
MAE 545: Lecture 9 (3/1)
Shapes of growing sheets

Reminder: no lectures next week
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Strain tensor and energy of shell deformations
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Curvature of curves
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Curvature tensor for surfaces
parameters describing 

position along the surface 

function describing 
shape of the surface 
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to the surface

x1, x2

~r(x1, x2)

0

0
~r(x1, x2)

~t1

~t2 ~n

~ti =
@~r

@xi

~n =
~t1 ⇥ ~t2
|~t1 ⇥ ~t2|

unit normal vector 
of the surface

metric tensor for 
measuring lengthsgij = ~ti · ~tj

curvature tensor for surfaces

Kij =
X

k

�
g�1

�
ik

✓
~n · @2~r

@xk@xj

◆

principal curvatures correspond to 
the eigenvalues of curvature tensor

mean curvature

1

R1
,
1

R2

1

2

✓
1

R1
+

1

R2

◆
=

1

2

X

i

Kii =
1

2
tr(Kij)

Gaussian curvature
1

R1R2
= det(Kij)



6

Surfaces of various principal curvatures
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Examples for Gaussian curvature
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Bending energy for deformation of shells
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Bending strain for deformation of flat plates
undeformed plate deformed plate
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Mechanics of growing sheets
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Growth can independently tune the metric tensor       and the 
curvature tensor        , which may not be compatible with any 

surface shape that would produce zero energy cost!
Zero energy shape exists only when preferred metric tensor       and 

preferred curvature tensor         satisfy Gauss-Codazzi-Mainardi relations!
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Mechanics of growing sheets
One of the Gauss-Codazzi-Mainardi equations (Gauss's Theorema 

Egregium) relates the Gauss curvature to metric tensor 

,G ⇠ Ed3
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shape matches the preferred metric tensor to 
avoid stretching, compressing and shearing. 
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Wrinkled and straight blades in macroalgae

Hollenberg 1976) where they are exposed to tidal
currents and to nonbreaking waves at some sites
(Koehl and Wainwright 1977; Koehl and Alberte
1988; Johnson and Koehl 1994; Gaylord et al. 2003).

The blades of N. luetkeana from sites exposed to
slow flow are wide and ‘‘undulate’’ (ruffled) (Fig. 1A
and B), whereas the blades of those from sites exposed
to rapid currents are flat, narrow, and strap-like

Table 1 Blade shapes in different water flow habitats

Species

Wide in slow flow;

narrow in rapid flow

Thin in slow flow;

thick in rapid flow

Undulate in slow flow;

flat in rapid flow

Heavily corrugated or

bullate in slow flow;

less so in rapid flow

Agarum fimbriatum Duggins et al. (2003)

Costaria costata Duggins et al. (2003)

Dictyotales sp. Stewart and Carpenter (2003)

Durvillaea potatorum Cheshire and Hallam (1989) Cheshire and Hallam (1989)

Ecklonia radiata Fowler-Walker et al. (2006),

Wenberg and Thomsen (2005),

Wing et al. (2007)

Wenberg and Thomsen (2005),

Wing et al. (2007)

Wing et al. (2007)

Eisenia arborea Roberson and

Coyer (2004)

Roberson and Coyer (2004) Roberson and

Coyer (2004)

Fucus vesiculosus Back (1993)

Gigartina radula Jackelman and Bolton (1990) Jackelman and Bolton (1990)

Hedophyllum sessile Armstrong (1989) Armstrong (1989) Armstrong (1989)

Laminaria complanata Duggins et al. (2003)

Laminaria digitata Sundene (1961) Sundene (1961)

Laminaria hyperborean Sjøtun and Fredriksen (1995) Sjøtun and Fredriksen (1995)

Laminaria japonica Kawamata (2001) Kawamata (2001)

Laminaria longicruris Gerard and Mann (1979) Gerard and Mann (1979) Gerard and Mann (1979)

Laminaria saccharina Parke (1948) Parke (1948) Buck and Buchholz (2005)

Macrocystis integrifolia Hurd et al. (1996) Hurd et al. (1996) Hurd et al. (1996),

Hurd et al. (1997)

Hurd et al. (1996)

Nereocystis luetkeana Johnson and Koehl (1994),

Koehl and Alberte (1988)

Johnson and Koehl (1994),

Koehl and Alberte (1988)

Pachydictyon coraceum Haring and Carpenter (2007) Haring and Carpenter (2007)

Saccorhiza polyschides Norton (1969)

Fig. 1 (A) Nereocystis luetkeana bed at SC, the slow-flow habitat. (B) Ruffled, wide blades from a N. luetkeana collected at SC.

The dotted line indicates the blade position defined as the ‘‘origin’’ in growth experiments (the position along a blade where the

blade first widens from a cylindrical string into a flat blade). (C) Nereocystis luetkeana bed at TR, the current-swept habitat.

(D) Flat, narrow blades from a N. luetkeana collected from TR.
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(D) Flat, narrow blades from a N. luetkeana collected from TR.

Kelp blade shapes in different flow regimes 835

Slow water flow 
environment (v~0.5 m/s)

Fast water flow 
environment (v~1.5 m/s)

M. Koehl et al., Integ. Comp. 
Biol. 48, 834 (2008)

blades grow more rapidly than others (Figs 3, 4,
and 7). During the course of an experiment, the
segments of the blade move continuously away from
the origin, thus more analysis is needed to show the
total growth of a tissue element over time. Our
analysis of the trajectories of tissue growth and of

growth strains as a function of position will be
presented elsewhere.

Longitudinal strain rates of both undulate
(Fig. 3A) and flat (Fig. 3B) blades are greatest near
the blade’s origin, but continued growth of older
tissues at distances of 30–50 cm from the origin is
evident. In the rapidly growing proximal regions of
ruffled blades, the edges of the blade grew more
rapidly than did the midlines (Fig. 3A). In contrast,
the longitudinal strain rates of the edges and
midlines of flat blades did not differ from each
other (Fig. 3B).

Transverse strain rates of both ruffled and flat
blades are plotted in Fig. 4. As with longitudinal
growth, most growth in width occurs at the proximal
ends of the blades. Ruffled blades growing at the site
with slow flow had higher rates of transverse strain
than did flat blades growing at the exposed site.

In addition to length and width, we also measured
blade thickness to the nearest 0.1 mm with vernier
calipers. Blades of both morphologies were thicker at
their proximal ends than they were distally. At a
position 5 cm from the origin, the mean thickness of
ruffled blades was 0.9 mm (SD¼ 0.15, n¼ 12 kelp)
and the mean thickness of strap-like blades was

Fig. 3 Longitudinal growth strain rates ([!L/Lo]/day) plotted as a

function of the distance from the origin (Fig. 1C) of the proximal

hole marking a blade segment at the start of the experiment

on Day 0 for ruffled blades on N. luetkeana (n¼ 9 kelp) growing

at the slow-flow SC site (A), and for strap-like flat blades on

N. luetkeana (n¼ 5 kelp) growing at the current-swept TR site

(B). Open symbols indicate longitudinal strain rates measured

along the edge of a blade, as indicated by the white arrow on the

blade diagram in (A). Black symbols indicate longitudinal strain

rates measured along the midline of a blade, as illustrated by the

black arrow on the blade diagram in (A). Error bars show 1 SD.

Longitudinal strain rates at the proximal ends of ruffled blades

(starting positions 10 and 15 cm from the origin) were

significantly greater along the blade edges than along their

midlines (ANOVA, P50.05), whereas there was no significant

difference between edge and midline strain rates for the flat

blades.

Fig. 4 Transverse growth strain rates ([!W/Wo]/day) plotted as a

function of the distance from the origin (Fig. 1C) of each

transverse column of holes at the start of the experiment on

Day 0, for wide, ruffled blades on N. luetkeana growing at the

slowflow SC site (black circles, n¼ 9 kelp), and for narrow, flat

blades on N. luetkeana growing at the current-swept TR site

(open squares, n¼ 5 kelp). Error bars represent 1 SD. Transverse

strain rates for the wide, ruffled blades were significantly greater

than those for narrow, flat blades at the proximal ends of the

blades (starting positions of 5, 10, and 15 cm from the origin)

(ANOVA, P50.05).
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edges of blades grow 
faster than the midline

edges of blades grow at the 
same speed as the midline

What is the effect of differential 
growth rate between the edge 
and the midline of the blade?
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Differential growth produces internal stress

mation. The horizontal springs one row up are also de-
formed, but not as much; their new equilibrium length is 40%
greater than before the deformation. The next row of springs
is deformed even less, and so on up to the top of the network,
which is almost completely unchanged.

A long strip of material deformed in that way is essen-
tially guaranteed to buckle. It is favorable for each material
point to lie at a specific distance from each of its horizontal
and vertical neighbors. If the sheet remains flat, adjacent hor-
izontal rows must slide past one another, stretching the ver-
tical connecting springs more and more for longer and longer
sheets. Something has to give, and what gives is the planar
constraint of an unbuckled structure.

From a formal point of view, assigning a new collection
of equilibrium distances to nearby material points is equiva-
lent to specifying a new target metric; see the details in box 1.
In the target metric tensor for the network shown in figure 3,
only the horizontal component gxx is different from 1, and it
depends only on the vertical position: gxx = gxx(y). We often
assume that once a sheet relaxes to equilibrium, its actual
metric is equal to its target metric, to a first approximation.

For almost any decreasing functional form of the target
metric component gxx(y) of a long sheet, the sheet will spon-
taneously form a structure similar to the one in figure 2b. A
way to show that buckled structures are necessary is to em-
ploy the Theorema Egregium, the most famous result from
Gauss’s 1827 paper, which expresses the Gaussian curvature
K of a surface in terms of the metric. In our case,

(1)

If √gxx decreases in a convex fashion, its second deriva-
tive is positive, so the Gaussian curvature must be negative,
which means that at every point the surface resembles a sad-
dle, as shown in box 2. The only way that every part of a sur-
face can look like a saddle is if the surface buckles.

Sheets can form fascinating patterns even when they are
flat almost everywhere. Origami provides one set of exam-
ples, but even if you lack the dexterity to fold a Kawasaki
rose, you can still do some interesting home experiments by
taking sheets of paper and simply crumpling them. Martine

Ben Amar and Yves Pomeau realized that a fundamental sin-
gularity of crumpled paper, called a d-cone, is generated by
taking an elastic plate and applying forces to its boundary.5
The same type of singularity causes body panels to crumple
and form sharp creases during car accidents.

www.physicstoday.org February 2007    Physics Today 35

Defining a metric on a surface means comparing the surface
in two different states. First, think of a flat sheet of material—
the material in its reference state. Draw a grid of closely
spaced perpendicular lines to form a coordinate system with
the variables x and y. The distance between adjacent lines is
dx along x and dy along y. Now deform the sheet, stretching
or compressing it to change the distances between the lines.
Let the new position in space of a point originally at (x, y) be
called r(x, y). The square of the distance between two points
originally separated by (dx, dy) becomes

(1)

The above computation motivates the definition of the metric
tensor

(2)

where α and β can adopt values x and y.
When discussing physical sheets, two different metric ten-

sors are important. One, the target metric, is derived from the
shape the sheet would take if all neighboring material points
were located at the equilibrium distances preferred by the
imaginary springs of figure 3. The second, the actual metric,
is obtained from the real configuration of the material. The 
difference between the two tensors describes how much the
material is strained and is the starting point of the theory of
nonlinear elasticity. For example, the simplest theory for the
energy per volume U of stretched rubber is that it is propor-
tional to the trace of the actual metric tensor g(x,y) minus the
target metric (a unit tensor):18

U = (G/2)(gxx + gyy − 2), (3)

where G is the shear modulus of the material.

Box 1. Metrics

y

x

a

b

Figure 3. (a) Elastic network in equilibrium with all masses 
in the reference state. (b) The equilibrium lengths of horizon-
tal springs in successive rows are increased, but vertical
springs are not changed. In the configuration shown, the red
springs are under tension and are not at their equilibrium
lengths. All configurations of the masses in the plane have
high energy, so the structure will buckle.
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mation. The horizontal springs one row up are also de-
formed, but not as much; their new equilibrium length is 40%
greater than before the deformation. The next row of springs
is deformed even less, and so on up to the top of the network,
which is almost completely unchanged.

A long strip of material deformed in that way is essen-
tially guaranteed to buckle. It is favorable for each material
point to lie at a specific distance from each of its horizontal
and vertical neighbors. If the sheet remains flat, adjacent hor-
izontal rows must slide past one another, stretching the ver-
tical connecting springs more and more for longer and longer
sheets. Something has to give, and what gives is the planar
constraint of an unbuckled structure.

From a formal point of view, assigning a new collection
of equilibrium distances to nearby material points is equiva-
lent to specifying a new target metric; see the details in box 1.
In the target metric tensor for the network shown in figure 3,
only the horizontal component gxx is different from 1, and it
depends only on the vertical position: gxx = gxx(y). We often
assume that once a sheet relaxes to equilibrium, its actual
metric is equal to its target metric, to a first approximation.

For almost any decreasing functional form of the target
metric component gxx(y) of a long sheet, the sheet will spon-
taneously form a structure similar to the one in figure 2b. A
way to show that buckled structures are necessary is to em-
ploy the Theorema Egregium, the most famous result from
Gauss’s 1827 paper, which expresses the Gaussian curvature
K of a surface in terms of the metric. In our case,

(1)

If √gxx decreases in a convex fashion, its second deriva-
tive is positive, so the Gaussian curvature must be negative,
which means that at every point the surface resembles a sad-
dle, as shown in box 2. The only way that every part of a sur-
face can look like a saddle is if the surface buckles.

Sheets can form fascinating patterns even when they are
flat almost everywhere. Origami provides one set of exam-
ples, but even if you lack the dexterity to fold a Kawasaki
rose, you can still do some interesting home experiments by
taking sheets of paper and simply crumpling them. Martine

Ben Amar and Yves Pomeau realized that a fundamental sin-
gularity of crumpled paper, called a d-cone, is generated by
taking an elastic plate and applying forces to its boundary.5
The same type of singularity causes body panels to crumple
and form sharp creases during car accidents.
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Defining a metric on a surface means comparing the surface
in two different states. First, think of a flat sheet of material—
the material in its reference state. Draw a grid of closely
spaced perpendicular lines to form a coordinate system with
the variables x and y. The distance between adjacent lines is
dx along x and dy along y. Now deform the sheet, stretching
or compressing it to change the distances between the lines.
Let the new position in space of a point originally at (x, y) be
called r(x, y). The square of the distance between two points
originally separated by (dx, dy) becomes

(1)

The above computation motivates the definition of the metric
tensor

(2)

where α and β can adopt values x and y.
When discussing physical sheets, two different metric ten-

sors are important. One, the target metric, is derived from the
shape the sheet would take if all neighboring material points
were located at the equilibrium distances preferred by the
imaginary springs of figure 3. The second, the actual metric,
is obtained from the real configuration of the material. The 
difference between the two tensors describes how much the
material is strained and is the starting point of the theory of
nonlinear elasticity. For example, the simplest theory for the
energy per volume U of stretched rubber is that it is propor-
tional to the trace of the actual metric tensor g(x,y) minus the
target metric (a unit tensor):18

U = (G/2)(gxx + gyy − 2), (3)

where G is the shear modulus of the material.
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Figure 3. (a) Elastic network in equilibrium with all masses 
in the reference state. (b) The equilibrium lengths of horizon-
tal springs in successive rows are increased, but vertical
springs are not changed. In the configuration shown, the red
springs are under tension and are not at their equilibrium
lengths. All configurations of the masses in the plane have
high energy, so the structure will buckle.
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Growth modifies the metric tensor of sheet!

gij =
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f(y), 0
0, 1

◆
gij =

✓
1, 0
0, 1

◆
d`2 =

X

i,j

gijdx
idxj

Note: If growth is different between the top and bottom of 
the sheet, then the curvature tensor         is modified as well!Kij
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Example

x
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�W

Assume that differential growth in x 
direction produces metric tensor of the form

faster growth 
on the edges

gij =

✓
f(y), 0
0, 1

◆
f(y) = 1 + ce(|y|�W )/�

For thin membranes the metric tensor wants to be matched
g0ij = gij

Gauss’s Theorema Egregium provides Gauss curvature

det(K 0
ij(y)) = F(gij) = � 1

f

d2f(y)

dy2
= � 1

�2
⇥ ce(|y|�W )/�

�
1 + ce(|y|�W )/�

� < 0

For thin membranes faster growth 
on edges produces shapes that 

locally look like saddles!
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Eq. 10 that Cκ2
x f − Cβγgκx ≃ 0, i.e., f (w) ≃ β/κx. Then the trans-

verse curvature κy ≃ β/κxw2, and finally κxκy ≃ β/w2, consistent
with our scaling analysis. As the growth strain β is increased fur-
ther, the cross-sectional of the ribbon flattens in the center. We
examine the case of n = 2 for simplicity (see SI Appendix). As
κx increases, the particular solution fp of Eq. 10 becomes negligi-
ble compared with the homogeneous solution, with the result that
f (y) ∼ e−ηz(cos ηz − sin ηz), where z = w − |y|, and the boundary
layer width ξBL = 1/η = 0.78/κ

1/2
x independent of the growth gra-

dient exponent n, i.e., the lateral deflection near the edges decays
rapidly away from it. Indeed, as ξBL ≃ w or κxw2 ≃ 0.6, the rib-
bon shows the appearance of a boundary layer and when βw2 ≃ 80
(β = 40β∗ in Fig. 2C), the lateral shape of the ribbon f (y) develops
a pair of secondary minima. Later, when βw2 ≃ 750 (β = 300β∗ in
Fig. 2C), the ribbon is nearly cylindrical in the interior with a pair
of strongly localized boundary layers along its lateral edges.

Periodic Rippling. We now turn to the case of periodic rippling,
assuming that the vertical deflection is of the form

ζ(x, y) = f (y) sin kx. [13]

Here k is the dimensionless wavenumber, f (y) is the cross-sectional
profile of the surface, and we note that the sheet is on average flat,
unlike for the saddle-shape. Assuming that the in-plane compat-
ibility of Eq. 6 is satisfied, on substituting in Eq. 13 into Eq. 7
and using the boundary conditions in Eq. 5, we get the eigenvalue
problem

f,yyyy − 2k2f,yy +
(

k4 − Cβ∗γgk2
)

f = 0

(f,yyy − (2 − ν)k2f,y)|± w = (f,yy − νk2f )|± w = 0. [14]

We solve the boundary value problem given by Eq. 14 numerically
by using the boundary value problem solver bvp4c in Matlab, with
the scaled width w ∈ [10, 200] to determine the relation between
the critical maximum growth strain β∗ and the wavenumber of the
instability k. In Fig. 3B, we show that the scaled wavenumber kw as
a function of the scaled critical growth strainβ∗w2 falls onto a single
master curve, with three prominent features, a power-law scaling
regime for kw ≪ 1, a plateau in the neighborhood of kew ≃ 0.09,
followed by a jump in the neighborhood of β∗

e w2 ≃ 1.9 and finally
another power-law scaling regime when kw ≫ 1. These transitions
are intimately related to the profile of the ribbon in cross-section.
Indeed when k ≤ ke ≪ 1/w, we see that the cross-sectional pro-
file is almost flat (Top frame in Fig. 3A corresponds to kw = 0.01),
i.e., the ribbon exhibits periodic filament-like buckling of a 1D fil-
ament. Indeed, this follows directly from Eq. 14; when kw ≪ 1,
f,yyyy, f,yy ≪ 1 so that β∗ ∼ k2 which vanishes when k → 0, consis-
tent with our scaling in the limit when the persistence length of
an edge-pinch lp ≫ w (see SI Appendix for an asymptotic analy-
sis of this mode). In the neighborhood of kew ≃ 0.09, there is a
rapid change in β∗w2 ∈ (0.01, 1.9), indicative of a sharp transition
between two different buckling modes because of the large elastic
energy required to trigger the doubly curved periodic ripples seen
when k ≥ ke. Then the ribbon is doubly curved (Middle frame in
Fig. 3a corresponds to kw = 0.5), and there is little variation in
the maximum growth strain with β∗w2 ∈ (1.9, 2.1), whereas the
wavenumber varies enormously with kw ∈ (0.09, 0.6), suggesting
the ease of transformation of the shape of the periodic ripples in
this regime, when lp ∼ w. Finally, when kw ≫ 1, the ribbon is
strongly deformed in the neighborhood of the lateral edges (Bot-
tom frame in Fig. 3A corresponds to kw = 40). In this scaling
regime, β∗ ∼ k2 asymptotically and the persistence length of the
edge-pinch lp ≪ w, so that the edges are essentially independent
of each other.

To probe the role of the boundary conditions in Eq. 14 in charac-
terizing these different periodic modes that couple the deforma-
tions along the ribbon to those perpendicular to it, we consider the

Fig. 4. Numerical simulations yield a phase diagram for the different undu-
latory shapes of a long, growing ribbon as a function of the maximum edge
growth strain β and the scaled width W . The boundaries that demarcate the
different phases follow the scaling β∗ ∼ 1/w2, consistent with our scaling
and analytic estimates (see Eq. 12 and SI Appendix). We use the power law
∈g= β(y/w)10.

alternative conditions f |0 = f,y|0 = 0 along the axis of symmetry of
the ribbon. Then the only possible mode is that of edge-rippling,
shown as the solid blue curve in Fig. 3B, which coincides with
our master curve when kw > 3.0, i.e., the ripples are localized to
the lateral edges. Earlier researchers (4, 5) have studied the self-
similar edge ripples on the boundary of a semi infinite plate but
missed the qualitatively different global saddle-like, filament-like
buckling and doubly curved modes associated with the introduc-
tion of a finite width for the ribbon. Indeed, when we clamp the
center line of the sheet, we find that when kw < 3.0 or lp > w there
is a rapid increase in the scaled critical growth strain β∗, consistent
with the elimination of the soft saddle-shaped modes.

Numerical Simulations
To corroborate and extend our scaling and stability analysis, we
implement the inhomogeneous growth of a lamina in a discrete
numerical model of a finite ribbon of width 2W , length L = 6W
and thickness H ≪ W . This is derived by tiling the ribbon using
equilateral-triangular elements (12) (dimensionless width w =
W/H , length l = L/H and wavenumber k = 2π

#
H). Then the elas-

tic energy is the sum of the stretching energy Fs =
√

3S
4 Σij(rij−a0)2,

where rij is the current spring length and a0 is the rest spring length
and the bending energy Fb = B√

3
Σαβ(n⃗α − n⃗β)2, where n⃗α and n⃗β

are the unit normal vectors of the two facets (see SI Appendix).
The growth strain ϵg is modeled by changing the rest length of the
spring a0 to a0(1 + ϵg(y)), where ϵg(y) = β(y/W )n with n = 10 and
a damped molecular dynamics method (13) is used to minimize
the system energy.

In Fig. 4 we show the resulting stability diagram indicating the
regimes of existence of the flat, saddle, and rippled phases as a
function of the characteristic growth strain β and the scaled width
w. The stability boundary between the flat and saddle phase as well
as that between the saddle and rippled phase both show a power-
law scaling β∗ ∼ 1/w2, consistent with our scaling and analytical
results. To understand why the saddle-shaped morphology appears
first as the growth strain β is increased, we note that the charac-
teristic critical strain for the filament-buckling mode β∗ ∼ k2 is
smaller than that for the saddle-buckling mode β∗ ∼ 1/w2 only
when the wave number k is sufficiently small. Here, the finite
length of our numerical ribbon leads to a finite-size effect or equiv-
alently a cutoff as seen in our numerical simulations. At the onset
of doubly curved buckling shown in Fig. 3B when kew ≃ 0.09,
so that the minimum ribbon length to width ration required

Liang and Mahadevan PNAS December 29, 2009 vol. 106 no. 52 22053
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Shapes of flowers and leaves
Faster growth of the edge is consistent with 

observed saddles and edge wrinkles, which indeed 
correspond to the negative Gauss curvature!

saddles

wrinkled
edges
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Growth of a blooming lily

H. Liang and L. Mahadevan, PNAS 108, 5516 (2011)

the longitudinal growth, we also observe a 7% increase in the
width of petals/sepals, that leads to a circumferential hoop stress
on the bud.

Previous investigators have implicated the midrib as being
crucial in the mechanism of blooming (4, 5). Indeed, the midrib
is woodier than the lamina, but measurements of the stiffness of

the midrib and the lamina (SI Text) shows that the leafy part
accounts for 78% and the woody part accounts for 22% of the
total bending stiffness of a shell-like petal; the curvature of the
lamina and its width more than making up for the difference in
the actual Young’s modulus between the woody and leafy parts of
a petal. To find whether midrib is essential for blooming or not,
we shaved the midrib from one sepal and a petal when a lily is
a bud, and find that both the sepal and the petal without the
midrib open normally just like the other petals/sepals; the small
difference in the final curvature is because the stiffness of the
midrib composite is different from that of the petal/sepal. To
further quantify the role of the midrib in flower opening, we
shaved it from a fully bloomed lily and then peeled away the
woody part from the petal (Fig. 2A). We find that the leafy part
is about 4.5% (averaged over 10 samples) longer than the woody
part and induces a spontaneous outward curvature that enhances
flower opening. These observations show unequivocally that the
midrib is neither necessary nor dominant in driving blooming.

Another possibility for the underlying mechanism behind
blooming is the generation of spontaneous curvature due to dif-
ferential growth of the inner (adaxial) surface of the petal/sepal
relative to the outer (abaxial) one. Earlier experimental evidence
(5) shows that cell size on both surfaces of a petal is the same
at the onset of blooming and further that there is no cell prolif-
eration, suggesting that differential growth of the adaxial and
abaxial surface is not likely to play any role in blooming. To
corroborate this on the organ scale, we note that surface differ-
ential growth will cause a shell-like petal will bend outward more
if marginal tissues are removed, because the cross-section of
a petal becomes less curved and the longitudinal bending stiff-
ness decreases dramatically. However, we see both petals/sepals
become less curved when the lateral edges of the petals are cut
away (Figs. S1 and S2), which contradicts the hypothesis that
relative surface expansion drives blooming.

Finally, we observe a slight rotation of the base of the
petal/sepal relative to the flower axis consistent with earlier

Fig. 1. Observations of and experiments on blooming in the asiatic lily
Lilium casablanca. (A) A young green lily bud. The black dots separated by
1 cm allow us to measure growth strains. (B) The cross-section of a lily bud.
(C) A typical opening sequence of a lily flower over a period of 4.5 days.
The black line is the profile in the bud state, the transparently light blue
shows the half-open state, and the white one is the fully open state.
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Fig. 2. Anatomy of the lily bud and the role of midrib. (A) The composite
structure of a petal midrib: the Left panel shows a single petal; the Center
panel shows the grooved structure of the midrib; the Right panel shows that
when the leafy part (gray) is peeled away, the woody part straightens out,
a sign that there is some relative growth between the two. (B) When the
midribs are removed from a petal and a sepal, the flower can still bloom
normally, with a slightly different curvature relative to the pristine petals/
sepals. (C) The inner petals have rippled edges in the bud, showing clearly
that their edges are growing relative to the rest of the tissue.

A

B

Fig. 3. Experimental measurement of differential growth and numerical
simulation in a single petal. (A) Longitudinal growth strain εgxx along the
midrib and the edges varies in the lateral (y) direction. The edge growth
strain is averaged over 6 sepals, and the midrib growth strain is averaged
over 10 petals/sepals. This lateral growth gradient is sufficient to drive
blooming. (B) Simulation of the blooming process in a single elliptical petal
that is originally a convex spherical shell. As the edge-growth strain
increases (see text for details), the curvature of the petal first reverses;
i.e., it blooms. and then edge-localized ripples arise. The order of blooming
and rippling can be reversed by changing the relative distribution of growth
strains as can be seen in the inner and outer petals and sepals that follow
opposite paths.

Liang and Mahadevan PNAS ∣ April 5, 2011 ∣ vol. 108 ∣ no. 14 ∣ 5517
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the longitudinal growth, we also observe a 7% increase in the
width of petals/sepals, that leads to a circumferential hoop stress
on the bud.

Previous investigators have implicated the midrib as being
crucial in the mechanism of blooming (4, 5). Indeed, the midrib
is woodier than the lamina, but measurements of the stiffness of

the midrib and the lamina (SI Text) shows that the leafy part
accounts for 78% and the woody part accounts for 22% of the
total bending stiffness of a shell-like petal; the curvature of the
lamina and its width more than making up for the difference in
the actual Young’s modulus between the woody and leafy parts of
a petal. To find whether midrib is essential for blooming or not,
we shaved the midrib from one sepal and a petal when a lily is
a bud, and find that both the sepal and the petal without the
midrib open normally just like the other petals/sepals; the small
difference in the final curvature is because the stiffness of the
midrib composite is different from that of the petal/sepal. To
further quantify the role of the midrib in flower opening, we
shaved it from a fully bloomed lily and then peeled away the
woody part from the petal (Fig. 2A). We find that the leafy part
is about 4.5% (averaged over 10 samples) longer than the woody
part and induces a spontaneous outward curvature that enhances
flower opening. These observations show unequivocally that the
midrib is neither necessary nor dominant in driving blooming.

Another possibility for the underlying mechanism behind
blooming is the generation of spontaneous curvature due to dif-
ferential growth of the inner (adaxial) surface of the petal/sepal
relative to the outer (abaxial) one. Earlier experimental evidence
(5) shows that cell size on both surfaces of a petal is the same
at the onset of blooming and further that there is no cell prolif-
eration, suggesting that differential growth of the adaxial and
abaxial surface is not likely to play any role in blooming. To
corroborate this on the organ scale, we note that surface differ-
ential growth will cause a shell-like petal will bend outward more
if marginal tissues are removed, because the cross-section of
a petal becomes less curved and the longitudinal bending stiff-
ness decreases dramatically. However, we see both petals/sepals
become less curved when the lateral edges of the petals are cut
away (Figs. S1 and S2), which contradicts the hypothesis that
relative surface expansion drives blooming.

Finally, we observe a slight rotation of the base of the
petal/sepal relative to the flower axis consistent with earlier

Fig. 1. Observations of and experiments on blooming in the asiatic lily
Lilium casablanca. (A) A young green lily bud. The black dots separated by
1 cm allow us to measure growth strains. (B) The cross-section of a lily bud.
(C) A typical opening sequence of a lily flower over a period of 4.5 days.
The black line is the profile in the bud state, the transparently light blue
shows the half-open state, and the white one is the fully open state.

midribs removed rippled petals

woody part alone

leafy

woody

petal base

tipA

B

     midrib
cross section

C

Fig. 2. Anatomy of the lily bud and the role of midrib. (A) The composite
structure of a petal midrib: the Left panel shows a single petal; the Center
panel shows the grooved structure of the midrib; the Right panel shows that
when the leafy part (gray) is peeled away, the woody part straightens out,
a sign that there is some relative growth between the two. (B) When the
midribs are removed from a petal and a sepal, the flower can still bloom
normally, with a slightly different curvature relative to the pristine petals/
sepals. (C) The inner petals have rippled edges in the bud, showing clearly
that their edges are growing relative to the rest of the tissue.
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Fig. 3. Experimental measurement of differential growth and numerical
simulation in a single petal. (A) Longitudinal growth strain εgxx along the
midrib and the edges varies in the lateral (y) direction. The edge growth
strain is averaged over 6 sepals, and the midrib growth strain is averaged
over 10 petals/sepals. This lateral growth gradient is sufficient to drive
blooming. (B) Simulation of the blooming process in a single elliptical petal
that is originally a convex spherical shell. As the edge-growth strain
increases (see text for details), the curvature of the petal first reverses;
i.e., it blooms. and then edge-localized ripples arise. The order of blooming
and rippling can be reversed by changing the relative distribution of growth
strains as can be seen in the inner and outer petals and sepals that follow
opposite paths.
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in lab blooming takes 4.5 days 
under constant fluorescent light 

(1 frame/min)

faster growth 
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How flowers open in the morning 
and close in the evening?
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https://vimeo.com/98276732



How flowers open in the morning 
and close in the evening?

21

When temperature increases in the 
morning, flowers regulate their growth 
pattern to grow more new cells on the 
inside of flower leaves. This results in 

curling of leaves and opening of flowers. 

When temperature drops in the evening, 
flowers regulate their growth pattern to 
grow more new cells on the outside of 

flower leaves. This results in straightening 
of leaves and closing of flowers. 

morning evening


