y}}{|\vec{t}_{x} \times \vec{t}_{y}|} = (0, 0, 1)$$

$$\vec{r}(\phi, z) = (R \cos \phi, R \sin \phi, z)$$

$$\vec{t}_{\phi} = \frac{\partial \vec{r}}{\partial \phi} = R(-\sin \phi, \cos \phi, 0)$$

$$g_{ij} = \vec{t}_{i} \cdot \vec{t}_{j} = \begin{pmatrix} R^{2}, & 0 \\ 0, & 1 \end{pmatrix}$$

$$\vec{t}_{z} = \frac{\partial \vec{r}}{\partial z} = (0, 0, 1)$$

$$\vec{n} = \frac{\vec{t}_{\phi} \times \vec{t}_{z}}{|\vec{t}_{\phi} \times \vec{t}_{z}|} = (\cos \phi, \sin \phi, 0)$$

$$K_{ij} = \begin{pmatrix} -\frac{1}{R}, & 0 \\ 0, & 0 \end{pmatrix}$$

$$\vec{r}(\theta,\phi) = R(\sin\theta\cos\phi,\sin\theta\sin\phi,\cos\theta)$$

$$g_{ij} = \vec{t}_i \cdot \vec{t}_j = \begin{pmatrix} R^2, & 0\\ 0, & R^2\sin^2\theta \end{pmatrix}$$

$$\vec{t}_{\phi} = \frac{\partial \vec{r}}{\partial \theta} = R(\cos\theta\cos\phi,\cos\theta\sin\phi,-\sin\theta)$$

$$\vec{t}_{\phi} = \frac{\partial \vec{r}}{\partial \phi} = R\sin\theta(-\sin\phi,\cos\phi,0)$$

$$\vec{t}_{ij} = \begin{pmatrix} -\frac{1}{R}, & 0\\ 0, & -\frac{1}{R} \end{pmatrix}$$

$$\vec{n} = \frac{\vec{t}_{\theta} \times \vec{t}_{\phi}}{|\vec{t}_{\theta} \times \vec{t}_{\phi}|} = (\sin\theta\cos\phi,\sin\theta\sin\phi,\cos\theta)$$

# **Bending energy for deformation of shells**

### undeformed shell





deformed shell

sheet thickness dYoung's modulus EPoisson's ratio  $\nu$ 

$$K_{ij} = \sum_{k} \left( g^{-1} \right)_{ik} \left( \vec{n} \cdot \frac{\partial^2 \vec{r}}{\partial x^k \partial x^j} \right)$$

### bending strain tensor

$$b_{ij} = K'_{ij} - K_{ij}$$

(local measure of deviation from preferred curvature)

### **Energy cost of bending**

 $K'_{ij} = \sum_{k} \left( g'^{-1} \right)_{ik} \left( \vec{n}' \cdot \frac{\partial^2 \vec{r}'}{\partial x^k \partial x^j} \right)$ 

$$U = \int \left(\sqrt{g} dx^1 dx^2\right) \left[\frac{1}{2}\kappa \left(\operatorname{tr}(b_{ij})\right)^2 + \kappa_G \operatorname{det}(b_{ij})\right]$$

$$\kappa = \frac{Ed^3}{12(1-\nu^2)} \quad \kappa_G = -\frac{Ed^3}{12(1+\nu)}$$

# **Bending strain for deformation of flat plates**

### undeformed plate



### deformed plate



local normal

$$\vec{n} = \frac{\vec{t}_x \times \vec{t}_y}{|\vec{t}_x \times \vec{t}_y|} = \vec{e}_z$$

reference curvature tensor

$$K_{ij} = \vec{n} \cdot \partial_i \partial_j \vec{r} = 0$$

local normal (neglecting in-plane deformations)

$$\vec{n'} \approx \frac{\vec{e}_z - (\partial_x h) \,\vec{e}_x - (\partial_y h) \,\vec{e}_y}{\sqrt{1 + (\partial_x h)^2 + (\partial_y h)^2}}$$

### bending strain tensor

$$b_{ij} = K'_{ij} \approx \partial_i \partial_j h + \cdots$$

# **Mechanics of growing sheets**

Growth defines preferred metric tensor  $g_{ij}$ , and preferred curvature tensor  $K_{ij}$ .



The equilibrium membrane shape  $\vec{r}'(x^1, x^2)$  corresponds to the minimum of elastic energy:

$$U = \int \left(\sqrt{g} dx^1 dx^2\right) \left[\frac{1}{2}\lambda \left(\sum_i u_{ii}\right)^2 + \mu \sum_{i,j} u_{ij} u_{ji} + \frac{1}{2}\kappa \left(\operatorname{tr}(b_{ij})\right)^2 + \kappa_G \operatorname{det}(b_{ij})\right]$$

Growth can independently tune the metric tensor  $g_{ij}$  and the curvature tensor  $K_{ij}$ , which may not be compatible with any surface shape that would produce zero energy cost!

Zero energy shape exists only when preferred metric tensor  $g_{ij}$  and preferred curvature tensor  $K_{ij}$  satisfy Gauss-Codazzi-Mainardi relations!

## **Mechanics of growing sheets**

### One of the Gauss-Codazzi-Mainardi equations (Gauss's Theorema Egregium) relates the Gauss curvature to metric tensor

$$\det(K'_{ij}) = \mathcal{F}(g'_{ij})$$

The equilibrium membrane shape  $\vec{r}'(x^1, x^2)$ corresponds to the minimum of elastic energy:

$$U = \int \left(\sqrt{g} dx^1 dx^2\right) \left[\frac{1}{2}\lambda\left(\sum_i u_{ii}\right)^2 + \mu \sum_{i,j} u_{ij} u_{ji} + \frac{1}{2}\kappa\left(\operatorname{tr}(b_{ij})\right)^2 + \kappa_G \operatorname{det}(b_{ij})\right]$$

scaling with membrane thickness d

 $\lambda, \mu \sim Ed$  $\kappa, \kappa_G \sim Ed^3$  For very thin membranes the equilibrium shape matches the preferred metric tensor to avoid stretching, compressing and shearing. This also specifies the Gauss curvature!

$$g'_{ij} = g_{ij}$$
$$\det(K'_{ij}) = \mathcal{F}(g_{ij})$$