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How are villi formed in guts?

Villi increase internal surface area of intestine for 
faster absorption of digested nutrients.
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Villification: How the Gut Gets Its Villi
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The villi of the human and chick gut are formed in similar stepwise progressions, wherein themesenchyme and
attached epithelium first fold into longitudinal ridges, then a zigzag pattern, and lastly individual villi. We
find that these steps of villification depend on the sequential differentiation of the distinct smooth muscle
layers of the gut, which restrict the expansion of the growing endoderm and mesenchyme, generating
compressive stresses that lead to their buckling and folding. A quantitative computationalmodel, incorporating
measured properties of the developing gut, recapitulates the morphological patterns seen during villification
in a variety of species. These results provide a mechanistic understanding of the formation of these
elaborations of the lining of the gut, essential for providing sufficient surface area for nutrient absorption.

In amniotes, the primitive midgut is established
as a cylinder with an outer mesenchymal layer
and an inner, luminal endoderm. As devel-

opment proceeds, distinct radial layers of smooth
muscle differentiate. In parallel, the luminal sur-
face of the gut transforms from a smooth surface
to a convoluted morphology. In humans, as well
as in mice and birds, this leads to an organized
array of fingerlike projections termed intestinal villi
(1, 2) although a variety of morphologies such as

ridges, zigzags, and honeycombs occur in other
species (3–5). Early work suggested a mechanical
basis for villus formation (6); however, systematic
biological or physical studies of this hypothesis
are lacking.

Morphogenesis and Differentiation of
the Chick Midgut
Until embryonic day 7 (E7), the gut tube, with its
inner endodermally derived epithelium and outer

mesenchymal layer, maintains a smooth luminal
surface (Fig. 1A). At E8, as the first layer of
circumferentially oriented smoothmuscle begins
to form, inward buckling of the tube leads to
longitudinal ridges that increase in number until
E13, when the differentiation of this layer is com-
plete (Fig. 1B). At this point, a second longitudi-
nally oriented layer of muscle differentiates just
exterior to the circular layer, while the previ-
ously formed ridges fold into parallel zigzags over
3 days (Fig. 1C). Last, at E16, as a third longitu-
dinally oriented muscle layer differentiates just in-
terior to the circular layer, bulges arise from the
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Fig. 1. Formation of luminal patterns in chick corresponds with dif-
ferentiation of smoothmuscle layers. (Left photos) Transverse sections of
developing chick guts immunostained for nuclei [4 ,́6-diamidino-2-phenylindole
(DAPI), blue] and smooth muscle actin (aSMA, green) during development.
(Middle) Close-ups of left photos, showing muscle layers. (Right) Whole-mount
images of corresponding gut lumen pattern; longitudinal axis runs top to bottom.
Scale bars indicate 100 mm; time is in days past fertilization (e.g., E6). (A) Lumen is
smooth beforemuscle layers form. A, anterior; P, posterior. (B) Longitudinal ridges
form as circularly oriented smooth muscle layer differentiates (arrowhead), and
ridge number increases as this layer develops. (C) Longitudinal muscle develops
exterior to the circular layer (arrowhead) coincident with the formation of zigzags whose periodicity is maintained but with increasing amplitude and compactness over
time. (D) A second longitudinal muscle layer forms, interior to the circular layer (arrowhead), coincident with the formation of villi. (E) Schematic illustrating the process
of muscle differentiation and luminal patterning over time.
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zigzag pattern that presage the formation of villi
(Fig. 1D). The coincident emergence of luminal
ridges, zigzags, and villi with the sequential forma-
tion of smooth muscle layers suggests that smooth
muscle differentiation and epithelial morphogenesis
might be linked.

Ridges Form Because of Muscle-
Constrained Azimuthal Growth of the
Endoderm-Mesenchyme Composite
The notion that differential growth of layered
tissues can lead to epithelial buckling is classical
(7, 8) and has been evoked, for example, to ex-
plain longitudinal ridge formation in healthy and
diseased adult trachea and esophagus (4, 9). To
investigate the tissue interactions that lead to
the ridge patterns in the embryonic gut, we sur-
gically separated the layers and observed the ef-
fects on their respective morphologies. When the
muscle was separated from the combined mesen-
chymal and epithelial layers at different stages
from E8, when the circular muscle layer first
forms, to E12 just before the first longitudinal
muscle layer forms, we found that the mesen-
chyme and attached epithelium unfold (Fig. 2A).
This indicates that relative growth of these layers
leads to reversible elastic compression when con-
strained within the muscle layer; indeed the ratio
of the inner circumference of the once-attached
muscle layer to the outer circumference of the
separated mesenchyme and endoderm, the cir-
cumferential stretch ratio, consistently averages
to 0.55 across the developmental stages from E8
to E12 (Fig. 2B). However, the separation of the
endoderm from the composite of mesenchyme
and muscle does not abolish ridge pattern in the
mesenchyme (Fig. 2C).

Taken together, these results support a model
that the circular muscle layer, once differentiated,
forms a stiff constraint mechanically preventing
the free azimuthal expansion of the mesenchyme
and endoderm; further growth of these tissues
relative to the muscle layer leads to azimuthal
compression and buckling. This suggests that
absent muscle differentiation, the gut tube would
expand freely radially without ridge formation.
To test this, we developed an in vitro culture sys-
tem for gut growth. When segments of E6 guts
with smooth lumens and no muscle layers were
cultured for 48 hours in vitro, they differentiated
to form a ring of circumferential smooth muscle
and parallel luminal folds, indistinguishable from
in ovo E8 guts (Fig. 2D). When E6 guts were
cultured in the presence of 10 mM AG1295 or
FK506, drugs known to block the differentiation
of smooth muscle but that act through distinct
signaling pathways (10, 11), they did not form a
smooth muscle layer and concomitantly did not
form luminal folds (Fig. 2D). Importantly, these
compounds did not influence proliferation or
lead to an increase in cell death when compared
with guts grown with the vehicle (dimethyl sulf-
oxide, DMSO) alone (fig. S1); indeed there was a
significant increase in the outer circumference of
guts lacking circular smooth muscle when com-

pared with control gut samples, confirming that
blocking smoothmuscle differentiation eliminates
circumferential restriction of the outward expan-
sion of the gut tube. As a control, gut segments
grown in vehicle alone developed a layer of cir-
cular smooth muscle and formed luminal folds.
Quantifying the constraint provided by the mus-
cle, we find that the ratio of inner circumference
of the muscle layer in the control samples to the
outer circumference of the gut segments cultured

with either compound to be 0.53 on average (Fig.
2D), a ratio that agrees closely with the stretch ratio
obtained from surgical separation of the layers, in-
dicating that tissue differentiation into smooth mus-
cle providesmost of the circumferential constraint.

Because smooth muscle begins active peri-
stalsis once it forms, the contractility of muscle
could drive epithelial buckling in addition to, or
instead of, functioning as a passive barrier to ex-
pansion. To test this, we cultured E6 gut segments

Fig. 2. Differentiation of circularly oriented smooth
muscle is necessary for maintenance and develop-
ment of ridges. (A) Transverse slices from E8, E10, and
E12 whole guts (left) are surgically separated along the
junction of the mesenchyme and the circular smooth

muscle (dotted line). When separated from themuscle, the luminal ridges in the mesenchyme and attached
endoderm unfold (middle) and expand, whereas the detached muscle remains invariant (right). The outer
circumference of the unfolded mesenchyme and endoderm (blue arrowhead) is larger than the inner
circumference of the separated muscle layer (green arrowhead). (B) Inner circumference of muscle layer
(green line) compared with outer circumference of mesenchyme and endoderm (blue line) over time, along
with the compression ratio (bar graph). (C) Surgical separation of endoderm frommesenchyme andmuscle
at E10 does not abolish ridge pattern. (D) (Top left) Experiment schematic of E6 gut cultured for 48 hours.
(Bottom) Transverse sections of a fresh E8 gut or E6 guts cultured in DMSO alone or with either 10 mm
AG1295 or 10 mm FK506 for 48 hours and labeled with DAPI (blue) and SMA (green). (Top right)
Quantification of compression from E8 muscle shows the ratio of the inner circumference of the circular
muscle at E8 (green arrowhead) to the resulting mesenchyme outer circumference (blue arrowhead). (E)
Transverse sections of guts labeled as in (D); culturing E6 guts in the presence of either SNP or motilin does
not affect ridge formation. (F) Transverse sections of guts labeled as in (D), cultured in silk tubes of 380-mm
inner diameter (top) or 300-mm inner diameter (middle) or cultured in 300 mm and extracted before
fixation (bottom). n > 3 for all culture experiments; error bars represent one SD. Scale bars = 100 mm.
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(1, 2) although a variety of morphologies such as

ridges, zigzags, and honeycombs occur in other
species (3–5). Early work suggested a mechanical
basis for villus formation (6); however, systematic
biological or physical studies of this hypothesis
are lacking.

Morphogenesis and Differentiation of
the Chick Midgut
Until embryonic day 7 (E7), the gut tube, with its
inner endodermally derived epithelium and outer

mesenchymal layer, maintains a smooth luminal
surface (Fig. 1A). At E8, as the first layer of
circumferentially oriented smoothmuscle begins
to form, inward buckling of the tube leads to
longitudinal ridges that increase in number until
E13, when the differentiation of this layer is com-
plete (Fig. 1B). At this point, a second longitudi-
nally oriented layer of muscle differentiates just
exterior to the circular layer, while the previ-
ously formed ridges fold into parallel zigzags over
3 days (Fig. 1C). Last, at E16, as a third longitu-
dinally oriented muscle layer differentiates just in-
terior to the circular layer, bulges arise from the
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Fig. 1. Formation of luminal patterns in chick corresponds with dif-
ferentiation of smoothmuscle layers. (Left photos) Transverse sections of
developing chick guts immunostained for nuclei [4 ,́6-diamidino-2-phenylindole
(DAPI), blue] and smooth muscle actin (aSMA, green) during development.
(Middle) Close-ups of left photos, showing muscle layers. (Right) Whole-mount
images of corresponding gut lumen pattern; longitudinal axis runs top to bottom.
Scale bars indicate 100 mm; time is in days past fertilization (e.g., E6). (A) Lumen is
smooth beforemuscle layers form. A, anterior; P, posterior. (B) Longitudinal ridges
form as circularly oriented smooth muscle layer differentiates (arrowhead), and
ridge number increases as this layer develops. (C) Longitudinal muscle develops
exterior to the circular layer (arrowhead) coincident with the formation of zigzags whose periodicity is maintained but with increasing amplitude and compactness over
time. (D) A second longitudinal muscle layer forms, interior to the circular layer (arrowhead), coincident with the formation of villi. (E) Schematic illustrating the process
of muscle differentiation and luminal patterning over time.
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Villi start forming at E16 because 
of the faster growth in valleys

axial compression that mimics the role of the
longitudinal muscles at E13 and E14 when zig-
zags arise. With the geometrical parameters (full
details in the supplementary materials) and the
measured elastic moduli of the tissues (Fig. 4B
and figs. S3 to S6) that show that the endoderm is
about 10 times stiffer than the mesenchyme, our
simulations allow us to follow the evolution of
luminal patterning shown in Fig. 4C and movie
S1. We see that both ridge and zigzag patterns
arise as mechanical instabilities in the constrained
growing tissue that sequentially break circumfer-
ential and then longitudinal symmetry in the gut
with a wavelength and amplitude comparable to
the thickness of the endoderm-mesenchyme com-
posite (Fig. 4B).

Villification Also Requires Localized
Changes in Endodermal and Mesenchymal
Proliferation in Addition to Smooth
Muscle Differentiation
Although additional compression from the inner
longitudinal layer is necessary for the formation
of villi from zigzags, as shown in Fig. 3, lon-
gitudinal compression alone is not sufficient to
effect this transformation (fig. S9A).

Previous work in mouse has shown that, al-
though proliferating cells can be found uniformly
across themesenchyme and endoderm before villi
arise, as villi form, proliferating cells are found
only in the intervillous region (2). Similarly, in
chick guts, proliferating cells appear uniformly
within each tissue layer through the formation
of zigzags (Fig. 5 and fig. S8), but at E15, after
zigzags form and just before villi arise, proliferat-
ing cells are found predominantly in the valleys
between the raised zigzags (Fig. 5A). However,
once villi begin to form at E16, proliferation is no
longer restricted from the tips (Fig. 5A). Addition-
ally we find that in vitro 5-ethynyl-2′-deoxyuridine
(EdU) pulse labeling of E15 gut samples results
in labeled cells at the sides and tips of forming
villi, suggesting that these changes in proliferation
patterns may reflect a displacement of the dividing
cells upward from the valleys as the luminal to-
pography shifts from zigzags to villi. Specifically,
each “arm” of the zigzag twists out of the plane
and into the lumen, pinching off a region of the
zigzag arm near each “elbow,” delineating pockets
of mesenchyme surrounded by endoderm, each of
which becomes a villus (Fig. 5B).

To understand how the topographical changes
during zigzag twisting might relocate regions of
proliferation as villi form, we created a clay model
of zigzags. Labeling the proliferating regions of
our model zigzags and manually twisting them
mimics the twist observed in the E16 gut (Fig. 5C).
Furthermore, the resulting clay label localization
closely matches EdU staining for proliferation in
the sectioned E16 gut tissue (Fig. 5C), suggest-
ing that these tissue movements account for the
observed proliferation patterns as villi form.

To probe the effect of nonuniform growth in
our computational model, we set up a minimal
planar configuration of mesenchyme and endo-

derm (supplementary materials, fig. S9, and movie
S2). Initially, the endoderm and mesenchyme are
assumed to have nominal compression ratios of
0.5 and 0.6, respectively, in both lateral direc-
tions, as measured experimentally (Fig. 3A).
This results in a tightly packed zigzag pattern
(fig. S9A), with a spacing of twice the thickness
of the endoderm-mesenchyme composite in both
directions, in agreement with experiments. By
using our experimental observations of nonuni-
form proliferation as guides, we incorporate non-
uniform growth to this pattern by allowing the
growth of spots of the endoderm in the zigzag

valleys, centered at the deepest points of the
valleys, with lateral diameter six times the endo-
derm thickness. These spots are grown laterally
until their diameter doubles during the simula-
tion relative to areas of the endoderm outside the
spots. This pattern of growth causes the zigzags
to shift and twist so as to relocate the rapidly
growing regions to the arms, similar to our clay
model. As the spots relieve their growth strain at
the arms, they form previllous bulges (Fig. 5E).
Sliced plane views of this twisted pattern reveal
their similarity to the corresponding experimental
patterns (Fig. 5F); bulging peaks are rotated,

Fig. 5. The formation of villi from zigzags in-
volves nonuniformproliferation and a complex
change in topography. (A) Transverse sections of
guts labeled for 4 hours with EdU in ovo (red) guts
show patterns of proliferation over time. (B) Luminal
views of guts from E15 to E16 as villi form. The
“arm” of the zigzag rotates at the “elbow”; the circles

denote the resulting pockets of mesenchyme surrounded by endoderm that will each become a villus. (C)
Clay models; purple label represents proliferating regions. Clay model is twisted to mimic change in
topography seen in (B). (D) (Top) Labeled, twisted model of E16 gut is sliced with a razor blade to reveal
label localization. (Bottom) EdU label in longitudinal sections of E16 guts; arrowheads highlight sim-
ilarity of pattern. (E) (Top) A simulation that incorporates nonuniform proliferation along with measured
geometrical and biophysical parameters shows villi morphogenesis. (Bottom) Corresponding images of the
chick lumen (red color and stained puncta are due to antibody stain and should be disregarded). (F) (Top)
Sections of the simulations in (D). (Bottom) Corresponding sections in chick.
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and figs. S3 to S6) that show that the endoderm is
about 10 times stiffer than the mesenchyme, our
simulations allow us to follow the evolution of
luminal patterning shown in Fig. 4C and movie
S1. We see that both ridge and zigzag patterns
arise as mechanical instabilities in the constrained
growing tissue that sequentially break circumfer-
ential and then longitudinal symmetry in the gut
with a wavelength and amplitude comparable to
the thickness of the endoderm-mesenchyme com-
posite (Fig. 4B).
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longitudinal layer is necessary for the formation
of villi from zigzags, as shown in Fig. 3, lon-
gitudinal compression alone is not sufficient to
effect this transformation (fig. S9A).
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arise, as villi form, proliferating cells are found
only in the intervillous region (2). Similarly, in
chick guts, proliferating cells appear uniformly
within each tissue layer through the formation
of zigzags (Fig. 5 and fig. S8), but at E15, after
zigzags form and just before villi arise, proliferat-
ing cells are found predominantly in the valleys
between the raised zigzags (Fig. 5A). However,
once villi begin to form at E16, proliferation is no
longer restricted from the tips (Fig. 5A). Addition-
ally we find that in vitro 5-ethynyl-2′-deoxyuridine
(EdU) pulse labeling of E15 gut samples results
in labeled cells at the sides and tips of forming
villi, suggesting that these changes in proliferation
patterns may reflect a displacement of the dividing
cells upward from the valleys as the luminal to-
pography shifts from zigzags to villi. Specifically,
each “arm” of the zigzag twists out of the plane
and into the lumen, pinching off a region of the
zigzag arm near each “elbow,” delineating pockets
of mesenchyme surrounded by endoderm, each of
which becomes a villus (Fig. 5B).

To understand how the topographical changes
during zigzag twisting might relocate regions of
proliferation as villi form, we created a clay model
of zigzags. Labeling the proliferating regions of
our model zigzags and manually twisting them
mimics the twist observed in the E16 gut (Fig. 5C).
Furthermore, the resulting clay label localization
closely matches EdU staining for proliferation in
the sectioned E16 gut tissue (Fig. 5C), suggest-
ing that these tissue movements account for the
observed proliferation patterns as villi form.

To probe the effect of nonuniform growth in
our computational model, we set up a minimal
planar configuration of mesenchyme and endo-

derm (supplementary materials, fig. S9, and movie
S2). Initially, the endoderm and mesenchyme are
assumed to have nominal compression ratios of
0.5 and 0.6, respectively, in both lateral direc-
tions, as measured experimentally (Fig. 3A).
This results in a tightly packed zigzag pattern
(fig. S9A), with a spacing of twice the thickness
of the endoderm-mesenchyme composite in both
directions, in agreement with experiments. By
using our experimental observations of nonuni-
form proliferation as guides, we incorporate non-
uniform growth to this pattern by allowing the
growth of spots of the endoderm in the zigzag

valleys, centered at the deepest points of the
valleys, with lateral diameter six times the endo-
derm thickness. These spots are grown laterally
until their diameter doubles during the simula-
tion relative to areas of the endoderm outside the
spots. This pattern of growth causes the zigzags
to shift and twist so as to relocate the rapidly
growing regions to the arms, similar to our clay
model. As the spots relieve their growth strain at
the arms, they form previllous bulges (Fig. 5E).
Sliced plane views of this twisted pattern reveal
their similarity to the corresponding experimental
patterns (Fig. 5F); bulging peaks are rotated,

Fig. 5. The formation of villi from zigzags in-
volves nonuniformproliferation and a complex
change in topography. (A) Transverse sections of
guts labeled for 4 hours with EdU in ovo (red) guts
show patterns of proliferation over time. (B) Luminal
views of guts from E15 to E16 as villi form. The
“arm” of the zigzag rotates at the “elbow”; the circles

denote the resulting pockets of mesenchyme surrounded by endoderm that will each become a villus. (C)
Clay models; purple label represents proliferating regions. Clay model is twisted to mimic change in
topography seen in (B). (D) (Top) Labeled, twisted model of E16 gut is sliced with a razor blade to reveal
label localization. (Bottom) EdU label in longitudinal sections of E16 guts; arrowheads highlight sim-
ilarity of pattern. (E) (Top) A simulation that incorporates nonuniform proliferation along with measured
geometrical and biophysical parameters shows villi morphogenesis. (Bottom) Corresponding images of the
chick lumen (red color and stained puncta are due to antibody stain and should be disregarded). (F) (Top)
Sections of the simulations in (D). (Bottom) Corresponding sections in chick.
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Figure S9: Localized growth of a zigzag pattern leads to twisting and bulging of arms. (A) 
A zigzag pattern resulting from uniform growth is shown top left. With additional longitudinal 
FRPSUHVVLRQ�WKH�]LJ]DJV�RQO\�VTXHH]H��SUHVHUYLQJ�WKH�XS�GRZQ�UHIOHFWLRQ�V\PPHWU\��7KH�FDVFDGH�
on bottom (top and side views) shows the twisting and up/down symmetry breaking due to 
enhanced growth of the valleys (parameterized time t = 0.5, 0.75, and 1 from left to right). The 
applied growth map is shown in C for t = 1. The growth map is based on the depth map of the 
original zigzag pattern (B) such that peak growth occurs at the zigzag pits. Purple areas in 
simulation snapshots have the highest expansion, corresponding to the maxima in the growth 
map and minima in the height map of the original untwisted pattern. 
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Figure S9: Localized growth of a zigzag pattern leads to twisting and bulging of arms. (A) 
A zigzag pattern resulting from uniform growth is shown top left. With additional longitudinal 
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applied growth map is shown in C for t = 1. The growth map is based on the depth map of the 
original zigzag pattern (B) such that peak growth occurs at the zigzag pits. Purple areas in 
simulation snapshots have the highest expansion, corresponding to the maxima in the growth 
map and minima in the height map of the original untwisted pattern. 
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map and minima in the height map of the original untwisted pattern. 
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Why are guts shaped like that?
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during the formation of the first loop at E5 (Fig. 1b) and later when
there were nine loops (E12) (Fig. 1b). We observed consistently
uniform proliferation with no significant differences along the
rostrocaudal axis of the gut tube, including at loop formation loca-
tions and between loops, as well as no observable azimuthal or radial
differences in proliferation rates at different cross-sections (Sup-
plementary Fig. 1), consistent with observations that the embryonic
gut tube cross-section remains circular along its length.

Because spatial constraints from the body cavity and the gut tube
alone cannot explain the reproducible looping, we instead considered
the dorsal mesentery, the webbed tissue that attaches the gut tube to

the embryo along its length. As looping morphogenesis is initiated,
the dorsal mesentery changes from a thick, asymmetric, multilayer
structure to a thin, double-epithelial sheet with no observable left–
right asymmetry (Supplementary Fig. 2).

To test whether the dorsal mesentery is integral to the intestinal
loops, we separated it from the gut surgically or enzymatically and
found that the intestine uncoils into a straight tube, indicating that it
was under compression. Simultaneously, the unconstrained dorsal
mesentery contracts when freed from the gut tube (Fig. 1c), indicating
that this tissue is under tension. Thus the gut–mesentery composite is
required to maintain the mature loops in the gut.

To find out whether the dorsal mesentery is also required for the
formation of the loops, we surgically separated a portion of the dorsal
mesentery from the gut in ovo, beginning immediately caudal to the
cranial (superior) mesenteric artery (SMA), at day E4, before loops
develop. Strikingly, where the mesentery and gut were separated, the
intestinal loops failed to form (Fig. 1d) even as normal loops formed in
locations rostral and caudal to it (Fig. 1d, green lines). Although we
were unable to cut the dorsal SMA in ovo during gut loop develop-
ment, once the loops had matured (E12), surgical dissection of the
SMA left the loops intact and in fact highlighted their periodic struc-
ture (Fig. 2c). This rules out any possible requirement for the SMA in
directing loop structure, and for the vasculature as well, as secondary
vessels develop only after the loops themselves have formed.

Although the gut grows uniformly, to investigate whether the
mesentery might grow inhomogeneously and thus force the gut to
loop at precise locations, we examined the proliferation rate of the
mesentery at E5 and at E12. There were no observed differences along
the rostrocaudal axis (Fig. 1b), suggesting that the growing mesentery
exerts uniform compression along the length of the gut, countered by
an equal and opposite tensile reaction on the mesentery from the gut.

Taken together, our observations suggest that uniform differential
growth between the gut and the mesentery could be at the origin of
loop formation. Because the gut tube is slender, with a length that is
much larger than its radius, it responds physically to the differential
strain-induced compression from the attached mesentery by bending
and looping, while remaining attached to the embryo rostrocaudally.
Most importantly, the fact that the gut relaxes to a straight configura-
tion whereas the mesentery relaxes to an almost flat configuration
implies that the tissues behave elastically, a fact that will allow us to
quantify the process simply.
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Figure 1 | Morphology of loops in the chick gut. a, Chick gut at embryonic
day 5 (E5), E8, E12 and E16 shows stereotypical looping pattern.
b, Proliferation in the E5 (left) and E12 (right) gut tubes (blue) and mesentery
(red). Each blue bar represents the average number of phospho-H3-positive
cells per unit surface in 40 (E5) or 50 (E12) 10-mm sections. Each red bar
represents the average number of phospho-H3-positive cells per unit surface
over six 10-mm sections (E5) or in specific regions demarcated by vasculature
along the mesentery (E12). The inset images of the chick guts align the
proliferation data with the locations of loops (all measurements were made in
three or more chick samples). Ant., anterior; post., posterior. Error bars, s.d.
c, The gut and mesentery before and after surgical separation at E14 show that
the mesentery shrinks while the gut tube straightens out almost completely.
d, The E12 chick gut under normal development with the mesentery (left) and
after in ovo surgical separation of the mesentery at E4 (right). The gut and
mesentery repair their attachment, leading to some regions of normal looping
(green). However, a portion of the gut lacks normal loops as a result of
disrupting the gut–mesentery interaction over the time these loops would
otherwise have developed.
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Figure 2 | Rubber simulacrum of gut looping morphogenesis. a, To
construct the rubber model of looping, a thin rubber sheet (mesentery) was
stretched uniformly along its length and then stitched to a straight, unstretched
rubber tube (gut) along its boundary; the differential strain mimics the
differential growth of the two tissues. The system was then allowed to relax, free
of any external forces. b, On relaxation, the composite rubber model deformed
into a structure very similar to the chick gut (here the thickness of the sheet is
1.3 mm and its Young’s modulus is 1.3 MPa, and the radius of the tube is
4.8 mm, its thickness is 2.4 mm and its Young’s modulus is 1.1 MPa; see
Supplementary Information for details). c, Chick gut at E12. The superior
mesenteric artery has been cut out (but not the mesentery), allowing the gut to
be displayed aligned without altering its loop pattern.
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Guts in chick embryo

T. Savin et al., Nature 476, 57 (2011)

Surgically removed guts from chick embryo

during the formation of the first loop at E5 (Fig. 1b) and later when
there were nine loops (E12) (Fig. 1b). We observed consistently
uniform proliferation with no significant differences along the
rostrocaudal axis of the gut tube, including at loop formation loca-
tions and between loops, as well as no observable azimuthal or radial
differences in proliferation rates at different cross-sections (Sup-
plementary Fig. 1), consistent with observations that the embryonic
gut tube cross-section remains circular along its length.

Because spatial constraints from the body cavity and the gut tube
alone cannot explain the reproducible looping, we instead considered
the dorsal mesentery, the webbed tissue that attaches the gut tube to

the embryo along its length. As looping morphogenesis is initiated,
the dorsal mesentery changes from a thick, asymmetric, multilayer
structure to a thin, double-epithelial sheet with no observable left–
right asymmetry (Supplementary Fig. 2).

To test whether the dorsal mesentery is integral to the intestinal
loops, we separated it from the gut surgically or enzymatically and
found that the intestine uncoils into a straight tube, indicating that it
was under compression. Simultaneously, the unconstrained dorsal
mesentery contracts when freed from the gut tube (Fig. 1c), indicating
that this tissue is under tension. Thus the gut–mesentery composite is
required to maintain the mature loops in the gut.

To find out whether the dorsal mesentery is also required for the
formation of the loops, we surgically separated a portion of the dorsal
mesentery from the gut in ovo, beginning immediately caudal to the
cranial (superior) mesenteric artery (SMA), at day E4, before loops
develop. Strikingly, where the mesentery and gut were separated, the
intestinal loops failed to form (Fig. 1d) even as normal loops formed in
locations rostral and caudal to it (Fig. 1d, green lines). Although we
were unable to cut the dorsal SMA in ovo during gut loop develop-
ment, once the loops had matured (E12), surgical dissection of the
SMA left the loops intact and in fact highlighted their periodic struc-
ture (Fig. 2c). This rules out any possible requirement for the SMA in
directing loop structure, and for the vasculature as well, as secondary
vessels develop only after the loops themselves have formed.

Although the gut grows uniformly, to investigate whether the
mesentery might grow inhomogeneously and thus force the gut to
loop at precise locations, we examined the proliferation rate of the
mesentery at E5 and at E12. There were no observed differences along
the rostrocaudal axis (Fig. 1b), suggesting that the growing mesentery
exerts uniform compression along the length of the gut, countered by
an equal and opposite tensile reaction on the mesentery from the gut.

Taken together, our observations suggest that uniform differential
growth between the gut and the mesentery could be at the origin of
loop formation. Because the gut tube is slender, with a length that is
much larger than its radius, it responds physically to the differential
strain-induced compression from the attached mesentery by bending
and looping, while remaining attached to the embryo rostrocaudally.
Most importantly, the fact that the gut relaxes to a straight configura-
tion whereas the mesentery relaxes to an almost flat configuration
implies that the tissues behave elastically, a fact that will allow us to
quantify the process simply.
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Figure 1 | Morphology of loops in the chick gut. a, Chick gut at embryonic
day 5 (E5), E8, E12 and E16 shows stereotypical looping pattern.
b, Proliferation in the E5 (left) and E12 (right) gut tubes (blue) and mesentery
(red). Each blue bar represents the average number of phospho-H3-positive
cells per unit surface in 40 (E5) or 50 (E12) 10-mm sections. Each red bar
represents the average number of phospho-H3-positive cells per unit surface
over six 10-mm sections (E5) or in specific regions demarcated by vasculature
along the mesentery (E12). The inset images of the chick guts align the
proliferation data with the locations of loops (all measurements were made in
three or more chick samples). Ant., anterior; post., posterior. Error bars, s.d.
c, The gut and mesentery before and after surgical separation at E14 show that
the mesentery shrinks while the gut tube straightens out almost completely.
d, The E12 chick gut under normal development with the mesentery (left) and
after in ovo surgical separation of the mesentery at E4 (right). The gut and
mesentery repair their attachment, leading to some regions of normal looping
(green). However, a portion of the gut lacks normal loops as a result of
disrupting the gut–mesentery interaction over the time these loops would
otherwise have developed.
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Figure 2 | Rubber simulacrum of gut looping morphogenesis. a, To
construct the rubber model of looping, a thin rubber sheet (mesentery) was
stretched uniformly along its length and then stitched to a straight, unstretched
rubber tube (gut) along its boundary; the differential strain mimics the
differential growth of the two tissues. The system was then allowed to relax, free
of any external forces. b, On relaxation, the composite rubber model deformed
into a structure very similar to the chick gut (here the thickness of the sheet is
1.3 mm and its Young’s modulus is 1.3 MPa, and the radius of the tube is
4.8 mm, its thickness is 2.4 mm and its Young’s modulus is 1.1 MPa; see
Supplementary Information for details). c, Chick gut at E12. The superior
mesenteric artery has been cut out (but not the mesentery), allowing the gut to
be displayed aligned without altering its loop pattern.
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Tube straightens after 
separation from mesentery

mesenterytube

Tube grows faster than 
mesentery sheet!

Physical model of gut looping
To investigate the physical origins of this looping pattern, we
developed a simple simulacrum of the gut–mesentery composite
using a silicone rubber tube (mimicking the gut) and a thin latex sheet
(mimicking the mesentery; see Supplementary Information). The dif-
ferential strain induced by relative growth between the gut and the
mesentery is simulated by extending the latex sheet along its length
and stitching it to the wall of the naturally straight, unstretched rubber
tube along the edge parallel to the direction of membrane stretching
(Fig. 2a). On removing all external loads from the composite system,
we observe the spontaneous formation of loops in the tube very similar
in shape to the looping patterns seen in ovo (Fig. 2b). Varying the
differential strain, the thickness of the latex sheet, the radius of the
rubber tube and their material properties (Supplementary Informa-
tion) shows that the wavelength and amplitude of the repeating loops
depend only on these measurable parameters.

Scaling laws for loop period, radius and number
We now quantify the simple physical picture for looping sketched
above to derive expressions for the size of a loop, characterized by
the contour length, l, and mean radius of curvature, R, of a single
period (Fig. 3a). The geometry of the growing gut is characterized by
the gut’s inner and outer radii, ri and ro, which are much smaller than
its increasing length, whereas that of the mesentery is described by its
homogeneous thickness, h, which is much smaller than its other two
dimensions. Because the gut tube and mesentery relax to nearly
straight, flat states once they are surgically separated, we can model
the gut as a one-dimensional elastic filament growing relative to a thin
two-dimensional elastic sheet (the mesentery). As the gut length
becomes longer than the perimeter of the mesentery to which it is
attached, there is a differential strain, e, that compresses the tube axially
while extending the periphery of the sheet. When the growth strain is

larger than a critical value, e!, the straight tube buckles, taking on a
wavy shape of characteristic amplitude A and period l?A. At the
onset of buckling, the extensional strain energy of the sheet per wave-
length of the pattern is U m!Eme2

!hl2, where Em is the Young’s modu-
lus of the mesentery sheet. The bending energy of the tube per
wavelength is U t!EtItk

2l, where k / A/l2 is the tube curvature,
It!r4

o{r4
i is the moment of inertia of the tube and Et is the Young’s

modulus of the tube. Using the condition that the in-plane strain in the
sheet is e!!A=l and minimizing the sum of the two energies with
respect to l then yields a scaling law for the wavelength of the loop:

l!
EtIt

Emh

! "1=3

ð1Þ

The above theory is valid only at the onset of looping and cannot predict
the amplitude or radius of a loop. Far from the onset of the instability, at a
strain e~e0?e!, we use a torque balance argument to determine the
finite radius of the loop. To deform the gut into a loop of radius R, the
elastic torque required is Tt / EtIt/R and must balance the torque
exerted by the membrane with strain e0 over a width w and a length R,
that is, Tm / Emhwe0R. The width of this strip is the radial distance from
the tube over which the peripheral membrane stretching strain is relaxed,
and is determined by the relation e0 / w/(R 2 w). Balancing the torques,
by equating Tt with Tm, and assuming that e0 , 1, yields the scaling law

R!
EtIt

Emhe2
0

! "1=3

ð2Þ

Quantitative geometry and biomechanics of chick gut
looping
A comparison of the results of our predictions with quantitative
experiments requires the measurement of the geometry of the tissues,
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a, Parameters involved in the physical model. b, Inner (ri, light blue) and outer
(ro, dark blue) tube diameters. Measurements are extracted from DAPI-stained
tube cross-section shown in inset. c, Tube (length Lt, blue) and mesentery
(length Lm, red) differential growth. Inset, length measurement of one isolated
loop. d, Stress versus strain for the mesentery at E8, E12 and E16. For

physiological strains, we use the linearization shown by the black lines, to
extract the effective Young’s modulus, Em, and the effective strain, e0. e, Stress
versus strain for the gut tube at E8, E12 and E16. f, Mesentery and tube Young’s
moduli, Em (red) and Et (blue), at E8, E12 and E16. g, Effective differential
growth strain, e0, at E8, E12 and E16. Error bars, s.d.
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during the formation of the first loop at E5 (Fig. 1b) and later when
there were nine loops (E12) (Fig. 1b). We observed consistently
uniform proliferation with no significant differences along the
rostrocaudal axis of the gut tube, including at loop formation loca-
tions and between loops, as well as no observable azimuthal or radial
differences in proliferation rates at different cross-sections (Sup-
plementary Fig. 1), consistent with observations that the embryonic
gut tube cross-section remains circular along its length.

Because spatial constraints from the body cavity and the gut tube
alone cannot explain the reproducible looping, we instead considered
the dorsal mesentery, the webbed tissue that attaches the gut tube to

the embryo along its length. As looping morphogenesis is initiated,
the dorsal mesentery changes from a thick, asymmetric, multilayer
structure to a thin, double-epithelial sheet with no observable left–
right asymmetry (Supplementary Fig. 2).

To test whether the dorsal mesentery is integral to the intestinal
loops, we separated it from the gut surgically or enzymatically and
found that the intestine uncoils into a straight tube, indicating that it
was under compression. Simultaneously, the unconstrained dorsal
mesentery contracts when freed from the gut tube (Fig. 1c), indicating
that this tissue is under tension. Thus the gut–mesentery composite is
required to maintain the mature loops in the gut.

To find out whether the dorsal mesentery is also required for the
formation of the loops, we surgically separated a portion of the dorsal
mesentery from the gut in ovo, beginning immediately caudal to the
cranial (superior) mesenteric artery (SMA), at day E4, before loops
develop. Strikingly, where the mesentery and gut were separated, the
intestinal loops failed to form (Fig. 1d) even as normal loops formed in
locations rostral and caudal to it (Fig. 1d, green lines). Although we
were unable to cut the dorsal SMA in ovo during gut loop develop-
ment, once the loops had matured (E12), surgical dissection of the
SMA left the loops intact and in fact highlighted their periodic struc-
ture (Fig. 2c). This rules out any possible requirement for the SMA in
directing loop structure, and for the vasculature as well, as secondary
vessels develop only after the loops themselves have formed.

Although the gut grows uniformly, to investigate whether the
mesentery might grow inhomogeneously and thus force the gut to
loop at precise locations, we examined the proliferation rate of the
mesentery at E5 and at E12. There were no observed differences along
the rostrocaudal axis (Fig. 1b), suggesting that the growing mesentery
exerts uniform compression along the length of the gut, countered by
an equal and opposite tensile reaction on the mesentery from the gut.

Taken together, our observations suggest that uniform differential
growth between the gut and the mesentery could be at the origin of
loop formation. Because the gut tube is slender, with a length that is
much larger than its radius, it responds physically to the differential
strain-induced compression from the attached mesentery by bending
and looping, while remaining attached to the embryo rostrocaudally.
Most importantly, the fact that the gut relaxes to a straight configura-
tion whereas the mesentery relaxes to an almost flat configuration
implies that the tissues behave elastically, a fact that will allow us to
quantify the process simply.
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Figure 1 | Morphology of loops in the chick gut. a, Chick gut at embryonic
day 5 (E5), E8, E12 and E16 shows stereotypical looping pattern.
b, Proliferation in the E5 (left) and E12 (right) gut tubes (blue) and mesentery
(red). Each blue bar represents the average number of phospho-H3-positive
cells per unit surface in 40 (E5) or 50 (E12) 10-mm sections. Each red bar
represents the average number of phospho-H3-positive cells per unit surface
over six 10-mm sections (E5) or in specific regions demarcated by vasculature
along the mesentery (E12). The inset images of the chick guts align the
proliferation data with the locations of loops (all measurements were made in
three or more chick samples). Ant., anterior; post., posterior. Error bars, s.d.
c, The gut and mesentery before and after surgical separation at E14 show that
the mesentery shrinks while the gut tube straightens out almost completely.
d, The E12 chick gut under normal development with the mesentery (left) and
after in ovo surgical separation of the mesentery at E4 (right). The gut and
mesentery repair their attachment, leading to some regions of normal looping
(green). However, a portion of the gut lacks normal loops as a result of
disrupting the gut–mesentery interaction over the time these loops would
otherwise have developed.

3 cm

ba

c

2 mm

Lt Lm < Lt

Stretch

Relax

(n = 5 here)

Sew

Lt

+

Figure 2 | Rubber simulacrum of gut looping morphogenesis. a, To
construct the rubber model of looping, a thin rubber sheet (mesentery) was
stretched uniformly along its length and then stitched to a straight, unstretched
rubber tube (gut) along its boundary; the differential strain mimics the
differential growth of the two tissues. The system was then allowed to relax, free
of any external forces. b, On relaxation, the composite rubber model deformed
into a structure very similar to the chick gut (here the thickness of the sheet is
1.3 mm and its Young’s modulus is 1.3 MPa, and the radius of the tube is
4.8 mm, its thickness is 2.4 mm and its Young’s modulus is 1.1 MPa; see
Supplementary Information for details). c, Chick gut at E12. The superior
mesenteric artery has been cut out (but not the mesentery), allowing the gut to
be displayed aligned without altering its loop pattern.
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Synthetic analog of guts

during the formation of the first loop at E5 (Fig. 1b) and later when
there were nine loops (E12) (Fig. 1b). We observed consistently
uniform proliferation with no significant differences along the
rostrocaudal axis of the gut tube, including at loop formation loca-
tions and between loops, as well as no observable azimuthal or radial
differences in proliferation rates at different cross-sections (Sup-
plementary Fig. 1), consistent with observations that the embryonic
gut tube cross-section remains circular along its length.

Because spatial constraints from the body cavity and the gut tube
alone cannot explain the reproducible looping, we instead considered
the dorsal mesentery, the webbed tissue that attaches the gut tube to

the embryo along its length. As looping morphogenesis is initiated,
the dorsal mesentery changes from a thick, asymmetric, multilayer
structure to a thin, double-epithelial sheet with no observable left–
right asymmetry (Supplementary Fig. 2).

To test whether the dorsal mesentery is integral to the intestinal
loops, we separated it from the gut surgically or enzymatically and
found that the intestine uncoils into a straight tube, indicating that it
was under compression. Simultaneously, the unconstrained dorsal
mesentery contracts when freed from the gut tube (Fig. 1c), indicating
that this tissue is under tension. Thus the gut–mesentery composite is
required to maintain the mature loops in the gut.

To find out whether the dorsal mesentery is also required for the
formation of the loops, we surgically separated a portion of the dorsal
mesentery from the gut in ovo, beginning immediately caudal to the
cranial (superior) mesenteric artery (SMA), at day E4, before loops
develop. Strikingly, where the mesentery and gut were separated, the
intestinal loops failed to form (Fig. 1d) even as normal loops formed in
locations rostral and caudal to it (Fig. 1d, green lines). Although we
were unable to cut the dorsal SMA in ovo during gut loop develop-
ment, once the loops had matured (E12), surgical dissection of the
SMA left the loops intact and in fact highlighted their periodic struc-
ture (Fig. 2c). This rules out any possible requirement for the SMA in
directing loop structure, and for the vasculature as well, as secondary
vessels develop only after the loops themselves have formed.

Although the gut grows uniformly, to investigate whether the
mesentery might grow inhomogeneously and thus force the gut to
loop at precise locations, we examined the proliferation rate of the
mesentery at E5 and at E12. There were no observed differences along
the rostrocaudal axis (Fig. 1b), suggesting that the growing mesentery
exerts uniform compression along the length of the gut, countered by
an equal and opposite tensile reaction on the mesentery from the gut.

Taken together, our observations suggest that uniform differential
growth between the gut and the mesentery could be at the origin of
loop formation. Because the gut tube is slender, with a length that is
much larger than its radius, it responds physically to the differential
strain-induced compression from the attached mesentery by bending
and looping, while remaining attached to the embryo rostrocaudally.
Most importantly, the fact that the gut relaxes to a straight configura-
tion whereas the mesentery relaxes to an almost flat configuration
implies that the tissues behave elastically, a fact that will allow us to
quantify the process simply.
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Figure 1 | Morphology of loops in the chick gut. a, Chick gut at embryonic
day 5 (E5), E8, E12 and E16 shows stereotypical looping pattern.
b, Proliferation in the E5 (left) and E12 (right) gut tubes (blue) and mesentery
(red). Each blue bar represents the average number of phospho-H3-positive
cells per unit surface in 40 (E5) or 50 (E12) 10-mm sections. Each red bar
represents the average number of phospho-H3-positive cells per unit surface
over six 10-mm sections (E5) or in specific regions demarcated by vasculature
along the mesentery (E12). The inset images of the chick guts align the
proliferation data with the locations of loops (all measurements were made in
three or more chick samples). Ant., anterior; post., posterior. Error bars, s.d.
c, The gut and mesentery before and after surgical separation at E14 show that
the mesentery shrinks while the gut tube straightens out almost completely.
d, The E12 chick gut under normal development with the mesentery (left) and
after in ovo surgical separation of the mesentery at E4 (right). The gut and
mesentery repair their attachment, leading to some regions of normal looping
(green). However, a portion of the gut lacks normal loops as a result of
disrupting the gut–mesentery interaction over the time these loops would
otherwise have developed.
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Figure 2 | Rubber simulacrum of gut looping morphogenesis. a, To
construct the rubber model of looping, a thin rubber sheet (mesentery) was
stretched uniformly along its length and then stitched to a straight, unstretched
rubber tube (gut) along its boundary; the differential strain mimics the
differential growth of the two tissues. The system was then allowed to relax, free
of any external forces. b, On relaxation, the composite rubber model deformed
into a structure very similar to the chick gut (here the thickness of the sheet is
1.3 mm and its Young’s modulus is 1.3 MPa, and the radius of the tube is
4.8 mm, its thickness is 2.4 mm and its Young’s modulus is 1.1 MPa; see
Supplementary Information for details). c, Chick gut at E12. The superior
mesenteric artery has been cut out (but not the mesentery), allowing the gut to
be displayed aligned without altering its loop pattern.
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during the formation of the first loop at E5 (Fig. 1b) and later when
there were nine loops (E12) (Fig. 1b). We observed consistently
uniform proliferation with no significant differences along the
rostrocaudal axis of the gut tube, including at loop formation loca-
tions and between loops, as well as no observable azimuthal or radial
differences in proliferation rates at different cross-sections (Sup-
plementary Fig. 1), consistent with observations that the embryonic
gut tube cross-section remains circular along its length.

Because spatial constraints from the body cavity and the gut tube
alone cannot explain the reproducible looping, we instead considered
the dorsal mesentery, the webbed tissue that attaches the gut tube to

the embryo along its length. As looping morphogenesis is initiated,
the dorsal mesentery changes from a thick, asymmetric, multilayer
structure to a thin, double-epithelial sheet with no observable left–
right asymmetry (Supplementary Fig. 2).

To test whether the dorsal mesentery is integral to the intestinal
loops, we separated it from the gut surgically or enzymatically and
found that the intestine uncoils into a straight tube, indicating that it
was under compression. Simultaneously, the unconstrained dorsal
mesentery contracts when freed from the gut tube (Fig. 1c), indicating
that this tissue is under tension. Thus the gut–mesentery composite is
required to maintain the mature loops in the gut.

To find out whether the dorsal mesentery is also required for the
formation of the loops, we surgically separated a portion of the dorsal
mesentery from the gut in ovo, beginning immediately caudal to the
cranial (superior) mesenteric artery (SMA), at day E4, before loops
develop. Strikingly, where the mesentery and gut were separated, the
intestinal loops failed to form (Fig. 1d) even as normal loops formed in
locations rostral and caudal to it (Fig. 1d, green lines). Although we
were unable to cut the dorsal SMA in ovo during gut loop develop-
ment, once the loops had matured (E12), surgical dissection of the
SMA left the loops intact and in fact highlighted their periodic struc-
ture (Fig. 2c). This rules out any possible requirement for the SMA in
directing loop structure, and for the vasculature as well, as secondary
vessels develop only after the loops themselves have formed.

Although the gut grows uniformly, to investigate whether the
mesentery might grow inhomogeneously and thus force the gut to
loop at precise locations, we examined the proliferation rate of the
mesentery at E5 and at E12. There were no observed differences along
the rostrocaudal axis (Fig. 1b), suggesting that the growing mesentery
exerts uniform compression along the length of the gut, countered by
an equal and opposite tensile reaction on the mesentery from the gut.

Taken together, our observations suggest that uniform differential
growth between the gut and the mesentery could be at the origin of
loop formation. Because the gut tube is slender, with a length that is
much larger than its radius, it responds physically to the differential
strain-induced compression from the attached mesentery by bending
and looping, while remaining attached to the embryo rostrocaudally.
Most importantly, the fact that the gut relaxes to a straight configura-
tion whereas the mesentery relaxes to an almost flat configuration
implies that the tissues behave elastically, a fact that will allow us to
quantify the process simply.
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Figure 1 | Morphology of loops in the chick gut. a, Chick gut at embryonic
day 5 (E5), E8, E12 and E16 shows stereotypical looping pattern.
b, Proliferation in the E5 (left) and E12 (right) gut tubes (blue) and mesentery
(red). Each blue bar represents the average number of phospho-H3-positive
cells per unit surface in 40 (E5) or 50 (E12) 10-mm sections. Each red bar
represents the average number of phospho-H3-positive cells per unit surface
over six 10-mm sections (E5) or in specific regions demarcated by vasculature
along the mesentery (E12). The inset images of the chick guts align the
proliferation data with the locations of loops (all measurements were made in
three or more chick samples). Ant., anterior; post., posterior. Error bars, s.d.
c, The gut and mesentery before and after surgical separation at E14 show that
the mesentery shrinks while the gut tube straightens out almost completely.
d, The E12 chick gut under normal development with the mesentery (left) and
after in ovo surgical separation of the mesentery at E4 (right). The gut and
mesentery repair their attachment, leading to some regions of normal looping
(green). However, a portion of the gut lacks normal loops as a result of
disrupting the gut–mesentery interaction over the time these loops would
otherwise have developed.
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Figure 2 | Rubber simulacrum of gut looping morphogenesis. a, To
construct the rubber model of looping, a thin rubber sheet (mesentery) was
stretched uniformly along its length and then stitched to a straight, unstretched
rubber tube (gut) along its boundary; the differential strain mimics the
differential growth of the two tissues. The system was then allowed to relax, free
of any external forces. b, On relaxation, the composite rubber model deformed
into a structure very similar to the chick gut (here the thickness of the sheet is
1.3 mm and its Young’s modulus is 1.3 MPa, and the radius of the tube is
4.8 mm, its thickness is 2.4 mm and its Young’s modulus is 1.1 MPa; see
Supplementary Information for details). c, Chick gut at E12. The superior
mesenteric artery has been cut out (but not the mesentery), allowing the gut to
be displayed aligned without altering its loop pattern.
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Wavelength of oscillations in guts

We compared the gut looping patterns of the chick with those of the
closely related (but differently sized) quail and those of a songbird, the
zebra finch. In Fig. 5a, we see that, as previously described18,19, the guts
of the chick and the quail are organized almost identically but on
different scales, and that the digestive tracts of songbirds and chickens
are markedly different. To make the comparison quantitative, we
repeated the morphometric and mechanical measurements (Sup-
plementary Information) and used them to generate predictions from
our scaling theory and computational model. In all cases, the pre-
dicted values of l, R and n are again in excellent agreement with those
observed in embryonic guts of the appropriate species (Fig. 5b, c and
Table 2). For instance, we find that although growth strains, ep, are
similar between the chick and the quail, the quail mesentery has a
tension, Emhe0, approximately five times greater than that in the chick
mesentery. Qualitatively, this greater elastic force produces a smaller
loop, hence inducing more loops per length and, thus, the same
number of loops in the smaller bird. By contrast, most of the geomet-
rical and physical parameters characterizing the developing gut and
mesentery in the chick and the zebra finch are different and lead to
different looping parameters.

Finally, to test our theoretical model with a non-avian example, we
performed a similar set of measurements throughout the course of gut
development in mouse embryos. In agreement with our findings from
birds, the geometrical and biophysical properties of the developing
gut and dorsal mesentery suffice to predict accurately the stereotypical
patterns of the mature intestinal loops in mouse embryos (Fig. 5 and

Table 2). The mouse gut is notably characterized by softer tissues and
higher mismatch strain, producing tightly coiled loops, as seen in
Fig. 5a. The physiological stresses in the mesentery fall in the same
range (Supplementary Information) in all the species investigated in
this study, suggesting that both growth and the properties of tissues
might be regulated by mechanical feedback.

Discussion
The developing intestine is a simple, elongated, tubular structure that
is stereotypically and reproducibly folded into a compact organ
through the process of looping morphogenesis. Using a combination
of quantitative experiments, computations and scaling arguments, we
have shown that the associated looping patterns are quantitatively
determined by the differential growth between the gut tube and the
dorsal mesentery and by their geometric and elastic properties, both
within individual organisms and across species. We thus bring a
quantitative biomechanical perspective to the mostly metaphoric
arguments in On Growth and Form2.

The simplicity of the mechanical origin in the diversity in gut loop-
ing patterns, long associated with the adaptive significance of the
distinct diets and gut residence times of different animals18, also sug-
gests that because it is sufficient to modulate the uniform tissue
growth rates, tissue geometry and elasticity of the gut–mesentery
system to change these patterns, this is the minimal set of properties
on which selection has acted to achieve the looping patterns found in
nature.

Identification of the relevant cellular parameters influencing gut
morphogenesis opens the door to future studies of the genes involved
in controlling cell proliferation and matrix formation in space and
time, and sets the stage to understanding the processes by which
biochemical and biophysical events across scales conspire to drive
the developmental regulation of growing tissues.

METHODS SUMMARY
Embryos. Fertile chick eggs (White Leghorn eggs) were obtained from commercial
sources. Fertile zebra finch eggs were provided by the laboratory of T. Gardner
at Boston University. Fertile Japanese quail eggs were obtained from Strickland
Game Bird. All eggs were incubated at 37.5 uC and staged following ref. 20.
Mouse embryos were collected from staged pregnant females (Charles River
Laboratories).
Immunohistochemistry and histology. Small intestines were collected from
chick embryos at desired stages and fixed in 4% paraformaldehyde in PBS and
embedded in paraffin wax. Immunohistochemistry and histology was performed
on 10-mm transverse sections of the gut tube.
In ovo gut surgeries. The gut tube and the dorsal mesentery were separated in ovo
at stage 23–25 by using a pulled glass needle to cut the connection between the
two tissues. Embryos were re-incubated until E12, when they were collected to
examine the resulting looping pattern.
Mechanical properties of gut and mesentery tissue. The force, F(d), between a
permanent magnet (The Magnet Source) and millimetre-size steel balls (New
England Miniature Ball Corp.), separated by a distance d, was calculated from
the damped motion of the ball rising in glycerol with the magnet lowered from
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Figure 5 | Comparative predictions for looping parameters across species.
a, Gut looping patterns in the chick, quail, finch and mouse (to scale) show
qualitative similarities in the shape of the loops, although the size and number
of loops vary substantially. b, Comparison of the scaled loop contour length,
l/ro, with the equivalently scaled expression from equation (3) shows that our
results are consistent with the scaling law in equation (1) across species. Black
symbols are for the animals shown in a, other symbols are the same as in Fig. 4b.
c, Comparison of the scaled loop radius, R/ro, with the equivalently scaled
expression from equation (4) shows that our results are consistent with the
scaling law in equation (2) across species (symbols are as in b). In b and c, points
are reported for chick at E8, E12 and E16; quail at E12 and E15; finch at E10 and
E13; and mouse at E14.5 and E16.5. Error bars, s.d.

Table 2 | Morphometry of quail, finch and mouse gut looping pat-
terns
Species and stage n l (mm) R (mm)

Quail E12 Experimental observation 9.0 6 0.7 4.6 6 0.4 1.2 6 0.1
Computational model* 10.0 6 1.3 4.1 6 1.0 1.2 6 0.3

Finch E13 Experimental observation 5.5 6 0.5 3.6 6 0.5 0.6 6 0.3
Computational model{ 5.3 6 0.8 3.7 6 0.9 0.9 6 0.2

Mouse E16.5 Experimental observation 6.0 6 0.5 6.0 6 0.7 0.7 6 0.1
Computational model{ 5.6 6 0.8 6.4 6 1.5 1.0 6 0.1

The observed number of loops, loop wavelength and radius for the quail, finch and mouse, for given
geometrical and physical parameters associated with the gut and the mesentery, show that the model
predictions are quantitatively consistent with observations.
*Lt 5 41.3 6 0.4 mm, h 5 14.9 6 1.6 mm, ro 5 248 6 13 mm, ri 5 154 6 12 mm, Em 5 515 6 206 kPa,
Et 5 4.4 6 1.3 kPa, ep 5 110 6 13% and e0 5 23 6 5%.
{Lt 5 19.7 6 0.8 mm, h 5 6.0 6 0.6mm, ro 5 227 6 14 mm, ri 5 120 6 13 mm, Em 5 802 6 321 kPa,
Et 5 2.6 6 0.8 kPa, ep 5 110 6 11% and e0 5 32 6 5%.
{Lt 5 35.9 6 0.9 mm, h 5 12.3 6 1.6 mm, ro 5 270 6 16 mm, ri 5 178 6 14 mm, Em 5 94 6 37 kPa,
Et 5 1.9 6 0.9 kPa, ep 5 200 6 13% and e0 5 64 6 5%.
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We compared the gut looping patterns of the chick with those of the
closely related (but differently sized) quail and those of a songbird, the
zebra finch. In Fig. 5a, we see that, as previously described18,19, the guts
of the chick and the quail are organized almost identically but on
different scales, and that the digestive tracts of songbirds and chickens
are markedly different. To make the comparison quantitative, we
repeated the morphometric and mechanical measurements (Sup-
plementary Information) and used them to generate predictions from
our scaling theory and computational model. In all cases, the pre-
dicted values of l, R and n are again in excellent agreement with those
observed in embryonic guts of the appropriate species (Fig. 5b, c and
Table 2). For instance, we find that although growth strains, ep, are
similar between the chick and the quail, the quail mesentery has a
tension, Emhe0, approximately five times greater than that in the chick
mesentery. Qualitatively, this greater elastic force produces a smaller
loop, hence inducing more loops per length and, thus, the same
number of loops in the smaller bird. By contrast, most of the geomet-
rical and physical parameters characterizing the developing gut and
mesentery in the chick and the zebra finch are different and lead to
different looping parameters.

Finally, to test our theoretical model with a non-avian example, we
performed a similar set of measurements throughout the course of gut
development in mouse embryos. In agreement with our findings from
birds, the geometrical and biophysical properties of the developing
gut and dorsal mesentery suffice to predict accurately the stereotypical
patterns of the mature intestinal loops in mouse embryos (Fig. 5 and

Table 2). The mouse gut is notably characterized by softer tissues and
higher mismatch strain, producing tightly coiled loops, as seen in
Fig. 5a. The physiological stresses in the mesentery fall in the same
range (Supplementary Information) in all the species investigated in
this study, suggesting that both growth and the properties of tissues
might be regulated by mechanical feedback.

Discussion
The developing intestine is a simple, elongated, tubular structure that
is stereotypically and reproducibly folded into a compact organ
through the process of looping morphogenesis. Using a combination
of quantitative experiments, computations and scaling arguments, we
have shown that the associated looping patterns are quantitatively
determined by the differential growth between the gut tube and the
dorsal mesentery and by their geometric and elastic properties, both
within individual organisms and across species. We thus bring a
quantitative biomechanical perspective to the mostly metaphoric
arguments in On Growth and Form2.

The simplicity of the mechanical origin in the diversity in gut loop-
ing patterns, long associated with the adaptive significance of the
distinct diets and gut residence times of different animals18, also sug-
gests that because it is sufficient to modulate the uniform tissue
growth rates, tissue geometry and elasticity of the gut–mesentery
system to change these patterns, this is the minimal set of properties
on which selection has acted to achieve the looping patterns found in
nature.
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Mouse embryos were collected from staged pregnant females (Charles River
Laboratories).
Immunohistochemistry and histology. Small intestines were collected from
chick embryos at desired stages and fixed in 4% paraformaldehyde in PBS and
embedded in paraffin wax. Immunohistochemistry and histology was performed
on 10-mm transverse sections of the gut tube.
In ovo gut surgeries. The gut tube and the dorsal mesentery were separated in ovo
at stage 23–25 by using a pulled glass needle to cut the connection between the
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Computational model* 10.0 6 1.3 4.1 6 1.0 1.2 6 0.3
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Computational model{ 5.3 6 0.8 3.7 6 0.9 0.9 6 0.2

Mouse E16.5 Experimental observation 6.0 6 0.5 6.0 6 0.7 0.7 6 0.1
Computational model{ 5.6 6 0.8 6.4 6 1.5 1.0 6 0.1

The observed number of loops, loop wavelength and radius for the quail, finch and mouse, for given
geometrical and physical parameters associated with the gut and the mesentery, show that the model
predictions are quantitatively consistent with observations.
*Lt 5 41.3 6 0.4 mm, h 5 14.9 6 1.6 mm, ro 5 248 6 13 mm, ri 5 154 6 12 mm, Em 5 515 6 206 kPa,
Et 5 4.4 6 1.3 kPa, ep 5 110 6 13% and e0 5 23 6 5%.
{Lt 5 19.7 6 0.8 mm, h 5 6.0 6 0.6mm, ro 5 227 6 14 mm, ri 5 120 6 13 mm, Em 5 802 6 321 kPa,
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Physical model of gut looping
To investigate the physical origins of this looping pattern, we
developed a simple simulacrum of the gut–mesentery composite
using a silicone rubber tube (mimicking the gut) and a thin latex sheet
(mimicking the mesentery; see Supplementary Information). The dif-
ferential strain induced by relative growth between the gut and the
mesentery is simulated by extending the latex sheet along its length
and stitching it to the wall of the naturally straight, unstretched rubber
tube along the edge parallel to the direction of membrane stretching
(Fig. 2a). On removing all external loads from the composite system,
we observe the spontaneous formation of loops in the tube very similar
in shape to the looping patterns seen in ovo (Fig. 2b). Varying the
differential strain, the thickness of the latex sheet, the radius of the
rubber tube and their material properties (Supplementary Informa-
tion) shows that the wavelength and amplitude of the repeating loops
depend only on these measurable parameters.

Scaling laws for loop period, radius and number
We now quantify the simple physical picture for looping sketched
above to derive expressions for the size of a loop, characterized by
the contour length, l, and mean radius of curvature, R, of a single
period (Fig. 3a). The geometry of the growing gut is characterized by
the gut’s inner and outer radii, ri and ro, which are much smaller than
its increasing length, whereas that of the mesentery is described by its
homogeneous thickness, h, which is much smaller than its other two
dimensions. Because the gut tube and mesentery relax to nearly
straight, flat states once they are surgically separated, we can model
the gut as a one-dimensional elastic filament growing relative to a thin
two-dimensional elastic sheet (the mesentery). As the gut length
becomes longer than the perimeter of the mesentery to which it is
attached, there is a differential strain, e, that compresses the tube axially
while extending the periphery of the sheet. When the growth strain is

larger than a critical value, e!, the straight tube buckles, taking on a
wavy shape of characteristic amplitude A and period l?A. At the
onset of buckling, the extensional strain energy of the sheet per wave-
length of the pattern is U m!Eme2

!hl2, where Em is the Young’s modu-
lus of the mesentery sheet. The bending energy of the tube per
wavelength is U t!EtItk

2l, where k / A/l2 is the tube curvature,
It!r4

o{r4
i is the moment of inertia of the tube and Et is the Young’s

modulus of the tube. Using the condition that the in-plane strain in the
sheet is e!!A=l and minimizing the sum of the two energies with
respect to l then yields a scaling law for the wavelength of the loop:

l!
EtIt

Emh

! "1=3

ð1Þ

The above theory is valid only at the onset of looping and cannot predict
the amplitude or radius of a loop. Far from the onset of the instability, at a
strain e~e0?e!, we use a torque balance argument to determine the
finite radius of the loop. To deform the gut into a loop of radius R, the
elastic torque required is Tt / EtIt/R and must balance the torque
exerted by the membrane with strain e0 over a width w and a length R,
that is, Tm / Emhwe0R. The width of this strip is the radial distance from
the tube over which the peripheral membrane stretching strain is relaxed,
and is determined by the relation e0 / w/(R 2 w). Balancing the torques,
by equating Tt with Tm, and assuming that e0 , 1, yields the scaling law

R!
EtIt

Emhe2
0

! "1=3

ð2Þ

Quantitative geometry and biomechanics of chick gut
looping
A comparison of the results of our predictions with quantitative
experiments requires the measurement of the geometry of the tissues,
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Figure 3 | Geometric and mechanical measurements of chick gut.
a, Parameters involved in the physical model. b, Inner (ri, light blue) and outer
(ro, dark blue) tube diameters. Measurements are extracted from DAPI-stained
tube cross-section shown in inset. c, Tube (length Lt, blue) and mesentery
(length Lm, red) differential growth. Inset, length measurement of one isolated
loop. d, Stress versus strain for the mesentery at E8, E12 and E16. For

physiological strains, we use the linearization shown by the black lines, to
extract the effective Young’s modulus, Em, and the effective strain, e0. e, Stress
versus strain for the gut tube at E8, E12 and E16. f, Mesentery and tube Young’s
moduli, Em (red) and Et (blue), at E8, E12 and E16. g, Effective differential
growth strain, e0, at E8, E12 and E16. Error bars, s.d.
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Compression of soft elastic material
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When soft elastic material is compressed by more than 35% 
surface forms sharp creases. This is effect of nonlinear elasticity!Physics 4, 19 (2011)
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Folds on the surface of soft materials are shown to be a consequence of a nonlinear instability.

Subject Areas: Statistical Mechanics, Biological Physics

A Viewpoint on:
Unfolding the Sulcus
Evan Hohlfeld and L. Mahadevan
Phys. Rev. Lett. 106, 105702 (2011) – Published March 7, 2011

Even as we probe physics on ever-smaller scales, ma-
terials that can be held and manipulated with our hands
often still resist our understanding. Elastic materials,
in particular, still confound because of the nonlinear re-
lationship between strain and the displacement of the
material needed to maintain the rotational invariance
of the elastic energy. The effects of these nonlineari-
ties are often more pronounced at free surfaces, where
strain can be alleviated by a large rotation of the sur-
face. When a slab of an elastic material such as rubber
is compressed, it develops a sulcus—a sharp furrow in
its surface that plunges into the material. First reported
for photographic gelatin films over one hundred years
ago, they are not just a laboratory curiosity. Sulci cre-
ate large strains that can lead to material failure. They
are also a common motif in the morphogenesis of many
organs, most famously in the characteristic folds on the
surface of the human brain or, say, the arm of an infant
[see Fig. 1(a) and (b)]. Though a mechanism for the for-
mation of a sulcus was proposed almost fifty years ago
[1], a complete understanding has remained elusive [2–
6]. Now, in a paper appearing in Physical Review Letters,
Evan Hohlfeld from Harvard University and Lawrence
Berkeley National Laboratory and L. Mahadevan from
Harvard University have proposed that the formation of
a sulcus is controlled by a new type of instability dom-
inated by nonlinearities in the elastic energy [7]. Their
case is bolstered both by detailed numerics and by ex-
periments. Moreover, they suggest that similar nonlin-
ear instabilities may be lurking behind the formation of
many other singular structures found in materials.

In the calculation of Biot, a free surface of a com-
pressed elastic material becomes unstable at a critical
strain of 45.6% [1]. Indeed, experiments show that a
compressed slab forms sharp furrows above some crit-
ical strain. Rather than develop as an instability, how-
ever, the sulci in experiments nucleate and grow later-
ally as fully formed furrows. Moreover, this often oc-
curs at a lower strain of 35% [2–4], noticeably smaller

FIG. 1: Localized folds, called sulci, induced on soft materials
due to compressive stresses are ubiquitous in nature: (a) the
arm of an infant, (b) a primate brain. (c) Schematic illustra-
tion of a bifurcation diagram showing the scaled height h of a
sulcus plotted against the applied strain. A sulcus nucleates
at a critical strain ec due to a spontaneous breaking of scale
symmetry. (Credit: (a),(b) E. Hohlfield and L. Mahadevan [7])

than the location of the Biot instability. The observed
behavior suggests that an energy barrier exists between
a material with a smooth surface and one with a sharp
furrow, leading to a first-order transition to a sulcus of
finite depth.

Hohlfeld and Mahadevan have performed both nu-
merical simulations and experiments to better under-
stand how sulci develop [7, 8]. In their simulations, they
consider an incompressible elastic material with a free
surface. Since the formation of a sulcus involves length

DOI: 10.1103/Physics.4.19
URL: http://link.aps.org/doi/10.1103/Physics.4.19

c� 2011 American Physical Society
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Swelling of thin membranes on elastic substrates

T. Tallinen et al., PNAS 111, 12667 (2014)

instability discussed earlier, and can lead to an emergent pattern
very reminiscent of sulci and gyri in the brain.

Results
A physical experiment to mimic these patterns can be easily created
using a hemispherical polydimethylsiloxane (PDMS) gel coated
with a layer of PDMS that can swell by absorbing a solvent such
as hexanes (Materials and Methods). By varying cross-linking den-
sities we can prepare samples with different ratios of the moduli of
the two layers and capture both the wrinkled morphology shown in
Fig. 1D (when the outer layer is stiffer) and the sulcified mor-
phology shown in Fig. 1E (when the outer layer is softer). In par-
ticular, we see the appearance of brainlike morphologies with deep
sulci when the modulus ratio is close to unity (Fig. 1F).
To study gyrification quantitatively, we first construct a nu-

merical model in two dimensions. We start with a rectangular
domain consisting of a layer of gray matter on top of a deep layer
of white matter, both having the same uniform shear modulus μ.
The material is assumed to be neo-Hookean with volumetric
strain energy density

W =
μ
2

h
Tr

!
FFT" J−2=3 − 3

i
+

K
2
ðJ − 1Þ2; [1]

where F is the deformation gradient, J = det(F), and the bulk
modulus K = 103μ makes the tissues almost incompressible. To
model growth of the gray matter relative to the white matter, we
apply a tangential growth profile,

gðyÞ= 1+
α

1+ e10ðy=T−1Þ
; [2]

so that g = 1 in the white matter and g = 1+ α in the gray matter,
with a smoothed step at the interface (Fig. S1). Here, y is dis-
tance from the top surface in material coordinates, T is the un-
deformed thickness of the gray matter, and α controls the
magnitude of expansion. Later on we denote g ≡ 1 + α ≈ g(0).
We use a custom finite element method to minimize the elastic
energy (details Please select the in Materials and Methods). Our
2D plane-strain calculations also include constrained expansion in

the z direction, although folding can only occur in the x – y plane;
we find that when transversely isotropic tangential expansion
exceeds g = gx = gz ≈ 1.29 sulcification of the gray matter becomes
energetically favorable over a smooth surface, and the gray matter
forms cusped folds largely internal to the gray matter and remi-
niscent of the folds in lightly sulcified brains such as the porcupine
(Fig. 2A). As gx is increased further (for simplicity gz = 1.29 was
fixed) the gray matter folds down into the white matter forming
a big cusped sulcus and smooth gyrus, reminiscent of the sulci and
gyri found in more folded brains such as a cat (Fig. 2B). Our plots
also indicate regions of compressive and tensile stress, which agree
with observations in developing ferret brains (11).
We plot the geometric characteristics of the sulcus, such as

depth and width, as a function of gx in Fig. 2C, which allow us to
establish several nontrivial similarities between our geometry
and actual brains (Fig. S2). After the transition from smooth to
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folds. (C) If the two layers have similar moduli the gray matter will both
wrinkle and cusp giving gyri and sulci. Physical realizations of A, B, and C,
based on differential swelling of a bilayer gel (Materials and Methods),
confirm this picture and are shown in D, E, and F, respectively.
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Fig. 2. Formation of a minimal sulcus. The 2D sulci with tangential expansion
ratio of (A) g= 1.30 and (B) g= 2.25 of the gray matter (Eq. 2 and Fig. S1).
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model growth of the gray matter relative to the white matter, we
apply a tangential growth profile,

gðyÞ= 1+
α

1+ e10ðy=T−1Þ
; [2]

so that g = 1 in the white matter and g = 1+ α in the gray matter,
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Figure 2 | Sectional views of model brains during convolutional development. a, Planform and cross-sectional images of a physical gel-brain showing
convolutional development during the swelling (folding) process that starts from an initially smooth shape (left panels) to a moderately convoluted shape
(right panels). b, The coronal sections of the simulated brain (top panels) with comparisons to corresponding MRI sections35,39. c, Gyrification index as a
function of brain size for real brains (data from refs 3,40), a numerically simulated brain, and a physical gel-brain. Gestational week is indicated for fetal
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Having seen that our physical and numerical experiments can
capture the overall qualitative picture of how gyri form, we now turn
to the question of the role of brain geometry andmechanical stresses
in controlling the placement and orientations of the major and
minor sulci and gyri. In Fig. 3a, we show the field of the simulated
compressive stress just before the primary sulci form. Although
cortical growth in our model is relatively uniform in space, the
curvature of the surface is not. This yields a non-uniform stress field
in the cortical layer. Thus, compressive stresses are reduced in the
vicinity of highly curved convex regions, so that the first sulci appear
at weakly curved or concave regions in our simulations, consistent
with observations in fetal brains1,16. Furthermore, compression-
induced sulci should favour their alignment perpendicular to the
largest compressive stress, and indeed directions of the largest
compressive stress in our model are perpendicular to the general
orientations of primary gyri and sulci (Fig. 3a). Figure 3b shows that
the first generations of sulci form perpendicular to the maximum
compressive stress in real and simulated model brains; this
correlation is particularly clear for the primary sulci in real brains.

Although the shape of the initially smooth fetal brain is
described by the curvature of its surface, cortical growth eventually
couples the curvature and mechanical stress in non-trivial ways.
In Supplementary Fig. 3 we compare the stress field and curvature
at the cortical surface just before the first sulci form, and see

that in highly curved regions the maximum compressive stress is
perpendicular to the highest (convex) curvature. However, this does
not hold at the ellipsoidal surfaces of the frontal and temporal
lobes; these lobes elongate and bend towards each other as a result
of cortical growth (Supplementary Fig. 3; Supplementary Movie 1
shows the analogue in our gel experiments). This reduces the
compressive stress in the direction of elongation and bending, which
in turn is reflected in the dominant orientations of the frontal and
temporal gyri.

Although the global brain shape directs the orientations of
the primary gyri, the finer details of the gyrification patterns are
sensitive to variations in the initial geometry. In Fig. 3c we see
that the patterns of gyri and sulci on a physical gel-brain exhibit
some deviations from perfect bilateral symmetry. The hemispheres
are not identical in real brains either, but we note that in our
models artefacts from imaging, surface segmentation, and sample
preparation can cause the two hemispheres to di�er more than in
reality. The sequential patterns emerging from the folding (swelling)
and unfolding (drying) process also show some degree of variations
(Supplementary Fig. 4), but this process is highly repeatable; indeed,
the resulting gyral patterns are found to be robust and reproducible
on multiple repetition of the experiment with the same gel-brain
sample (lower left of Fig. 3c). The folding patterns vary in detail
across samples (Supplementary Fig. 4), but they share general
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Figure 1 | Physical mimic and numerical simulation of tangential cortical expansion. a, Gyrification of the human brain during the latter half of gestation
(photographs from ref. 1, adapted with permission from Elsevier). b, A 3D-printed model of the brain is produced from a 3D MRI image of a smooth fetal
brain and then used to create a pair of negative silicone moulds for casting. To mimic the constrained growth of the cortex, a replicated gel-brain (white
matter) is coated with a thin layer of gel (cortex) that swells by absorbing a solvent (hexanes) over time t (t1 ⇡4 min, t2 ⇡9 min, t3 ⇡ 16 min). c, The layered
gel progressively evolves into a complex pattern of sulci and gyri during the swelling process. d, A simulation starting from a smooth fetal brain shows
gyrification as a result of uniform tangential expansion of the cortical layer. The brain is modelled as a soft elastic solid and a relative tangential expansion is
imposed on the cortical layer as shown at left, and the system allowed to relax to its elastic equilibrium.

20-fold increase in brain volume (approximately 60ml to 1,200ml),
and a 30-fold increase in cortical area (approximately 80 cm2 to
2,400 cm2), whereas the expanding cortical layer changes little, with
a typical thickness of 2.5mm in the undeformed reference state
(the deformed thickness is about 3mm). In physiological terms,
we thus assume that tangential expansion during the fetal stage
extends through the cortical plate (which has a thickness of about
1–1.5mm at GW 22) and decays rapidly in the subplate (Fig. 1d,
left). The subplate diminishes during gyrification while the cortical
plate thickens and develops into the cerebral cortex1,3, so that in
the simulated adult brain the expanding layer corresponds to the
cerebral cortex (which is about 3mm thick in adults).

Our simple parametrization of brain growth leads to emergence
of gyrification in space and time along a course similar to real
brains (Fig. 1d and SupplementaryMovie 2): gyrification is initiated
through the formation of isolated line-like sulci (GW 26), which
elongate and branch, establishing most of the patterns before birth
(GW 40). After birth, brain volume still increases nearly threefold,
and during this time our model shows that the gyral patterns are
modified mainly by the addition of some new bends to existing
gyri in agreement with longitudinal morphological analyses27. The
characteristic spatiotemporal appearance of these convolutions—
rounded gyri between sharply cusped sulci in a mixture of threefold
junctions and S-shaped bends28—is a direct consequence of the
mechanical instability induced by constrained cortical expansion.

Physically, the similar sti�ness of the cortex and sublayers implies
that gyrification arises as a non-trivial combination of a smooth
linear instability29 and a nonlinear sulcification instability30–32.

Sections of the physically and numerically simulated brains
shown in Fig. 2a,b exhibit a bulging of gyri and deepening of sulci
in a sequence resembling the observations from MRI sections. Our
simulations of gyrification driven by constrained cortical expansion
allow us to also measure the gyrification index (GI, defined as
the ratio of the surface contour length to that of the convex hull,
determined here from coronal sections as described in ref. 3). We
see that there is a clear increase in the GI with developing brain
volume in agreement with observations (Fig. 2c). The GI arising
from our numerical simulation reaches 2.5, matching observations
of adult brains. A di�erent measure of the GI based on the cortical
surface area rather than that of sections shows that the simulated
adult brain has a cortical area that is approximately four times the
exposed cortical area (Supplementary Fig. 1). For comparison, we
also section our physical gel simulacrum that swells from an initial
unpatterned state (GI= 1.07, GW 22) and see that as a function
of swelling, the GI increases to about 1.55, a modest increase
associated with an approximately twofold increase in brain volume,
the latter state corresponding to roughly GW 30–34 (Fig. 2c and
Supplementary Fig. 2). The ultimate limiting factor in our physical
experiments is the inability for our gel to swell and increase its
volume 20-fold like in fetal brains.
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Figure 1 | Physical mimic and numerical simulation of tangential cortical expansion. a, Gyrification of the human brain during the latter half of gestation
(photographs from ref. 1, adapted with permission from Elsevier). b, A 3D-printed model of the brain is produced from a 3D MRI image of a smooth fetal
brain and then used to create a pair of negative silicone moulds for casting. To mimic the constrained growth of the cortex, a replicated gel-brain (white
matter) is coated with a thin layer of gel (cortex) that swells by absorbing a solvent (hexanes) over time t (t1 ⇡4 min, t2 ⇡9 min, t3 ⇡ 16 min). c, The layered
gel progressively evolves into a complex pattern of sulci and gyri during the swelling process. d, A simulation starting from a smooth fetal brain shows
gyrification as a result of uniform tangential expansion of the cortical layer. The brain is modelled as a soft elastic solid and a relative tangential expansion is
imposed on the cortical layer as shown at left, and the system allowed to relax to its elastic equilibrium.

20-fold increase in brain volume (approximately 60ml to 1,200ml),
and a 30-fold increase in cortical area (approximately 80 cm2 to
2,400 cm2), whereas the expanding cortical layer changes little, with
a typical thickness of 2.5mm in the undeformed reference state
(the deformed thickness is about 3mm). In physiological terms,
we thus assume that tangential expansion during the fetal stage
extends through the cortical plate (which has a thickness of about
1–1.5mm at GW 22) and decays rapidly in the subplate (Fig. 1d,
left). The subplate diminishes during gyrification while the cortical
plate thickens and develops into the cerebral cortex1,3, so that in
the simulated adult brain the expanding layer corresponds to the
cerebral cortex (which is about 3mm thick in adults).

Our simple parametrization of brain growth leads to emergence
of gyrification in space and time along a course similar to real
brains (Fig. 1d and SupplementaryMovie 2): gyrification is initiated
through the formation of isolated line-like sulci (GW 26), which
elongate and branch, establishing most of the patterns before birth
(GW 40). After birth, brain volume still increases nearly threefold,
and during this time our model shows that the gyral patterns are
modified mainly by the addition of some new bends to existing
gyri in agreement with longitudinal morphological analyses27. The
characteristic spatiotemporal appearance of these convolutions—
rounded gyri between sharply cusped sulci in a mixture of threefold
junctions and S-shaped bends28—is a direct consequence of the
mechanical instability induced by constrained cortical expansion.

Physically, the similar sti�ness of the cortex and sublayers implies
that gyrification arises as a non-trivial combination of a smooth
linear instability29 and a nonlinear sulcification instability30–32.

Sections of the physically and numerically simulated brains
shown in Fig. 2a,b exhibit a bulging of gyri and deepening of sulci
in a sequence resembling the observations from MRI sections. Our
simulations of gyrification driven by constrained cortical expansion
allow us to also measure the gyrification index (GI, defined as
the ratio of the surface contour length to that of the convex hull,
determined here from coronal sections as described in ref. 3). We
see that there is a clear increase in the GI with developing brain
volume in agreement with observations (Fig. 2c). The GI arising
from our numerical simulation reaches 2.5, matching observations
of adult brains. A di�erent measure of the GI based on the cortical
surface area rather than that of sections shows that the simulated
adult brain has a cortical area that is approximately four times the
exposed cortical area (Supplementary Fig. 1). For comparison, we
also section our physical gel simulacrum that swells from an initial
unpatterned state (GI= 1.07, GW 22) and see that as a function
of swelling, the GI increases to about 1.55, a modest increase
associated with an approximately twofold increase in brain volume,
the latter state corresponding to roughly GW 30–34 (Fig. 2c and
Supplementary Fig. 2). The ultimate limiting factor in our physical
experiments is the inability for our gel to swell and increase its
volume 20-fold like in fetal brains.
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Figure 1 | Physical mimic and numerical simulation of tangential cortical expansion. a, Gyrification of the human brain during the latter half of gestation
(photographs from ref. 1, adapted with permission from Elsevier). b, A 3D-printed model of the brain is produced from a 3D MRI image of a smooth fetal
brain and then used to create a pair of negative silicone moulds for casting. To mimic the constrained growth of the cortex, a replicated gel-brain (white
matter) is coated with a thin layer of gel (cortex) that swells by absorbing a solvent (hexanes) over time t (t1 ⇡4 min, t2 ⇡9 min, t3 ⇡ 16 min). c, The layered
gel progressively evolves into a complex pattern of sulci and gyri during the swelling process. d, A simulation starting from a smooth fetal brain shows
gyrification as a result of uniform tangential expansion of the cortical layer. The brain is modelled as a soft elastic solid and a relative tangential expansion is
imposed on the cortical layer as shown at left, and the system allowed to relax to its elastic equilibrium.

20-fold increase in brain volume (approximately 60ml to 1,200ml),
and a 30-fold increase in cortical area (approximately 80 cm2 to
2,400 cm2), whereas the expanding cortical layer changes little, with
a typical thickness of 2.5mm in the undeformed reference state
(the deformed thickness is about 3mm). In physiological terms,
we thus assume that tangential expansion during the fetal stage
extends through the cortical plate (which has a thickness of about
1–1.5mm at GW 22) and decays rapidly in the subplate (Fig. 1d,
left). The subplate diminishes during gyrification while the cortical
plate thickens and develops into the cerebral cortex1,3, so that in
the simulated adult brain the expanding layer corresponds to the
cerebral cortex (which is about 3mm thick in adults).

Our simple parametrization of brain growth leads to emergence
of gyrification in space and time along a course similar to real
brains (Fig. 1d and SupplementaryMovie 2): gyrification is initiated
through the formation of isolated line-like sulci (GW 26), which
elongate and branch, establishing most of the patterns before birth
(GW 40). After birth, brain volume still increases nearly threefold,
and during this time our model shows that the gyral patterns are
modified mainly by the addition of some new bends to existing
gyri in agreement with longitudinal morphological analyses27. The
characteristic spatiotemporal appearance of these convolutions—
rounded gyri between sharply cusped sulci in a mixture of threefold
junctions and S-shaped bends28—is a direct consequence of the
mechanical instability induced by constrained cortical expansion.

Physically, the similar sti�ness of the cortex and sublayers implies
that gyrification arises as a non-trivial combination of a smooth
linear instability29 and a nonlinear sulcification instability30–32.

Sections of the physically and numerically simulated brains
shown in Fig. 2a,b exhibit a bulging of gyri and deepening of sulci
in a sequence resembling the observations from MRI sections. Our
simulations of gyrification driven by constrained cortical expansion
allow us to also measure the gyrification index (GI, defined as
the ratio of the surface contour length to that of the convex hull,
determined here from coronal sections as described in ref. 3). We
see that there is a clear increase in the GI with developing brain
volume in agreement with observations (Fig. 2c). The GI arising
from our numerical simulation reaches 2.5, matching observations
of adult brains. A di�erent measure of the GI based on the cortical
surface area rather than that of sections shows that the simulated
adult brain has a cortical area that is approximately four times the
exposed cortical area (Supplementary Fig. 1). For comparison, we
also section our physical gel simulacrum that swells from an initial
unpatterned state (GI= 1.07, GW 22) and see that as a function
of swelling, the GI increases to about 1.55, a modest increase
associated with an approximately twofold increase in brain volume,
the latter state corresponding to roughly GW 30–34 (Fig. 2c and
Supplementary Fig. 2). The ultimate limiting factor in our physical
experiments is the inability for our gel to swell and increase its
volume 20-fold like in fetal brains.
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Figure 1 | Physical mimic and numerical simulation of tangential cortical expansion. a, Gyrification of the human brain during the latter half of gestation
(photographs from ref. 1, adapted with permission from Elsevier). b, A 3D-printed model of the brain is produced from a 3D MRI image of a smooth fetal
brain and then used to create a pair of negative silicone moulds for casting. To mimic the constrained growth of the cortex, a replicated gel-brain (white
matter) is coated with a thin layer of gel (cortex) that swells by absorbing a solvent (hexanes) over time t (t1 ⇡4 min, t2 ⇡9 min, t3 ⇡ 16 min). c, The layered
gel progressively evolves into a complex pattern of sulci and gyri during the swelling process. d, A simulation starting from a smooth fetal brain shows
gyrification as a result of uniform tangential expansion of the cortical layer. The brain is modelled as a soft elastic solid and a relative tangential expansion is
imposed on the cortical layer as shown at left, and the system allowed to relax to its elastic equilibrium.

20-fold increase in brain volume (approximately 60ml to 1,200ml),
and a 30-fold increase in cortical area (approximately 80 cm2 to
2,400 cm2), whereas the expanding cortical layer changes little, with
a typical thickness of 2.5mm in the undeformed reference state
(the deformed thickness is about 3mm). In physiological terms,
we thus assume that tangential expansion during the fetal stage
extends through the cortical plate (which has a thickness of about
1–1.5mm at GW 22) and decays rapidly in the subplate (Fig. 1d,
left). The subplate diminishes during gyrification while the cortical
plate thickens and develops into the cerebral cortex1,3, so that in
the simulated adult brain the expanding layer corresponds to the
cerebral cortex (which is about 3mm thick in adults).

Our simple parametrization of brain growth leads to emergence
of gyrification in space and time along a course similar to real
brains (Fig. 1d and SupplementaryMovie 2): gyrification is initiated
through the formation of isolated line-like sulci (GW 26), which
elongate and branch, establishing most of the patterns before birth
(GW 40). After birth, brain volume still increases nearly threefold,
and during this time our model shows that the gyral patterns are
modified mainly by the addition of some new bends to existing
gyri in agreement with longitudinal morphological analyses27. The
characteristic spatiotemporal appearance of these convolutions—
rounded gyri between sharply cusped sulci in a mixture of threefold
junctions and S-shaped bends28—is a direct consequence of the
mechanical instability induced by constrained cortical expansion.

Physically, the similar sti�ness of the cortex and sublayers implies
that gyrification arises as a non-trivial combination of a smooth
linear instability29 and a nonlinear sulcification instability30–32.

Sections of the physically and numerically simulated brains
shown in Fig. 2a,b exhibit a bulging of gyri and deepening of sulci
in a sequence resembling the observations from MRI sections. Our
simulations of gyrification driven by constrained cortical expansion
allow us to also measure the gyrification index (GI, defined as
the ratio of the surface contour length to that of the convex hull,
determined here from coronal sections as described in ref. 3). We
see that there is a clear increase in the GI with developing brain
volume in agreement with observations (Fig. 2c). The GI arising
from our numerical simulation reaches 2.5, matching observations
of adult brains. A di�erent measure of the GI based on the cortical
surface area rather than that of sections shows that the simulated
adult brain has a cortical area that is approximately four times the
exposed cortical area (Supplementary Fig. 1). For comparison, we
also section our physical gel simulacrum that swells from an initial
unpatterned state (GI= 1.07, GW 22) and see that as a function
of swelling, the GI increases to about 1.55, a modest increase
associated with an approximately twofold increase in brain volume,
the latter state corresponding to roughly GW 30–34 (Fig. 2c and
Supplementary Fig. 2). The ultimate limiting factor in our physical
experiments is the inability for our gel to swell and increase its
volume 20-fold like in fetal brains.
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Figure 1 | Physical mimic and numerical simulation of tangential cortical expansion. a, Gyrification of the human brain during the latter half of gestation
(photographs from ref. 1, adapted with permission from Elsevier). b, A 3D-printed model of the brain is produced from a 3D MRI image of a smooth fetal
brain and then used to create a pair of negative silicone moulds for casting. To mimic the constrained growth of the cortex, a replicated gel-brain (white
matter) is coated with a thin layer of gel (cortex) that swells by absorbing a solvent (hexanes) over time t (t1 ⇡4 min, t2 ⇡9 min, t3 ⇡ 16 min). c, The layered
gel progressively evolves into a complex pattern of sulci and gyri during the swelling process. d, A simulation starting from a smooth fetal brain shows
gyrification as a result of uniform tangential expansion of the cortical layer. The brain is modelled as a soft elastic solid and a relative tangential expansion is
imposed on the cortical layer as shown at left, and the system allowed to relax to its elastic equilibrium.

20-fold increase in brain volume (approximately 60ml to 1,200ml),
and a 30-fold increase in cortical area (approximately 80 cm2 to
2,400 cm2), whereas the expanding cortical layer changes little, with
a typical thickness of 2.5mm in the undeformed reference state
(the deformed thickness is about 3mm). In physiological terms,
we thus assume that tangential expansion during the fetal stage
extends through the cortical plate (which has a thickness of about
1–1.5mm at GW 22) and decays rapidly in the subplate (Fig. 1d,
left). The subplate diminishes during gyrification while the cortical
plate thickens and develops into the cerebral cortex1,3, so that in
the simulated adult brain the expanding layer corresponds to the
cerebral cortex (which is about 3mm thick in adults).

Our simple parametrization of brain growth leads to emergence
of gyrification in space and time along a course similar to real
brains (Fig. 1d and SupplementaryMovie 2): gyrification is initiated
through the formation of isolated line-like sulci (GW 26), which
elongate and branch, establishing most of the patterns before birth
(GW 40). After birth, brain volume still increases nearly threefold,
and during this time our model shows that the gyral patterns are
modified mainly by the addition of some new bends to existing
gyri in agreement with longitudinal morphological analyses27. The
characteristic spatiotemporal appearance of these convolutions—
rounded gyri between sharply cusped sulci in a mixture of threefold
junctions and S-shaped bends28—is a direct consequence of the
mechanical instability induced by constrained cortical expansion.

Physically, the similar sti�ness of the cortex and sublayers implies
that gyrification arises as a non-trivial combination of a smooth
linear instability29 and a nonlinear sulcification instability30–32.

Sections of the physically and numerically simulated brains
shown in Fig. 2a,b exhibit a bulging of gyri and deepening of sulci
in a sequence resembling the observations from MRI sections. Our
simulations of gyrification driven by constrained cortical expansion
allow us to also measure the gyrification index (GI, defined as
the ratio of the surface contour length to that of the convex hull,
determined here from coronal sections as described in ref. 3). We
see that there is a clear increase in the GI with developing brain
volume in agreement with observations (Fig. 2c). The GI arising
from our numerical simulation reaches 2.5, matching observations
of adult brains. A di�erent measure of the GI based on the cortical
surface area rather than that of sections shows that the simulated
adult brain has a cortical area that is approximately four times the
exposed cortical area (Supplementary Fig. 1). For comparison, we
also section our physical gel simulacrum that swells from an initial
unpatterned state (GI= 1.07, GW 22) and see that as a function
of swelling, the GI increases to about 1.55, a modest increase
associated with an approximately twofold increase in brain volume,
the latter state corresponding to roughly GW 30–34 (Fig. 2c and
Supplementary Fig. 2). The ultimate limiting factor in our physical
experiments is the inability for our gel to swell and increase its
volume 20-fold like in fetal brains.
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Figure 1 | Physical mimic and numerical simulation of tangential cortical expansion. a, Gyrification of the human brain during the latter half of gestation
(photographs from ref. 1, adapted with permission from Elsevier). b, A 3D-printed model of the brain is produced from a 3D MRI image of a smooth fetal
brain and then used to create a pair of negative silicone moulds for casting. To mimic the constrained growth of the cortex, a replicated gel-brain (white
matter) is coated with a thin layer of gel (cortex) that swells by absorbing a solvent (hexanes) over time t (t1 ⇡4 min, t2 ⇡9 min, t3 ⇡ 16 min). c, The layered
gel progressively evolves into a complex pattern of sulci and gyri during the swelling process. d, A simulation starting from a smooth fetal brain shows
gyrification as a result of uniform tangential expansion of the cortical layer. The brain is modelled as a soft elastic solid and a relative tangential expansion is
imposed on the cortical layer as shown at left, and the system allowed to relax to its elastic equilibrium.

20-fold increase in brain volume (approximately 60ml to 1,200ml),
and a 30-fold increase in cortical area (approximately 80 cm2 to
2,400 cm2), whereas the expanding cortical layer changes little, with
a typical thickness of 2.5mm in the undeformed reference state
(the deformed thickness is about 3mm). In physiological terms,
we thus assume that tangential expansion during the fetal stage
extends through the cortical plate (which has a thickness of about
1–1.5mm at GW 22) and decays rapidly in the subplate (Fig. 1d,
left). The subplate diminishes during gyrification while the cortical
plate thickens and develops into the cerebral cortex1,3, so that in
the simulated adult brain the expanding layer corresponds to the
cerebral cortex (which is about 3mm thick in adults).

Our simple parametrization of brain growth leads to emergence
of gyrification in space and time along a course similar to real
brains (Fig. 1d and SupplementaryMovie 2): gyrification is initiated
through the formation of isolated line-like sulci (GW 26), which
elongate and branch, establishing most of the patterns before birth
(GW 40). After birth, brain volume still increases nearly threefold,
and during this time our model shows that the gyral patterns are
modified mainly by the addition of some new bends to existing
gyri in agreement with longitudinal morphological analyses27. The
characteristic spatiotemporal appearance of these convolutions—
rounded gyri between sharply cusped sulci in a mixture of threefold
junctions and S-shaped bends28—is a direct consequence of the
mechanical instability induced by constrained cortical expansion.

Physically, the similar sti�ness of the cortex and sublayers implies
that gyrification arises as a non-trivial combination of a smooth
linear instability29 and a nonlinear sulcification instability30–32.

Sections of the physically and numerically simulated brains
shown in Fig. 2a,b exhibit a bulging of gyri and deepening of sulci
in a sequence resembling the observations from MRI sections. Our
simulations of gyrification driven by constrained cortical expansion
allow us to also measure the gyrification index (GI, defined as
the ratio of the surface contour length to that of the convex hull,
determined here from coronal sections as described in ref. 3). We
see that there is a clear increase in the GI with developing brain
volume in agreement with observations (Fig. 2c). The GI arising
from our numerical simulation reaches 2.5, matching observations
of adult brains. A di�erent measure of the GI based on the cortical
surface area rather than that of sections shows that the simulated
adult brain has a cortical area that is approximately four times the
exposed cortical area (Supplementary Fig. 1). For comparison, we
also section our physical gel simulacrum that swells from an initial
unpatterned state (GI= 1.07, GW 22) and see that as a function
of swelling, the GI increases to about 1.55, a modest increase
associated with an approximately twofold increase in brain volume,
the latter state corresponding to roughly GW 30–34 (Fig. 2c and
Supplementary Fig. 2). The ultimate limiting factor in our physical
experiments is the inability for our gel to swell and increase its
volume 20-fold like in fetal brains.
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Figure 1 | Physical mimic and numerical simulation of tangential cortical expansion. a, Gyrification of the human brain during the latter half of gestation
(photographs from ref. 1, adapted with permission from Elsevier). b, A 3D-printed model of the brain is produced from a 3D MRI image of a smooth fetal
brain and then used to create a pair of negative silicone moulds for casting. To mimic the constrained growth of the cortex, a replicated gel-brain (white
matter) is coated with a thin layer of gel (cortex) that swells by absorbing a solvent (hexanes) over time t (t1 ⇡4 min, t2 ⇡9 min, t3 ⇡ 16 min). c, The layered
gel progressively evolves into a complex pattern of sulci and gyri during the swelling process. d, A simulation starting from a smooth fetal brain shows
gyrification as a result of uniform tangential expansion of the cortical layer. The brain is modelled as a soft elastic solid and a relative tangential expansion is
imposed on the cortical layer as shown at left, and the system allowed to relax to its elastic equilibrium.

20-fold increase in brain volume (approximately 60ml to 1,200ml),
and a 30-fold increase in cortical area (approximately 80 cm2 to
2,400 cm2), whereas the expanding cortical layer changes little, with
a typical thickness of 2.5mm in the undeformed reference state
(the deformed thickness is about 3mm). In physiological terms,
we thus assume that tangential expansion during the fetal stage
extends through the cortical plate (which has a thickness of about
1–1.5mm at GW 22) and decays rapidly in the subplate (Fig. 1d,
left). The subplate diminishes during gyrification while the cortical
plate thickens and develops into the cerebral cortex1,3, so that in
the simulated adult brain the expanding layer corresponds to the
cerebral cortex (which is about 3mm thick in adults).

Our simple parametrization of brain growth leads to emergence
of gyrification in space and time along a course similar to real
brains (Fig. 1d and SupplementaryMovie 2): gyrification is initiated
through the formation of isolated line-like sulci (GW 26), which
elongate and branch, establishing most of the patterns before birth
(GW 40). After birth, brain volume still increases nearly threefold,
and during this time our model shows that the gyral patterns are
modified mainly by the addition of some new bends to existing
gyri in agreement with longitudinal morphological analyses27. The
characteristic spatiotemporal appearance of these convolutions—
rounded gyri between sharply cusped sulci in a mixture of threefold
junctions and S-shaped bends28—is a direct consequence of the
mechanical instability induced by constrained cortical expansion.

Physically, the similar sti�ness of the cortex and sublayers implies
that gyrification arises as a non-trivial combination of a smooth
linear instability29 and a nonlinear sulcification instability30–32.

Sections of the physically and numerically simulated brains
shown in Fig. 2a,b exhibit a bulging of gyri and deepening of sulci
in a sequence resembling the observations from MRI sections. Our
simulations of gyrification driven by constrained cortical expansion
allow us to also measure the gyrification index (GI, defined as
the ratio of the surface contour length to that of the convex hull,
determined here from coronal sections as described in ref. 3). We
see that there is a clear increase in the GI with developing brain
volume in agreement with observations (Fig. 2c). The GI arising
from our numerical simulation reaches 2.5, matching observations
of adult brains. A di�erent measure of the GI based on the cortical
surface area rather than that of sections shows that the simulated
adult brain has a cortical area that is approximately four times the
exposed cortical area (Supplementary Fig. 1). For comparison, we
also section our physical gel simulacrum that swells from an initial
unpatterned state (GI= 1.07, GW 22) and see that as a function
of swelling, the GI increases to about 1.55, a modest increase
associated with an approximately twofold increase in brain volume,
the latter state corresponding to roughly GW 30–34 (Fig. 2c and
Supplementary Fig. 2). The ultimate limiting factor in our physical
experiments is the inability for our gel to swell and increase its
volume 20-fold like in fetal brains.
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Figure 1 | Physical mimic and numerical simulation of tangential cortical expansion. a, Gyrification of the human brain during the latter half of gestation
(photographs from ref. 1, adapted with permission from Elsevier). b, A 3D-printed model of the brain is produced from a 3D MRI image of a smooth fetal
brain and then used to create a pair of negative silicone moulds for casting. To mimic the constrained growth of the cortex, a replicated gel-brain (white
matter) is coated with a thin layer of gel (cortex) that swells by absorbing a solvent (hexanes) over time t (t1 ⇡4 min, t2 ⇡9 min, t3 ⇡ 16 min). c, The layered
gel progressively evolves into a complex pattern of sulci and gyri during the swelling process. d, A simulation starting from a smooth fetal brain shows
gyrification as a result of uniform tangential expansion of the cortical layer. The brain is modelled as a soft elastic solid and a relative tangential expansion is
imposed on the cortical layer as shown at left, and the system allowed to relax to its elastic equilibrium.

20-fold increase in brain volume (approximately 60ml to 1,200ml),
and a 30-fold increase in cortical area (approximately 80 cm2 to
2,400 cm2), whereas the expanding cortical layer changes little, with
a typical thickness of 2.5mm in the undeformed reference state
(the deformed thickness is about 3mm). In physiological terms,
we thus assume that tangential expansion during the fetal stage
extends through the cortical plate (which has a thickness of about
1–1.5mm at GW 22) and decays rapidly in the subplate (Fig. 1d,
left). The subplate diminishes during gyrification while the cortical
plate thickens and develops into the cerebral cortex1,3, so that in
the simulated adult brain the expanding layer corresponds to the
cerebral cortex (which is about 3mm thick in adults).

Our simple parametrization of brain growth leads to emergence
of gyrification in space and time along a course similar to real
brains (Fig. 1d and SupplementaryMovie 2): gyrification is initiated
through the formation of isolated line-like sulci (GW 26), which
elongate and branch, establishing most of the patterns before birth
(GW 40). After birth, brain volume still increases nearly threefold,
and during this time our model shows that the gyral patterns are
modified mainly by the addition of some new bends to existing
gyri in agreement with longitudinal morphological analyses27. The
characteristic spatiotemporal appearance of these convolutions—
rounded gyri between sharply cusped sulci in a mixture of threefold
junctions and S-shaped bends28—is a direct consequence of the
mechanical instability induced by constrained cortical expansion.

Physically, the similar sti�ness of the cortex and sublayers implies
that gyrification arises as a non-trivial combination of a smooth
linear instability29 and a nonlinear sulcification instability30–32.

Sections of the physically and numerically simulated brains
shown in Fig. 2a,b exhibit a bulging of gyri and deepening of sulci
in a sequence resembling the observations from MRI sections. Our
simulations of gyrification driven by constrained cortical expansion
allow us to also measure the gyrification index (GI, defined as
the ratio of the surface contour length to that of the convex hull,
determined here from coronal sections as described in ref. 3). We
see that there is a clear increase in the GI with developing brain
volume in agreement with observations (Fig. 2c). The GI arising
from our numerical simulation reaches 2.5, matching observations
of adult brains. A di�erent measure of the GI based on the cortical
surface area rather than that of sections shows that the simulated
adult brain has a cortical area that is approximately four times the
exposed cortical area (Supplementary Fig. 1). For comparison, we
also section our physical gel simulacrum that swells from an initial
unpatterned state (GI= 1.07, GW 22) and see that as a function
of swelling, the GI increases to about 1.55, a modest increase
associated with an approximately twofold increase in brain volume,
the latter state corresponding to roughly GW 30–34 (Fig. 2c and
Supplementary Fig. 2). The ultimate limiting factor in our physical
experiments is the inability for our gel to swell and increase its
volume 20-fold like in fetal brains.
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Figure 1 | Physical mimic and numerical simulation of tangential cortical expansion. a, Gyrification of the human brain during the latter half of gestation
(photographs from ref. 1, adapted with permission from Elsevier). b, A 3D-printed model of the brain is produced from a 3D MRI image of a smooth fetal
brain and then used to create a pair of negative silicone moulds for casting. To mimic the constrained growth of the cortex, a replicated gel-brain (white
matter) is coated with a thin layer of gel (cortex) that swells by absorbing a solvent (hexanes) over time t (t1 ⇡4 min, t2 ⇡9 min, t3 ⇡ 16 min). c, The layered
gel progressively evolves into a complex pattern of sulci and gyri during the swelling process. d, A simulation starting from a smooth fetal brain shows
gyrification as a result of uniform tangential expansion of the cortical layer. The brain is modelled as a soft elastic solid and a relative tangential expansion is
imposed on the cortical layer as shown at left, and the system allowed to relax to its elastic equilibrium.

20-fold increase in brain volume (approximately 60ml to 1,200ml),
and a 30-fold increase in cortical area (approximately 80 cm2 to
2,400 cm2), whereas the expanding cortical layer changes little, with
a typical thickness of 2.5mm in the undeformed reference state
(the deformed thickness is about 3mm). In physiological terms,
we thus assume that tangential expansion during the fetal stage
extends through the cortical plate (which has a thickness of about
1–1.5mm at GW 22) and decays rapidly in the subplate (Fig. 1d,
left). The subplate diminishes during gyrification while the cortical
plate thickens and develops into the cerebral cortex1,3, so that in
the simulated adult brain the expanding layer corresponds to the
cerebral cortex (which is about 3mm thick in adults).

Our simple parametrization of brain growth leads to emergence
of gyrification in space and time along a course similar to real
brains (Fig. 1d and SupplementaryMovie 2): gyrification is initiated
through the formation of isolated line-like sulci (GW 26), which
elongate and branch, establishing most of the patterns before birth
(GW 40). After birth, brain volume still increases nearly threefold,
and during this time our model shows that the gyral patterns are
modified mainly by the addition of some new bends to existing
gyri in agreement with longitudinal morphological analyses27. The
characteristic spatiotemporal appearance of these convolutions—
rounded gyri between sharply cusped sulci in a mixture of threefold
junctions and S-shaped bends28—is a direct consequence of the
mechanical instability induced by constrained cortical expansion.

Physically, the similar sti�ness of the cortex and sublayers implies
that gyrification arises as a non-trivial combination of a smooth
linear instability29 and a nonlinear sulcification instability30–32.

Sections of the physically and numerically simulated brains
shown in Fig. 2a,b exhibit a bulging of gyri and deepening of sulci
in a sequence resembling the observations from MRI sections. Our
simulations of gyrification driven by constrained cortical expansion
allow us to also measure the gyrification index (GI, defined as
the ratio of the surface contour length to that of the convex hull,
determined here from coronal sections as described in ref. 3). We
see that there is a clear increase in the GI with developing brain
volume in agreement with observations (Fig. 2c). The GI arising
from our numerical simulation reaches 2.5, matching observations
of adult brains. A di�erent measure of the GI based on the cortical
surface area rather than that of sections shows that the simulated
adult brain has a cortical area that is approximately four times the
exposed cortical area (Supplementary Fig. 1). For comparison, we
also section our physical gel simulacrum that swells from an initial
unpatterned state (GI= 1.07, GW 22) and see that as a function
of swelling, the GI increases to about 1.55, a modest increase
associated with an approximately twofold increase in brain volume,
the latter state corresponding to roughly GW 30–34 (Fig. 2c and
Supplementary Fig. 2). The ultimate limiting factor in our physical
experiments is the inability for our gel to swell and increase its
volume 20-fold like in fetal brains.
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Figure 1 | Physical mimic and numerical simulation of tangential cortical expansion. a, Gyrification of the human brain during the latter half of gestation
(photographs from ref. 1, adapted with permission from Elsevier). b, A 3D-printed model of the brain is produced from a 3D MRI image of a smooth fetal
brain and then used to create a pair of negative silicone moulds for casting. To mimic the constrained growth of the cortex, a replicated gel-brain (white
matter) is coated with a thin layer of gel (cortex) that swells by absorbing a solvent (hexanes) over time t (t1 ⇡4 min, t2 ⇡9 min, t3 ⇡ 16 min). c, The layered
gel progressively evolves into a complex pattern of sulci and gyri during the swelling process. d, A simulation starting from a smooth fetal brain shows
gyrification as a result of uniform tangential expansion of the cortical layer. The brain is modelled as a soft elastic solid and a relative tangential expansion is
imposed on the cortical layer as shown at left, and the system allowed to relax to its elastic equilibrium.

20-fold increase in brain volume (approximately 60ml to 1,200ml),
and a 30-fold increase in cortical area (approximately 80 cm2 to
2,400 cm2), whereas the expanding cortical layer changes little, with
a typical thickness of 2.5mm in the undeformed reference state
(the deformed thickness is about 3mm). In physiological terms,
we thus assume that tangential expansion during the fetal stage
extends through the cortical plate (which has a thickness of about
1–1.5mm at GW 22) and decays rapidly in the subplate (Fig. 1d,
left). The subplate diminishes during gyrification while the cortical
plate thickens and develops into the cerebral cortex1,3, so that in
the simulated adult brain the expanding layer corresponds to the
cerebral cortex (which is about 3mm thick in adults).

Our simple parametrization of brain growth leads to emergence
of gyrification in space and time along a course similar to real
brains (Fig. 1d and SupplementaryMovie 2): gyrification is initiated
through the formation of isolated line-like sulci (GW 26), which
elongate and branch, establishing most of the patterns before birth
(GW 40). After birth, brain volume still increases nearly threefold,
and during this time our model shows that the gyral patterns are
modified mainly by the addition of some new bends to existing
gyri in agreement with longitudinal morphological analyses27. The
characteristic spatiotemporal appearance of these convolutions—
rounded gyri between sharply cusped sulci in a mixture of threefold
junctions and S-shaped bends28—is a direct consequence of the
mechanical instability induced by constrained cortical expansion.

Physically, the similar sti�ness of the cortex and sublayers implies
that gyrification arises as a non-trivial combination of a smooth
linear instability29 and a nonlinear sulcification instability30–32.

Sections of the physically and numerically simulated brains
shown in Fig. 2a,b exhibit a bulging of gyri and deepening of sulci
in a sequence resembling the observations from MRI sections. Our
simulations of gyrification driven by constrained cortical expansion
allow us to also measure the gyrification index (GI, defined as
the ratio of the surface contour length to that of the convex hull,
determined here from coronal sections as described in ref. 3). We
see that there is a clear increase in the GI with developing brain
volume in agreement with observations (Fig. 2c). The GI arising
from our numerical simulation reaches 2.5, matching observations
of adult brains. A di�erent measure of the GI based on the cortical
surface area rather than that of sections shows that the simulated
adult brain has a cortical area that is approximately four times the
exposed cortical area (Supplementary Fig. 1). For comparison, we
also section our physical gel simulacrum that swells from an initial
unpatterned state (GI= 1.07, GW 22) and see that as a function
of swelling, the GI increases to about 1.55, a modest increase
associated with an approximately twofold increase in brain volume,
the latter state corresponding to roughly GW 30–34 (Fig. 2c and
Supplementary Fig. 2). The ultimate limiting factor in our physical
experiments is the inability for our gel to swell and increase its
volume 20-fold like in fetal brains.
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Figure 1 | Physical mimic and numerical simulation of tangential cortical expansion. a, Gyrification of the human brain during the latter half of gestation
(photographs from ref. 1, adapted with permission from Elsevier). b, A 3D-printed model of the brain is produced from a 3D MRI image of a smooth fetal
brain and then used to create a pair of negative silicone moulds for casting. To mimic the constrained growth of the cortex, a replicated gel-brain (white
matter) is coated with a thin layer of gel (cortex) that swells by absorbing a solvent (hexanes) over time t (t1 ⇡4 min, t2 ⇡9 min, t3 ⇡ 16 min). c, The layered
gel progressively evolves into a complex pattern of sulci and gyri during the swelling process. d, A simulation starting from a smooth fetal brain shows
gyrification as a result of uniform tangential expansion of the cortical layer. The brain is modelled as a soft elastic solid and a relative tangential expansion is
imposed on the cortical layer as shown at left, and the system allowed to relax to its elastic equilibrium.

20-fold increase in brain volume (approximately 60ml to 1,200ml),
and a 30-fold increase in cortical area (approximately 80 cm2 to
2,400 cm2), whereas the expanding cortical layer changes little, with
a typical thickness of 2.5mm in the undeformed reference state
(the deformed thickness is about 3mm). In physiological terms,
we thus assume that tangential expansion during the fetal stage
extends through the cortical plate (which has a thickness of about
1–1.5mm at GW 22) and decays rapidly in the subplate (Fig. 1d,
left). The subplate diminishes during gyrification while the cortical
plate thickens and develops into the cerebral cortex1,3, so that in
the simulated adult brain the expanding layer corresponds to the
cerebral cortex (which is about 3mm thick in adults).

Our simple parametrization of brain growth leads to emergence
of gyrification in space and time along a course similar to real
brains (Fig. 1d and SupplementaryMovie 2): gyrification is initiated
through the formation of isolated line-like sulci (GW 26), which
elongate and branch, establishing most of the patterns before birth
(GW 40). After birth, brain volume still increases nearly threefold,
and during this time our model shows that the gyral patterns are
modified mainly by the addition of some new bends to existing
gyri in agreement with longitudinal morphological analyses27. The
characteristic spatiotemporal appearance of these convolutions—
rounded gyri between sharply cusped sulci in a mixture of threefold
junctions and S-shaped bends28—is a direct consequence of the
mechanical instability induced by constrained cortical expansion.

Physically, the similar sti�ness of the cortex and sublayers implies
that gyrification arises as a non-trivial combination of a smooth
linear instability29 and a nonlinear sulcification instability30–32.

Sections of the physically and numerically simulated brains
shown in Fig. 2a,b exhibit a bulging of gyri and deepening of sulci
in a sequence resembling the observations from MRI sections. Our
simulations of gyrification driven by constrained cortical expansion
allow us to also measure the gyrification index (GI, defined as
the ratio of the surface contour length to that of the convex hull,
determined here from coronal sections as described in ref. 3). We
see that there is a clear increase in the GI with developing brain
volume in agreement with observations (Fig. 2c). The GI arising
from our numerical simulation reaches 2.5, matching observations
of adult brains. A di�erent measure of the GI based on the cortical
surface area rather than that of sections shows that the simulated
adult brain has a cortical area that is approximately four times the
exposed cortical area (Supplementary Fig. 1). For comparison, we
also section our physical gel simulacrum that swells from an initial
unpatterned state (GI= 1.07, GW 22) and see that as a function
of swelling, the GI increases to about 1.55, a modest increase
associated with an approximately twofold increase in brain volume,
the latter state corresponding to roughly GW 30–34 (Fig. 2c and
Supplementary Fig. 2). The ultimate limiting factor in our physical
experiments is the inability for our gel to swell and increase its
volume 20-fold like in fetal brains.
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Figure 1 | Physical mimic and numerical simulation of tangential cortical expansion. a, Gyrification of the human brain during the latter half of gestation
(photographs from ref. 1, adapted with permission from Elsevier). b, A 3D-printed model of the brain is produced from a 3D MRI image of a smooth fetal
brain and then used to create a pair of negative silicone moulds for casting. To mimic the constrained growth of the cortex, a replicated gel-brain (white
matter) is coated with a thin layer of gel (cortex) that swells by absorbing a solvent (hexanes) over time t (t1 ⇡4 min, t2 ⇡9 min, t3 ⇡ 16 min). c, The layered
gel progressively evolves into a complex pattern of sulci and gyri during the swelling process. d, A simulation starting from a smooth fetal brain shows
gyrification as a result of uniform tangential expansion of the cortical layer. The brain is modelled as a soft elastic solid and a relative tangential expansion is
imposed on the cortical layer as shown at left, and the system allowed to relax to its elastic equilibrium.

20-fold increase in brain volume (approximately 60ml to 1,200ml),
and a 30-fold increase in cortical area (approximately 80 cm2 to
2,400 cm2), whereas the expanding cortical layer changes little, with
a typical thickness of 2.5mm in the undeformed reference state
(the deformed thickness is about 3mm). In physiological terms,
we thus assume that tangential expansion during the fetal stage
extends through the cortical plate (which has a thickness of about
1–1.5mm at GW 22) and decays rapidly in the subplate (Fig. 1d,
left). The subplate diminishes during gyrification while the cortical
plate thickens and develops into the cerebral cortex1,3, so that in
the simulated adult brain the expanding layer corresponds to the
cerebral cortex (which is about 3mm thick in adults).

Our simple parametrization of brain growth leads to emergence
of gyrification in space and time along a course similar to real
brains (Fig. 1d and SupplementaryMovie 2): gyrification is initiated
through the formation of isolated line-like sulci (GW 26), which
elongate and branch, establishing most of the patterns before birth
(GW 40). After birth, brain volume still increases nearly threefold,
and during this time our model shows that the gyral patterns are
modified mainly by the addition of some new bends to existing
gyri in agreement with longitudinal morphological analyses27. The
characteristic spatiotemporal appearance of these convolutions—
rounded gyri between sharply cusped sulci in a mixture of threefold
junctions and S-shaped bends28—is a direct consequence of the
mechanical instability induced by constrained cortical expansion.

Physically, the similar sti�ness of the cortex and sublayers implies
that gyrification arises as a non-trivial combination of a smooth
linear instability29 and a nonlinear sulcification instability30–32.

Sections of the physically and numerically simulated brains
shown in Fig. 2a,b exhibit a bulging of gyri and deepening of sulci
in a sequence resembling the observations from MRI sections. Our
simulations of gyrification driven by constrained cortical expansion
allow us to also measure the gyrification index (GI, defined as
the ratio of the surface contour length to that of the convex hull,
determined here from coronal sections as described in ref. 3). We
see that there is a clear increase in the GI with developing brain
volume in agreement with observations (Fig. 2c). The GI arising
from our numerical simulation reaches 2.5, matching observations
of adult brains. A di�erent measure of the GI based on the cortical
surface area rather than that of sections shows that the simulated
adult brain has a cortical area that is approximately four times the
exposed cortical area (Supplementary Fig. 1). For comparison, we
also section our physical gel simulacrum that swells from an initial
unpatterned state (GI= 1.07, GW 22) and see that as a function
of swelling, the GI increases to about 1.55, a modest increase
associated with an approximately twofold increase in brain volume,
the latter state corresponding to roughly GW 30–34 (Fig. 2c and
Supplementary Fig. 2). The ultimate limiting factor in our physical
experiments is the inability for our gel to swell and increase its
volume 20-fold like in fetal brains.
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Figure 1 | Physical mimic and numerical simulation of tangential cortical expansion. a, Gyrification of the human brain during the latter half of gestation
(photographs from ref. 1, adapted with permission from Elsevier). b, A 3D-printed model of the brain is produced from a 3D MRI image of a smooth fetal
brain and then used to create a pair of negative silicone moulds for casting. To mimic the constrained growth of the cortex, a replicated gel-brain (white
matter) is coated with a thin layer of gel (cortex) that swells by absorbing a solvent (hexanes) over time t (t1 ⇡4 min, t2 ⇡9 min, t3 ⇡ 16 min). c, The layered
gel progressively evolves into a complex pattern of sulci and gyri during the swelling process. d, A simulation starting from a smooth fetal brain shows
gyrification as a result of uniform tangential expansion of the cortical layer. The brain is modelled as a soft elastic solid and a relative tangential expansion is
imposed on the cortical layer as shown at left, and the system allowed to relax to its elastic equilibrium.

20-fold increase in brain volume (approximately 60ml to 1,200ml),
and a 30-fold increase in cortical area (approximately 80 cm2 to
2,400 cm2), whereas the expanding cortical layer changes little, with
a typical thickness of 2.5mm in the undeformed reference state
(the deformed thickness is about 3mm). In physiological terms,
we thus assume that tangential expansion during the fetal stage
extends through the cortical plate (which has a thickness of about
1–1.5mm at GW 22) and decays rapidly in the subplate (Fig. 1d,
left). The subplate diminishes during gyrification while the cortical
plate thickens and develops into the cerebral cortex1,3, so that in
the simulated adult brain the expanding layer corresponds to the
cerebral cortex (which is about 3mm thick in adults).

Our simple parametrization of brain growth leads to emergence
of gyrification in space and time along a course similar to real
brains (Fig. 1d and SupplementaryMovie 2): gyrification is initiated
through the formation of isolated line-like sulci (GW 26), which
elongate and branch, establishing most of the patterns before birth
(GW 40). After birth, brain volume still increases nearly threefold,
and during this time our model shows that the gyral patterns are
modified mainly by the addition of some new bends to existing
gyri in agreement with longitudinal morphological analyses27. The
characteristic spatiotemporal appearance of these convolutions—
rounded gyri between sharply cusped sulci in a mixture of threefold
junctions and S-shaped bends28—is a direct consequence of the
mechanical instability induced by constrained cortical expansion.

Physically, the similar sti�ness of the cortex and sublayers implies
that gyrification arises as a non-trivial combination of a smooth
linear instability29 and a nonlinear sulcification instability30–32.

Sections of the physically and numerically simulated brains
shown in Fig. 2a,b exhibit a bulging of gyri and deepening of sulci
in a sequence resembling the observations from MRI sections. Our
simulations of gyrification driven by constrained cortical expansion
allow us to also measure the gyrification index (GI, defined as
the ratio of the surface contour length to that of the convex hull,
determined here from coronal sections as described in ref. 3). We
see that there is a clear increase in the GI with developing brain
volume in agreement with observations (Fig. 2c). The GI arising
from our numerical simulation reaches 2.5, matching observations
of adult brains. A di�erent measure of the GI based on the cortical
surface area rather than that of sections shows that the simulated
adult brain has a cortical area that is approximately four times the
exposed cortical area (Supplementary Fig. 1). For comparison, we
also section our physical gel simulacrum that swells from an initial
unpatterned state (GI= 1.07, GW 22) and see that as a function
of swelling, the GI increases to about 1.55, a modest increase
associated with an approximately twofold increase in brain volume,
the latter state corresponding to roughly GW 30–34 (Fig. 2c and
Supplementary Fig. 2). The ultimate limiting factor in our physical
experiments is the inability for our gel to swell and increase its
volume 20-fold like in fetal brains.
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Figure 1 | Physical mimic and numerical simulation of tangential cortical expansion. a, Gyrification of the human brain during the latter half of gestation
(photographs from ref. 1, adapted with permission from Elsevier). b, A 3D-printed model of the brain is produced from a 3D MRI image of a smooth fetal
brain and then used to create a pair of negative silicone moulds for casting. To mimic the constrained growth of the cortex, a replicated gel-brain (white
matter) is coated with a thin layer of gel (cortex) that swells by absorbing a solvent (hexanes) over time t (t1 ⇡4 min, t2 ⇡9 min, t3 ⇡ 16 min). c, The layered
gel progressively evolves into a complex pattern of sulci and gyri during the swelling process. d, A simulation starting from a smooth fetal brain shows
gyrification as a result of uniform tangential expansion of the cortical layer. The brain is modelled as a soft elastic solid and a relative tangential expansion is
imposed on the cortical layer as shown at left, and the system allowed to relax to its elastic equilibrium.

20-fold increase in brain volume (approximately 60ml to 1,200ml),
and a 30-fold increase in cortical area (approximately 80 cm2 to
2,400 cm2), whereas the expanding cortical layer changes little, with
a typical thickness of 2.5mm in the undeformed reference state
(the deformed thickness is about 3mm). In physiological terms,
we thus assume that tangential expansion during the fetal stage
extends through the cortical plate (which has a thickness of about
1–1.5mm at GW 22) and decays rapidly in the subplate (Fig. 1d,
left). The subplate diminishes during gyrification while the cortical
plate thickens and develops into the cerebral cortex1,3, so that in
the simulated adult brain the expanding layer corresponds to the
cerebral cortex (which is about 3mm thick in adults).

Our simple parametrization of brain growth leads to emergence
of gyrification in space and time along a course similar to real
brains (Fig. 1d and SupplementaryMovie 2): gyrification is initiated
through the formation of isolated line-like sulci (GW 26), which
elongate and branch, establishing most of the patterns before birth
(GW 40). After birth, brain volume still increases nearly threefold,
and during this time our model shows that the gyral patterns are
modified mainly by the addition of some new bends to existing
gyri in agreement with longitudinal morphological analyses27. The
characteristic spatiotemporal appearance of these convolutions—
rounded gyri between sharply cusped sulci in a mixture of threefold
junctions and S-shaped bends28—is a direct consequence of the
mechanical instability induced by constrained cortical expansion.

Physically, the similar sti�ness of the cortex and sublayers implies
that gyrification arises as a non-trivial combination of a smooth
linear instability29 and a nonlinear sulcification instability30–32.

Sections of the physically and numerically simulated brains
shown in Fig. 2a,b exhibit a bulging of gyri and deepening of sulci
in a sequence resembling the observations from MRI sections. Our
simulations of gyrification driven by constrained cortical expansion
allow us to also measure the gyrification index (GI, defined as
the ratio of the surface contour length to that of the convex hull,
determined here from coronal sections as described in ref. 3). We
see that there is a clear increase in the GI with developing brain
volume in agreement with observations (Fig. 2c). The GI arising
from our numerical simulation reaches 2.5, matching observations
of adult brains. A di�erent measure of the GI based on the cortical
surface area rather than that of sections shows that the simulated
adult brain has a cortical area that is approximately four times the
exposed cortical area (Supplementary Fig. 1). For comparison, we
also section our physical gel simulacrum that swells from an initial
unpatterned state (GI= 1.07, GW 22) and see that as a function
of swelling, the GI increases to about 1.55, a modest increase
associated with an approximately twofold increase in brain volume,
the latter state corresponding to roughly GW 30–34 (Fig. 2c and
Supplementary Fig. 2). The ultimate limiting factor in our physical
experiments is the inability for our gel to swell and increase its
volume 20-fold like in fetal brains.
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Figure 1 | Physical mimic and numerical simulation of tangential cortical expansion. a, Gyrification of the human brain during the latter half of gestation
(photographs from ref. 1, adapted with permission from Elsevier). b, A 3D-printed model of the brain is produced from a 3D MRI image of a smooth fetal
brain and then used to create a pair of negative silicone moulds for casting. To mimic the constrained growth of the cortex, a replicated gel-brain (white
matter) is coated with a thin layer of gel (cortex) that swells by absorbing a solvent (hexanes) over time t (t1 ⇡4 min, t2 ⇡9 min, t3 ⇡ 16 min). c, The layered
gel progressively evolves into a complex pattern of sulci and gyri during the swelling process. d, A simulation starting from a smooth fetal brain shows
gyrification as a result of uniform tangential expansion of the cortical layer. The brain is modelled as a soft elastic solid and a relative tangential expansion is
imposed on the cortical layer as shown at left, and the system allowed to relax to its elastic equilibrium.

20-fold increase in brain volume (approximately 60ml to 1,200ml),
and a 30-fold increase in cortical area (approximately 80 cm2 to
2,400 cm2), whereas the expanding cortical layer changes little, with
a typical thickness of 2.5mm in the undeformed reference state
(the deformed thickness is about 3mm). In physiological terms,
we thus assume that tangential expansion during the fetal stage
extends through the cortical plate (which has a thickness of about
1–1.5mm at GW 22) and decays rapidly in the subplate (Fig. 1d,
left). The subplate diminishes during gyrification while the cortical
plate thickens and develops into the cerebral cortex1,3, so that in
the simulated adult brain the expanding layer corresponds to the
cerebral cortex (which is about 3mm thick in adults).

Our simple parametrization of brain growth leads to emergence
of gyrification in space and time along a course similar to real
brains (Fig. 1d and SupplementaryMovie 2): gyrification is initiated
through the formation of isolated line-like sulci (GW 26), which
elongate and branch, establishing most of the patterns before birth
(GW 40). After birth, brain volume still increases nearly threefold,
and during this time our model shows that the gyral patterns are
modified mainly by the addition of some new bends to existing
gyri in agreement with longitudinal morphological analyses27. The
characteristic spatiotemporal appearance of these convolutions—
rounded gyri between sharply cusped sulci in a mixture of threefold
junctions and S-shaped bends28—is a direct consequence of the
mechanical instability induced by constrained cortical expansion.

Physically, the similar sti�ness of the cortex and sublayers implies
that gyrification arises as a non-trivial combination of a smooth
linear instability29 and a nonlinear sulcification instability30–32.

Sections of the physically and numerically simulated brains
shown in Fig. 2a,b exhibit a bulging of gyri and deepening of sulci
in a sequence resembling the observations from MRI sections. Our
simulations of gyrification driven by constrained cortical expansion
allow us to also measure the gyrification index (GI, defined as
the ratio of the surface contour length to that of the convex hull,
determined here from coronal sections as described in ref. 3). We
see that there is a clear increase in the GI with developing brain
volume in agreement with observations (Fig. 2c). The GI arising
from our numerical simulation reaches 2.5, matching observations
of adult brains. A di�erent measure of the GI based on the cortical
surface area rather than that of sections shows that the simulated
adult brain has a cortical area that is approximately four times the
exposed cortical area (Supplementary Fig. 1). For comparison, we
also section our physical gel simulacrum that swells from an initial
unpatterned state (GI= 1.07, GW 22) and see that as a function
of swelling, the GI increases to about 1.55, a modest increase
associated with an approximately twofold increase in brain volume,
the latter state corresponding to roughly GW 30–34 (Fig. 2c and
Supplementary Fig. 2). The ultimate limiting factor in our physical
experiments is the inability for our gel to swell and increase its
volume 20-fold like in fetal brains.
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Figure 1 | Physical mimic and numerical simulation of tangential cortical expansion. a, Gyrification of the human brain during the latter half of gestation
(photographs from ref. 1, adapted with permission from Elsevier). b, A 3D-printed model of the brain is produced from a 3D MRI image of a smooth fetal
brain and then used to create a pair of negative silicone moulds for casting. To mimic the constrained growth of the cortex, a replicated gel-brain (white
matter) is coated with a thin layer of gel (cortex) that swells by absorbing a solvent (hexanes) over time t (t1 ⇡4 min, t2 ⇡9 min, t3 ⇡ 16 min). c, The layered
gel progressively evolves into a complex pattern of sulci and gyri during the swelling process. d, A simulation starting from a smooth fetal brain shows
gyrification as a result of uniform tangential expansion of the cortical layer. The brain is modelled as a soft elastic solid and a relative tangential expansion is
imposed on the cortical layer as shown at left, and the system allowed to relax to its elastic equilibrium.

20-fold increase in brain volume (approximately 60ml to 1,200ml),
and a 30-fold increase in cortical area (approximately 80 cm2 to
2,400 cm2), whereas the expanding cortical layer changes little, with
a typical thickness of 2.5mm in the undeformed reference state
(the deformed thickness is about 3mm). In physiological terms,
we thus assume that tangential expansion during the fetal stage
extends through the cortical plate (which has a thickness of about
1–1.5mm at GW 22) and decays rapidly in the subplate (Fig. 1d,
left). The subplate diminishes during gyrification while the cortical
plate thickens and develops into the cerebral cortex1,3, so that in
the simulated adult brain the expanding layer corresponds to the
cerebral cortex (which is about 3mm thick in adults).

Our simple parametrization of brain growth leads to emergence
of gyrification in space and time along a course similar to real
brains (Fig. 1d and SupplementaryMovie 2): gyrification is initiated
through the formation of isolated line-like sulci (GW 26), which
elongate and branch, establishing most of the patterns before birth
(GW 40). After birth, brain volume still increases nearly threefold,
and during this time our model shows that the gyral patterns are
modified mainly by the addition of some new bends to existing
gyri in agreement with longitudinal morphological analyses27. The
characteristic spatiotemporal appearance of these convolutions—
rounded gyri between sharply cusped sulci in a mixture of threefold
junctions and S-shaped bends28—is a direct consequence of the
mechanical instability induced by constrained cortical expansion.

Physically, the similar sti�ness of the cortex and sublayers implies
that gyrification arises as a non-trivial combination of a smooth
linear instability29 and a nonlinear sulcification instability30–32.

Sections of the physically and numerically simulated brains
shown in Fig. 2a,b exhibit a bulging of gyri and deepening of sulci
in a sequence resembling the observations from MRI sections. Our
simulations of gyrification driven by constrained cortical expansion
allow us to also measure the gyrification index (GI, defined as
the ratio of the surface contour length to that of the convex hull,
determined here from coronal sections as described in ref. 3). We
see that there is a clear increase in the GI with developing brain
volume in agreement with observations (Fig. 2c). The GI arising
from our numerical simulation reaches 2.5, matching observations
of adult brains. A di�erent measure of the GI based on the cortical
surface area rather than that of sections shows that the simulated
adult brain has a cortical area that is approximately four times the
exposed cortical area (Supplementary Fig. 1). For comparison, we
also section our physical gel simulacrum that swells from an initial
unpatterned state (GI= 1.07, GW 22) and see that as a function
of swelling, the GI increases to about 1.55, a modest increase
associated with an approximately twofold increase in brain volume,
the latter state corresponding to roughly GW 30–34 (Fig. 2c and
Supplementary Fig. 2). The ultimate limiting factor in our physical
experiments is the inability for our gel to swell and increase its
volume 20-fold like in fetal brains.
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Figure 1 | Physical mimic and numerical simulation of tangential cortical expansion. a, Gyrification of the human brain during the latter half of gestation
(photographs from ref. 1, adapted with permission from Elsevier). b, A 3D-printed model of the brain is produced from a 3D MRI image of a smooth fetal
brain and then used to create a pair of negative silicone moulds for casting. To mimic the constrained growth of the cortex, a replicated gel-brain (white
matter) is coated with a thin layer of gel (cortex) that swells by absorbing a solvent (hexanes) over time t (t1 ⇡4 min, t2 ⇡9 min, t3 ⇡ 16 min). c, The layered
gel progressively evolves into a complex pattern of sulci and gyri during the swelling process. d, A simulation starting from a smooth fetal brain shows
gyrification as a result of uniform tangential expansion of the cortical layer. The brain is modelled as a soft elastic solid and a relative tangential expansion is
imposed on the cortical layer as shown at left, and the system allowed to relax to its elastic equilibrium.

20-fold increase in brain volume (approximately 60ml to 1,200ml),
and a 30-fold increase in cortical area (approximately 80 cm2 to
2,400 cm2), whereas the expanding cortical layer changes little, with
a typical thickness of 2.5mm in the undeformed reference state
(the deformed thickness is about 3mm). In physiological terms,
we thus assume that tangential expansion during the fetal stage
extends through the cortical plate (which has a thickness of about
1–1.5mm at GW 22) and decays rapidly in the subplate (Fig. 1d,
left). The subplate diminishes during gyrification while the cortical
plate thickens and develops into the cerebral cortex1,3, so that in
the simulated adult brain the expanding layer corresponds to the
cerebral cortex (which is about 3mm thick in adults).

Our simple parametrization of brain growth leads to emergence
of gyrification in space and time along a course similar to real
brains (Fig. 1d and SupplementaryMovie 2): gyrification is initiated
through the formation of isolated line-like sulci (GW 26), which
elongate and branch, establishing most of the patterns before birth
(GW 40). After birth, brain volume still increases nearly threefold,
and during this time our model shows that the gyral patterns are
modified mainly by the addition of some new bends to existing
gyri in agreement with longitudinal morphological analyses27. The
characteristic spatiotemporal appearance of these convolutions—
rounded gyri between sharply cusped sulci in a mixture of threefold
junctions and S-shaped bends28—is a direct consequence of the
mechanical instability induced by constrained cortical expansion.

Physically, the similar sti�ness of the cortex and sublayers implies
that gyrification arises as a non-trivial combination of a smooth
linear instability29 and a nonlinear sulcification instability30–32.

Sections of the physically and numerically simulated brains
shown in Fig. 2a,b exhibit a bulging of gyri and deepening of sulci
in a sequence resembling the observations from MRI sections. Our
simulations of gyrification driven by constrained cortical expansion
allow us to also measure the gyrification index (GI, defined as
the ratio of the surface contour length to that of the convex hull,
determined here from coronal sections as described in ref. 3). We
see that there is a clear increase in the GI with developing brain
volume in agreement with observations (Fig. 2c). The GI arising
from our numerical simulation reaches 2.5, matching observations
of adult brains. A di�erent measure of the GI based on the cortical
surface area rather than that of sections shows that the simulated
adult brain has a cortical area that is approximately four times the
exposed cortical area (Supplementary Fig. 1). For comparison, we
also section our physical gel simulacrum that swells from an initial
unpatterned state (GI= 1.07, GW 22) and see that as a function
of swelling, the GI increases to about 1.55, a modest increase
associated with an approximately twofold increase in brain volume,
the latter state corresponding to roughly GW 30–34 (Fig. 2c and
Supplementary Fig. 2). The ultimate limiting factor in our physical
experiments is the inability for our gel to swell and increase its
volume 20-fold like in fetal brains.
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Figure 1 | Physical mimic and numerical simulation of tangential cortical expansion. a, Gyrification of the human brain during the latter half of gestation
(photographs from ref. 1, adapted with permission from Elsevier). b, A 3D-printed model of the brain is produced from a 3D MRI image of a smooth fetal
brain and then used to create a pair of negative silicone moulds for casting. To mimic the constrained growth of the cortex, a replicated gel-brain (white
matter) is coated with a thin layer of gel (cortex) that swells by absorbing a solvent (hexanes) over time t (t1 ⇡4 min, t2 ⇡9 min, t3 ⇡ 16 min). c, The layered
gel progressively evolves into a complex pattern of sulci and gyri during the swelling process. d, A simulation starting from a smooth fetal brain shows
gyrification as a result of uniform tangential expansion of the cortical layer. The brain is modelled as a soft elastic solid and a relative tangential expansion is
imposed on the cortical layer as shown at left, and the system allowed to relax to its elastic equilibrium.

20-fold increase in brain volume (approximately 60ml to 1,200ml),
and a 30-fold increase in cortical area (approximately 80 cm2 to
2,400 cm2), whereas the expanding cortical layer changes little, with
a typical thickness of 2.5mm in the undeformed reference state
(the deformed thickness is about 3mm). In physiological terms,
we thus assume that tangential expansion during the fetal stage
extends through the cortical plate (which has a thickness of about
1–1.5mm at GW 22) and decays rapidly in the subplate (Fig. 1d,
left). The subplate diminishes during gyrification while the cortical
plate thickens and develops into the cerebral cortex1,3, so that in
the simulated adult brain the expanding layer corresponds to the
cerebral cortex (which is about 3mm thick in adults).

Our simple parametrization of brain growth leads to emergence
of gyrification in space and time along a course similar to real
brains (Fig. 1d and SupplementaryMovie 2): gyrification is initiated
through the formation of isolated line-like sulci (GW 26), which
elongate and branch, establishing most of the patterns before birth
(GW 40). After birth, brain volume still increases nearly threefold,
and during this time our model shows that the gyral patterns are
modified mainly by the addition of some new bends to existing
gyri in agreement with longitudinal morphological analyses27. The
characteristic spatiotemporal appearance of these convolutions—
rounded gyri between sharply cusped sulci in a mixture of threefold
junctions and S-shaped bends28—is a direct consequence of the
mechanical instability induced by constrained cortical expansion.

Physically, the similar sti�ness of the cortex and sublayers implies
that gyrification arises as a non-trivial combination of a smooth
linear instability29 and a nonlinear sulcification instability30–32.

Sections of the physically and numerically simulated brains
shown in Fig. 2a,b exhibit a bulging of gyri and deepening of sulci
in a sequence resembling the observations from MRI sections. Our
simulations of gyrification driven by constrained cortical expansion
allow us to also measure the gyrification index (GI, defined as
the ratio of the surface contour length to that of the convex hull,
determined here from coronal sections as described in ref. 3). We
see that there is a clear increase in the GI with developing brain
volume in agreement with observations (Fig. 2c). The GI arising
from our numerical simulation reaches 2.5, matching observations
of adult brains. A di�erent measure of the GI based on the cortical
surface area rather than that of sections shows that the simulated
adult brain has a cortical area that is approximately four times the
exposed cortical area (Supplementary Fig. 1). For comparison, we
also section our physical gel simulacrum that swells from an initial
unpatterned state (GI= 1.07, GW 22) and see that as a function
of swelling, the GI increases to about 1.55, a modest increase
associated with an approximately twofold increase in brain volume,
the latter state corresponding to roughly GW 30–34 (Fig. 2c and
Supplementary Fig. 2). The ultimate limiting factor in our physical
experiments is the inability for our gel to swell and increase its
volume 20-fold like in fetal brains.
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Figure 1 | Physical mimic and numerical simulation of tangential cortical expansion. a, Gyrification of the human brain during the latter half of gestation
(photographs from ref. 1, adapted with permission from Elsevier). b, A 3D-printed model of the brain is produced from a 3D MRI image of a smooth fetal
brain and then used to create a pair of negative silicone moulds for casting. To mimic the constrained growth of the cortex, a replicated gel-brain (white
matter) is coated with a thin layer of gel (cortex) that swells by absorbing a solvent (hexanes) over time t (t1 ⇡4 min, t2 ⇡9 min, t3 ⇡ 16 min). c, The layered
gel progressively evolves into a complex pattern of sulci and gyri during the swelling process. d, A simulation starting from a smooth fetal brain shows
gyrification as a result of uniform tangential expansion of the cortical layer. The brain is modelled as a soft elastic solid and a relative tangential expansion is
imposed on the cortical layer as shown at left, and the system allowed to relax to its elastic equilibrium.

20-fold increase in brain volume (approximately 60ml to 1,200ml),
and a 30-fold increase in cortical area (approximately 80 cm2 to
2,400 cm2), whereas the expanding cortical layer changes little, with
a typical thickness of 2.5mm in the undeformed reference state
(the deformed thickness is about 3mm). In physiological terms,
we thus assume that tangential expansion during the fetal stage
extends through the cortical plate (which has a thickness of about
1–1.5mm at GW 22) and decays rapidly in the subplate (Fig. 1d,
left). The subplate diminishes during gyrification while the cortical
plate thickens and develops into the cerebral cortex1,3, so that in
the simulated adult brain the expanding layer corresponds to the
cerebral cortex (which is about 3mm thick in adults).

Our simple parametrization of brain growth leads to emergence
of gyrification in space and time along a course similar to real
brains (Fig. 1d and SupplementaryMovie 2): gyrification is initiated
through the formation of isolated line-like sulci (GW 26), which
elongate and branch, establishing most of the patterns before birth
(GW 40). After birth, brain volume still increases nearly threefold,
and during this time our model shows that the gyral patterns are
modified mainly by the addition of some new bends to existing
gyri in agreement with longitudinal morphological analyses27. The
characteristic spatiotemporal appearance of these convolutions—
rounded gyri between sharply cusped sulci in a mixture of threefold
junctions and S-shaped bends28—is a direct consequence of the
mechanical instability induced by constrained cortical expansion.

Physically, the similar sti�ness of the cortex and sublayers implies
that gyrification arises as a non-trivial combination of a smooth
linear instability29 and a nonlinear sulcification instability30–32.

Sections of the physically and numerically simulated brains
shown in Fig. 2a,b exhibit a bulging of gyri and deepening of sulci
in a sequence resembling the observations from MRI sections. Our
simulations of gyrification driven by constrained cortical expansion
allow us to also measure the gyrification index (GI, defined as
the ratio of the surface contour length to that of the convex hull,
determined here from coronal sections as described in ref. 3). We
see that there is a clear increase in the GI with developing brain
volume in agreement with observations (Fig. 2c). The GI arising
from our numerical simulation reaches 2.5, matching observations
of adult brains. A di�erent measure of the GI based on the cortical
surface area rather than that of sections shows that the simulated
adult brain has a cortical area that is approximately four times the
exposed cortical area (Supplementary Fig. 1). For comparison, we
also section our physical gel simulacrum that swells from an initial
unpatterned state (GI= 1.07, GW 22) and see that as a function
of swelling, the GI increases to about 1.55, a modest increase
associated with an approximately twofold increase in brain volume,
the latter state corresponding to roughly GW 30–34 (Fig. 2c and
Supplementary Fig. 2). The ultimate limiting factor in our physical
experiments is the inability for our gel to swell and increase its
volume 20-fold like in fetal brains.
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Figure 1 | Physical mimic and numerical simulation of tangential cortical expansion. a, Gyrification of the human brain during the latter half of gestation
(photographs from ref. 1, adapted with permission from Elsevier). b, A 3D-printed model of the brain is produced from a 3D MRI image of a smooth fetal
brain and then used to create a pair of negative silicone moulds for casting. To mimic the constrained growth of the cortex, a replicated gel-brain (white
matter) is coated with a thin layer of gel (cortex) that swells by absorbing a solvent (hexanes) over time t (t1 ⇡4 min, t2 ⇡9 min, t3 ⇡ 16 min). c, The layered
gel progressively evolves into a complex pattern of sulci and gyri during the swelling process. d, A simulation starting from a smooth fetal brain shows
gyrification as a result of uniform tangential expansion of the cortical layer. The brain is modelled as a soft elastic solid and a relative tangential expansion is
imposed on the cortical layer as shown at left, and the system allowed to relax to its elastic equilibrium.

20-fold increase in brain volume (approximately 60ml to 1,200ml),
and a 30-fold increase in cortical area (approximately 80 cm2 to
2,400 cm2), whereas the expanding cortical layer changes little, with
a typical thickness of 2.5mm in the undeformed reference state
(the deformed thickness is about 3mm). In physiological terms,
we thus assume that tangential expansion during the fetal stage
extends through the cortical plate (which has a thickness of about
1–1.5mm at GW 22) and decays rapidly in the subplate (Fig. 1d,
left). The subplate diminishes during gyrification while the cortical
plate thickens and develops into the cerebral cortex1,3, so that in
the simulated adult brain the expanding layer corresponds to the
cerebral cortex (which is about 3mm thick in adults).

Our simple parametrization of brain growth leads to emergence
of gyrification in space and time along a course similar to real
brains (Fig. 1d and SupplementaryMovie 2): gyrification is initiated
through the formation of isolated line-like sulci (GW 26), which
elongate and branch, establishing most of the patterns before birth
(GW 40). After birth, brain volume still increases nearly threefold,
and during this time our model shows that the gyral patterns are
modified mainly by the addition of some new bends to existing
gyri in agreement with longitudinal morphological analyses27. The
characteristic spatiotemporal appearance of these convolutions—
rounded gyri between sharply cusped sulci in a mixture of threefold
junctions and S-shaped bends28—is a direct consequence of the
mechanical instability induced by constrained cortical expansion.

Physically, the similar sti�ness of the cortex and sublayers implies
that gyrification arises as a non-trivial combination of a smooth
linear instability29 and a nonlinear sulcification instability30–32.

Sections of the physically and numerically simulated brains
shown in Fig. 2a,b exhibit a bulging of gyri and deepening of sulci
in a sequence resembling the observations from MRI sections. Our
simulations of gyrification driven by constrained cortical expansion
allow us to also measure the gyrification index (GI, defined as
the ratio of the surface contour length to that of the convex hull,
determined here from coronal sections as described in ref. 3). We
see that there is a clear increase in the GI with developing brain
volume in agreement with observations (Fig. 2c). The GI arising
from our numerical simulation reaches 2.5, matching observations
of adult brains. A di�erent measure of the GI based on the cortical
surface area rather than that of sections shows that the simulated
adult brain has a cortical area that is approximately four times the
exposed cortical area (Supplementary Fig. 1). For comparison, we
also section our physical gel simulacrum that swells from an initial
unpatterned state (GI= 1.07, GW 22) and see that as a function
of swelling, the GI increases to about 1.55, a modest increase
associated with an approximately twofold increase in brain volume,
the latter state corresponding to roughly GW 30–34 (Fig. 2c and
Supplementary Fig. 2). The ultimate limiting factor in our physical
experiments is the inability for our gel to swell and increase its
volume 20-fold like in fetal brains.
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Figure 1 | Physical mimic and numerical simulation of tangential cortical expansion. a, Gyrification of the human brain during the latter half of gestation
(photographs from ref. 1, adapted with permission from Elsevier). b, A 3D-printed model of the brain is produced from a 3D MRI image of a smooth fetal
brain and then used to create a pair of negative silicone moulds for casting. To mimic the constrained growth of the cortex, a replicated gel-brain (white
matter) is coated with a thin layer of gel (cortex) that swells by absorbing a solvent (hexanes) over time t (t1 ⇡4 min, t2 ⇡9 min, t3 ⇡ 16 min). c, The layered
gel progressively evolves into a complex pattern of sulci and gyri during the swelling process. d, A simulation starting from a smooth fetal brain shows
gyrification as a result of uniform tangential expansion of the cortical layer. The brain is modelled as a soft elastic solid and a relative tangential expansion is
imposed on the cortical layer as shown at left, and the system allowed to relax to its elastic equilibrium.

20-fold increase in brain volume (approximately 60ml to 1,200ml),
and a 30-fold increase in cortical area (approximately 80 cm2 to
2,400 cm2), whereas the expanding cortical layer changes little, with
a typical thickness of 2.5mm in the undeformed reference state
(the deformed thickness is about 3mm). In physiological terms,
we thus assume that tangential expansion during the fetal stage
extends through the cortical plate (which has a thickness of about
1–1.5mm at GW 22) and decays rapidly in the subplate (Fig. 1d,
left). The subplate diminishes during gyrification while the cortical
plate thickens and develops into the cerebral cortex1,3, so that in
the simulated adult brain the expanding layer corresponds to the
cerebral cortex (which is about 3mm thick in adults).

Our simple parametrization of brain growth leads to emergence
of gyrification in space and time along a course similar to real
brains (Fig. 1d and SupplementaryMovie 2): gyrification is initiated
through the formation of isolated line-like sulci (GW 26), which
elongate and branch, establishing most of the patterns before birth
(GW 40). After birth, brain volume still increases nearly threefold,
and during this time our model shows that the gyral patterns are
modified mainly by the addition of some new bends to existing
gyri in agreement with longitudinal morphological analyses27. The
characteristic spatiotemporal appearance of these convolutions—
rounded gyri between sharply cusped sulci in a mixture of threefold
junctions and S-shaped bends28—is a direct consequence of the
mechanical instability induced by constrained cortical expansion.

Physically, the similar sti�ness of the cortex and sublayers implies
that gyrification arises as a non-trivial combination of a smooth
linear instability29 and a nonlinear sulcification instability30–32.

Sections of the physically and numerically simulated brains
shown in Fig. 2a,b exhibit a bulging of gyri and deepening of sulci
in a sequence resembling the observations from MRI sections. Our
simulations of gyrification driven by constrained cortical expansion
allow us to also measure the gyrification index (GI, defined as
the ratio of the surface contour length to that of the convex hull,
determined here from coronal sections as described in ref. 3). We
see that there is a clear increase in the GI with developing brain
volume in agreement with observations (Fig. 2c). The GI arising
from our numerical simulation reaches 2.5, matching observations
of adult brains. A di�erent measure of the GI based on the cortical
surface area rather than that of sections shows that the simulated
adult brain has a cortical area that is approximately four times the
exposed cortical area (Supplementary Fig. 1). For comparison, we
also section our physical gel simulacrum that swells from an initial
unpatterned state (GI= 1.07, GW 22) and see that as a function
of swelling, the GI increases to about 1.55, a modest increase
associated with an approximately twofold increase in brain volume,
the latter state corresponding to roughly GW 30–34 (Fig. 2c and
Supplementary Fig. 2). The ultimate limiting factor in our physical
experiments is the inability for our gel to swell and increase its
volume 20-fold like in fetal brains.
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Figure 1 | Physical mimic and numerical simulation of tangential cortical expansion. a, Gyrification of the human brain during the latter half of gestation
(photographs from ref. 1, adapted with permission from Elsevier). b, A 3D-printed model of the brain is produced from a 3D MRI image of a smooth fetal
brain and then used to create a pair of negative silicone moulds for casting. To mimic the constrained growth of the cortex, a replicated gel-brain (white
matter) is coated with a thin layer of gel (cortex) that swells by absorbing a solvent (hexanes) over time t (t1 ⇡4 min, t2 ⇡9 min, t3 ⇡ 16 min). c, The layered
gel progressively evolves into a complex pattern of sulci and gyri during the swelling process. d, A simulation starting from a smooth fetal brain shows
gyrification as a result of uniform tangential expansion of the cortical layer. The brain is modelled as a soft elastic solid and a relative tangential expansion is
imposed on the cortical layer as shown at left, and the system allowed to relax to its elastic equilibrium.

20-fold increase in brain volume (approximately 60ml to 1,200ml),
and a 30-fold increase in cortical area (approximately 80 cm2 to
2,400 cm2), whereas the expanding cortical layer changes little, with
a typical thickness of 2.5mm in the undeformed reference state
(the deformed thickness is about 3mm). In physiological terms,
we thus assume that tangential expansion during the fetal stage
extends through the cortical plate (which has a thickness of about
1–1.5mm at GW 22) and decays rapidly in the subplate (Fig. 1d,
left). The subplate diminishes during gyrification while the cortical
plate thickens and develops into the cerebral cortex1,3, so that in
the simulated adult brain the expanding layer corresponds to the
cerebral cortex (which is about 3mm thick in adults).

Our simple parametrization of brain growth leads to emergence
of gyrification in space and time along a course similar to real
brains (Fig. 1d and SupplementaryMovie 2): gyrification is initiated
through the formation of isolated line-like sulci (GW 26), which
elongate and branch, establishing most of the patterns before birth
(GW 40). After birth, brain volume still increases nearly threefold,
and during this time our model shows that the gyral patterns are
modified mainly by the addition of some new bends to existing
gyri in agreement with longitudinal morphological analyses27. The
characteristic spatiotemporal appearance of these convolutions—
rounded gyri between sharply cusped sulci in a mixture of threefold
junctions and S-shaped bends28—is a direct consequence of the
mechanical instability induced by constrained cortical expansion.

Physically, the similar sti�ness of the cortex and sublayers implies
that gyrification arises as a non-trivial combination of a smooth
linear instability29 and a nonlinear sulcification instability30–32.

Sections of the physically and numerically simulated brains
shown in Fig. 2a,b exhibit a bulging of gyri and deepening of sulci
in a sequence resembling the observations from MRI sections. Our
simulations of gyrification driven by constrained cortical expansion
allow us to also measure the gyrification index (GI, defined as
the ratio of the surface contour length to that of the convex hull,
determined here from coronal sections as described in ref. 3). We
see that there is a clear increase in the GI with developing brain
volume in agreement with observations (Fig. 2c). The GI arising
from our numerical simulation reaches 2.5, matching observations
of adult brains. A di�erent measure of the GI based on the cortical
surface area rather than that of sections shows that the simulated
adult brain has a cortical area that is approximately four times the
exposed cortical area (Supplementary Fig. 1). For comparison, we
also section our physical gel simulacrum that swells from an initial
unpatterned state (GI= 1.07, GW 22) and see that as a function
of swelling, the GI increases to about 1.55, a modest increase
associated with an approximately twofold increase in brain volume,
the latter state corresponding to roughly GW 30–34 (Fig. 2c and
Supplementary Fig. 2). The ultimate limiting factor in our physical
experiments is the inability for our gel to swell and increase its
volume 20-fold like in fetal brains.
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Figure 1 | Physical mimic and numerical simulation of tangential cortical expansion. a, Gyrification of the human brain during the latter half of gestation
(photographs from ref. 1, adapted with permission from Elsevier). b, A 3D-printed model of the brain is produced from a 3D MRI image of a smooth fetal
brain and then used to create a pair of negative silicone moulds for casting. To mimic the constrained growth of the cortex, a replicated gel-brain (white
matter) is coated with a thin layer of gel (cortex) that swells by absorbing a solvent (hexanes) over time t (t1 ⇡4 min, t2 ⇡9 min, t3 ⇡ 16 min). c, The layered
gel progressively evolves into a complex pattern of sulci and gyri during the swelling process. d, A simulation starting from a smooth fetal brain shows
gyrification as a result of uniform tangential expansion of the cortical layer. The brain is modelled as a soft elastic solid and a relative tangential expansion is
imposed on the cortical layer as shown at left, and the system allowed to relax to its elastic equilibrium.

20-fold increase in brain volume (approximately 60ml to 1,200ml),
and a 30-fold increase in cortical area (approximately 80 cm2 to
2,400 cm2), whereas the expanding cortical layer changes little, with
a typical thickness of 2.5mm in the undeformed reference state
(the deformed thickness is about 3mm). In physiological terms,
we thus assume that tangential expansion during the fetal stage
extends through the cortical plate (which has a thickness of about
1–1.5mm at GW 22) and decays rapidly in the subplate (Fig. 1d,
left). The subplate diminishes during gyrification while the cortical
plate thickens and develops into the cerebral cortex1,3, so that in
the simulated adult brain the expanding layer corresponds to the
cerebral cortex (which is about 3mm thick in adults).

Our simple parametrization of brain growth leads to emergence
of gyrification in space and time along a course similar to real
brains (Fig. 1d and SupplementaryMovie 2): gyrification is initiated
through the formation of isolated line-like sulci (GW 26), which
elongate and branch, establishing most of the patterns before birth
(GW 40). After birth, brain volume still increases nearly threefold,
and during this time our model shows that the gyral patterns are
modified mainly by the addition of some new bends to existing
gyri in agreement with longitudinal morphological analyses27. The
characteristic spatiotemporal appearance of these convolutions—
rounded gyri between sharply cusped sulci in a mixture of threefold
junctions and S-shaped bends28—is a direct consequence of the
mechanical instability induced by constrained cortical expansion.

Physically, the similar sti�ness of the cortex and sublayers implies
that gyrification arises as a non-trivial combination of a smooth
linear instability29 and a nonlinear sulcification instability30–32.

Sections of the physically and numerically simulated brains
shown in Fig. 2a,b exhibit a bulging of gyri and deepening of sulci
in a sequence resembling the observations from MRI sections. Our
simulations of gyrification driven by constrained cortical expansion
allow us to also measure the gyrification index (GI, defined as
the ratio of the surface contour length to that of the convex hull,
determined here from coronal sections as described in ref. 3). We
see that there is a clear increase in the GI with developing brain
volume in agreement with observations (Fig. 2c). The GI arising
from our numerical simulation reaches 2.5, matching observations
of adult brains. A di�erent measure of the GI based on the cortical
surface area rather than that of sections shows that the simulated
adult brain has a cortical area that is approximately four times the
exposed cortical area (Supplementary Fig. 1). For comparison, we
also section our physical gel simulacrum that swells from an initial
unpatterned state (GI= 1.07, GW 22) and see that as a function
of swelling, the GI increases to about 1.55, a modest increase
associated with an approximately twofold increase in brain volume,
the latter state corresponding to roughly GW 30–34 (Fig. 2c and
Supplementary Fig. 2). The ultimate limiting factor in our physical
experiments is the inability for our gel to swell and increase its
volume 20-fold like in fetal brains.
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Figure 1 | Physical mimic and numerical simulation of tangential cortical expansion. a, Gyrification of the human brain during the latter half of gestation
(photographs from ref. 1, adapted with permission from Elsevier). b, A 3D-printed model of the brain is produced from a 3D MRI image of a smooth fetal
brain and then used to create a pair of negative silicone moulds for casting. To mimic the constrained growth of the cortex, a replicated gel-brain (white
matter) is coated with a thin layer of gel (cortex) that swells by absorbing a solvent (hexanes) over time t (t1 ⇡4 min, t2 ⇡9 min, t3 ⇡ 16 min). c, The layered
gel progressively evolves into a complex pattern of sulci and gyri during the swelling process. d, A simulation starting from a smooth fetal brain shows
gyrification as a result of uniform tangential expansion of the cortical layer. The brain is modelled as a soft elastic solid and a relative tangential expansion is
imposed on the cortical layer as shown at left, and the system allowed to relax to its elastic equilibrium.

20-fold increase in brain volume (approximately 60ml to 1,200ml),
and a 30-fold increase in cortical area (approximately 80 cm2 to
2,400 cm2), whereas the expanding cortical layer changes little, with
a typical thickness of 2.5mm in the undeformed reference state
(the deformed thickness is about 3mm). In physiological terms,
we thus assume that tangential expansion during the fetal stage
extends through the cortical plate (which has a thickness of about
1–1.5mm at GW 22) and decays rapidly in the subplate (Fig. 1d,
left). The subplate diminishes during gyrification while the cortical
plate thickens and develops into the cerebral cortex1,3, so that in
the simulated adult brain the expanding layer corresponds to the
cerebral cortex (which is about 3mm thick in adults).

Our simple parametrization of brain growth leads to emergence
of gyrification in space and time along a course similar to real
brains (Fig. 1d and SupplementaryMovie 2): gyrification is initiated
through the formation of isolated line-like sulci (GW 26), which
elongate and branch, establishing most of the patterns before birth
(GW 40). After birth, brain volume still increases nearly threefold,
and during this time our model shows that the gyral patterns are
modified mainly by the addition of some new bends to existing
gyri in agreement with longitudinal morphological analyses27. The
characteristic spatiotemporal appearance of these convolutions—
rounded gyri between sharply cusped sulci in a mixture of threefold
junctions and S-shaped bends28—is a direct consequence of the
mechanical instability induced by constrained cortical expansion.

Physically, the similar sti�ness of the cortex and sublayers implies
that gyrification arises as a non-trivial combination of a smooth
linear instability29 and a nonlinear sulcification instability30–32.

Sections of the physically and numerically simulated brains
shown in Fig. 2a,b exhibit a bulging of gyri and deepening of sulci
in a sequence resembling the observations from MRI sections. Our
simulations of gyrification driven by constrained cortical expansion
allow us to also measure the gyrification index (GI, defined as
the ratio of the surface contour length to that of the convex hull,
determined here from coronal sections as described in ref. 3). We
see that there is a clear increase in the GI with developing brain
volume in agreement with observations (Fig. 2c). The GI arising
from our numerical simulation reaches 2.5, matching observations
of adult brains. A di�erent measure of the GI based on the cortical
surface area rather than that of sections shows that the simulated
adult brain has a cortical area that is approximately four times the
exposed cortical area (Supplementary Fig. 1). For comparison, we
also section our physical gel simulacrum that swells from an initial
unpatterned state (GI= 1.07, GW 22) and see that as a function
of swelling, the GI increases to about 1.55, a modest increase
associated with an approximately twofold increase in brain volume,
the latter state corresponding to roughly GW 30–34 (Fig. 2c and
Supplementary Fig. 2). The ultimate limiting factor in our physical
experiments is the inability for our gel to swell and increase its
volume 20-fold like in fetal brains.
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Figure 1 | Physical mimic and numerical simulation of tangential cortical expansion. a, Gyrification of the human brain during the latter half of gestation
(photographs from ref. 1, adapted with permission from Elsevier). b, A 3D-printed model of the brain is produced from a 3D MRI image of a smooth fetal
brain and then used to create a pair of negative silicone moulds for casting. To mimic the constrained growth of the cortex, a replicated gel-brain (white
matter) is coated with a thin layer of gel (cortex) that swells by absorbing a solvent (hexanes) over time t (t1 ⇡4 min, t2 ⇡9 min, t3 ⇡ 16 min). c, The layered
gel progressively evolves into a complex pattern of sulci and gyri during the swelling process. d, A simulation starting from a smooth fetal brain shows
gyrification as a result of uniform tangential expansion of the cortical layer. The brain is modelled as a soft elastic solid and a relative tangential expansion is
imposed on the cortical layer as shown at left, and the system allowed to relax to its elastic equilibrium.

20-fold increase in brain volume (approximately 60ml to 1,200ml),
and a 30-fold increase in cortical area (approximately 80 cm2 to
2,400 cm2), whereas the expanding cortical layer changes little, with
a typical thickness of 2.5mm in the undeformed reference state
(the deformed thickness is about 3mm). In physiological terms,
we thus assume that tangential expansion during the fetal stage
extends through the cortical plate (which has a thickness of about
1–1.5mm at GW 22) and decays rapidly in the subplate (Fig. 1d,
left). The subplate diminishes during gyrification while the cortical
plate thickens and develops into the cerebral cortex1,3, so that in
the simulated adult brain the expanding layer corresponds to the
cerebral cortex (which is about 3mm thick in adults).

Our simple parametrization of brain growth leads to emergence
of gyrification in space and time along a course similar to real
brains (Fig. 1d and SupplementaryMovie 2): gyrification is initiated
through the formation of isolated line-like sulci (GW 26), which
elongate and branch, establishing most of the patterns before birth
(GW 40). After birth, brain volume still increases nearly threefold,
and during this time our model shows that the gyral patterns are
modified mainly by the addition of some new bends to existing
gyri in agreement with longitudinal morphological analyses27. The
characteristic spatiotemporal appearance of these convolutions—
rounded gyri between sharply cusped sulci in a mixture of threefold
junctions and S-shaped bends28—is a direct consequence of the
mechanical instability induced by constrained cortical expansion.

Physically, the similar sti�ness of the cortex and sublayers implies
that gyrification arises as a non-trivial combination of a smooth
linear instability29 and a nonlinear sulcification instability30–32.

Sections of the physically and numerically simulated brains
shown in Fig. 2a,b exhibit a bulging of gyri and deepening of sulci
in a sequence resembling the observations from MRI sections. Our
simulations of gyrification driven by constrained cortical expansion
allow us to also measure the gyrification index (GI, defined as
the ratio of the surface contour length to that of the convex hull,
determined here from coronal sections as described in ref. 3). We
see that there is a clear increase in the GI with developing brain
volume in agreement with observations (Fig. 2c). The GI arising
from our numerical simulation reaches 2.5, matching observations
of adult brains. A di�erent measure of the GI based on the cortical
surface area rather than that of sections shows that the simulated
adult brain has a cortical area that is approximately four times the
exposed cortical area (Supplementary Fig. 1). For comparison, we
also section our physical gel simulacrum that swells from an initial
unpatterned state (GI= 1.07, GW 22) and see that as a function
of swelling, the GI increases to about 1.55, a modest increase
associated with an approximately twofold increase in brain volume,
the latter state corresponding to roughly GW 30–34 (Fig. 2c and
Supplementary Fig. 2). The ultimate limiting factor in our physical
experiments is the inability for our gel to swell and increase its
volume 20-fold like in fetal brains.
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gel progressively evolves into a complex pattern of sulci and gyri during the swelling process. d, A simulation starting from a smooth fetal brain shows
gyrification as a result of uniform tangential expansion of the cortical layer. The brain is modelled as a soft elastic solid and a relative tangential expansion is
imposed on the cortical layer as shown at left, and the system allowed to relax to its elastic equilibrium.

20-fold increase in brain volume (approximately 60ml to 1,200ml),
and a 30-fold increase in cortical area (approximately 80 cm2 to
2,400 cm2), whereas the expanding cortical layer changes little, with
a typical thickness of 2.5mm in the undeformed reference state
(the deformed thickness is about 3mm). In physiological terms,
we thus assume that tangential expansion during the fetal stage
extends through the cortical plate (which has a thickness of about
1–1.5mm at GW 22) and decays rapidly in the subplate (Fig. 1d,
left). The subplate diminishes during gyrification while the cortical
plate thickens and develops into the cerebral cortex1,3, so that in
the simulated adult brain the expanding layer corresponds to the
cerebral cortex (which is about 3mm thick in adults).

Our simple parametrization of brain growth leads to emergence
of gyrification in space and time along a course similar to real
brains (Fig. 1d and SupplementaryMovie 2): gyrification is initiated
through the formation of isolated line-like sulci (GW 26), which
elongate and branch, establishing most of the patterns before birth
(GW 40). After birth, brain volume still increases nearly threefold,
and during this time our model shows that the gyral patterns are
modified mainly by the addition of some new bends to existing
gyri in agreement with longitudinal morphological analyses27. The
characteristic spatiotemporal appearance of these convolutions—
rounded gyri between sharply cusped sulci in a mixture of threefold
junctions and S-shaped bends28—is a direct consequence of the
mechanical instability induced by constrained cortical expansion.

Physically, the similar sti�ness of the cortex and sublayers implies
that gyrification arises as a non-trivial combination of a smooth
linear instability29 and a nonlinear sulcification instability30–32.

Sections of the physically and numerically simulated brains
shown in Fig. 2a,b exhibit a bulging of gyri and deepening of sulci
in a sequence resembling the observations from MRI sections. Our
simulations of gyrification driven by constrained cortical expansion
allow us to also measure the gyrification index (GI, defined as
the ratio of the surface contour length to that of the convex hull,
determined here from coronal sections as described in ref. 3). We
see that there is a clear increase in the GI with developing brain
volume in agreement with observations (Fig. 2c). The GI arising
from our numerical simulation reaches 2.5, matching observations
of adult brains. A di�erent measure of the GI based on the cortical
surface area rather than that of sections shows that the simulated
adult brain has a cortical area that is approximately four times the
exposed cortical area (Supplementary Fig. 1). For comparison, we
also section our physical gel simulacrum that swells from an initial
unpatterned state (GI= 1.07, GW 22) and see that as a function
of swelling, the GI increases to about 1.55, a modest increase
associated with an approximately twofold increase in brain volume,
the latter state corresponding to roughly GW 30–34 (Fig. 2c and
Supplementary Fig. 2). The ultimate limiting factor in our physical
experiments is the inability for our gel to swell and increase its
volume 20-fold like in fetal brains.
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Figure 1 | Physical mimic and numerical simulation of tangential cortical expansion. a, Gyrification of the human brain during the latter half of gestation
(photographs from ref. 1, adapted with permission from Elsevier). b, A 3D-printed model of the brain is produced from a 3D MRI image of a smooth fetal
brain and then used to create a pair of negative silicone moulds for casting. To mimic the constrained growth of the cortex, a replicated gel-brain (white
matter) is coated with a thin layer of gel (cortex) that swells by absorbing a solvent (hexanes) over time t (t1 ⇡4 min, t2 ⇡9 min, t3 ⇡ 16 min). c, The layered
gel progressively evolves into a complex pattern of sulci and gyri during the swelling process. d, A simulation starting from a smooth fetal brain shows
gyrification as a result of uniform tangential expansion of the cortical layer. The brain is modelled as a soft elastic solid and a relative tangential expansion is
imposed on the cortical layer as shown at left, and the system allowed to relax to its elastic equilibrium.

20-fold increase in brain volume (approximately 60ml to 1,200ml),
and a 30-fold increase in cortical area (approximately 80 cm2 to
2,400 cm2), whereas the expanding cortical layer changes little, with
a typical thickness of 2.5mm in the undeformed reference state
(the deformed thickness is about 3mm). In physiological terms,
we thus assume that tangential expansion during the fetal stage
extends through the cortical plate (which has a thickness of about
1–1.5mm at GW 22) and decays rapidly in the subplate (Fig. 1d,
left). The subplate diminishes during gyrification while the cortical
plate thickens and develops into the cerebral cortex1,3, so that in
the simulated adult brain the expanding layer corresponds to the
cerebral cortex (which is about 3mm thick in adults).

Our simple parametrization of brain growth leads to emergence
of gyrification in space and time along a course similar to real
brains (Fig. 1d and SupplementaryMovie 2): gyrification is initiated
through the formation of isolated line-like sulci (GW 26), which
elongate and branch, establishing most of the patterns before birth
(GW 40). After birth, brain volume still increases nearly threefold,
and during this time our model shows that the gyral patterns are
modified mainly by the addition of some new bends to existing
gyri in agreement with longitudinal morphological analyses27. The
characteristic spatiotemporal appearance of these convolutions—
rounded gyri between sharply cusped sulci in a mixture of threefold
junctions and S-shaped bends28—is a direct consequence of the
mechanical instability induced by constrained cortical expansion.

Physically, the similar sti�ness of the cortex and sublayers implies
that gyrification arises as a non-trivial combination of a smooth
linear instability29 and a nonlinear sulcification instability30–32.

Sections of the physically and numerically simulated brains
shown in Fig. 2a,b exhibit a bulging of gyri and deepening of sulci
in a sequence resembling the observations from MRI sections. Our
simulations of gyrification driven by constrained cortical expansion
allow us to also measure the gyrification index (GI, defined as
the ratio of the surface contour length to that of the convex hull,
determined here from coronal sections as described in ref. 3). We
see that there is a clear increase in the GI with developing brain
volume in agreement with observations (Fig. 2c). The GI arising
from our numerical simulation reaches 2.5, matching observations
of adult brains. A di�erent measure of the GI based on the cortical
surface area rather than that of sections shows that the simulated
adult brain has a cortical area that is approximately four times the
exposed cortical area (Supplementary Fig. 1). For comparison, we
also section our physical gel simulacrum that swells from an initial
unpatterned state (GI= 1.07, GW 22) and see that as a function
of swelling, the GI increases to about 1.55, a modest increase
associated with an approximately twofold increase in brain volume,
the latter state corresponding to roughly GW 30–34 (Fig. 2c and
Supplementary Fig. 2). The ultimate limiting factor in our physical
experiments is the inability for our gel to swell and increase its
volume 20-fold like in fetal brains.
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gyrification as a result of uniform tangential expansion of the cortical layer. The brain is modelled as a soft elastic solid and a relative tangential expansion is
imposed on the cortical layer as shown at left, and the system allowed to relax to its elastic equilibrium.

20-fold increase in brain volume (approximately 60ml to 1,200ml),
and a 30-fold increase in cortical area (approximately 80 cm2 to
2,400 cm2), whereas the expanding cortical layer changes little, with
a typical thickness of 2.5mm in the undeformed reference state
(the deformed thickness is about 3mm). In physiological terms,
we thus assume that tangential expansion during the fetal stage
extends through the cortical plate (which has a thickness of about
1–1.5mm at GW 22) and decays rapidly in the subplate (Fig. 1d,
left). The subplate diminishes during gyrification while the cortical
plate thickens and develops into the cerebral cortex1,3, so that in
the simulated adult brain the expanding layer corresponds to the
cerebral cortex (which is about 3mm thick in adults).

Our simple parametrization of brain growth leads to emergence
of gyrification in space and time along a course similar to real
brains (Fig. 1d and SupplementaryMovie 2): gyrification is initiated
through the formation of isolated line-like sulci (GW 26), which
elongate and branch, establishing most of the patterns before birth
(GW 40). After birth, brain volume still increases nearly threefold,
and during this time our model shows that the gyral patterns are
modified mainly by the addition of some new bends to existing
gyri in agreement with longitudinal morphological analyses27. The
characteristic spatiotemporal appearance of these convolutions—
rounded gyri between sharply cusped sulci in a mixture of threefold
junctions and S-shaped bends28—is a direct consequence of the
mechanical instability induced by constrained cortical expansion.

Physically, the similar sti�ness of the cortex and sublayers implies
that gyrification arises as a non-trivial combination of a smooth
linear instability29 and a nonlinear sulcification instability30–32.

Sections of the physically and numerically simulated brains
shown in Fig. 2a,b exhibit a bulging of gyri and deepening of sulci
in a sequence resembling the observations from MRI sections. Our
simulations of gyrification driven by constrained cortical expansion
allow us to also measure the gyrification index (GI, defined as
the ratio of the surface contour length to that of the convex hull,
determined here from coronal sections as described in ref. 3). We
see that there is a clear increase in the GI with developing brain
volume in agreement with observations (Fig. 2c). The GI arising
from our numerical simulation reaches 2.5, matching observations
of adult brains. A di�erent measure of the GI based on the cortical
surface area rather than that of sections shows that the simulated
adult brain has a cortical area that is approximately four times the
exposed cortical area (Supplementary Fig. 1). For comparison, we
also section our physical gel simulacrum that swells from an initial
unpatterned state (GI= 1.07, GW 22) and see that as a function
of swelling, the GI increases to about 1.55, a modest increase
associated with an approximately twofold increase in brain volume,
the latter state corresponding to roughly GW 30–34 (Fig. 2c and
Supplementary Fig. 2). The ultimate limiting factor in our physical
experiments is the inability for our gel to swell and increase its
volume 20-fold like in fetal brains.
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2. SUPPLEMENTARY FIGURES

FIG. S1. Geometry, parametrization, and time evolution of the simulated brain. (a) Side, top
and bottom views and a horizontal section of the initial geometry which is also the reference state of the
simulation. Surface enclosed by the blue ellipsoid in the top and bottom views is excluded from the growing
cortical layer. The longitudinal length L and cortical thickness h are indicated in the horizontal section.
(b) Parametrization of the model. (c) Brain volume as a function of time t. Estimated correspondence
to gestational age is indicated. (d) Cortical area as a function of t. (e) Cortical area relative to exposed
area as a function t. Exposed area is defined as the area of a smooth initial geometry that is scaled to
(approximately) cover the gyrificated brain.

5

FIG. S2. Geometry and time evolution of the physical gel brain. (a) Side, top, and bottom views
of the initial geometry, showing a layered gel brain with longitudinal length L of ≈5 cm, lateral width W of
≈4 cm, and height H of ≈3 cm. The surface within the dotted box in the bottom view is excluded from the
swelling cortical layer. Note that a different colored pigment is used for the cortex to differentiate it from
the core white matter. (b) Representative coronal cross-sections of a gel brain at different points in time
t (top and middle panels). The rise of gyri and the deepening of sulci appear in a sequence starting from
the initial geometry (far left panels) with an outer cortical layer of thickness h. The estimated gyrification
index (GI) for the initial and gyrified states is shown in the bottom panels. GI is determined here as the
ratio of the length of the complete contour (solid blue line) to that of the superficially exposed surface
(dotted white line), as in ref. [11].
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Figure 2 | Sectional views of model brains during convolutional development. a, Planform and cross-sectional images of a physical gel-brain showing
convolutional development during the swelling (folding) process that starts from an initially smooth shape (left panels) to a moderately convoluted shape
(right panels). b, The coronal sections of the simulated brain (top panels) with comparisons to corresponding MRI sections35,39. c, Gyrification index as a
function of brain size for real brains (data from refs 3,40), a numerically simulated brain, and a physical gel-brain. Gestational week is indicated for fetal
and children brains. The initial volume of the gel-brain (⇡34 ml) is scaled to match that of the simulated brain (⇡57 ml). Note that in the gel experiments
only the outer layer swells and therefore the volume grows less than in real brains.

Having seen that our physical and numerical experiments can
capture the overall qualitative picture of how gyri form, we now turn
to the question of the role of brain geometry andmechanical stresses
in controlling the placement and orientations of the major and
minor sulci and gyri. In Fig. 3a, we show the field of the simulated
compressive stress just before the primary sulci form. Although
cortical growth in our model is relatively uniform in space, the
curvature of the surface is not. This yields a non-uniform stress field
in the cortical layer. Thus, compressive stresses are reduced in the
vicinity of highly curved convex regions, so that the first sulci appear
at weakly curved or concave regions in our simulations, consistent
with observations in fetal brains1,16. Furthermore, compression-
induced sulci should favour their alignment perpendicular to the
largest compressive stress, and indeed directions of the largest
compressive stress in our model are perpendicular to the general
orientations of primary gyri and sulci (Fig. 3a). Figure 3b shows that
the first generations of sulci form perpendicular to the maximum
compressive stress in real and simulated model brains; this
correlation is particularly clear for the primary sulci in real brains.

Although the shape of the initially smooth fetal brain is
described by the curvature of its surface, cortical growth eventually
couples the curvature and mechanical stress in non-trivial ways.
In Supplementary Fig. 3 we compare the stress field and curvature
at the cortical surface just before the first sulci form, and see

that in highly curved regions the maximum compressive stress is
perpendicular to the highest (convex) curvature. However, this does
not hold at the ellipsoidal surfaces of the frontal and temporal
lobes; these lobes elongate and bend towards each other as a result
of cortical growth (Supplementary Fig. 3; Supplementary Movie 1
shows the analogue in our gel experiments). This reduces the
compressive stress in the direction of elongation and bending, which
in turn is reflected in the dominant orientations of the frontal and
temporal gyri.

Although the global brain shape directs the orientations of
the primary gyri, the finer details of the gyrification patterns are
sensitive to variations in the initial geometry. In Fig. 3c we see
that the patterns of gyri and sulci on a physical gel-brain exhibit
some deviations from perfect bilateral symmetry. The hemispheres
are not identical in real brains either, but we note that in our
models artefacts from imaging, surface segmentation, and sample
preparation can cause the two hemispheres to di�er more than in
reality. The sequential patterns emerging from the folding (swelling)
and unfolding (drying) process also show some degree of variations
(Supplementary Fig. 4), but this process is highly repeatable; indeed,
the resulting gyral patterns are found to be robust and reproducible
on multiple repetition of the experiment with the same gel-brain
sample (lower left of Fig. 3c). The folding patterns vary in detail
across samples (Supplementary Fig. 4), but they share general

NATURE PHYSICS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephysics 3

Formation of cortical convolutions
in developing brains

GW 22 GW 29 GW 34 GW 40 adult

Magnetic resonance images (MRI) of brains

NATURE PHYSICS DOI: 10.1038/NPHYS3632 LETTERS

Numerical brain
Average adult brain
Fetal/children brains

Gel-brain

25 28
29

29
30

35

36
32

36
37

37
40

4040
40

44

52

56
56

56

56

57
65

72

80

72

182

208

40

34

2922

2 cm2 cm

GW 22 GW 29 GW 34 GW 40 Adult

t = t3

h

I′

I′ II′

I
II′

II

50 100 200 400
Brain volume (ml)

800 1,600
1.0

1.5

2.0

G
yr

ifi
ca

tio
n 

in
de

x

2.5

3.0

t = 0 (GW 22) t = t31 cma

c

b

I II

Figure 2 | Sectional views of model brains during convolutional development. a, Planform and cross-sectional images of a physical gel-brain showing
convolutional development during the swelling (folding) process that starts from an initially smooth shape (left panels) to a moderately convoluted shape
(right panels). b, The coronal sections of the simulated brain (top panels) with comparisons to corresponding MRI sections35,39. c, Gyrification index as a
function of brain size for real brains (data from refs 3,40), a numerically simulated brain, and a physical gel-brain. Gestational week is indicated for fetal
and children brains. The initial volume of the gel-brain (⇡34 ml) is scaled to match that of the simulated brain (⇡57 ml). Note that in the gel experiments
only the outer layer swells and therefore the volume grows less than in real brains.

Having seen that our physical and numerical experiments can
capture the overall qualitative picture of how gyri form, we now turn
to the question of the role of brain geometry andmechanical stresses
in controlling the placement and orientations of the major and
minor sulci and gyri. In Fig. 3a, we show the field of the simulated
compressive stress just before the primary sulci form. Although
cortical growth in our model is relatively uniform in space, the
curvature of the surface is not. This yields a non-uniform stress field
in the cortical layer. Thus, compressive stresses are reduced in the
vicinity of highly curved convex regions, so that the first sulci appear
at weakly curved or concave regions in our simulations, consistent
with observations in fetal brains1,16. Furthermore, compression-
induced sulci should favour their alignment perpendicular to the
largest compressive stress, and indeed directions of the largest
compressive stress in our model are perpendicular to the general
orientations of primary gyri and sulci (Fig. 3a). Figure 3b shows that
the first generations of sulci form perpendicular to the maximum
compressive stress in real and simulated model brains; this
correlation is particularly clear for the primary sulci in real brains.

Although the shape of the initially smooth fetal brain is
described by the curvature of its surface, cortical growth eventually
couples the curvature and mechanical stress in non-trivial ways.
In Supplementary Fig. 3 we compare the stress field and curvature
at the cortical surface just before the first sulci form, and see

that in highly curved regions the maximum compressive stress is
perpendicular to the highest (convex) curvature. However, this does
not hold at the ellipsoidal surfaces of the frontal and temporal
lobes; these lobes elongate and bend towards each other as a result
of cortical growth (Supplementary Fig. 3; Supplementary Movie 1
shows the analogue in our gel experiments). This reduces the
compressive stress in the direction of elongation and bending, which
in turn is reflected in the dominant orientations of the frontal and
temporal gyri.

Although the global brain shape directs the orientations of
the primary gyri, the finer details of the gyrification patterns are
sensitive to variations in the initial geometry. In Fig. 3c we see
that the patterns of gyri and sulci on a physical gel-brain exhibit
some deviations from perfect bilateral symmetry. The hemispheres
are not identical in real brains either, but we note that in our
models artefacts from imaging, surface segmentation, and sample
preparation can cause the two hemispheres to di�er more than in
reality. The sequential patterns emerging from the folding (swelling)
and unfolding (drying) process also show some degree of variations
(Supplementary Fig. 4), but this process is highly repeatable; indeed,
the resulting gyral patterns are found to be robust and reproducible
on multiple repetition of the experiment with the same gel-brain
sample (lower left of Fig. 3c). The folding patterns vary in detail
across samples (Supplementary Fig. 4), but they share general
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2. SUPPLEMENTARY FIGURES

FIG. S1. Geometry, parametrization, and time evolution of the simulated brain. (a) Side, top
and bottom views and a horizontal section of the initial geometry which is also the reference state of the
simulation. Surface enclosed by the blue ellipsoid in the top and bottom views is excluded from the growing
cortical layer. The longitudinal length L and cortical thickness h are indicated in the horizontal section.
(b) Parametrization of the model. (c) Brain volume as a function of time t. Estimated correspondence
to gestational age is indicated. (d) Cortical area as a function of t. (e) Cortical area relative to exposed
area as a function t. Exposed area is defined as the area of a smooth initial geometry that is scaled to
(approximately) cover the gyrificated brain.

5

FIG. S2. Geometry and time evolution of the physical gel brain. (a) Side, top, and bottom views
of the initial geometry, showing a layered gel brain with longitudinal length L of ≈5 cm, lateral width W of
≈4 cm, and height H of ≈3 cm. The surface within the dotted box in the bottom view is excluded from the
swelling cortical layer. Note that a different colored pigment is used for the cortex to differentiate it from
the core white matter. (b) Representative coronal cross-sections of a gel brain at different points in time
t (top and middle panels). The rise of gyri and the deepening of sulci appear in a sequence starting from
the initial geometry (far left panels) with an outer cortical layer of thickness h. The estimated gyrification
index (GI) for the initial and gyrified states is shown in the bottom panels. GI is determined here as the
ratio of the length of the complete contour (solid blue line) to that of the superficially exposed surface
(dotted white line), as in ref. [11].
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Brains for various organisms
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Fig. S1. Tangential growth profiles for α = 0.3 and α = 1.25 applied in simulations of Fig. 2 A and B, respectively.

Fig. S2. Geometric parameters from brain sections of a porcupine, cat, and human. Brain radius R is indicated by the red arcs. Gyral widths in the porcupine
and cat are determined as the length of the red arc over each gyrus. In the human the sulcal geometry is more complicated and some gyri are inclined with
respect to the sectioning plane. Therefore, in the human gyral widths are determined more selectively as indicated by magenta line segments. Sulcal depths are
indicated by blue line segments (the sylvian fissure and sulci that are clearly inclined with respect to the sectioning plane are excluded in the human). The
thickness of the gray matter at the gyri is indicated by the yellow line segments, and thickness of the gray matter at the sulci by the green line segments (not
shown for the human). The undeformed thickness of the gray matter is approximated by T = Tg/1.5 using the mean thickness Tg of the gray matter at the gyri.
Tangential expansion g is estimated by dividing the length of the surface contour by the length of the red arc (excluding the sylvian fissure in the human). The
data shown for W/T, D/T, and Tg/Tsare given as the mean ± SD. All images are cell-stained (porcupine and cat) or fiber-stained (human) coronal sections from
www.brainmuseum.org.
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human
sulcified, the sulcal depth increases continuously although the
width between sulci is always finite, agreeing with observations in
weakly convoluted brains. In the high g regime, the optimal spacing
is about 4T whereas depth continues to increase, in agreement with
observations in highly folded brains. Finally, the deformed thick-
ness of the gray matter varies such that, at the gyrus, it is nearly
twice that at the base of the sulcus; the same pattern as seen in all
real brains. Our 2D model thus captures the essential features of
individual sulci and gyri and the intersulcal spacing.
Although sulci are fundamentally different from wrinkles,

a qualitative understanding of our results follows by using the
classical formula λ = 2πt[μ/(3μs)]1/3 for the wrinkling wavelength
of a compressed stiff film (modulus μ, thickness t) on a soft
substrate (modulus μs) (27). Extrapolating this to the case here
(μs = μ) yields λ ≈ 4.36t in rough agreement with the simulated
sulcal spacing. A rigorous analytical treatment of gyrification is,
however, presently out of reach due to the subcritical nature of
the instability that is accompanied by finite strains and cusplike
features. Although the underlying mechanical principle is that
the gray matter folds to relax its compressive stress and that is
balanced by deforming the white matter, we emphasize that the
details are quite different from wrinkling and buckling, because
sulcification is a scale-free nonlinear subcritical instability (24).
We now explore the patterns of sulci and gyri in 3D by mod-

eling the brain as a thick spherical shell, with outer radius Rand
inner radius Ri = R/2, including both the gray and white matter;
we note that for such geometries the resulting gyrification pat-
terns are independent of the (presence or absence of a) core. As
in the 2D model above, the domain is assumed to be of uniform
elastic material described by Eq. 1, but for numerical conve-
nience we now adopt modest compressibility with K = 5μ, cor-
responding to Poisson’s ratio ν ≈ 0.4. Brain tissues actually show
time-dependent compressibility owing to poroelasticity (28), but
this is irrelevant over the long times associated with morpho-
genesis, when we may safely limit ourselves to considering just
elastic effects. We assume that tangential expansion, given by Eq. 2,
is transversely isotropic so that the area expansion is given by g2.
We model small brains as complete thick spherical shells and
patches of large brains as patches of thick spherical shells with
periodic boundary conditions along the edges, and discretize
them using tetrahedral elements (Materials and Methods).
Our 3D model of the brain has three geometrical parameters,

brain radius (size) R, cortical thickness T and the tangential ex-
pansion g2 with experimentally observable analogs. Indeed, in
mammals the cortical thickness T, gray-matter volume VG and
white-matter volume VW are linked by robust scaling laws that relate
brains varying over a millionfold range in weight (29, 30). These laws
can be written, in dimensionless units, as T ∼V 0:1

G and VW ∼V 1:23
G

(29). Using the spherical geometry of our model, we can relate these
quantities to our model parameters as VG ∼ g2[R3 − (R− T)3] and
VW ∼ (R− T)3 − (R/2)3. These empirical scaling laws, together with
an estimate that g2 = 5 for R/T = 20, eliminate two degrees of
freedom from the model, leaving us with a single parameter
family of models describing brains of different sizes. This is shown
in Fig. 3 where we plot g2 against relative brain size R/T and
display images of real brains as well as numerically simulated
brain shapes for a range of representative relative sizes.
Our model correctly predicts that brains with R/T K 5 (cor-

responding to physical size ofR≈ 5 mm) should be smooth as g is
insufficient to cause buckling. Intermediate-size brains are cor-
rectly predicted to have isolated sulci that are largely localized
within the gray matter. Larger brains become increasingly folded,
with sulci penetrating the white matter and the brain surface
displaying complicated patterns of branched sulci, similar to
those in large real brains (Fig. 3). The degree of folding is con-
ventionally quantified by the gyrification index (GI), the ratio of
the surface area to the area of the convex hull. For the largest
brain that we simulate (R/T = 20, g2 = 5, corresponding to

physical sizeR≈ 36 mm) we find GI ≈ 2.8, which can be compared
with the modestly larger human brain that has GI ≈ 3 in regions
that exclude the sylvian fissure (31). Most actual brain shapes de-
viate from spherical so that sulci, especially in small- and medium-
sized brains, tend to align with the direction of least curvature. By
repeating our calculations on an ellipsoidal geometry (Fig. 3) we
capture this qualitative trend. The numerical brain shapes are
complemented by experimental realizations in Fig. 3. Our bilayer
gel brain models (Materials and Methods) capture the realistic
sulcal spacing of about 4T and the qualitative trends in variation of
sulcal patterns with R/T up to modest-size brains.
Because many brain atlases show different sections of the brain

to highlight the anatomical complexity of the folds, we show
sections of our simulated patterns in Fig. 4A. For comparison, we
show sections from a raccoon brain, which has a similar size to the
simulated brain, and see that the two appear very similar. An
important observation that becomes apparent is that cutting
through gyri and sulci with various alignments with respect to the
section plane gives the impression of rather complex gyrification
and exaggerates depths of sulci, especially when the section plane
is off the center of curvature (plane 2; Fig. 4A). Simulated cross
sections display features such as buried gyri and regions with
disproportionally thick cortices seen in sections of real brains, but
they are really just geometric artifacts of sectioning.
As can be observed, the calculated gyri are rounded rather than

flattened as in, e.g., brain samples that have been fixed before re-
moval. Experimental evidence suggests, in agreement with our
model, that the compressive constraint of the skull or meninges is
not required for gyrification (30), but it could affect the appearance
by flattening the gyral crowns. Our simulation of a brain confined by
a rigid shell that mimics the skull confirms this (Fig. 4B).

Fig. 3. Known empirical scaling laws for gray-matter volume and thickness
are mapped on a g2 vs. R/T diagram. Corresponding simulations for spherical
brain configurations, with images shown at a few points, show that the
surface remains smooth for the smallest brains, but becomes increasingly
folded as the brain size increases. We also show patterns for ellipsoidal
configurations (major axis = 1.5 × minor axes) that lead to anisotropic gyr-
ification. Images of rat, lemur, wolf, and human brains illustrate the in-
creasingly prominent folding with increasing size in real brains. Also shown
are images of our physical mimic of the brain using a swelling bilayer gel of
PDMS immersed in hexanes. The smooth initial state gives rise to gyrified
states for different relative sizes of the brain R/T = 10, 15 (see also Fig. 5). All
of the brain images are from www.brainmuseum.org.
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squares of perpendicular distance, and least absolute deviations,
the third of which is more robust against outliers (13). The
standard deviations for the slope and intercept were estimated
directly for the first method and by bootstrap for the last two
methods (14). Bootstrap may help detect outliers in the data
because, when they are left out from a same-size resample, the
correlation coefficient often increases, which could be exploited
to improve estimation. Systematic bias caused by outliers was not
detected in Fig. 2.

3. Theory of Scaling
Our analysis rests on two assumptions. First, we assume that each
small piece of cortex of unit area, regardless of its thickness and
the overall brain size, sends and receives about the same total
cross-sectional area of long-distance connection fibers to and
from other cortical regions. Second, we assume that the global

geometry of the cortex minimizes the average length of the
long-distance fibers.

The second assumption follows from Ramon y Cajal’s prin-
ciple for conservation of space, conduction time, and cellular
materials (Chap. V in ref. 15). This principle has been explored
more recently as the principle of minimal axon length (16–18).
Consistent with previous observations on the basic uniformity of
the cortex (19–21), the first assumption is supported loosely by
the evidence that the total number of neurons beneath a unit
cortical surface area is about 105!mm2 across different cortical
regions for several species, from mouse to human (22) (after
shrinkage correction). But there are exceptions, including the
higher density in striate cortex of primates (22, 23), the lower
density in dolphin cortex (24), and the variability observed in cat
cortex (25). The number of axons leaving or entering the
gray–white boundary per unit cortical area should be compara-

Fig. 2. Cortical white and gray matter volumes of various species (n ! 59) are related by a power law that spans five to six orders of magnitude. Most data points
are based on measurement of a single adult animal. The line is the least squares fit, with a slope around 1.23 " 0.01 (mean " SD). The average and median
deviations of the white matter volumes from the regression line are, respectively, 18% and 13% on a linear scale. Sources of data: If the same species appeared
in more than one source below, the one mentioned earlier was used. All 38 species in table 2 in ref. 3 were taken, including 23 primates, 2 tree shrews, and 13
insectivores. Another 11 species were taken from table 2 in ref. 8, including 3 primates, 2 carnivores, 4 ungulates, and 2 rodents. Five additional species came
from table 1 in ref. 11, including 1 elephant and 4 cetaceans. The data point for the mouse (G ! 112 mm3 and W ! 13 mm3) was based on ref. 30, and that for
the rat (G ! 425 mm3 and W ! 59 mm3) was measured from the serial sections in a stereotaxic atlas (42). The estimates for the fisherman bat (Noctilio leporinus,
G ! 329 mm3 and W ! 43 mm3) and the flying fox (Pteropus lylei, G ! 2,083 mm3 and W ! 341 mm3) were based on refs. 43 and 44, with the ratios of white
and gray matters estimated roughly from the section photographs in the papers. The sea lion data (Zalophus californianus, G ! 113,200 mm3 and W ! 56,100
mm3) were measured from the serial sections at the website given in the legend to Fig. 1, with shrinkage correction.

5622 " www.pnas.org Zhang and Sejnowski
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amplitude but decreases its wavelength, forming a high-aspect-ratio
pattern that ceases to follow sinusoidal shape (Fig. 1Bvi). These
instability patterns with distinctive topographical characteristics
have been only studied and identified separately in different biologi-
cal systems under varied physical and biological conditions6,10,16,18,25.
However, a general model that can quantitatively predict the forma-
tion and evolution of various types of surface-instability patterns still
does not exist; primarily because existing theories such as linear
stability analysis cannot systematically analyze all modes of instabil-
ities12, and existing experiments did not systematically vary the
mechanical properties of film-substrate systems.

Here, we take biological film-substrate structures at their current
states as thermodynamic systems, and regard each mode of surface-
instability pattern as a thermodynamic phase. By systematically
varying mechanical properties of the structure including moduli,
adhesion energy and mismatch strain of the film and substrate, we
calculate the initiation and evolution of various modes of growth-
induced surface instabilities. We then compare potential energies of
different instability patterns, and construct a quantitative phase dia-

gram that accounts for all instability patterns discussed above, by
assuming the current pattern seeks the lowest potential energy
among all possible configurations. To validate the phase diagram,
we impose different mismatch strains in polymeric film-substrate
structures with systematically varied rigidity and adhesion energy
to induce various modes of instability patterns. The resultant pat-
terns indeed follow the phase diagram quantitatively. We further find
that the phase diagram agrees well with reported data on growth-
induced surface instabilities from a number of previous studies. It is
expected that the phase diagram will not only advance the under-
standing of biological morphogenesis, but also significantly facilitate
the design of new structures with innovative surfaces or interfaces for
disease therapy22,24, active cell culture34, biofouling management35,
tunable superhydrophobicity36 and flexible electronics37,38.

Results
A three-dimensional phase diagram. While the development of
instability patterns in biological structures may involve compli-

Figure 1 | Illustrations of examples, schematics and potential energies of various growth-induced surface instabilities. (A) Examples of growth-induced
surface instabilities on (i) the pumpkin skin, (ii) the cerebral cortex, (iii) the biofilm and (iv) the dog skin. (B) Schematics of growth-induced surface
instabilities: (i) wrinkle, (ii) crease, (iii) delaminated-buckle, (iv) fold, (v) period-double and (vi) ridge. (C) One example pathway to induce the
mismatch strain in the film-substrate structure: (i) The film and substrate is first assumed to be detached from each other to form a stress-free state; (ii) the
detached stress-free substrate is then pre-stretched by a ratio of Lf/Ls and adhered to the film; (iii) relaxed to length L; and (iv) eventually relaxed to length
Ls at the current state. Other pathways to induce mismatch strains are illustrated in Supplementary Figs S5 and S7. (D) Evolution of potential energy of the
film-substrate structure with increasing mismatch strain following the pathway in (C). The red dash line denotes the surface patterns with the minimum
potential energy. The potential energy of the film-substrate structure with mismatch strain eM is denoted by the black solid circle. Image (Ai) is reprinted
with permission from Yin, et al., Proc. Natl. Acad. Sci. U.S.A., 105, 49 (2008). Copyright 2008, National Academy of Sciences, USA. Image (Aii) is
reprinted from Bradbury, PLOS Biol., 3, 3 (2005) under Open-Access License. Image (Aiii) is reprinted with permission from Asally, et al., Proc. Natl.
Acad. Sci. U.S.A., 109, 46 (2012). Copyright 2012, National Academy of Sciences, USA. Image (Aiv) is reprinted with permission from Alison Ruhe.
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amplitude but decreases its wavelength, forming a high-aspect-ratio
pattern that ceases to follow sinusoidal shape (Fig. 1Bvi). These
instability patterns with distinctive topographical characteristics
have been only studied and identified separately in different biologi-
cal systems under varied physical and biological conditions6,10,16,18,25.
However, a general model that can quantitatively predict the forma-
tion and evolution of various types of surface-instability patterns still
does not exist; primarily because existing theories such as linear
stability analysis cannot systematically analyze all modes of instabil-
ities12, and existing experiments did not systematically vary the
mechanical properties of film-substrate systems.

Here, we take biological film-substrate structures at their current
states as thermodynamic systems, and regard each mode of surface-
instability pattern as a thermodynamic phase. By systematically
varying mechanical properties of the structure including moduli,
adhesion energy and mismatch strain of the film and substrate, we
calculate the initiation and evolution of various modes of growth-
induced surface instabilities. We then compare potential energies of
different instability patterns, and construct a quantitative phase dia-

gram that accounts for all instability patterns discussed above, by
assuming the current pattern seeks the lowest potential energy
among all possible configurations. To validate the phase diagram,
we impose different mismatch strains in polymeric film-substrate
structures with systematically varied rigidity and adhesion energy
to induce various modes of instability patterns. The resultant pat-
terns indeed follow the phase diagram quantitatively. We further find
that the phase diagram agrees well with reported data on growth-
induced surface instabilities from a number of previous studies. It is
expected that the phase diagram will not only advance the under-
standing of biological morphogenesis, but also significantly facilitate
the design of new structures with innovative surfaces or interfaces for
disease therapy22,24, active cell culture34, biofouling management35,
tunable superhydrophobicity36 and flexible electronics37,38.

Results
A three-dimensional phase diagram. While the development of
instability patterns in biological structures may involve compli-

Figure 1 | Illustrations of examples, schematics and potential energies of various growth-induced surface instabilities. (A) Examples of growth-induced
surface instabilities on (i) the pumpkin skin, (ii) the cerebral cortex, (iii) the biofilm and (iv) the dog skin. (B) Schematics of growth-induced surface
instabilities: (i) wrinkle, (ii) crease, (iii) delaminated-buckle, (iv) fold, (v) period-double and (vi) ridge. (C) One example pathway to induce the
mismatch strain in the film-substrate structure: (i) The film and substrate is first assumed to be detached from each other to form a stress-free state; (ii) the
detached stress-free substrate is then pre-stretched by a ratio of Lf/Ls and adhered to the film; (iii) relaxed to length L; and (iv) eventually relaxed to length
Ls at the current state. Other pathways to induce mismatch strains are illustrated in Supplementary Figs S5 and S7. (D) Evolution of potential energy of the
film-substrate structure with increasing mismatch strain following the pathway in (C). The red dash line denotes the surface patterns with the minimum
potential energy. The potential energy of the film-substrate structure with mismatch strain eM is denoted by the black solid circle. Image (Ai) is reprinted
with permission from Yin, et al., Proc. Natl. Acad. Sci. U.S.A., 105, 49 (2008). Copyright 2008, National Academy of Sciences, USA. Image (Aii) is
reprinted from Bradbury, PLOS Biol., 3, 3 (2005) under Open-Access License. Image (Aiii) is reprinted with permission from Asally, et al., Proc. Natl.
Acad. Sci. U.S.A., 109, 46 (2012). Copyright 2012, National Academy of Sciences, USA. Image (Aiv) is reprinted with permission from Alison Ruhe.
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amplitude but decreases its wavelength, forming a high-aspect-ratio
pattern that ceases to follow sinusoidal shape (Fig. 1Bvi). These
instability patterns with distinctive topographical characteristics
have been only studied and identified separately in different biologi-
cal systems under varied physical and biological conditions6,10,16,18,25.
However, a general model that can quantitatively predict the forma-
tion and evolution of various types of surface-instability patterns still
does not exist; primarily because existing theories such as linear
stability analysis cannot systematically analyze all modes of instabil-
ities12, and existing experiments did not systematically vary the
mechanical properties of film-substrate systems.

Here, we take biological film-substrate structures at their current
states as thermodynamic systems, and regard each mode of surface-
instability pattern as a thermodynamic phase. By systematically
varying mechanical properties of the structure including moduli,
adhesion energy and mismatch strain of the film and substrate, we
calculate the initiation and evolution of various modes of growth-
induced surface instabilities. We then compare potential energies of
different instability patterns, and construct a quantitative phase dia-

gram that accounts for all instability patterns discussed above, by
assuming the current pattern seeks the lowest potential energy
among all possible configurations. To validate the phase diagram,
we impose different mismatch strains in polymeric film-substrate
structures with systematically varied rigidity and adhesion energy
to induce various modes of instability patterns. The resultant pat-
terns indeed follow the phase diagram quantitatively. We further find
that the phase diagram agrees well with reported data on growth-
induced surface instabilities from a number of previous studies. It is
expected that the phase diagram will not only advance the under-
standing of biological morphogenesis, but also significantly facilitate
the design of new structures with innovative surfaces or interfaces for
disease therapy22,24, active cell culture34, biofouling management35,
tunable superhydrophobicity36 and flexible electronics37,38.

Results
A three-dimensional phase diagram. While the development of
instability patterns in biological structures may involve compli-

Figure 1 | Illustrations of examples, schematics and potential energies of various growth-induced surface instabilities. (A) Examples of growth-induced
surface instabilities on (i) the pumpkin skin, (ii) the cerebral cortex, (iii) the biofilm and (iv) the dog skin. (B) Schematics of growth-induced surface
instabilities: (i) wrinkle, (ii) crease, (iii) delaminated-buckle, (iv) fold, (v) period-double and (vi) ridge. (C) One example pathway to induce the
mismatch strain in the film-substrate structure: (i) The film and substrate is first assumed to be detached from each other to form a stress-free state; (ii) the
detached stress-free substrate is then pre-stretched by a ratio of Lf/Ls and adhered to the film; (iii) relaxed to length L; and (iv) eventually relaxed to length
Ls at the current state. Other pathways to induce mismatch strains are illustrated in Supplementary Figs S5 and S7. (D) Evolution of potential energy of the
film-substrate structure with increasing mismatch strain following the pathway in (C). The red dash line denotes the surface patterns with the minimum
potential energy. The potential energy of the film-substrate structure with mismatch strain eM is denoted by the black solid circle. Image (Ai) is reprinted
with permission from Yin, et al., Proc. Natl. Acad. Sci. U.S.A., 105, 49 (2008). Copyright 2008, National Academy of Sciences, USA. Image (Aii) is
reprinted from Bradbury, PLOS Biol., 3, 3 (2005) under Open-Access License. Image (Aiii) is reprinted with permission from Asally, et al., Proc. Natl.
Acad. Sci. U.S.A., 109, 46 (2012). Copyright 2012, National Academy of Sciences, USA. Image (Aiv) is reprinted with permission from Alison Ruhe.
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amplitude but decreases its wavelength, forming a high-aspect-ratio
pattern that ceases to follow sinusoidal shape (Fig. 1Bvi). These
instability patterns with distinctive topographical characteristics
have been only studied and identified separately in different biologi-
cal systems under varied physical and biological conditions6,10,16,18,25.
However, a general model that can quantitatively predict the forma-
tion and evolution of various types of surface-instability patterns still
does not exist; primarily because existing theories such as linear
stability analysis cannot systematically analyze all modes of instabil-
ities12, and existing experiments did not systematically vary the
mechanical properties of film-substrate systems.

Here, we take biological film-substrate structures at their current
states as thermodynamic systems, and regard each mode of surface-
instability pattern as a thermodynamic phase. By systematically
varying mechanical properties of the structure including moduli,
adhesion energy and mismatch strain of the film and substrate, we
calculate the initiation and evolution of various modes of growth-
induced surface instabilities. We then compare potential energies of
different instability patterns, and construct a quantitative phase dia-

gram that accounts for all instability patterns discussed above, by
assuming the current pattern seeks the lowest potential energy
among all possible configurations. To validate the phase diagram,
we impose different mismatch strains in polymeric film-substrate
structures with systematically varied rigidity and adhesion energy
to induce various modes of instability patterns. The resultant pat-
terns indeed follow the phase diagram quantitatively. We further find
that the phase diagram agrees well with reported data on growth-
induced surface instabilities from a number of previous studies. It is
expected that the phase diagram will not only advance the under-
standing of biological morphogenesis, but also significantly facilitate
the design of new structures with innovative surfaces or interfaces for
disease therapy22,24, active cell culture34, biofouling management35,
tunable superhydrophobicity36 and flexible electronics37,38.

Results
A three-dimensional phase diagram. While the development of
instability patterns in biological structures may involve compli-
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Compression of thin membranes on elastic 
substrates with finite adhesion

Computationally predicted phase diagram

cated biological processes, determining the instability patterns at
current states can be solved as mechanics problems2,16,18,28–30. To
focus on essential physical features, we simplify the layered biologi-
cal structures at the current states as a homogeneous film adhered on
a homogeneous underlying substrate, both undergoing plane-strain
deformation (Fig. 1C). To account for large deformation, both the
film and the substrate are taken as incompressible neo-Hookean
materials with shear modulus mf and ms, respectively. If the film
and the substrate at the current state are detached from each other,
they will have lengths Lf and Ls and thicknesses Hf and Hs,
respectively (Fig. 1Ci). We define the mismatch strain between the
film and the substrate at current state as eM 5 (Lf 2 Ls)/Lf. Since film
thickness Hf is much smaller than all the other dimensions (i.e., Lf, Ls

and Hs) in the system, it is the only relevant length scale for analyzing
the instability patterns. We further define the adhesion energy
between the film and the substrate, C, as the work required to
detach the film from a unit area of the substrate in the stress-free
state.

Within the time scale of determining instability patterns, we take
the film-substrate structure as a thermodynamic system, and assume
the current surface-instability pattern always seeks the lowest poten-
tial energy among all possible configurations (Fig. 1D), i.e., following
the Maxwell stability criterion39–42. The potential energy per unit
width of the film-substrate system under plane-strain deformation
can be expressed as39

P~Uf zUszCD ð1Þ

where Uf and Us are strain energies per unit width of the film and
substrate, respectively, and D is the current delaminated length of the
substrate measured in the stress-free state (Fig. 1Ci). This simplified
model involves five physical parameters that determine the instab-
ility patterns: mf, ms, Hf, C and eM. By dimensional argument, they can
be normalized into three dimensionless parameters: modulus ratio
mf/ms, normalized adhesion energy C/(msHf) and mismatch strain eM.
The types of instability patterns will be solely determined by the three
dimensionless parameters, and therefore governed by a three-
dimensional phase diagram. It should be noted that biological struc-
tures can take different paths to induce mismatch strains such as
expansion of films or shrink of substrates (see e.g., Supplementary
Figs S5 and S7); however, structures with the same set of mf/ms,

C/(msHf) and eM should reach the same type of instability pattern
at the current state, given the Maxwell stability criterion is followed.

Next, we discuss the process to quantitatively construct the phase
diagram. A plane-strain finite element model is developed to calculate
the formation of instability patterns (Methods and SI). To induce
mismatch strains in the model, we assume the detached stress-free
substrate in Fig. 1Ci is pre-stretched by a ratio of Lf/Ls, adhered to the
film (Fig. 1Cii), and then relaxed to length L (Fig. 1Ciii), during which
all deformation occurs in plane-strain condition. The overall com-
pressive strain in the film is defined as e 5 (Lf 2 L)/Lf (Fig. 1Ciii). As
e increases to critical values, patterns of surface instabilities can ini-
tiate and transit into others (Fig. 1D). Force perturbations and mesh
defects have been introduced into the model as fluctuations to facil-
itate the system to seek minimum-potential energy states (Fig. 1D).
When the substrate is fully relaxed (i.e., L 5 Ls and e 5 eM, shown as
the black solid circle on Fig. 1D), the resultant pattern is the instability
pattern of the film-substrate system with mismatch strain eM, which
represents a point of one phase in the phase diagram (Fig. 2). The
boundaries between regions of different phases give the phase bound-
aries on the phase diagram. We can also determine the phase bound-
aries by comparing the potential energies of different patterns with
the same set of mf/ms, C/(msHf) and eM

39,43,44, i.e.,

Pi~Pj ð2Þ

where Pi and Pj are the potential energies of two different patterns
on film-substrate models with the same properties and dimensions
(Fig. 1D). Following this method, we categorize all modes of surface
instabilities patterns discussed above into a three-dimensional phase
diagram with quantitatively determined phase boundaries (Fig. 2).

To understand the phase diagram, we first consider the scenario in
which the adhesion between the film and the substrate is so strong
that the film does not delaminate from the substrate (i.e., D 5 0). The
instability patterns are thus governed only by mf/ms and eM, giving a
two-dimensional phase diagram (i.e.,C/(msHf)R‘ on Figs 2 and 3A).
When the mismatch strain eM is sufficiently low, the flat film-
substrate structure has lower potential energy than any instability
pattern. As the mismatch strain increases to critical values, the flat
state will transit into either wrinkled or creased state, depending on
the modulus ratio. When mf/ms , 1.3 (i.e., relatively compliant film),
the film tends to fold against itself without deforming the substrate to

Figure 2 | A calculated three-dimensional phase diagram of various surface instability patterns induced by mismatch strains. The instability pattern is
determined by three non-dimensional parameters: mismatch strain eM, modulus ratio mf/ms and normalized adhesion energy C/(msHf).
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amplitude but decreases its wavelength, forming a high-aspect-ratio
pattern that ceases to follow sinusoidal shape (Fig. 1Bvi). These
instability patterns with distinctive topographical characteristics
have been only studied and identified separately in different biologi-
cal systems under varied physical and biological conditions6,10,16,18,25.
However, a general model that can quantitatively predict the forma-
tion and evolution of various types of surface-instability patterns still
does not exist; primarily because existing theories such as linear
stability analysis cannot systematically analyze all modes of instabil-
ities12, and existing experiments did not systematically vary the
mechanical properties of film-substrate systems.

Here, we take biological film-substrate structures at their current
states as thermodynamic systems, and regard each mode of surface-
instability pattern as a thermodynamic phase. By systematically
varying mechanical properties of the structure including moduli,
adhesion energy and mismatch strain of the film and substrate, we
calculate the initiation and evolution of various modes of growth-
induced surface instabilities. We then compare potential energies of
different instability patterns, and construct a quantitative phase dia-

gram that accounts for all instability patterns discussed above, by
assuming the current pattern seeks the lowest potential energy
among all possible configurations. To validate the phase diagram,
we impose different mismatch strains in polymeric film-substrate
structures with systematically varied rigidity and adhesion energy
to induce various modes of instability patterns. The resultant pat-
terns indeed follow the phase diagram quantitatively. We further find
that the phase diagram agrees well with reported data on growth-
induced surface instabilities from a number of previous studies. It is
expected that the phase diagram will not only advance the under-
standing of biological morphogenesis, but also significantly facilitate
the design of new structures with innovative surfaces or interfaces for
disease therapy22,24, active cell culture34, biofouling management35,
tunable superhydrophobicity36 and flexible electronics37,38.

Results
A three-dimensional phase diagram. While the development of
instability patterns in biological structures may involve compli-

Figure 1 | Illustrations of examples, schematics and potential energies of various growth-induced surface instabilities. (A) Examples of growth-induced
surface instabilities on (i) the pumpkin skin, (ii) the cerebral cortex, (iii) the biofilm and (iv) the dog skin. (B) Schematics of growth-induced surface
instabilities: (i) wrinkle, (ii) crease, (iii) delaminated-buckle, (iv) fold, (v) period-double and (vi) ridge. (C) One example pathway to induce the
mismatch strain in the film-substrate structure: (i) The film and substrate is first assumed to be detached from each other to form a stress-free state; (ii) the
detached stress-free substrate is then pre-stretched by a ratio of Lf/Ls and adhered to the film; (iii) relaxed to length L; and (iv) eventually relaxed to length
Ls at the current state. Other pathways to induce mismatch strains are illustrated in Supplementary Figs S5 and S7. (D) Evolution of potential energy of the
film-substrate structure with increasing mismatch strain following the pathway in (C). The red dash line denotes the surface patterns with the minimum
potential energy. The potential energy of the film-substrate structure with mismatch strain eM is denoted by the black solid circle. Image (Ai) is reprinted
with permission from Yin, et al., Proc. Natl. Acad. Sci. U.S.A., 105, 49 (2008). Copyright 2008, National Academy of Sciences, USA. Image (Aii) is
reprinted from Bradbury, PLOS Biol., 3, 3 (2005) under Open-Access License. Image (Aiii) is reprinted with permission from Asally, et al., Proc. Natl.
Acad. Sci. U.S.A., 109, 46 (2012). Copyright 2012, National Academy of Sciences, USA. Image (Aiv) is reprinted with permission from Alison Ruhe.
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instabilities: (i) wrinkle, (ii) crease, (iii) delaminated-buckle, (iv) fold, (v) period-double and (vi) ridge. (C) One example pathway to induce the
mismatch strain in the film-substrate structure: (i) The film and substrate is first assumed to be detached from each other to form a stress-free state; (ii) the
detached stress-free substrate is then pre-stretched by a ratio of Lf/Ls and adhered to the film; (iii) relaxed to length L; and (iv) eventually relaxed to length
Ls at the current state. Other pathways to induce mismatch strains are illustrated in Supplementary Figs S5 and S7. (D) Evolution of potential energy of the
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potential energy. The potential energy of the film-substrate structure with mismatch strain eM is denoted by the black solid circle. Image (Ai) is reprinted
with permission from Yin, et al., Proc. Natl. Acad. Sci. U.S.A., 105, 49 (2008). Copyright 2008, National Academy of Sciences, USA. Image (Aii) is
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Ls at the current state. Other pathways to induce mismatch strains are illustrated in Supplementary Figs S5 and S7. (D) Evolution of potential energy of the
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minimize the potential energy of the system. The phase boundary
between the flat and creased states, which is calculated by settingPflat

5 Pcrease
12,43, is a vertical line on Figs 2 and 3A,

eC
crease~0:35 for mf

.
msv1:3 ð3Þ

where eC
crease is the critical mismatch strain, at which the structure

transits from flat to creased state. It is noted that, for 0.5 , mf/ms ,
1.3, the creases may further develop into folds under larger mismatch
strains, i.e., eM . 0.45 (Supplementary Fig. S1).

On the other hand, when mf/ms . 1.3 (i.e., relatively stiff film), the
film tends to undulate together with the substrate to minimize the
potential energy of the system. The phase boundary between the flat
and creased states, which is calculated by setting Pflat 5 Pwrinkle (See
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where eC
wrinkle is the critical mismatch strain, at which the structure

transits from flat to wrinkle state. Notably, the triple point between
flat, creased and wrinkled states in a film-substrate structure with
mismatch strain is at eM 5 0.35 and mf/ms 5 1.3.

As the mismatch strain further increases, the wrinkled film-
substrate structure can further bifurcate into more complicated pat-

Figure 3 | Experimental validation of the phase diagram for instability patterns in film-substrate structures with high adhesion energies.
(A) Comparison between experimental data and the phase diagram of surface instability patterns without delamination. Experimental images to show the
formation of (B) creases, (C) wrinkles and folds, (D) wrinkles and period-doubles, and (E) wrinkles and ridges in film-substrate structures with different
modulus ratios and mismatch strains. The film-substrate modulus ratios are (B) 0.3, (C) 3.64, (D) 67.24 and (E) 9110, respectively.
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where eC
crease is the critical mismatch strain, at which the structure

transits from flat to creased state. It is noted that, for 0.5 , mf/ms ,
1.3, the creases may further develop into folds under larger mismatch
strains, i.e., eM . 0.45 (Supplementary Fig. S1).

On the other hand, when mf/ms . 1.3 (i.e., relatively stiff film), the
film tends to undulate together with the substrate to minimize the
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where eC
wrinkle is the critical mismatch strain, at which the structure

transits from flat to wrinkle state. Notably, the triple point between
flat, creased and wrinkled states in a film-substrate structure with
mismatch strain is at eM 5 0.35 and mf/ms 5 1.3.

As the mismatch strain further increases, the wrinkled film-
substrate structure can further bifurcate into more complicated pat-

Figure 3 | Experimental validation of the phase diagram for instability patterns in film-substrate structures with high adhesion energies.
(A) Comparison between experimental data and the phase diagram of surface instability patterns without delamination. Experimental images to show the
formation of (B) creases, (C) wrinkles and folds, (D) wrinkles and period-doubles, and (E) wrinkles and ridges in film-substrate structures with different
modulus ratios and mismatch strains. The film-substrate modulus ratios are (B) 0.3, (C) 3.64, (D) 67.24 and (E) 9110, respectively.
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transits from flat to creased state. It is noted that, for 0.5 , mf/ms ,
1.3, the creases may further develop into folds under larger mismatch
strains, i.e., eM . 0.45 (Supplementary Fig. S1).
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where eC
wrinkle is the critical mismatch strain, at which the structure

transits from flat to wrinkle state. Notably, the triple point between
flat, creased and wrinkled states in a film-substrate structure with
mismatch strain is at eM 5 0.35 and mf/ms 5 1.3.

As the mismatch strain further increases, the wrinkled film-
substrate structure can further bifurcate into more complicated pat-

Figure 3 | Experimental validation of the phase diagram for instability patterns in film-substrate structures with high adhesion energies.
(A) Comparison between experimental data and the phase diagram of surface instability patterns without delamination. Experimental images to show the
formation of (B) creases, (C) wrinkles and folds, (D) wrinkles and period-doubles, and (E) wrinkles and ridges in film-substrate structures with different
modulus ratios and mismatch strains. The film-substrate modulus ratios are (B) 0.3, (C) 3.64, (D) 67.24 and (E) 9110, respectively.
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where eC
wrinkle is the critical mismatch strain, at which the structure

transits from flat to wrinkle state. Notably, the triple point between
flat, creased and wrinkled states in a film-substrate structure with
mismatch strain is at eM 5 0.35 and mf/ms 5 1.3.

As the mismatch strain further increases, the wrinkled film-
substrate structure can further bifurcate into more complicated pat-

Figure 3 | Experimental validation of the phase diagram for instability patterns in film-substrate structures with high adhesion energies.
(A) Comparison between experimental data and the phase diagram of surface instability patterns without delamination. Experimental images to show the
formation of (B) creases, (C) wrinkles and folds, (D) wrinkles and period-doubles, and (E) wrinkles and ridges in film-substrate structures with different
modulus ratios and mismatch strains. The film-substrate modulus ratios are (B) 0.3, (C) 3.64, (D) 67.24 and (E) 9110, respectively.
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where eC
crease is the critical mismatch strain, at which the structure

transits from flat to creased state. It is noted that, for 0.5 , mf/ms ,
1.3, the creases may further develop into folds under larger mismatch
strains, i.e., eM . 0.45 (Supplementary Fig. S1).

On the other hand, when mf/ms . 1.3 (i.e., relatively stiff film), the
film tends to undulate together with the substrate to minimize the
potential energy of the system. The phase boundary between the flat
and creased states, which is calculated by setting Pflat 5 Pwrinkle (See

SI and Supplementary Fig. S2), can be approximated as a curve on
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where eC
wrinkle is the critical mismatch strain, at which the structure

transits from flat to wrinkle state. Notably, the triple point between
flat, creased and wrinkled states in a film-substrate structure with
mismatch strain is at eM 5 0.35 and mf/ms 5 1.3.

As the mismatch strain further increases, the wrinkled film-
substrate structure can further bifurcate into more complicated pat-

Figure 3 | Experimental validation of the phase diagram for instability patterns in film-substrate structures with high adhesion energies.
(A) Comparison between experimental data and the phase diagram of surface instability patterns without delamination. Experimental images to show the
formation of (B) creases, (C) wrinkles and folds, (D) wrinkles and period-doubles, and (E) wrinkles and ridges in film-substrate structures with different
modulus ratios and mismatch strains. The film-substrate modulus ratios are (B) 0.3, (C) 3.64, (D) 67.24 and (E) 9110, respectively.
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where eC
wrinkle is the critical mismatch strain, at which the structure

transits from flat to wrinkle state. Notably, the triple point between
flat, creased and wrinkled states in a film-substrate structure with
mismatch strain is at eM 5 0.35 and mf/ms 5 1.3.

As the mismatch strain further increases, the wrinkled film-
substrate structure can further bifurcate into more complicated pat-

Figure 3 | Experimental validation of the phase diagram for instability patterns in film-substrate structures with high adhesion energies.
(A) Comparison between experimental data and the phase diagram of surface instability patterns without delamination. Experimental images to show the
formation of (B) creases, (C) wrinkles and folds, (D) wrinkles and period-doubles, and (E) wrinkles and ridges in film-substrate structures with different
modulus ratios and mismatch strains. The film-substrate modulus ratios are (B) 0.3, (C) 3.64, (D) 67.24 and (E) 9110, respectively.
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where eC
crease is the critical mismatch strain, at which the structure

transits from flat to creased state. It is noted that, for 0.5 , mf/ms ,
1.3, the creases may further develop into folds under larger mismatch
strains, i.e., eM . 0.45 (Supplementary Fig. S1).

On the other hand, when mf/ms . 1.3 (i.e., relatively stiff film), the
film tends to undulate together with the substrate to minimize the
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where eC
wrinkle is the critical mismatch strain, at which the structure

transits from flat to wrinkle state. Notably, the triple point between
flat, creased and wrinkled states in a film-substrate structure with
mismatch strain is at eM 5 0.35 and mf/ms 5 1.3.

As the mismatch strain further increases, the wrinkled film-
substrate structure can further bifurcate into more complicated pat-

Figure 3 | Experimental validation of the phase diagram for instability patterns in film-substrate structures with high adhesion energies.
(A) Comparison between experimental data and the phase diagram of surface instability patterns without delamination. Experimental images to show the
formation of (B) creases, (C) wrinkles and folds, (D) wrinkles and period-doubles, and (E) wrinkles and ridges in film-substrate structures with different
modulus ratios and mismatch strains. The film-substrate modulus ratios are (B) 0.3, (C) 3.64, (D) 67.24 and (E) 9110, respectively.
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where eC
crease is the critical mismatch strain, at which the structure

transits from flat to creased state. It is noted that, for 0.5 , mf/ms ,
1.3, the creases may further develop into folds under larger mismatch
strains, i.e., eM . 0.45 (Supplementary Fig. S1).

On the other hand, when mf/ms . 1.3 (i.e., relatively stiff film), the
film tends to undulate together with the substrate to minimize the
potential energy of the system. The phase boundary between the flat
and creased states, which is calculated by setting Pflat 5 Pwrinkle (See
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where eC
wrinkle is the critical mismatch strain, at which the structure

transits from flat to wrinkle state. Notably, the triple point between
flat, creased and wrinkled states in a film-substrate structure with
mismatch strain is at eM 5 0.35 and mf/ms 5 1.3.

As the mismatch strain further increases, the wrinkled film-
substrate structure can further bifurcate into more complicated pat-

Figure 3 | Experimental validation of the phase diagram for instability patterns in film-substrate structures with high adhesion energies.
(A) Comparison between experimental data and the phase diagram of surface instability patterns without delamination. Experimental images to show the
formation of (B) creases, (C) wrinkles and folds, (D) wrinkles and period-doubles, and (E) wrinkles and ridges in film-substrate structures with different
modulus ratios and mismatch strains. The film-substrate modulus ratios are (B) 0.3, (C) 3.64, (D) 67.24 and (E) 9110, respectively.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 8887 | DOI: 10.1038/srep08887 4

28

minimize the potential energy of the system. The phase boundary
between the flat and creased states, which is calculated by settingPflat

5 Pcrease
12,43, is a vertical line on Figs 2 and 3A,

eC
crease~0:35 for mf

.
msv1:3 ð3Þ

where eC
crease is the critical mismatch strain, at which the structure

transits from flat to creased state. It is noted that, for 0.5 , mf/ms ,
1.3, the creases may further develop into folds under larger mismatch
strains, i.e., eM . 0.45 (Supplementary Fig. S1).

On the other hand, when mf/ms . 1.3 (i.e., relatively stiff film), the
film tends to undulate together with the substrate to minimize the
potential energy of the system. The phase boundary between the flat
and creased states, which is calculated by setting Pflat 5 Pwrinkle (See

SI and Supplementary Fig. S2), can be approximated as a curve on
Figs 2 and 3A,

eC
wrinkle<

0:41
mf

ms

! "{0:59

for 1:3ƒ
mf

ms
ƒ16

0:50
mf

ms

! "{0:66

for
mf

ms
w16

8
>>><

>>>:
ð4Þ

where eC
wrinkle is the critical mismatch strain, at which the structure

transits from flat to wrinkle state. Notably, the triple point between
flat, creased and wrinkled states in a film-substrate structure with
mismatch strain is at eM 5 0.35 and mf/ms 5 1.3.

As the mismatch strain further increases, the wrinkled film-
substrate structure can further bifurcate into more complicated pat-

Figure 3 | Experimental validation of the phase diagram for instability patterns in film-substrate structures with high adhesion energies.
(A) Comparison between experimental data and the phase diagram of surface instability patterns without delamination. Experimental images to show the
formation of (B) creases, (C) wrinkles and folds, (D) wrinkles and period-doubles, and (E) wrinkles and ridges in film-substrate structures with different
modulus ratios and mismatch strains. The film-substrate modulus ratios are (B) 0.3, (C) 3.64, (D) 67.24 and (E) 9110, respectively.
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where eC
crease is the critical mismatch strain, at which the structure

transits from flat to creased state. It is noted that, for 0.5 , mf/ms ,
1.3, the creases may further develop into folds under larger mismatch
strains, i.e., eM . 0.45 (Supplementary Fig. S1).

On the other hand, when mf/ms . 1.3 (i.e., relatively stiff film), the
film tends to undulate together with the substrate to minimize the
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where eC
wrinkle is the critical mismatch strain, at which the structure

transits from flat to wrinkle state. Notably, the triple point between
flat, creased and wrinkled states in a film-substrate structure with
mismatch strain is at eM 5 0.35 and mf/ms 5 1.3.

As the mismatch strain further increases, the wrinkled film-
substrate structure can further bifurcate into more complicated pat-

Figure 3 | Experimental validation of the phase diagram for instability patterns in film-substrate structures with high adhesion energies.
(A) Comparison between experimental data and the phase diagram of surface instability patterns without delamination. Experimental images to show the
formation of (B) creases, (C) wrinkles and folds, (D) wrinkles and period-doubles, and (E) wrinkles and ridges in film-substrate structures with different
modulus ratios and mismatch strains. The film-substrate modulus ratios are (B) 0.3, (C) 3.64, (D) 67.24 and (E) 9110, respectively.
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transits from flat to creased state. It is noted that, for 0.5 , mf/ms ,
1.3, the creases may further develop into folds under larger mismatch
strains, i.e., eM . 0.45 (Supplementary Fig. S1).
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where eC
wrinkle is the critical mismatch strain, at which the structure

transits from flat to wrinkle state. Notably, the triple point between
flat, creased and wrinkled states in a film-substrate structure with
mismatch strain is at eM 5 0.35 and mf/ms 5 1.3.

As the mismatch strain further increases, the wrinkled film-
substrate structure can further bifurcate into more complicated pat-

Figure 3 | Experimental validation of the phase diagram for instability patterns in film-substrate structures with high adhesion energies.
(A) Comparison between experimental data and the phase diagram of surface instability patterns without delamination. Experimental images to show the
formation of (B) creases, (C) wrinkles and folds, (D) wrinkles and period-doubles, and (E) wrinkles and ridges in film-substrate structures with different
modulus ratios and mismatch strains. The film-substrate modulus ratios are (B) 0.3, (C) 3.64, (D) 67.24 and (E) 9110, respectively.
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where eC
wrinkle is the critical mismatch strain, at which the structure

transits from flat to wrinkle state. Notably, the triple point between
flat, creased and wrinkled states in a film-substrate structure with
mismatch strain is at eM 5 0.35 and mf/ms 5 1.3.

As the mismatch strain further increases, the wrinkled film-
substrate structure can further bifurcate into more complicated pat-

Figure 3 | Experimental validation of the phase diagram for instability patterns in film-substrate structures with high adhesion energies.
(A) Comparison between experimental data and the phase diagram of surface instability patterns without delamination. Experimental images to show the
formation of (B) creases, (C) wrinkles and folds, (D) wrinkles and period-doubles, and (E) wrinkles and ridges in film-substrate structures with different
modulus ratios and mismatch strains. The film-substrate modulus ratios are (B) 0.3, (C) 3.64, (D) 67.24 and (E) 9110, respectively.
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film tends to undulate together with the substrate to minimize the
potential energy of the system. The phase boundary between the flat
and creased states, which is calculated by setting Pflat 5 Pwrinkle (See

SI and Supplementary Fig. S2), can be approximated as a curve on
Figs 2 and 3A,
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where eC
wrinkle is the critical mismatch strain, at which the structure

transits from flat to wrinkle state. Notably, the triple point between
flat, creased and wrinkled states in a film-substrate structure with
mismatch strain is at eM 5 0.35 and mf/ms 5 1.3.

As the mismatch strain further increases, the wrinkled film-
substrate structure can further bifurcate into more complicated pat-

Figure 3 | Experimental validation of the phase diagram for instability patterns in film-substrate structures with high adhesion energies.
(A) Comparison between experimental data and the phase diagram of surface instability patterns without delamination. Experimental images to show the
formation of (B) creases, (C) wrinkles and folds, (D) wrinkles and period-doubles, and (E) wrinkles and ridges in film-substrate structures with different
modulus ratios and mismatch strains. The film-substrate modulus ratios are (B) 0.3, (C) 3.64, (D) 67.24 and (E) 9110, respectively.
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Validation of the theoretical models with experiments. We next
verify the 3D phase diagram by comparing with experimental results
on polymeric film-substrate structures with mismatch strains. We
induce the mismatch strain in the film-substrate structure by
uniaxially pre-stretching an elastomer substrate, adhering a
polymer film on the substrate, and then relaxing the substrate to
the original length (see Methods and Fig. 1C). While the shear
modulus of the substrate is fixed to be 10.4 kPa, the shear modulus
of the film is varied from ,3 kPa to ,0.8 GPa, giving modulus ratio
mf/ms from ,0.3 to ,8 3 104. The adhesion energy between the film
and substrate is controlled to vary from 1022 Jm22 to 103 Jm22 by
baking the film-substrate structures at different temperatures (see
Methods and Supplementary Fig. S12)39. In order to avoid the

film-substrate delamination, a very high adhesion energy (i.e., C .
103 Jm22 andC/(msHf) . 103) is achieved by smearing a thin adhesive
layer between the film and substrate47,48,51. Since the adhesive layer is
much thinner than the film and its modulus approximates that of the
substrate, the adhesive layer does not affect the instability patterns39.

We first discuss the five modes of patterns observed in the film-
substrate structures with strong adhesion that prevents delamina-
tion: (i) If the film is more compliant than the substrate, for example
mf/ms 5 0.3 or 0.64, the structure maintains flat under relatively low
mismatch strain. When eM reaches ,0.36 (for mf/ms 5 0.3 and 0.64),
the initially flat surface suddenly forms discrete creases as indicated
by arrows in Fig. 3B, which then evolve into periodically distributed
creases with the rise of eM

12,43. (ii) When the modulus ratio increases

Figure 4 | Experimental validation of the phase diagram for instability patterns in film-substrate structures with moderate adhesion energies.
Comparison between experimental data and the phase diagrams of surface instability patterns with delamination: (A) flat to delaminated-buckle,
(B) crease to delaminated-buckle, (C) wrinkle to delaminated-buckle, (D) fold to delaminated-buckle, (E) period-double to delaminated-buckle,
and (F) ridge to delaminated-buckle. The circle markers with different colors in each phase domain represent the observed instability patterns. The inset
images in each phase diagram represent the corresponding delaminated-buckle patterns. The two-dimensional phase diagrams are achieved by sectioning
the three-dimensional phase diagram at the normalized adhesion energies C/(msHf) equal to (A) 0.13, (B) 0.28, (C) 0.46, (D) 0.81, (E) 3.99 and (F) 66.63,
respectively.
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Validation of the theoretical models with experiments. We next
verify the 3D phase diagram by comparing with experimental results
on polymeric film-substrate structures with mismatch strains. We
induce the mismatch strain in the film-substrate structure by
uniaxially pre-stretching an elastomer substrate, adhering a
polymer film on the substrate, and then relaxing the substrate to
the original length (see Methods and Fig. 1C). While the shear
modulus of the substrate is fixed to be 10.4 kPa, the shear modulus
of the film is varied from ,3 kPa to ,0.8 GPa, giving modulus ratio
mf/ms from ,0.3 to ,8 3 104. The adhesion energy between the film
and substrate is controlled to vary from 1022 Jm22 to 103 Jm22 by
baking the film-substrate structures at different temperatures (see
Methods and Supplementary Fig. S12)39. In order to avoid the

film-substrate delamination, a very high adhesion energy (i.e., C .
103 Jm22 andC/(msHf) . 103) is achieved by smearing a thin adhesive
layer between the film and substrate47,48,51. Since the adhesive layer is
much thinner than the film and its modulus approximates that of the
substrate, the adhesive layer does not affect the instability patterns39.

We first discuss the five modes of patterns observed in the film-
substrate structures with strong adhesion that prevents delamina-
tion: (i) If the film is more compliant than the substrate, for example
mf/ms 5 0.3 or 0.64, the structure maintains flat under relatively low
mismatch strain. When eM reaches ,0.36 (for mf/ms 5 0.3 and 0.64),
the initially flat surface suddenly forms discrete creases as indicated
by arrows in Fig. 3B, which then evolve into periodically distributed
creases with the rise of eM

12,43. (ii) When the modulus ratio increases

Figure 4 | Experimental validation of the phase diagram for instability patterns in film-substrate structures with moderate adhesion energies.
Comparison between experimental data and the phase diagrams of surface instability patterns with delamination: (A) flat to delaminated-buckle,
(B) crease to delaminated-buckle, (C) wrinkle to delaminated-buckle, (D) fold to delaminated-buckle, (E) period-double to delaminated-buckle,
and (F) ridge to delaminated-buckle. The circle markers with different colors in each phase domain represent the observed instability patterns. The inset
images in each phase diagram represent the corresponding delaminated-buckle patterns. The two-dimensional phase diagrams are achieved by sectioning
the three-dimensional phase diagram at the normalized adhesion energies C/(msHf) equal to (A) 0.13, (B) 0.28, (C) 0.46, (D) 0.81, (E) 3.99 and (F) 66.63,
respectively.
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Validation of the theoretical models with experiments. We next
verify the 3D phase diagram by comparing with experimental results
on polymeric film-substrate structures with mismatch strains. We
induce the mismatch strain in the film-substrate structure by
uniaxially pre-stretching an elastomer substrate, adhering a
polymer film on the substrate, and then relaxing the substrate to
the original length (see Methods and Fig. 1C). While the shear
modulus of the substrate is fixed to be 10.4 kPa, the shear modulus
of the film is varied from ,3 kPa to ,0.8 GPa, giving modulus ratio
mf/ms from ,0.3 to ,8 3 104. The adhesion energy between the film
and substrate is controlled to vary from 1022 Jm22 to 103 Jm22 by
baking the film-substrate structures at different temperatures (see
Methods and Supplementary Fig. S12)39. In order to avoid the

film-substrate delamination, a very high adhesion energy (i.e., C .
103 Jm22 andC/(msHf) . 103) is achieved by smearing a thin adhesive
layer between the film and substrate47,48,51. Since the adhesive layer is
much thinner than the film and its modulus approximates that of the
substrate, the adhesive layer does not affect the instability patterns39.

We first discuss the five modes of patterns observed in the film-
substrate structures with strong adhesion that prevents delamina-
tion: (i) If the film is more compliant than the substrate, for example
mf/ms 5 0.3 or 0.64, the structure maintains flat under relatively low
mismatch strain. When eM reaches ,0.36 (for mf/ms 5 0.3 and 0.64),
the initially flat surface suddenly forms discrete creases as indicated
by arrows in Fig. 3B, which then evolve into periodically distributed
creases with the rise of eM

12,43. (ii) When the modulus ratio increases

Figure 4 | Experimental validation of the phase diagram for instability patterns in film-substrate structures with moderate adhesion energies.
Comparison between experimental data and the phase diagrams of surface instability patterns with delamination: (A) flat to delaminated-buckle,
(B) crease to delaminated-buckle, (C) wrinkle to delaminated-buckle, (D) fold to delaminated-buckle, (E) period-double to delaminated-buckle,
and (F) ridge to delaminated-buckle. The circle markers with different colors in each phase domain represent the observed instability patterns. The inset
images in each phase diagram represent the corresponding delaminated-buckle patterns. The two-dimensional phase diagrams are achieved by sectioning
the three-dimensional phase diagram at the normalized adhesion energies C/(msHf) equal to (A) 0.13, (B) 0.28, (C) 0.46, (D) 0.81, (E) 3.99 and (F) 66.63,
respectively.
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Validation of the theoretical models with experiments. We next
verify the 3D phase diagram by comparing with experimental results
on polymeric film-substrate structures with mismatch strains. We
induce the mismatch strain in the film-substrate structure by
uniaxially pre-stretching an elastomer substrate, adhering a
polymer film on the substrate, and then relaxing the substrate to
the original length (see Methods and Fig. 1C). While the shear
modulus of the substrate is fixed to be 10.4 kPa, the shear modulus
of the film is varied from ,3 kPa to ,0.8 GPa, giving modulus ratio
mf/ms from ,0.3 to ,8 3 104. The adhesion energy between the film
and substrate is controlled to vary from 1022 Jm22 to 103 Jm22 by
baking the film-substrate structures at different temperatures (see
Methods and Supplementary Fig. S12)39. In order to avoid the

film-substrate delamination, a very high adhesion energy (i.e., C .
103 Jm22 andC/(msHf) . 103) is achieved by smearing a thin adhesive
layer between the film and substrate47,48,51. Since the adhesive layer is
much thinner than the film and its modulus approximates that of the
substrate, the adhesive layer does not affect the instability patterns39.

We first discuss the five modes of patterns observed in the film-
substrate structures with strong adhesion that prevents delamina-
tion: (i) If the film is more compliant than the substrate, for example
mf/ms 5 0.3 or 0.64, the structure maintains flat under relatively low
mismatch strain. When eM reaches ,0.36 (for mf/ms 5 0.3 and 0.64),
the initially flat surface suddenly forms discrete creases as indicated
by arrows in Fig. 3B, which then evolve into periodically distributed
creases with the rise of eM

12,43. (ii) When the modulus ratio increases

Figure 4 | Experimental validation of the phase diagram for instability patterns in film-substrate structures with moderate adhesion energies.
Comparison between experimental data and the phase diagrams of surface instability patterns with delamination: (A) flat to delaminated-buckle,
(B) crease to delaminated-buckle, (C) wrinkle to delaminated-buckle, (D) fold to delaminated-buckle, (E) period-double to delaminated-buckle,
and (F) ridge to delaminated-buckle. The circle markers with different colors in each phase domain represent the observed instability patterns. The inset
images in each phase diagram represent the corresponding delaminated-buckle patterns. The two-dimensional phase diagrams are achieved by sectioning
the three-dimensional phase diagram at the normalized adhesion energies C/(msHf) equal to (A) 0.13, (B) 0.28, (C) 0.46, (D) 0.81, (E) 3.99 and (F) 66.63,
respectively.
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Validation of the theoretical models with experiments. We next
verify the 3D phase diagram by comparing with experimental results
on polymeric film-substrate structures with mismatch strains. We
induce the mismatch strain in the film-substrate structure by
uniaxially pre-stretching an elastomer substrate, adhering a
polymer film on the substrate, and then relaxing the substrate to
the original length (see Methods and Fig. 1C). While the shear
modulus of the substrate is fixed to be 10.4 kPa, the shear modulus
of the film is varied from ,3 kPa to ,0.8 GPa, giving modulus ratio
mf/ms from ,0.3 to ,8 3 104. The adhesion energy between the film
and substrate is controlled to vary from 1022 Jm22 to 103 Jm22 by
baking the film-substrate structures at different temperatures (see
Methods and Supplementary Fig. S12)39. In order to avoid the

film-substrate delamination, a very high adhesion energy (i.e., C .
103 Jm22 andC/(msHf) . 103) is achieved by smearing a thin adhesive
layer between the film and substrate47,48,51. Since the adhesive layer is
much thinner than the film and its modulus approximates that of the
substrate, the adhesive layer does not affect the instability patterns39.

We first discuss the five modes of patterns observed in the film-
substrate structures with strong adhesion that prevents delamina-
tion: (i) If the film is more compliant than the substrate, for example
mf/ms 5 0.3 or 0.64, the structure maintains flat under relatively low
mismatch strain. When eM reaches ,0.36 (for mf/ms 5 0.3 and 0.64),
the initially flat surface suddenly forms discrete creases as indicated
by arrows in Fig. 3B, which then evolve into periodically distributed
creases with the rise of eM

12,43. (ii) When the modulus ratio increases

Figure 4 | Experimental validation of the phase diagram for instability patterns in film-substrate structures with moderate adhesion energies.
Comparison between experimental data and the phase diagrams of surface instability patterns with delamination: (A) flat to delaminated-buckle,
(B) crease to delaminated-buckle, (C) wrinkle to delaminated-buckle, (D) fold to delaminated-buckle, (E) period-double to delaminated-buckle,
and (F) ridge to delaminated-buckle. The circle markers with different colors in each phase domain represent the observed instability patterns. The inset
images in each phase diagram represent the corresponding delaminated-buckle patterns. The two-dimensional phase diagrams are achieved by sectioning
the three-dimensional phase diagram at the normalized adhesion energies C/(msHf) equal to (A) 0.13, (B) 0.28, (C) 0.46, (D) 0.81, (E) 3.99 and (F) 66.63,
respectively.
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Validation of the theoretical models with experiments. We next
verify the 3D phase diagram by comparing with experimental results
on polymeric film-substrate structures with mismatch strains. We
induce the mismatch strain in the film-substrate structure by
uniaxially pre-stretching an elastomer substrate, adhering a
polymer film on the substrate, and then relaxing the substrate to
the original length (see Methods and Fig. 1C). While the shear
modulus of the substrate is fixed to be 10.4 kPa, the shear modulus
of the film is varied from ,3 kPa to ,0.8 GPa, giving modulus ratio
mf/ms from ,0.3 to ,8 3 104. The adhesion energy between the film
and substrate is controlled to vary from 1022 Jm22 to 103 Jm22 by
baking the film-substrate structures at different temperatures (see
Methods and Supplementary Fig. S12)39. In order to avoid the

film-substrate delamination, a very high adhesion energy (i.e., C .
103 Jm22 andC/(msHf) . 103) is achieved by smearing a thin adhesive
layer between the film and substrate47,48,51. Since the adhesive layer is
much thinner than the film and its modulus approximates that of the
substrate, the adhesive layer does not affect the instability patterns39.

We first discuss the five modes of patterns observed in the film-
substrate structures with strong adhesion that prevents delamina-
tion: (i) If the film is more compliant than the substrate, for example
mf/ms 5 0.3 or 0.64, the structure maintains flat under relatively low
mismatch strain. When eM reaches ,0.36 (for mf/ms 5 0.3 and 0.64),
the initially flat surface suddenly forms discrete creases as indicated
by arrows in Fig. 3B, which then evolve into periodically distributed
creases with the rise of eM

12,43. (ii) When the modulus ratio increases

Figure 4 | Experimental validation of the phase diagram for instability patterns in film-substrate structures with moderate adhesion energies.
Comparison between experimental data and the phase diagrams of surface instability patterns with delamination: (A) flat to delaminated-buckle,
(B) crease to delaminated-buckle, (C) wrinkle to delaminated-buckle, (D) fold to delaminated-buckle, (E) period-double to delaminated-buckle,
and (F) ridge to delaminated-buckle. The circle markers with different colors in each phase domain represent the observed instability patterns. The inset
images in each phase diagram represent the corresponding delaminated-buckle patterns. The two-dimensional phase diagrams are achieved by sectioning
the three-dimensional phase diagram at the normalized adhesion energies C/(msHf) equal to (A) 0.13, (B) 0.28, (C) 0.46, (D) 0.81, (E) 3.99 and (F) 66.63,
respectively.
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Shapes of growing/swelling 
sheets and coiling of rods

of Ω(r) at each lattice point according to Eqs. 3
and 4, determining the corresponding value of
flow from the fit of Eq. 2 to the data in Fig. 1H,
and finally setting the size of the dot at that
lattice point according to Eq. 1. Because the
power-law metrics in Eq. 3 diverge or vanish at
the origin, it is necessary to cut out a small re-
gion around the center of each of the two cones.

The shapes adopted by the corresponding gel
sheets (Fig. 2, A to D) are measured by laser scan-
ning confocal fluorescence microscopy (LSCM)
and analyzed as described in the SOM. Each of
the four surfaces shows only small deviations
about an average Gaussian curvature, with the
exception of the regions near the free edges,
where our analysis yields artifactual curvatures
(due to the finite thickness of the gel sheets, the
surface meshing procedure used yields addition-
al points on the edges that do not accurately
reflect the 2D geometries of the sheets). After
excluding regions of the surface within 2hof the
edges to avoid these artifacts, we find the aver-
age Gaussian curvatures of the spherical cap and
saddle to be 6.2 mm−2 and –20.6 mm−2, respec-
tively, with nearly axisymmetric distributions
of curvature (fig. S2A). Both values are in rea-
sonable agreement with the target values, al-
though the tendency of disks with uniform dot
sizes to show slight curvatures (with radii of 2
mm) suggests the presence of slight through-
thickness variations in swelling (see SOM for
details) that may contribute to the observed de-
viations from the programmed curvature. Inter-
estingly, we do not observe a boundary layer
with negative Gaussian curvature around the
edge of the spherical cap as has been reported

for truly smooth metrics (17, 18), possibly re-
flecting the influence of the through-thickness
variations in swelling. For both cones, the av-
erage Gaussian curvatures, excluding regions at
the free edges, are close to zero. Further, Fig. 2E
shows a plot of the deficit angle d measured for
five different cone metrics with power law ex-
ponents −1 ≤ b < 0, which agrees closely with
the programmed value d = −pb.

We next consider metrics of the form

WðrÞ ¼ c½1þ ðr=RÞ2ðn−1Þ&2 ð5Þ

corresponding to Enneper’s minimal surfaces
with nnodes. These surfaces all have zero mean
curvature and so are expected to minimize the
elastic energy for these metrics at vanishing
thickness (18). Although Eq. 5 is axisymmetric,
Enneper's surfaces spontaneously break axial
symmetry by forming nwrinkles. In Fig. 2, G
to J, we demonstrate patterned surfaces with n=
3 to 6, each of which reproduces the targeted
number of wrinkles. As shown in the maps of
curvature in Fig. 2 (and azimuthally averaged
plots in fig. S2B), each surface has small mean
curvature and negative Gaussian curvature that
matches closely with the target profile. For a
given film thickness, increasing n eventually
leads to a saturation in the number of wrinkles,
because the bending energy arising from Gaussian
curvature increases with n (for the films with
h≈ 7 mm in Fig. 4, a metric with n= 8 yielded
only six wrinkles). However, given the subtle
differences between the metrics plotted in Fig.
2F, the ability to accurately reproduce the pro-
grammed number of wrinkles for n= 3 to 6 is a

strong testament to the fidelity of the metrics
patterned by this technique.

The true power of our approach lies in the
fabrication of nonaxisymmetric swelling pat-
terns. As a simple demonstration, we first con-
sider the problem of how to form a sphere
through growth. For the axisymmetric metric
described in Eq. 4, the maximum value of r/R
to which this metric can be experimentally pat-
terned is restricted by the accessible range of
swelling. In our case, this range is Ωhigh/Ωlow ≈
3.7, limiting the maximum portion of a sphere
that can be obtained to slightly less than half.
Although further improvements in the material
system are likely to increase the available range,
the axisymmetric metric is inherently an ineffi-
cient way to form a sphere, because as one seeks
to go beyond a hemisphere and toward a closed
shape, the required swelling contrast diverges
rapidly. Given access to 2D metrics, however, a
number of well-established conformal mappings
of the sphere onto flat surfaces are known from
the field of map projections. For example, the
Peirce quincuncial projection (27) maps a sphere
of radius R onto a square using the metric

Wðx; yÞ ¼ 2
jdn xþiy

R j 1ffiffi
2

p
" #

sn xþiy
R j 1ffiffi

2
p

" #
j2

1þ jcn xþiy
R j 1ffiffi

2
p

" #
j2

h i2 ð6Þ

where sn, cn, and dn are Jacobi elliptic func-
tions, and x and y are the components of r. This
metric still has four cusp-like singularities where
Ω(r) = 0; however, one of its useful properties
as a map projection is that only a small portion

Fig. 2. Halftoned disks
with axisymmetric met-
rics. Patterned sheets pro-
grammed to generate (A)
a piece of saddle surface
(Sa), (B) a cone with an
excess angle (Ce), (C) a
spherical cap (Sp), and
(D) a cone with a deficit
angle (Cd). (Top) 3D re-
constructed images of
swollen hydrogel sheets
and (bottom) top-view
surface plots of Gaussian
curvature. Initial thick-
nesses and disk diame-
ters are 9 and 390 mm,
respectively, although
the apparent thickness
of sheets is enlarged due
to the resolution of the
LSCM. (E) Measured val-
ues of deficit angle d
for cones with five dif-
ferent exponents b (see Eq. 3) (black solid circles) and the programmed
values (blue dashed line). (F) Swelling factors for the target metrics as a
function of normalized radial position on the unswelled disks r/R, with points
plotted at values corresponding to lattice points to indicate the resolu-
tion with which Ω is patterned. (G to J) Patterned sheets programmed to

generate Enneper’s minimal surfaces with n = (G) 3, (H) 4, (I) 5, and (J) 6
wrinkles upon swelling as dictated by Eq. 5. 3D reconstructed images (top)
and top-view surface plots of squared mean curvature H2 and Gaussian
curvature K (bottom). Initial thicknesses and disk diameters are 7 and 390 mm,
respectively.
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Wrinkled and straight blades in macroalgae

Hollenberg 1976) where they are exposed to tidal
currents and to nonbreaking waves at some sites
(Koehl and Wainwright 1977; Koehl and Alberte
1988; Johnson and Koehl 1994; Gaylord et al. 2003).

The blades of N. luetkeana from sites exposed to
slow flow are wide and ‘‘undulate’’ (ruffled) (Fig. 1A
and B), whereas the blades of those from sites exposed
to rapid currents are flat, narrow, and strap-like

Table 1 Blade shapes in different water flow habitats

Species

Wide in slow flow;

narrow in rapid flow

Thin in slow flow;

thick in rapid flow

Undulate in slow flow;

flat in rapid flow

Heavily corrugated or

bullate in slow flow;

less so in rapid flow

Agarum fimbriatum Duggins et al. (2003)

Costaria costata Duggins et al. (2003)

Dictyotales sp. Stewart and Carpenter (2003)

Durvillaea potatorum Cheshire and Hallam (1989) Cheshire and Hallam (1989)

Ecklonia radiata Fowler-Walker et al. (2006),

Wenberg and Thomsen (2005),

Wing et al. (2007)

Wenberg and Thomsen (2005),

Wing et al. (2007)

Wing et al. (2007)

Eisenia arborea Roberson and

Coyer (2004)

Roberson and Coyer (2004) Roberson and

Coyer (2004)

Fucus vesiculosus Back (1993)

Gigartina radula Jackelman and Bolton (1990) Jackelman and Bolton (1990)

Hedophyllum sessile Armstrong (1989) Armstrong (1989) Armstrong (1989)

Laminaria complanata Duggins et al. (2003)

Laminaria digitata Sundene (1961) Sundene (1961)

Laminaria hyperborean Sjøtun and Fredriksen (1995) Sjøtun and Fredriksen (1995)

Laminaria japonica Kawamata (2001) Kawamata (2001)

Laminaria longicruris Gerard and Mann (1979) Gerard and Mann (1979) Gerard and Mann (1979)

Laminaria saccharina Parke (1948) Parke (1948) Buck and Buchholz (2005)

Macrocystis integrifolia Hurd et al. (1996) Hurd et al. (1996) Hurd et al. (1996),

Hurd et al. (1997)

Hurd et al. (1996)

Nereocystis luetkeana Johnson and Koehl (1994),

Koehl and Alberte (1988)

Johnson and Koehl (1994),

Koehl and Alberte (1988)

Pachydictyon coraceum Haring and Carpenter (2007) Haring and Carpenter (2007)

Saccorhiza polyschides Norton (1969)

Fig. 1 (A) Nereocystis luetkeana bed at SC, the slow-flow habitat. (B) Ruffled, wide blades from a N. luetkeana collected at SC.

The dotted line indicates the blade position defined as the ‘‘origin’’ in growth experiments (the position along a blade where the

blade first widens from a cylindrical string into a flat blade). (C) Nereocystis luetkeana bed at TR, the current-swept habitat.

(D) Flat, narrow blades from a N. luetkeana collected from TR.
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Hollenberg 1976) where they are exposed to tidal
currents and to nonbreaking waves at some sites
(Koehl and Wainwright 1977; Koehl and Alberte
1988; Johnson and Koehl 1994; Gaylord et al. 2003).

The blades of N. luetkeana from sites exposed to
slow flow are wide and ‘‘undulate’’ (ruffled) (Fig. 1A
and B), whereas the blades of those from sites exposed
to rapid currents are flat, narrow, and strap-like

Table 1 Blade shapes in different water flow habitats
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Fig. 1 (A) Nereocystis luetkeana bed at SC, the slow-flow habitat. (B) Ruffled, wide blades from a N. luetkeana collected at SC.

The dotted line indicates the blade position defined as the ‘‘origin’’ in growth experiments (the position along a blade where the

blade first widens from a cylindrical string into a flat blade). (C) Nereocystis luetkeana bed at TR, the current-swept habitat.

(D) Flat, narrow blades from a N. luetkeana collected from TR.
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can change the morphology of their blades in
response ambient water flow. Kelp with wide, ruffled
blades collected from the protected SC site were tied
to cinder blocks that held them in place when they
were transplanted into the current-swept TR site.
Kelp with narrow, flat blades collected at TR were
transplanted into the SC site in the same way. All
transplanted kelp were placed at depths where their
pneumatocysts could float at the air–water interface.
Grids of holes were punched into one undamaged
blade per kelp, as described above (Fig. 2A) and the
distances between holes were measured before the
kelp were transplanted, and again after 6 days of
growth in their new flow environments (Fig. 2B and
C). Marked blades of kelp growing in situ at SC and
TR during the same 6-day period served as controls
(Figs 3 and 4).

We found that the new proximal regions of blades
changed their morphology when N. luetkeana were
transplanted to different flow regimes. For example,
the proximal sections of ruffled blades from the

slow-flow site became flat after being transplanted to
the current-swept site. This flat shape was produced
because the longitudinal strain rates along the edges
of the blades of such transplanted kelp were the same
as those along the midlines of the blades (Fig. 8).
Conversely, the new tissue at the proximal ends of
strap-like blades on kelp transplanted from the
current-swept to the slow-flow site were ruffled
(Fig. 9).

Although we observed changes in the shapes of
blades of N. luetkeana transplanted to different flow

Fig. 7 Numerical simulations demonstrate different bucking

morphologies of growing kelp blades. For all three cases, the

length is assumed to be the same (80 units) with widths of 20,

40, and 60 units. We see that there is a qualitative transition from

global buckling to localized edge buckling as the aspect ratio of

the blade is changed. For the same inhomogeneous growth

profile, narrow blades respond by twisting globally into helicoidal

shapes (A) while broad blades respond by undulating only in the

vicinity of the lateral edges (B, C). It is easy to understand this

transition qualitatively: when the blade width w! ! (edge wave

length), the bulk of the kelp remains flat while the edges buckle

to accommodate the growth, while when w/!"1, the coupling

between the edges causes a transition from local bucking to

global twist. Indeed, sometimes it is possible for both localized

edge buckles and global twist modes to coexist, as can be seen in

(D). For all simulations, the parameters chosen were such that

the ratio of the bending stiffness B to the stretching stiffness Y is

approximately 1/50 (only the ratio appears in the scaled energy).

Fig. 8 Longitudinal growth strain rates ([!L/Lo]/day) plotted as a

function of the distance from the origin (Fig. 1C) of the proximal

hole marking a blade segment at the start of the experiment on

Day 0 for ruffled blades on N. luetkeana transplanted from the

protected SC site to the current-swept TR site (n¼6 kelp). Open

circles indicate longitudinal strain rates measured along the edge

of a blade, and black symbols indicate longitudinal strain rates

measured along the midline of a blade. Error bars show 1 SD.

There were no significant differences between edge and midline

strain rates for blades on these transplanted kelp (ANOVA,

P40.05).

Fig. 9 Photograph (taken 6 days after the transplant) of the

proximal end of some blades of a N. luetkeana transplanted from

the current-swept TR site to the slowflow SC site (grid marks

1 cm apart). The old, slowly growing distal portion of the blade

retained the flat blade morphology that characterized this

individual before it was transplanted, while the new, rapidly

growing proximal portion of the blade developed ruffles. All

individuals (n¼5 kelp) transplanted from the current-swept to

the slow-flow habitat showed similar development of ruffles in

the new proximal blade tissue. In contrast, the blades of all

control kelp (n¼5) collected from the current-swept site and

transplanted back into that exposed site remained flat.

842 M. A. R. Koehl et al.
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Wrinkled and straight blades in macroalgae

Hollenberg 1976) where they are exposed to tidal
currents and to nonbreaking waves at some sites
(Koehl and Wainwright 1977; Koehl and Alberte
1988; Johnson and Koehl 1994; Gaylord et al. 2003).

The blades of N. luetkeana from sites exposed to
slow flow are wide and ‘‘undulate’’ (ruffled) (Fig. 1A
and B), whereas the blades of those from sites exposed
to rapid currents are flat, narrow, and strap-like

Table 1 Blade shapes in different water flow habitats

Species

Wide in slow flow;

narrow in rapid flow

Thin in slow flow;

thick in rapid flow

Undulate in slow flow;

flat in rapid flow

Heavily corrugated or

bullate in slow flow;

less so in rapid flow

Agarum fimbriatum Duggins et al. (2003)

Costaria costata Duggins et al. (2003)

Dictyotales sp. Stewart and Carpenter (2003)

Durvillaea potatorum Cheshire and Hallam (1989) Cheshire and Hallam (1989)

Ecklonia radiata Fowler-Walker et al. (2006),

Wenberg and Thomsen (2005),

Wing et al. (2007)

Wenberg and Thomsen (2005),

Wing et al. (2007)

Wing et al. (2007)

Eisenia arborea Roberson and

Coyer (2004)

Roberson and Coyer (2004) Roberson and

Coyer (2004)

Fucus vesiculosus Back (1993)

Gigartina radula Jackelman and Bolton (1990) Jackelman and Bolton (1990)

Hedophyllum sessile Armstrong (1989) Armstrong (1989) Armstrong (1989)

Laminaria complanata Duggins et al. (2003)

Laminaria digitata Sundene (1961) Sundene (1961)

Laminaria hyperborean Sjøtun and Fredriksen (1995) Sjøtun and Fredriksen (1995)

Laminaria japonica Kawamata (2001) Kawamata (2001)

Laminaria longicruris Gerard and Mann (1979) Gerard and Mann (1979) Gerard and Mann (1979)

Laminaria saccharina Parke (1948) Parke (1948) Buck and Buchholz (2005)

Macrocystis integrifolia Hurd et al. (1996) Hurd et al. (1996) Hurd et al. (1996),

Hurd et al. (1997)

Hurd et al. (1996)

Nereocystis luetkeana Johnson and Koehl (1994),

Koehl and Alberte (1988)

Johnson and Koehl (1994),

Koehl and Alberte (1988)

Pachydictyon coraceum Haring and Carpenter (2007) Haring and Carpenter (2007)

Saccorhiza polyschides Norton (1969)

Fig. 1 (A) Nereocystis luetkeana bed at SC, the slow-flow habitat. (B) Ruffled, wide blades from a N. luetkeana collected at SC.

The dotted line indicates the blade position defined as the ‘‘origin’’ in growth experiments (the position along a blade where the

blade first widens from a cylindrical string into a flat blade). (C) Nereocystis luetkeana bed at TR, the current-swept habitat.

(D) Flat, narrow blades from a N. luetkeana collected from TR.
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Fig. 1 (A) Nereocystis luetkeana bed at SC, the slow-flow habitat. (B) Ruffled, wide blades from a N. luetkeana collected at SC.

The dotted line indicates the blade position defined as the ‘‘origin’’ in growth experiments (the position along a blade where the

blade first widens from a cylindrical string into a flat blade). (C) Nereocystis luetkeana bed at TR, the current-swept habitat.
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currents and to nonbreaking waves at some sites
(Koehl and Wainwright 1977; Koehl and Alberte
1988; Johnson and Koehl 1994; Gaylord et al. 2003).
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Fig. 1 (A) Nereocystis luetkeana bed at SC, the slow-flow habitat. (B) Ruffled, wide blades from a N. luetkeana collected at SC.

The dotted line indicates the blade position defined as the ‘‘origin’’ in growth experiments (the position along a blade where the

blade first widens from a cylindrical string into a flat blade). (C) Nereocystis luetkeana bed at TR, the current-swept habitat.

(D) Flat, narrow blades from a N. luetkeana collected from TR.
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Fig. 1 (A) Nereocystis luetkeana bed at SC, the slow-flow habitat. (B) Ruffled, wide blades from a N. luetkeana collected at SC.

The dotted line indicates the blade position defined as the ‘‘origin’’ in growth experiments (the position along a blade where the

blade first widens from a cylindrical string into a flat blade). (C) Nereocystis luetkeana bed at TR, the current-swept habitat.

(D) Flat, narrow blades from a N. luetkeana collected from TR.
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blades grow more rapidly than others (Figs 3, 4,
and 7). During the course of an experiment, the
segments of the blade move continuously away from
the origin, thus more analysis is needed to show the
total growth of a tissue element over time. Our
analysis of the trajectories of tissue growth and of

growth strains as a function of position will be
presented elsewhere.

Longitudinal strain rates of both undulate
(Fig. 3A) and flat (Fig. 3B) blades are greatest near
the blade’s origin, but continued growth of older
tissues at distances of 30–50 cm from the origin is
evident. In the rapidly growing proximal regions of
ruffled blades, the edges of the blade grew more
rapidly than did the midlines (Fig. 3A). In contrast,
the longitudinal strain rates of the edges and
midlines of flat blades did not differ from each
other (Fig. 3B).

Transverse strain rates of both ruffled and flat
blades are plotted in Fig. 4. As with longitudinal
growth, most growth in width occurs at the proximal
ends of the blades. Ruffled blades growing at the site
with slow flow had higher rates of transverse strain
than did flat blades growing at the exposed site.

In addition to length and width, we also measured
blade thickness to the nearest 0.1 mm with vernier
calipers. Blades of both morphologies were thicker at
their proximal ends than they were distally. At a
position 5 cm from the origin, the mean thickness of
ruffled blades was 0.9 mm (SD¼ 0.15, n¼ 12 kelp)
and the mean thickness of strap-like blades was

Fig. 3 Longitudinal growth strain rates ([!L/Lo]/day) plotted as a

function of the distance from the origin (Fig. 1C) of the proximal

hole marking a blade segment at the start of the experiment

on Day 0 for ruffled blades on N. luetkeana (n¼ 9 kelp) growing

at the slow-flow SC site (A), and for strap-like flat blades on

N. luetkeana (n¼ 5 kelp) growing at the current-swept TR site

(B). Open symbols indicate longitudinal strain rates measured

along the edge of a blade, as indicated by the white arrow on the

blade diagram in (A). Black symbols indicate longitudinal strain

rates measured along the midline of a blade, as illustrated by the

black arrow on the blade diagram in (A). Error bars show 1 SD.

Longitudinal strain rates at the proximal ends of ruffled blades

(starting positions 10 and 15 cm from the origin) were

significantly greater along the blade edges than along their

midlines (ANOVA, P50.05), whereas there was no significant

difference between edge and midline strain rates for the flat

blades.

Fig. 4 Transverse growth strain rates ([!W/Wo]/day) plotted as a

function of the distance from the origin (Fig. 1C) of each

transverse column of holes at the start of the experiment on

Day 0, for wide, ruffled blades on N. luetkeana growing at the

slowflow SC site (black circles, n¼ 9 kelp), and for narrow, flat

blades on N. luetkeana growing at the current-swept TR site

(open squares, n¼ 5 kelp). Error bars represent 1 SD. Transverse

strain rates for the wide, ruffled blades were significantly greater

than those for narrow, flat blades at the proximal ends of the

blades (starting positions of 5, 10, and 15 cm from the origin)

(ANOVA, P50.05).
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Differential growth produces internal stress

mation. The horizontal springs one row up are also de-
formed, but not as much; their new equilibrium length is 40%
greater than before the deformation. The next row of springs
is deformed even less, and so on up to the top of the network,
which is almost completely unchanged.

A long strip of material deformed in that way is essen-
tially guaranteed to buckle. It is favorable for each material
point to lie at a specific distance from each of its horizontal
and vertical neighbors. If the sheet remains flat, adjacent hor-
izontal rows must slide past one another, stretching the ver-
tical connecting springs more and more for longer and longer
sheets. Something has to give, and what gives is the planar
constraint of an unbuckled structure.

From a formal point of view, assigning a new collection
of equilibrium distances to nearby material points is equiva-
lent to specifying a new target metric; see the details in box 1.
In the target metric tensor for the network shown in figure 3,
only the horizontal component gxx is different from 1, and it
depends only on the vertical position: gxx = gxx(y). We often
assume that once a sheet relaxes to equilibrium, its actual
metric is equal to its target metric, to a first approximation.

For almost any decreasing functional form of the target
metric component gxx(y) of a long sheet, the sheet will spon-
taneously form a structure similar to the one in figure 2b. A
way to show that buckled structures are necessary is to em-
ploy the Theorema Egregium, the most famous result from
Gauss’s 1827 paper, which expresses the Gaussian curvature
K of a surface in terms of the metric. In our case,

(1)

If √gxx decreases in a convex fashion, its second deriva-
tive is positive, so the Gaussian curvature must be negative,
which means that at every point the surface resembles a sad-
dle, as shown in box 2. The only way that every part of a sur-
face can look like a saddle is if the surface buckles.

Sheets can form fascinating patterns even when they are
flat almost everywhere. Origami provides one set of exam-
ples, but even if you lack the dexterity to fold a Kawasaki
rose, you can still do some interesting home experiments by
taking sheets of paper and simply crumpling them. Martine

Ben Amar and Yves Pomeau realized that a fundamental sin-
gularity of crumpled paper, called a d-cone, is generated by
taking an elastic plate and applying forces to its boundary.5
The same type of singularity causes body panels to crumple
and form sharp creases during car accidents.
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Defining a metric on a surface means comparing the surface
in two different states. First, think of a flat sheet of material—
the material in its reference state. Draw a grid of closely
spaced perpendicular lines to form a coordinate system with
the variables x and y. The distance between adjacent lines is
dx along x and dy along y. Now deform the sheet, stretching
or compressing it to change the distances between the lines.
Let the new position in space of a point originally at (x, y) be
called r(x, y). The square of the distance between two points
originally separated by (dx, dy) becomes

(1)

The above computation motivates the definition of the metric
tensor

(2)

where α and β can adopt values x and y.
When discussing physical sheets, two different metric ten-

sors are important. One, the target metric, is derived from the
shape the sheet would take if all neighboring material points
were located at the equilibrium distances preferred by the
imaginary springs of figure 3. The second, the actual metric,
is obtained from the real configuration of the material. The 
difference between the two tensors describes how much the
material is strained and is the starting point of the theory of
nonlinear elasticity. For example, the simplest theory for the
energy per volume U of stretched rubber is that it is propor-
tional to the trace of the actual metric tensor g(x,y) minus the
target metric (a unit tensor):18

U = (G/2)(gxx + gyy − 2), (3)

where G is the shear modulus of the material.

Box 1. Metrics
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Figure 3. (a) Elastic network in equilibrium with all masses 
in the reference state. (b) The equilibrium lengths of horizon-
tal springs in successive rows are increased, but vertical
springs are not changed. In the configuration shown, the red
springs are under tension and are not at their equilibrium
lengths. All configurations of the masses in the plane have
high energy, so the structure will buckle.
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formed, but not as much; their new equilibrium length is 40%
greater than before the deformation. The next row of springs
is deformed even less, and so on up to the top of the network,
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taking an elastic plate and applying forces to its boundary.5
The same type of singularity causes body panels to crumple
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the material in its reference state. Draw a grid of closely
spaced perpendicular lines to form a coordinate system with
the variables x and y. The distance between adjacent lines is
dx along x and dy along y. Now deform the sheet, stretching
or compressing it to change the distances between the lines.
Let the new position in space of a point originally at (x, y) be
called r(x, y). The square of the distance between two points
originally separated by (dx, dy) becomes

(1)
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When discussing physical sheets, two different metric ten-

sors are important. One, the target metric, is derived from the
shape the sheet would take if all neighboring material points
were located at the equilibrium distances preferred by the
imaginary springs of figure 3. The second, the actual metric,
is obtained from the real configuration of the material. The 
difference between the two tensors describes how much the
material is strained and is the starting point of the theory of
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before growth faster growth of the 
bottom edge in x direction

springs
under

tension

x

y

Differential growth produces internal stresses,
which can be partially released via bending!

Next: Short detour to differential geometry.
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Metric for measuring distances along curves

~r(x1)

0

parameter describing 
position along the curve x1

function describing 
shape of the curve ~r(x1)

~t(x1) =
d~r(x1)

dx1

local tangent
to the curve

~t(x1)

~r(x1)

0
~r
�
x1 + dx1

�

d~r

metric for measuring lengths
d`2 = d~r 2 = ~t 2

�
dx1

�2
= g

�
dx1

�2

g = ~t 2

d` =
p
gdx1

Natural parametrization 
corresponds to            , where      , 

measures distance along the beam.
g ⌘ 1 x1
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Metric for measuring distances along curves

~r(x1)

0

parameter describing 
position along the curve x1

function describing 
shape of the curve ~r(x1)

~t(x1) =
d~r(x1)

dx1

local tangent
to the curve

~t(x1)

Example

~r(x1) ~t(x1)

~r(x1) = R
�
cos(!x1), sin(!x1)

�

g(x1) = R2!2

d` = R!dx1

~t(x1) = R!
�
� sin(!x1), cos(!x1)

�

metric for measuring lengths
d`2 = d~r 2 = ~t 2

�
dx1

�2
= g

�
dx1

�2

g = ~t 2

d` =
p
gdx1

Natural parametrization 
corresponds to            , where      , 

measures distance along the beam.
g ⌘ 1 x1
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Strain and energy of beam deformations

~r(x1)
0 0

~r 0(x1)

undeformed beam deformed beam

g =
�
d~r/dx1

�2
g0 =

�
d~r 0/dx1

�2

d` =
p
gdx1

d`0 =
p

g0dx1 = d`(1 + ✏)

strain
d`02 � d`2 = (2✏+ ✏2)d`2 ⇡ 2✏ d`2

✏ =
d`02 � d`2

2d`2
=

1

2
g�1 (g0 � g)

strain measures the difference 
of metric     for deformed beam 
from the preferred metric     !

g0

g

Energy cost for  
stretching/compressing 

k = EA
E - 3D Young’s modulus
A - beam cross-section area

U =

Z �p
gdx1

� 1

2
k✏2
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Metric tensor for measuring distances on surfaces
parameters describing 

position along the surface 

function describing 
shape of the surface 

local tangent vectors 
to the surface

x1, x2

~r(x1, x2)

0

0
~r(x1, x2)

~t1

~t2 ~n

~ti =
@~r

@xi

~n =
~t1 ⇥ ~t2
|~t1 ⇥ ~t2|

unit normal vector 
of the surface

metric tensor for measuring lengths

d`2 = d~r 2 =
X

i,j

~ti · ~tjdxidxj =
X

i,j

gijdx
idxj

gij = ~ti · ~tj =
✓

~t1 · ~t1, ~t1 · ~t2
~t2 · ~t1 ~t2 · ~t2

◆

g = det(gij) = |~t1 ⇥ ~t2|2

area element

↵

~t1dx
1

~t2dx
2

dA = |~t1||~t2| sin↵dx1dx2

dA =
p
g dx1dx2
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~tx

~ty

~n

dA = dxdy

gij = ~ti · ~tj =
✓

1, 0
0, 1

◆

Examples
~r(x, y) = (x, y, 0)

~tx =
@~r

@x
= (1, 0, 0)

~ty =
@~r

@y
= (0, 1, 0)

~n =
~tx ⇥ ~ty
|~tx ⇥ ~ty|

= (0, 0, 1)

~n

~t�

~tz gij = ~ti · ~tj =
✓

R2, 0
0, 1

◆
~t� =

@~r

@�
= R(� sin�, cos�, 0)

~tz =
@~r

@z
= (0, 0, 1)

~n =
~t� ⇥ ~tz
|~t� ⇥ ~tz|

= (cos�, sin�, 0)

dA = Rd�dz

~r(�, z) = (R cos�, R sin�, z)

~n

~t�

~t✓

~r(✓,�) = R(sin ✓ cos�, sin ✓ sin�, cos ✓)

~t✓ =
@~r

@✓
= R(cos ✓ cos�, cos ✓ sin�,� sin ✓)

~t� =
@~r

@�
= R sin ✓(� sin�, cos�, 0)

~n =
~t✓ ⇥ ~t�
|~t✓ ⇥ ~t�|

= (sin ✓ cos�, sin ✓ sin�, cos ✓)

gij = ~ti · ~tj =
✓

R2, 0
0, R2 sin2 ✓

◆

dA = R2 sin ✓ d✓d�
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Strain tensor and energy of shell deformations

0
~r(x1, x2)

undeformed shell deformed shell

0 ~r 0(x1, x2)

gij =
@~r

@xi
· @~r

@xj g0ij =
@~r 0

@xi
· @~r

0

@xj

strain tensor

uij =
1

2

X

k

(g�1)ik
�
g0kj � gkj

�

X

k

(g�1)ikgkj =
X

k

gik(g
�1)kj = �ij

inverse metric tensor

d`2 =
X

i,j

gijdx
idxj

d`02 =
X

i,j

g0ijdx
idxj

sheet thickness
Young’s modulus

Poisson’s ratio

d

E

⌫

Energy cost for stretching, 
compressing and shearing 

g = det(gij)

U =

Z �p
gdx1dx2

� 1

2

2

4�
 
X

i

uii

!2

+ 2µ
X

i,j

uijuji

3

5

Lame constants
µ =

Ed

2(1 + ⌫)
� =

E⌫d

(1� ⌫2)



45

Strain tensor for deformation of flat plates
undeformed plate deformed plate

00

~tx
~ty

~n

~t0x

~t0y
~n0

~r(x, y) = x~ex + y~ey ~r0(x, y) = ~r(x, y) + ux(x, y)~ex

+uy(x, y)~ey + h(x, y)~ez

~ti = @i~r ⌘ @~r

@i
= ~ei

local tangents local tangents

metric tensor

gij = ~ti · ~tj = �ij ⌘
✓

1, 0
0, 1

◆
strain tensor

uij =
1

2

�
g0ij � �ij

�

2uij = (@iuj + @jui) +
X

k

@iuk@juk + @ih@jh

~t0i = @i~r0 = ~ei +
X

k

(@iuk)~ek + (@ih)~ez

i, j, k 2 {x, y}
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Curvature of curves

~r(x1)
0

parameter describing 
position along the curve x1

function describing 
shape of the curve ~r(x1)

~t(x1) =
d~r(x1)

dx1

local tangent
to the curve

metric for 
measuring lengths

~t(x1)

~n(x1)

local unit normal 
vector to the curve

R(x1)

g = ~t 2

curvature of curve

~n(x1)

1

R
= K =

1

g

✓
~n · d2~r

d(x1)2

◆

Example

~r(x1)

~t(x1)

~r(x1) = R
�
cos(!x1), sin(!x1)

�

~n(x1)

~n(x1) =
�
cos(!x1), sin(!x1)

�

g(x1) = R2!2

K = � 1

R
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Curvature tensor for surfaces
parameters describing 

position along the surface 

function describing 
shape of the surface 

local tangent vectors 
to the surface

x1, x2

~r(x1, x2)

0

0
~r(x1, x2)

~t1

~t2 ~n

~ti =
@~r

@xi

~n =
~t1 ⇥ ~t2
|~t1 ⇥ ~t2|

unit normal vector 
of the surface

metric tensor for 
measuring lengthsgij = ~ti · ~tj

curvature tensor for surfaces

Kij =
X

k

�
g�1

�
ik

✓
~n · @2~r

@xk@xj

◆

principal curvatures correspond to 
the eigenvalues of curvature tensor

mean curvature

1

R1
,
1

R2

1

2

✓
1

R1
+

1

R2

◆
=

1

2

X

i

Kii =
1

2
tr(Kij)

Gaussian curvature
1

R1R2
= det(Kij)
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Surfaces of various principal curvatures

r

r
1

R1
=

1

R2
=

1

r

1

R1
=

1

r

1

R2
= 0

1

R1
> 0

1

R2
< 0

1

R1

1

R2

R 1
=
R 2

R
1 =

�R
2
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Examples for Gaussian curvature

1

R1R2
< 0

1

R1R2
= 0

1

R1R2
> 0
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~tx

~ty

~n

gij = ~ti · ~tj =
✓

1, 0
0, 1

◆

Examples Kij =
X

k

�
g�1

�
ik

✓
~n · @2~r

@xk@xj

◆

~r(x, y) = (x, y, 0)

~tx =
@~r

@x
= (1, 0, 0)

~ty =
@~r

@y
= (0, 1, 0)

~n =
~tx ⇥ ~ty
|~tx ⇥ ~ty|

= (0, 0, 1)

~n

~t�

~tz gij = ~ti · ~tj =
✓

R2, 0
0, 1

◆
~t� =

@~r

@�
= R(� sin�, cos�, 0)

~tz =
@~r

@z
= (0, 0, 1)

~n =
~t� ⇥ ~tz
|~t� ⇥ ~tz|

= (cos�, sin�, 0)

~r(�, z) = (R cos�, R sin�, z)

Kij =

✓
� 1

R , 0
0, 0

◆

Kij =

✓
0, 0
0, 0

◆

~n

~t�

~t✓

~r(✓,�) = R(sin ✓ cos�, sin ✓ sin�, cos ✓)

~t✓ =
@~r

@✓
= R(cos ✓ cos�, cos ✓ sin�,� sin ✓)

~t� =
@~r

@�
= R sin ✓(� sin�, cos�, 0)

~n =
~t✓ ⇥ ~t�
|~t✓ ⇥ ~t�|

= (sin ✓ cos�, sin ✓ sin�, cos ✓)

gij = ~ti · ~tj =
✓

R2, 0
0, R2 sin2 ✓

◆

Kij =

✓
� 1

R , 0
0, � 1

R

◆
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Bending energy for deformation of shells

0
~r(x1, x2)

undeformed shell deformed shell

0 ~r 0(x1, x2)

bending strain tensor

Kij =
X

k

�
g�1

�
ik

✓
~n · @2~r

@xk@xj

◆
K 0

ij =
X

k

�
g0�1

�
ik

✓
~n0 · @2~r 0

@xk@xj

◆

bij = K 0
ij �Kij

(local measure of deviation 
from preferred curvature)

sheet thickness
Young’s modulus

Poisson’s ratio

d

E

⌫

Energy cost of bending

 =
Ed3

12(1� ⌫2)
G = � Ed3

12(1 + ⌫)

U =

Z �p
gdx1dx2

� 1
2
 (tr(bij))

2 + Gdet(bij)

�
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Bending strain for deformation of flat plates
undeformed plate deformed plate

0

~t0x

~t0y
~n0

~r(x, y) = x~ex + y~ey ~r0(x, y) = ~r(x, y) + ux(x, y)~ex

+uy(x, y)~ey + h(x, y)~ez

local normal

reference curvature tensor bending strain tensor

~n =
~tx ⇥ ~ty
|~tx ⇥ ~ty|

= ~ez

local normal (neglecting in-plane deformations)
~n0 ⇡ ~ez � (@xh)~ex � (@yh)~eyq

1 + (@xh)
2 + (@yh)

2

Kij = ~n · @i@j~r = 0 bij = K 0
ij ⇡ @i@jh+ · · ·

0

~tx
~ty

~n



53

Mechanics of growing sheets

0 ~r 0(x1, x2)

g0ij =
@~r 0

@xi
· @~r

0

@xj

K 0
ij =

X

k

�
g0�1

�
ik

✓
~n0 · @2~r 0

@xk@xj

◆

Growth defines preferred metric tensor      ,
and preferred curvature tensor       . 

uij =
1

2

X

k

�
g�1

�
ik

�
g0kj � gkj

�

bij = K 0
ij �Kij

strain tensors

The equilibrium membrane shape                 ,        
corresponds to the minimum of elastic energy:

~r 0(x1, x2)

gij
Kij

U =

Z �p
gdx1dx2

�
2

41
2
�

 
X

i

uii

!2

+ µ
X

i,j

uijuji +
1

2
 (tr(bij))

2 + Gdet(bij)

3

5

Growth can independently tune the metric tensor       and the 
curvature tensor        , which may not be compatible with any 

surface shape that would produce zero energy cost!
Zero energy shape exists only when preferred metric tensor       and 

preferred curvature tensor         satisfy Gauss-Codazzi-Mainardi relations!
gij

Kij

gij
Kij
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Mechanics of growing sheets
One of the Gauss-Codazzi-Mainardi equations (Gauss's Theorema 

Egregium) relates the Gauss curvature to metric tensor 

,G ⇠ Ed3

scaling with 
membrane 
thickness d

det(K 0
ij) = F(g0ij)

For very thin membranes the equilibrium 
shape matches the preferred metric tensor to 
avoid stretching, compressing and shearing. 

This also specifies the Gauss curvature!

det(K 0
ij) = F(gij)

g0ij = gij

The equilibrium membrane shape                 ,        
corresponds to the minimum of elastic energy:

~r 0(x1, x2)

U =

Z �p
gdx1dx2

�
2

41
2
�

 
X

i

uii

!2

+ µ
X

i,j

uijuji +
1

2
 (tr(bij))

2 + Gdet(bij)

3

5

�, µ ⇠ Ed


