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Soft spheres make more mesophases
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Abstract – We use both mean-field methods and numerical simulation to study the phase diagram
of classical particles interacting with a hard core and repulsive, soft shoulder. Despite the purely
repulsive and isotropic interaction, this system displays a remarkable array of aggregate phases
arising from the competition between the hard-core and soft-shoulder length scales, including fluid
and crystalline phases with micellar, lamellar, and inverse micellar morphology. In the limit of large
shoulder width to core size, we argue that this phase diagram has a number of universal features,
and classify the set of repulsive shoulders that lead to aggregation at high density. Surprisingly, the
phase sequence and aggregate size adjust so as to keep almost constant inter-aggregate separation.
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Entropy is a potent force in self-assembly. It can be
argued, through entropic considerations alone, that hard
spheres will self-assemble into the face-centered-cubic (fcc)
lattice or any of its many variants related through stacking
faults. As a result, when a material exhibits an fcc phase,
it is often attributed to the optimality of the close-
packed lattice. On the other hand, the stability of the less
common or less dense lattices is interpreted in terms of a
range of explanations including basic quantum-mechanical
arguments [1], lattice effects [2], partially filled Landau
levels [3,4], and soft interactions [5–7]. While there has
been concerted effort to tailor the pair interaction to
achieve a desired periodic arrangement [8] this must be
done in the context of those packing motifs that arise from
generic interactions. For instance, it would be fairly trivial
to design a potential to make an fcc lattice.
With this in mind, here we consider a seemingly simple

extension of the hard sphere model, namely a hard-
core/soft-shoulder (HCSS) interaction:

VHCSS(r) =

⎧
⎨

⎩

∞ r < σ
ϵ σ< r < σs
0 r > σs

, (1)

where σ and σs are the core and shoulder radii, respec-
tively, and ϵ is the shoulder height. Such a model with

σs/σ! 1 has been used to study isostructural transi-
tions in Cs and Ce [9]. In HCSS and related potentials,
it has been shown that as the range of the soft repul-
sion grows (corresponding to σs/σ≈ 2) a rich variety of
density-modulated ground states appear [10–13] which
can be characterized as periodic arrangements of regu-
lar sized aggregates of the original spheres. In this letter
we establish a sufficient condition on the pair potential
for aggregation and the subsequent ordering of the aggre-
gates which generalizes results on soft potentials without
hard cores [14]. We develop a self-consistent field theory
for soft repulsion and use it to study the formation of
lamellar phases. We corroborate our analytic treatment
with numerical solutions that also predict the existence
of hexagonal and inverse hexagonal aggregate phases with
both fluid and crystalline intra-aggregate order (fig. 1). In
addition, we present results from Monte Carlo simulations
of the HCSS potential which both stimulate and support
the more general theoretical predictions. In all cases, we
find that over the range of stable aggregate structures the
lattice constant remains fixed while the aggregates change
their size and morphology so as to maintain the average
intra-aggregate density ρ.
Why should repulsive potentials lead to aggregation?

We can understand this in the context of the HCSS
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Fig. 1: (Color online) Snapshots from Monte Carlo simulations of the solid and liquid modulated phases of two-dimensional
hard-core/soft-shoulder particles with σs/σ= 5; shown are the solid (Ms) and liquid (Ml) micelle phases, solid (Ls) and liquid
(Ll) lamellar phases, and the solid inverse micelle phase (IMs). The blue circles are the hard cores of the particles and the
overlapping diffuse green circles represent their soft shoulders.

model: consider a uniform density of spheres at densities
just large enough so that the soft-shoulders only begin
to touch the hard cores. The energy can be lowered by,
for instance, bringing pairs of spheres together —moving
two spheres closer requires no additional energy, but by
reducing the number of nearest neighbors the overall
energy is reduced. Indeed, the same physics drives the
formation of a multiply-occupied clusters of penetrable
spheres (σ= 0) [15], while the ground state of a generalized
exponential repulsion [16] is a multiply-occupied fcc lattice
with a lattice constant independent of the average density.
To explore the HCSS ensemble we introduce a lattice

model with occupation ni = 0, 1 at each site to enforce
the hard-core repulsion. The remaining soft shoulder is
characterized by an interaction V ijSS and the density is set
through the chemical potential µ in the Hamiltonian:

H[ni] =
1

2

∑

ij

niV
ij
SSnj −

∑

i

µni . (2)

Note that the sum is not over nearest neighbors but over
all sites —the range of the interaction is encoded in V ijSS.
This model with a square-shouder VSS was used to study
electron liquids in weak magnetic fields [3,4]. There it
was a toy model of the true interactions, while here we
study its consequences for generic VSS. To develop a mean-
field theory, we rewrite the partition function in terms of
a continuous field φ through the Hubbard-Stratonovich
transformation1

Z =
∑

nj

∫
[dφ] exp

{

− ρ
2
0

2β

∫
ddk

(2π)d
φ(k)V −1SS (k)φ(−k)

+
∑

j

nj(iφj +βµ)

}

, (3)

where we have used both continuum and discrete variables
to simplify the notation; d is the dimension of space2.

1Because it oscillates in sign, VSS(k) has a zero and is not invert-
ible. We can, however, decompose VSS = V+−V− into nonvanish-
ing potentials and introduce two dummy fields φ± to complete the
Hubbard-Stratonovich transformation. This does not alter the mean-
field equations. See Park Y. and Fisher M. E., Phys. Rev. E, 60
(1999) 6323.
2Our Fourier transform convention has φ(k) with units of volume,

Vtot, and VSS(k) has units V
−1
tot .

Here ρ0 = γdσ−d is the density of the lattice where we
have chosen the lattice constant to equal the hard sphere
diameter σ and γd is a lattice and dimensionally dependent
geometrical factor. Summing over nj = 0, 1 results in the
exact partition function

Z =
∫
[dφ] exp

{

− ρ
2
0

2β

∫
ddk

(2π)d
φ(k)V −1SS (k)φ(−k)

+
∑

j

ln [1+ exp (βµ+ iφj)]

}

. (4)

The average site occupation is ⟨ni⟩= β−1d lnZ/dµ=
λeiφi/(1+λeiφi), where λ= eβµ is the fugacity. This is
related to the number density profile through ρi = ρ0⟨ni⟩.
Note that the presence of the hard cores introduces a new
length scale σ which competes with the overlap of the
shoulders at σs. Equation (4) can be used as the basis
for a systematic expansion about the mean-field solution,
governed by the equations V −1SS (k)φ(k) = iβρ(k)/ρ

2
0.

Nevertheless, we will consider only the mean-field theory
in what follows.
We first consider the stability of fluctuations around a

uniform density, following refs. [14,17,18]. In the mean-
field approximation, we can recast eq. (4) in terms of
the free energy for fixed ρ (not fixed µ), obtained via
the Legendre transform, to recover the standard density
functional form:

βF =
β

2ρ20

∫
ddk

(2π)d
ρ(k)VSS(k)ρ(−k)

+

∫
ddr
[
ρ ln (ρ/ρ0)+ (ρ0− ρ) ln (1− ρ/ρ0)

]
. (5)

Working to quadratic order in fluctuations about a
constant ρ we find an instability when both V −1SS (k)< 0
and ρ0 " ρ/ρ0 (1− ρ/ρ0)β|VSS(k)|. This stability criterion
is a generalization of the result in ref. [14] which we
recover at low volume fractions, when ρ/ρ0→ 0 and the
hard cores rarely overlap.
To simplify our analysis of the mean-field lattice model,

we first consider the stripe phase. We need only consider
Fourier modes which belong to the reciprocal lattice of the
periodic structure (including the k= 0 mode). Fixing the
zero mode of the density, we find that the wave vectors
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k, where VSS(k)< 0 are unstable, and that the strongest
instability will be at the most negative value of VSS. In
case of the soft shoulder in two dimensions, VSS(k) =
ϵσsJ1(kσs)/k, which has a minimum at k∗σs ≈ 2π/1.22.
In other words, the lattice spacing L= 2π/k∗ = 1.22σs, in
very good agreement with both Monte Carlo simulations
and off-lattice theory as shown below.
To better understand how the presence of the hard

core competes with the soft shoulder in determining the
aggregate morphology, we analyze the mean-field behavior
of eq. (4) far below the instability to clustering. At low
temperatures, we expect cluster occupancy to saturate
(i.e. ⟨ni⟩= 1 inside the clusters), and we further expect the
boundaries between occupied and unoccupied sites to be
narrow. In this limit, we use a Sommerfeld-like expansion
to compute ρ(r) for a lamellar configuration to lowest
order in∆, the width of aggregate boundary. As is the case
for the square shoulder, we assume that |VSS(k)| decays
sufficiently rapidly with |k| and that the potential, φ(r),
is well approximated by φ(r)≃ φ0+φ∗cos(k∗x). These
coefficients are related by the mean-field equation to
appropriate Fourier modes of the density. At sufficiently
low temperature the density is a step function, and
the relevant Fourier modes are ρ(k= 0)/Vtot = ρ0k∗ℓ/2π
and ρ(k∗)/Vtot = ρ0sin(k∗ℓ/2)/π, where Vtot is the total
volume (note that φ0 and φ∗ are not Fourier modes) and ℓ
is the width of the lamellae. Simultaneously, the nonlinear
relation between ρ and φ gives an additional constraint on
the position of the interface, x= ℓ/2, since ρ(ℓ/2) = 1/2.
This leads to −βµ= iφ0+ iφ∗cos(k∗ℓ/2). Combining this
with the mean-field equations, we eliminate φ0 and φ∗ to
find a transcendental equation for ℓ:

V ∗

π
sin k∗ℓ= V0

k∗ℓ

2π
−µ, (6)

where V0 ≡ VSS(0)/ρ0 and V ∗ ≡ |VSS(k∗)|/ρ0. When
we have a soft shoulder, V0≫ V ∗ and k∗ℓ/2π≃ µ/V0.
Temperature does not strongly affect the width of the
aggregates, but it does alter the sharpness of inner
domain boundary. The width of the interface is measured
from the slope of the density at the interface, and is given
by ∆−1 = |ρ−1(dρ/dx)| at x= ℓ/2. To lowest order, we
find k∗∆/2π≃ kBT/[2V ∗sin2(πρ/ρ0)]. Therefore, we can
see that the aggregates “melt” from the boundaries as
the temperature is raised due to the fact that the depth
of the self-consistent potential is proportional to V ∗. We
deduce a rough estimate of the melting temperature of
the lamellae, Tm, from the condition that k∗∆/2π# 1
for ordered structures, or kBTm ∼ V ∗sin2(πρ/ρ0). From
this we see that the most stable structures occur at
half-filling, when ρ0 = 2ρ, consistent with our instability
criteria. These calculations can be repeated for the other
morphologies by utilizing more modes, ki with |ki|= k∗
and
∑
i ki = 0.

Our lattice model also provides a generic insight into
aggregation and its predictions can be readily applied to
any HCSS-like pair potential. A nice feature of the theory,

by virtue of its likeness to the Ising model, is its special
symmetry under toggling occupied and unoccupied sites
at half-filling, which gives us a way to understand the exis-
tence of the inverse phases3. But like the related density-
functional theory approaches [17,18] the lattice model is
less convenient for the analysis of the detailed morphology
of the possible aggregate phases, and it fails to distinguish
ordered from disordered states in the aggregates. To
this end, we study the 2D HCSS system off-lattice by
constructing a mean-field model which captures the salient
features of self-assembly. We assume that the particles are
confined to the aggregates and that shape of the aggre-
gates in each mesophase is fixed, e.g., the micelles and the
voids in the inverse micellar phase are circular and the
lamellae are straight. Each of the mesophases is then para-
metrized by two structural parameters, the aggregate size
and the lattice spacing, which define the effective density
of particles within the aggregates relative to the average
density. To estimate the free enthalpy of each phase, we
ignore any positional correlations of particles between
neighboring aggregates. Within this approximation, the
intra-aggregate structure is the same as in a hard-disk
system4, and we calculate the entropy of the fluid and
the crystalline order in the aggregates using an empirical
equation of state for the hard-disk fluid [19] and the cellu-
lar theory of the hard-disk crystal [20], respectively. The
average overlap energy is evaluated by summing overlaps
of the spheres in a given aggregate and in neighboring
aggregates. Thus we obtain the free enthalpy of the vari-
ous mesophases in a closed analytic form as a function of
temperature, density, and the two structural parameters,
aggregate size and lattice spacing (the latter are fixed
via Lagrange multipliers). An example of the resulting
phase diagram of the aggregate phases, which are stable
at low enough temperatures βϵ! 1 and include micellar
and lamellar phases with both fluid and crystalline intra-
aggregate order as well as the crystalline inverse micellar
phase, is shown in fig. 2. We do not find a fluid inverse
micelle phase, nor is such a phase observed in the Monte
Carlo simulations of the HCSS system described below.
In units of σ−1s , the wavenumber at which ordering

occurs only depends weakly on the dimensionless pres-
sure pσ2s/ϵ and is, interestingly, roughly independent of
the particular phase, be it micellar, lamellar, or inverse
micellar (fig. 3). This behavior recapitulates the results
for a generalized exponential interaction without hard
cores [16]. Taken together with the observation that the
qualitative features of the phase diagram are independent
of σs/σ, this confirms our notion that we can think of the
aggregates as larger interacting particles with the inter-
nal structure only changing the effective inter-aggregate
interactions. The relative unimportance of the hard-core

3Rewriting eq. (2) in terms of “hole” variables n′i = 1−ni, we
retain the same model (up to a constant) with a chemical potential
for holes, µ′ =−µ+

∑
j VSS(rj).

4This is true as long as the aggregate size is smaller than σs,
which was verified a posteriori.
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Fig. 2: Theoretical phase diagram of the modulated phases
of two-dimensional hard-core/soft-shoulder particles with
σs/σ= 5 includes the solid (Ms) and liquid (Ml) micelle phase,
the solid (Ls) and liquid (Ll) lamellar phase, and the solid
inverse micelle phase (IMs). Phase boundaries were calcu-
lated using the off-lattice model; pσ2s/ϵ is the reduced pressure
and βϵ is the reduced inverse temperature.

interaction arises when the aggregates are large and an
additional sphere can be accommodated without requiring
a large rearrangement of the internal structure. Our analy-
sis corroborates the results of Monte Carlo (MC) simula-
tions of the HCSS system at fixed N , p, and T [21]. At
low temperatures, the MC simulations reveal a series of
first-order transitions, with decreasing pressure, from crys-
talline inverse micelles, to crystalline lamellae, to liquid
lamellae, to crystalline micelles, to liquid micelles, to
isotropic micellar liquid, in qualitative agreement with
the phases and phase diagram of our mean-field treat-
ment. However, the simulations offer a much more detailed
insight into the structure of the mesophases as they are
free of the limitations of the mean-field model5, and they
predict several distinct structural variants of each type of
phase, e.g., between different crystalline lamellar phases.
A complete discussion of the simulation results will appear
elsewhere [21].
To understand the unwavering magnitude of the wave

vector within the off-lattice model, we focus on the average
overlap energy of the particles in the lamellar phase. For
ℓ< σs the lowest-order approximation of the cumbersome
but analytical form of the intra-lamellar interaction reads
Eintra ≈ ϵρ(ℓ+ a)σs, where a is the width of the gaps
between the lamellae and thus the centers of the lamellae
are L= ℓ+ a apart; ρeff = ρ(ℓ+ a)/ℓ is the effective density
of particles in the lamellae. This result can be understood
by noting that for ℓ< σs, each particle within a lamella
overlaps with about 2ℓσsρeff neighbors. The intra-lamellar

5In the off-lattice model, we neglect the inter-aggregate positional
correlations of colloids, which are most prominent in the crystalline
variants of the aggregate phases. These correlations may affect the
shape and the structure of the aggregates and thus the free energy
of the phase in question. This is likely the main reason for the
quantitative discrepancy between the theoretical phase diagram and
the MC simulations.
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Fig. 3: Wavelength of principal mode vs. pressure for σs/σ= 5
and βϵ= 2. The dashed line shows the prediction from the
lattice, mean-field theory, L/σs ≃ 1.22; the solid line shows
the results of the mean-field, off-lattice calculation with the
boundaries of the respective phases labeled below; and the filled
circles show the results from the simulations with the phases
labeled above. The phase morphologies are labeled as in figs. 1
and 2. The lattice constant and the wavelength differ by a
multiplicative factor of

√
3/2 in the hexagonal phases.

interaction is an increasing function of both a and ℓ, and
fixing the lattice constant amounts to fixing the energy per
particle due to intra-aggregate interactions. On the other
hand, the inter-lamellar repulsion decreases both with a
and ℓ: As a grows for fixed ℓ, fewer particles in neighboring
lamellae interact, and, as ℓ grows for fixed a, the fraction
of the particles at the edge of each lamella which overlap
more strongly with the neighboring lamella is reduced.
To lowest order, the inter-lamellar interaction predicted
by the off-lattice model is Einter ≈ 0.75ϵρ

√
σs(σs− a)5/2×

(ℓ+ a)/ℓ2, which like Eintra has a simple geometric origin.
Only particles within a surface layer of width σs− a
interact with particles on a neighboring cluster. The
average number of particles a given surface particle reaches

grows as σ1/2s (σs− a)3/2ρeff , while the fraction of particles
at the surface is (σs− a)/ℓ. The minimum of Einter+Eintra
(subject to the condition that ρeff should not exceed
the close-packed density 2/

√
3σ2) indeed lies on the line

ℓ+ a≈ 1.2σs. We also find that the equilibrium value of ℓ
is as small as allowed by this condition, as if the lamellae
were being compactified by an effective surface tension
arising from the inter-lamellar repulsion.
In conclusion, we have shown that particles interacting

with a simple, isotropic and purely repulsive interaction
can nevertheless display a wealth of complex mesophases.
These phases arise quite generically from a large class of
interaction potentials whose Fourier transforms have nega-
tive regions. We note that the observed phase sequence is
analogous to the ordered phases of diblock copolymers [22]
and amphiphiles in water [23] despite the isotropic symme-
try of the interaction. Near the critical point of the
molten copolymer, quite generic Landau-theory consid-
erations lead to the diversity of modulated structures
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in equilibrium [24]. We expect the mean-field theory of
hard-core/soft-shoulder colloids to be very similar to the
copolymer theory, which suggests that in three dimensions
such systems can be expected to form lattices of spheri-
cal, cylindrical, and lamellar aggregates as well as their
inverses and the bicontinuous gyroid phase.
Our model can be further generalized by including a

short-range attraction in addition to a long-range repul-
sion [17,25]. Though the details would be different, our
conclusion of an ordering instability would remain and
the same qualitative arguments would still hold as the
aggregation phenomenon is encoded in the Fourier trans-
form of the soft part of the pair potential. Our analysis
also suggests that the morphological similarities between
repulsive self-assembly and clustering due to competing
short-range attraction and long-range repulsions [26] are
more than superficial: they reflect the common structure
of the Fourier transform of the interaction potential. From
the point of view of our off-lattice calculation, however,
it is quite difficult to understand whether repulsive self-
assembly truly represents the same mechanism as cluster-
ing due to competing interactions. It would be interesting
to resolve this issue in the future.
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Phys. Rev. E, 63 (2001) 031206.
[15] Klein W. et al., Physica A, 205 (1994) 738.
[16] Mladek B. M. et al., Phys. Rev. Lett., 96 (2006)

045701.
[17] Sear R. P. and Gelbart W. M., J. Chem. Phys., 110

(1999) 4582.
[18] Groh B. and Mulder B., Phys. Rev. E, 59 (1999)

5613.
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