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INTRODUCTION

The immune system of an organism combats invading pathogens, thereby protecting the host
from disease. Jawed vertebrates, such as humans, have an adaptive immune system that enables
them to mount pathogen-specific immune responses (1). The importance of the adaptive immune
response for human health is highlighted by the opportunistic infections that afflict individuals with
compromised adaptive immune systems [e.g., those who have progressed to AIDS after infection
with the human immunodeficiency virus (HIV)]. The flexible adaptive immune system can also
go awry, and many diseases (e.g., multiple sclerosis and type I diabetes) are the consequence of the
adaptive immune system failing to discriminate between markers of self and nonself. The suffering
caused by autoimmune diseases and the need to combat diverse infectious agents have motivated a
great deal of experimental research aimed toward understanding how the adaptive immune system
is regulated. These efforts have led to some spectacular discoveries (2-10). Yet an understanding
of the principles that govern the emergence of an immune or autoimmune response has proven to
be elusive. The practical impact of this missing knowledge is highlighted by the inability to design
vaccines against many scourges on the planet (e.g., HIV).

An important barrier for the development of mechanistic principles that describe adaptive im-
munity is that the pertinent processes involve cooperative dynamic events with many participating
components that must act collectively for an immune or autoimmune response to emerge. More-
over, these processes span a spectrum of timescales and length scales that range from interactions
between molecules on cells to phenomena that affect the entire organism; feedback loops between
processes on different spatiotemporal scales are also important. It is often hard to intuit under-
lying principles from experimental observations because of the complexity of these hierarchically
organized collective processes. The importance of stochastic effects further confounds intuition.

Statistical mechanics can relate observations to the underlying microscopic stochastic events
that occur in a complex interacting system. Statistical mechanical theory, associated computations,
and complementary experiments have therefore helped uncover mechanisms underlying complex
physical and chemical phenomena. In this review, we describe recent work that brings together
statistical mechanics and cell biology to uncover new concepts in immunology. This type of
interdisciplinary research is beginning to shed light on some basic questions in biology with
implications for human health. Our goal is to illustrate the challenges and excitement at this
crossroad of the physical and life sciences, with a view toward attracting more physical chemists
to this area of inquiry.

Immunology is a vast field with a wealth of interesting problems that can benefit from comple-
mentary experimental and theoretical research. Space limitations allow us to focus on essentially
one topic. To properly define this topic, we begin with a brief exposition of basic immunology.

BASIC IMMUNOLOGY

Higher organisms are constantly exposed to infectious microbial pathogens. Yet the development
of infectious diseases is relatively rare. This is because diverse types of cells that compose the
innate immune system are efficient in preventing pathogenic microorganisms from establishing an
infection. The components of the innate immune system respond to common features of diverse
pathogens, but are not specific for individual pathogens. Some bacteria and many viruses can
evade or overcome the innate mechanisms of host defense. The adaptive immune system mounts
pathogen-specific immune responses against such invading microorganisms. Adaptive immunity
also establishes memory of past infections, thereby conferring the ability to mount rapid immune
responses to pathogens encountered previously.
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Two Arms of the Adaptive Immune System

The adaptive immune system has two arms, called cellular and humoral immunity. T lymphocytes
(T cells) and B lymphocytes (B cells) are the key regulators of cellular and humoral immunity,
respectively. T cells and B cells express immunoglobulin proteins on their surfaces, which are
called T cell receptors (TCRs) and B cell receptors (BCRs), respectively. The genes encoding
these receptors are inherited as gene segments that stochastically recombine during the synthesis
of T cells and B cells in the bone marrow. Each gene assembled in a given lymphocyte is thus
distinct, enabling the generation of a great diversity of T cells and B cells expressing different re-
ceptors. Different lymphocytes can potentially respond to specific pathogens as distinct receptors
can potentially recognize (i.e., bind sufficiently strongly to) molecular signatures of specific for-
eign invaders. Thus, the adaptive immune system can mount pathogen-specific responses against
diverse infectious microbes.

The diverse lymphocytes bearing different TCRs and BCRs that are generated in the bone
marrow by the stochastic recombination of gene segments do not all become part of an organism’s
army of T cells and B cells that battle pathogens. Rather, T cells and B cells undergo development
processes that allow only a small fraction of the generated cells to become part of an organism’s
repertoire of lymphocytes. T cells develop in an organ called the thymus (the T stands for thymus).
B cells develop in the bone marrow (the B stands for bone marrow) and also, upon activation, in
lymphoid organs. The primary focus of this review is on studies that are enabling an understanding
of how these developmental processes shape the T and B cell repertoire such that adaptive immu-
nity exhibits both remarkable pathogen specificity and the ability to combat myriad pathogens. In
this context, we also briefly touch on the molecular machinery that translates receptor binding to
pathogenic markers into cellular responses. To consider these issues, we note a few more biological
facts.

What is Recognition, Where Does it Occur, and What do T Cells
and B Cells Recognize?

Cells of the innate immune system (e.g., dendritic cells, macrophages) engulf pathogens (also called
antigens) present in different parts of an organism’s body. These cells are called antigen-presenting
cells (APCs) because they express molecular signatures of the ingested antigens on their surface.
Extracellular fluid from tissues, which contains pathogens or APCs harboring pathogens, drains
into lymphoid organs (e.g., lymph nodes, spleen) via the lymphatic vessels. The lymphatic vessels
also enable lymphocytes to circulate among the blood, lymphoid organs, and tissues. In lymphoid
organs, lymphocytes can interact with pathogen-bearing APCs and pathogens and recognize them
as foreign. (We define the term recognize precisely below.)

If a lymphocyte recognizes pathogens in a lymph node, a series of intracellular biochemi-
cal reactions occurs (called signaling) that results in gene transcription programs that cause the
lymphocyte to become activated,; i.e., it begins to proliferate and acquire the ability to carry out
functions that can mediate an immune response. Activated lymphocytes thus generated, bearing
receptors specific for the infecting pathogen, then leave the lymph node and enter the blood via
lymphatic vessels. When they encounter the same pathogen’s molecular markers in the blood or
tissues, they can carry out effector functions to eliminate the infection. For example, certain kinds
of activated T cells can kill cells infected by the pathogen, thereby killing the pathogen as well.

The BCRs and T'CRs expressed on B cells and T cells can bind to species that are called ligands
(Figure 1). B cells protect against pathogens in blood or extracellular spaces. The ligands of the
BCR include proteins, fragments of proteins, and molecules on the surface of viruses or bacteria.
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Lymphocyte recognition of signatures of pathogens. (#) T cells. Antigen-presenting cells (APCs) engulf
pathogens and process their proteins into short peptides, which are bound to major histocompatibility
complex (MHC) proteins and presented on the surface. T cell receptors (T'CRs) bind to peptide MHCs, and
sufficiently strong binding enables intracellular signaling and gene transcription, leading to T cell activation.
APC:s also present self-peptides derived from self-proteins, but typically T cells are not activated by them.
CTL, cytotoxic T lymphocyte. (b) B cells. B cell receptors (BCRs) bind directly to antigens and their
products, and sufficiently strong binding results in productive intracellular signaling and internalization of
the antigen, bound to BCR. The antigen is processed by the B cell, which then presents the corresponding
peptide MHC:s on its surface. Recognition of these peptide MHCs by an activated T helper cell’s TCR is
usually necessary for B cell activation.

T cells evolved to combat intracellular pathogens. Proteins synthesized by intracellular pathogens
are cut up into short peptide fragments by enzymes in cells harboring the pathogen. These peptide
fragments can potentially bind to protein products of the host’s major histocompatibility complex
(MHC) genes. There are two kinds of MHC proteins, called MHC class I and MHC class II.
Typically, a human will have up to six types of MHC class I proteins, and up to six types of MHC
class IT proteins. Pathogen-derived peptides (p) bound to MHC proteins are ultimately expressed
on the surface of APCs and infected cells. These pMHC:s are the TCR ligands.

MHC: major When we say thata T cell recognizes a particular pathogen-derived pMHC, what we mean is
histocompatibility that its TCR binds to it sufficiently strongly, which allows productive intracellular signaling and
complex activation to occur. T cells activated by peptides presented by MHC class II proteins proliferate
PMHC: peptide and differentiate into many cell types called T helper cells (for reasons noted below). T cells
Ezg;mpatibﬂity activated by peptides presented by MHC class I molecules become cytotoxic T lymphocytes
complex (CTLs). When activated CTLs encounter cells in tissues that express the pMHC molecules that
CTL: cytotosic T originally activated them, they can kill these cells by secreting various chemicals.

lymphocyte Similarly, when we say that a B cell recognizes a ligand, we mean that its BCR binds sufficiently

strongly to it, which results in signaling and also causes the internalization of the pathogen.
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pMHGC:s, with the peptide derived from the internalized pathogen, are presented on the B cell
surface. Signaling induced by the binding of these class I pMHCs with a T helper cell’s TCR
(activated by the same pMHC) augments BCR signaling to activate B cells. Activated B cells
proliferate and differentiate into plasma cells that secrete a soluble form of its BCR. These soluble
immunoglobulins are called antibodies. Antibodies act on pathogens in extracellular spaces and in
blood in a variety of different ways to help clear infections. Both T and B cells also differentiate
into memory cells that mount rapid immune responses upon reinfection with the same pathogen.

MOLECULAR MECHANISM THAT ENABLES THE LYMPHOCYTE
SIGNALING NETWORK TO BE ON OR OFF

The lymphocyte signaling network does not exhibit a continuous increase in response as the
stimulus (e.g., TCR-pMHC binding strength) is progressively increased. Rather, it only responds
strongly above a threshold stimulus level. This feature is necessary for sharp discrimination be-
tween recognized and unrecognized ligands. Readers not interested in molecular details may skip
this section and take this result as a fact in the following sections that are the focus of this review.

Signaling through BCRs and T'CRs is mediated by biochemical networks that are similar, but
notidentical. We briefly discuss one example of signaling through BCRs and T'CRs that describes
a phenomenon that is important when considering T cell development in the thymus. It also
exemplifies how statistical mechanical computations and cell biology were brought together to
elucidate the molecular machinery that causes these signaling networks to discriminate sharply
between ligands they recognize and those they do not. A fuller review of such studies of lymphocyte
signaling can be found elsewhere (11).

When cells are stimulated by receptor-ligand binding, many biochemical reactions that are part
of a network can occur. These reactions modify proteins inside the cell. The modified proteins
are referred to as activated signaling molecules. The number of activated signaling molecules is
not zero in unstimulated cells, as a basal level of signaling is maintained (Figure 24). When cells
are weakly stimulated (for example, by binding to very few ligands or ligands that bind weakly to
receptors), basal levels of signaling are maintained. Recently, it was shown that when lymphocytes
are stimulated by increasing doses or strengths of receptor-ligand binding, the population of
cells does not respond by continuously increasing the number of active downstream signaling
molecules (12, 13). Rather, beyond a threshold stimulus level, the population of cells splits into
two subpopulations, one that turns on a large number of active signaling molecules and another
that maintains basal signaling levels (Figure 24). Thus, the signaling network is said to exhibit a
digital or on-off response. This is important as it allows lymphocytes to become activated only
when a particular ligand is present in a sufficient amount, a feature with implications for specific
recognition and robustness to noise.

Upon binding of pMHC molecules to the TCR, a kinase called Lck can bind to the cyto-
plasmic domains of the receptor and phosphorylate a number of residues (called ITAMs) therein
(Figure 2b) (14). Doubly phosphorylated ITAMs can then bind a protein called ZAP70, which
is then phosphorylated by Lck (7, 15). Phosphorylated ZAP70 can then phosphorylate a number
of tyrosine residues on a large protein called LAT (16). This enables the assembly of a complex
containing many different proteins. One component of this complex is a protein called PLCy,
which via a series of steps can activate proteins called RasGRP (17-19). An important node in the
lymphocyte signaling network (and others) is the activation of proteins called Ras from an inactive
GDP-bound state to the active GTP-bound state (20). Active Ras can initiate diverse down-
stream signaling pathways that ultimately activate transcription factors that activate lymphocytes.
RasGRP proteins are enzymes that can activate Ras proteins (21). But, in lymphocytes, there is
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Figure 2

Digital signaling in lymphocytes. (#) Histograms showing the number of cells with a particular amount of an
activated downstream signaling protein. For weak stimulus, a basal level of signaling characteristic of
unstimulated cells is maintained (the off state). When stimulus exceeds a threshold value, some cells turn on
a large amount of downstream signaling (the on state), whereas others still exhibit basal signaling. A
continuous (or analog) response is shown to contrast with such a digital response. Digital responses enable
sharp discrimination between the ligand type and quantity that are recognized and those that are not.

(b) Schematic representation of the membrane-proximal T cell signaling network. (c) Ras activation by the
enzyme SOS is subject to positive feedback regulation because the catalytic rate of conversion is much faster
if the product of the catalysis (active GTP-bound Ras) is bound to an allosteric site (see 24, 25).
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another protein assembled in the LAT signaling complex that can also activate Ras. This protein
is called SOS (22), and crystallographic and biochemical experiments show that Ras activation by
SOS is subject to positive feedback regulation (23, 24). In addition to an enzymatic site where
Ras-GDP binds and is activated, SOS has another site where either GDP- or GTP-associated Ras
can bind (24, 25) (Figure 2b,c). If Ras-GTP (the product of the catalysis at the enzymatic site) is
bound to this distal site, the catalytic rate of conversion increases roughly 75 times (24, 25).

Deterministic ordinary differential equations describing these processes suggested that this
positive feedback loop leads to bistability; i.e., for intermediate levels of stimulation, more than
one steady state is stable (13). T cells are extremely sensitive and can be activated by small numbers
of ligands (26-28), and cytoplasmic signaling proteins can be present in small numbers. Therefore,
intrinsic stochastic fluctuations can be important. These cell-to-cell stochastic variations in the
numbers of activated signaling molecules can be obtained by solving the master equations de-
scribing the network of biochemical reactions (29). Several computer codes that can numerically
solve the master equations using the Gillespie algorithm (30, 31) and Green’s function methods
(32) have recently been published (33-38). Two such codes (34, 38) allow the specification of
the signaling network in a high-level format without the need for coding, and one of them can
simulate systems that are spatially inhomogeneous extremely fast (38). The spatial organization of
signaling components can be important in mediating outcome, and has recently been elucidated
by a combination of computational and experimental methods rooted in physical chemistry and
cell biology (39-47).

Stochastic simulations (13) of the biochemical network shown in Figure 25 predicted that Ras
activation in lymphocytes is digital; i.e., above a threshold stimulus, two populations of cells should
exist with greatly differing amounts of active Ras proteins (i.e., a digital response as illustrated in
Figure 2a was predicted). Thisis a stochastic manifestation of the bistability predicted by the deter-
ministic calculations. Many of the parameters involved in the stochastic simulations are unknown.
Therefore, prior to carrying out experimental tests, it is important to establish the robustness of
the qualitative phenomenon to changes in unknown parameters. The development of fast algo-
rithms that can carry out exhaustive parameter sensitivity analyses for stochastic simulations and
the proper sampling of nonequilibrium states remain a challenge. However, deterministic analyses
can often be used as a guide. For example, aided by such analyses and stochastic computations,
Das et al. (13) showed that the predicted digital signaling was robust as long as a few features of
the network were true. This type of robustness is quite common in biological networks (48).

Experimental studies (13) showed that signaling in lymphocytes was indeed digital upon care-
fully changing the stimulus level. However, owing to technical reasons, only a downstream product
of Ras activation could be assayed in single-cell experiments that could interrogate whether sig-
naling is digital. Therefore, one could argue that the digital signaling observed in the experiments
resulted from other feedback loops not related to SOS-mediated Ras activation. Computational
models can be used to design genetic and biochemical experiments that can discriminate between
such possibilities. The work reported by Das et al. (13) is an example of complementary physical
and biological studies that established that the molecular origin of digital signaling in lymphocytes
is feedback regulation of Ras activation. The results also showed that this feedback loop results in
hysteresis, which confers lymphocytes with short-term memory of past encounters with antigen.

SELECTION OF AN ANTIGEN-SPECIFIC, YET DEGENERATE,
T CELL REPERTOIRE DURING DEVELOPMENT

TCR recognition of pMHC molecules is both highly specific and degenerate. It is specific because
ifa TCR recognizes a pMHC molecule, most point mutations of the peptide’s amino acids abrogate
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recognition (49, 50). However, a given TCR can also recognize diverse peptides (51-54). This
specificity-degeneracy conundrum is made vivid by dividing the world of peptides into classes,
with the members of each class having sequences that are closely related. For example, peptides
within a class could differ by just point mutations. A TCR can discriminate quite well between
peptides within a class of closely related peptide sequences (as point mutants of the peptides it
recognizes are not recognized with high probability). But, at the same time, TCRs are not so good
at distinguishing between peptides with different sequences as a given TCR can recognize many
peptides.

How do TCRs recognize pMHC molecules in this specific, yet degenerate, fashion? Address-
ing this fundamental question in biology could help in understanding the immune response to
pathogens and its aberrant regulation (as in autoimmunity). Recent work suggests that processes
that occur during T cell development in the thymus select TCR sequences that can simultaneously
exhibit specificity and degeneracy. The mechanism for specificity of TCR-pMHC interactions
suggested by these studies is somewhat distinct from Fisher’s (55) lock-and-key metaphor for
specificity in biology.

After synthesis, baby T cells (thymocytes) go to the thymus, an organ located behind the
sternum (Figure 3) (10, 56-59). Cells in the thymus display pMHC molecules on their surface
with the peptides derived from diverse parts of the host proteome. For a T cell to exit the thymus
and become part of the host’s repertoire of T cells, it must pass the following two tests: (#) It
must not be negatively selected. That is, its TCR must not bind to any self-pMHC molecule
with a binding free energy that exceeds a threshold (denoted E, below). () It must bind at least
one self-pMHC molecule with a binding free energy that exceeds another threshold (denoted
E, below). The negative selection threshold is sharply defined, whereas positive selection occurs
over a range of binding strengths (a few kpT") (60, 61). Statistical mechanical models (62, 63)

Figure 3

Thymic selection of T cells, and its consequences for the antigen-recognition properties of the T cell
repertoire. (#) Immature T cells (thymocytes) develop in the thymus. Thymocytes migrate through the
thymus and interact with diverse self peptide major histocompatibility complexes (self-pMHCs) presented on
the surface of thymic antigen presenting cells (APCs). A T cell’s receptor (T'CR) must bind to at least one of
these self-pMHCs weakly to exit the thymus and become a part of the individual’s T cell repertoire (positive
selection). A T cell with a TCR that binds to any self-pMHC with an affinity that exceeds a sharply defined
threshold dies in the thymus (negative selection). (5) Schematic representation of the interface between TCR
and pMHC:s. The region of the TCR contacting the peptide is highly variable and is modeled by string of
amino acids of length N. The peptide is also treated similarly. The binding free energy between the TCR
and the entire pMHC is computed as described in the text. () The ordinate is the ratio of the frequency of
occurrence of an amino acid in the peptide contact residues of selected TCRs and the preselection frequency.
TCRs selected against many types of self-peptides in the thymus have peptide contact residues that are
enriched in amino acids that interact weakly with other amino acids. In contrast, the peptide contact residues
of TCRs selected against only a few self-peptides comprise more strongly interacting amino acids. (4) A
mechanism for the puzzle of how TCR recognition of pathogen-derived peptides is both specific and
degenerate emerges from statistical mechanical theory and is illustrated in the schematic. Peptide amino
acids shown in red, or blue, are not identical; a given color represents that the amino acid is among the
stronger complements of the major amino acid contact on the TCR. Sufficiently strong interactions required
for recognition are mediated by several moderate interactions. (¢) Representation of the dependency of the
parameter f, a measure of amino acid composition of selected TCRs, on the number of self-peptides In M/N
and the threshold for negative selection E, with (E, — E,)/N = 0.5 kpT. The region between the black lines
corresponds to B = 0, to the right (left) of which negative (positive) selection is dominant, and weak (strong)
amino acids are selected. The blue dashed lines indicate the relevant parameter values for thymic selection in
mouse. This figure is adapted from figure 2 in Reference 62.
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that complement experiments have recently taken steps toward the goal of answering how thymic
selection processes may tune the T cell repertoire. Huseby et al. (50) discovered that T cells that
develop in genetically altered mice that express only one type of self-pMHC in the thymus can be
stimulated, with relatively high probability, by point mutants of pathogen-derived pMHCs that
they recognize. In contrast, for T cells that develop in mice with many types of pMHC (~10°-10%)
in the thymus, most such point mutations abrogate recognition (50).

To consider this difference in recognition properties due to the number of self-pMHCs present
in the thymus during T cell development, we present the following simple model (62, 63). The
pMHGC:s are divided into two parts, as shown in Figure 35. TCRs comprise three loops. The
CDR1 and CDR2 loops largely make contact with MHC amino acids, whereas the CDR3 loop
contains almost all the peptide contact residues of the TCR. Therefore, the TCR is also divided
into two parts (Figure 35). To assess which kinds of T cells survive thymic selection and their
properties vis-a-vis recognition of pathogen-derived pMHCs, one needs a way to estimate the free
energies of TCR-pMHC binding. Huseby etal. (49, 50) used inbred mice in their experiments, so
the MHC proteins were all the same. Although the CDR1 and CDR2 loops vary from one TCR
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to another, they are not hypervariable. Therefore, Kosmrlj et al. (62, 63) represented the TCR-
MHC interactions using a continuous variable (E,), which varies from one TCR to another. The
CDR3 loops are hypervariable (1) and so are the self-peptides; thus the peptide contact residues
and the amino acids of the peptides were represented explicitly. Various models of the interactions
between these amino acids can be envisaged. The simplest is one in which each amino acid on the
peptide has a major contact residue on the TCR, and other interactions are ignored. The details of
such simplifications and the potential function describing these interactions do not seem to affect
qualitative results (e.g., see 62, 63, and below).

Previous studies (64-66) that represented TCR-pMHC interactions in a manner similar to
Figure 35 (string models) did not have an explicit treatment of amino acids or consider the
variation of the character of the T cell repertoire with the number of self-peptides in the thymus.
Therefore, it was difficult to obtain mechanistic insights with experimental consequences. Kosmrlj
et al. (62, 63) used numerical calculations and analytical statistical mechanical theory to suggest
a mechanism for how a specific, yet degenerate T cell repertoire is designed in the thymus using
the model depicted in Figure 3b. Their results are consistent with the reports by Huseby et al.
(49, 50), and some theoretical predictions have been tested positively by experiments (63). Their
conclusions also suggest new avenues for theoretical and experimental research.

An important concept emerging from the theoretical studies is that the major constraint on
the kinds of sequences of T'CR peptide contact residues that can emerge from the thymus is
the requirement of avoiding negative selection against diverse self-pMHCs. This is because the
same quenched sequence of peptide contact residues must avoid interacting strongly with diverse
peptide sequences. Positive selection does not present this frustrating effect as once a TCR is
positively selected by a self-pMHC, the other peptides are only relevant for negative selection.

Kosmrlj et al. (62, 63) show that, with high probability, the constraints imposed by negative
selection result in the elimination of TCRs with peptide contact residues that interact strongly
with other amino acids or have flexible side chains (Figure 3c). This is because such TCRs are
likely to interact strongly with at least one of the diverse sequences of self-peptides presented in the
thymus. This argument can be formalized in a number of ways, perhaps most elegantly by casting
thymic selection as an extreme value distribution problem (67). A T cell bearing a particular TCR
will survive only if its most attractive interaction with the diverse pMHCs presented in the thymus
lies between the positive and negative selection thresholds, E, and E,, respectively. By treating
the self-peptide sequences as independent random strings of amino acids [bioinformatic data
(68, 69) suggest that this is a reasonable approximation], Kosmrlj et al. (62) showed that for a TCR
with a sequence of peptide contact residues, 7, the distribution of the strongest interaction with
M self-pMHC:s is sharply peaked around

N N
Ey@) = Ec+ ) e(t)— |@InM) Y v(). )
i=1 i=1

where N is the number of TCR peptide contact residues and e(#) and v(z) are the average and
variance of the free energy of interaction of amino acid # with all others, respectively. Ey must lie
between [, and E, for the T cell bearing this TCR to develop into a mature T cell. From this
condition and Equation 1, it is evident that increasing the number M of self-pMHCs increases
the constraints presented by the requirement of avoiding negative selection. To counterbalance
this pressure, for large M, TCRs are enriched with weakly interacting amino acids. A similar
effect can be obtained with amino acids with smaller variance of interactions, but this effect is less
pronounced because of the square root. This result is independent of the form of the statistical
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potential between contacting amino acids. Different potentials only change the identities of weak
and strong amino acids.

Numerical simulations of the model in Figure 35 (63) were the first to report this result
(Figure 3¢) suggested by physical arguments and later formalized by extreme value distribution
analysis (62). This prediction is supported by the analysis of available crystal structures of TCR-
pMHC:s (63). However, given the small number of published crystal structures, more data are
required to further test this idea. If these results continue to be tested positively, taken together
with experiments, they provide a mechanistic explanation for the origin of the long-standing
specificity/degeneracy puzzle.

Because selected TCR sequences are predominantly composed of peptide contact residues with
weakly interacting amino acids or those without flexible side chains, they recognize pathogen-
derived pMHC:s, with peptides that are composed of amino acids, which are among the strongest
complements of the TCR peptide contact residues. This results in sufficiently strong binding
(required for recognition) via many moderate interactions, a result consistent with recent experi-
ments (49). The mechanistic origin of specificity (Figure 3d) can then be summarized as follows:
() Most point mutations to the amino acids of the antigenic peptide will result in weakening
interactions with the TCR because peptides recognized by weakly interacting TCR peptide con-
tact residues are enriched in amino acids that bind strongly to the TCR peptide contact residues
(63). (b)) Weakening a contact has a significant effect on the total binding free energy because each
contact makes a significant contribution (49, 63). (¢) Strong nonlinearities in the T cell signaling
network, leading to T cells being either on or off (60, 61), imply that even moderate changes in
binding free energy can abrogate recognition.

This mechanism for TCR-pMHC specificity is distinct from Fischer’s (55) lock-and-key
metaphor. Interactions between the TCR and the MHC dock the T'CR over its ligand in es-
sentially the same orientation (70, 71)—this may be analogous to shape complementarity, but it
is not ligand specific. The peptide contact residues of the T'CR then scan the peptide to assess
if there is a sufficient number of moderate interactions to mediate recognition (Figure 3d). An
appropriate metaphor may be that the TCR peptide contact residues scan a bar code (peptide).
The statistical aspects of TCR-pMHC recognition also make degeneracy or cross-reactivity to
peptides with different sequences the flip side of the coin. Although point mutations can abrogate
recognition with high probability, making a number of changes to the peptide sequence such that
a sufficient number of moderate interactions is still obtained will allow recognition by the same
TCR (Figure 3d). This may also be why two peptides with different sequences and conformations
in the MHC groove can be recognized by the same TCR.

For T cells selected against only one type of peptide in the thymus, the frustrating effects of
the negative-selection constraint are not present. Thus, it is predicted that TCRs with strongly
interacting or flexible peptide contact residues will emerge from the thymus with high probability
(Figure 3c¢). These amino acids will dominate the interaction free energy with recognized pMHC:s;
i.e., recognition will be mediated by few important contacts (49, 63), rather than many moderate
interactions. T cells with such T'CRs are cross-reactive to most point mutants of peptides that they
recognize because only mutations that affect the few important contacts will abrogate recognition.

The probabilities with which amino acids with different characteristics are chosen for the
peptide contact residues of the TCRs in the T cell repertoire depend on conditions (e.g., the
number of peptides present in the thymus). This dependency can be formalized by using statistical
mechanical methods that apply in the limit of very long peptides (62); remarkably, the results seem
to hold even for short peptides. The thymic selection condition,

E, < Ey(f) < E,, )
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can be interpreted as a microcanonical ensemble of TCR sequences 7 that are acceptable if the
value of the Hamiltonian, Eq(7), falls in the interval (E,, E,). In the limit of long peptides, the
probability for TCR selection is governed by the Boltzmann weight

N
p@ o ([] £ ) expl—BE@)]. 3)
i=1

Here f, are the natural frequencies of the different amino acids prior to selection, whereas the
effect of thymic selection is captured in the parameter 8, which is determined by the condition
that the average energy falls in the interval (£,, E,). The complication presented by the square
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root term in Equation 1 is easily dealt with by Hamiltonian minimization (72) and introducing an
effective Hamiltonian,

Ho® = E. + Y [e(6) = yv(s)] - In M/Qy). @)

This corresponds to Boltzmann weights

() o l_[ {fi; exp[=B(e@) — yv@E)]}. ®)

for which thermodynamic quantities are easily computed. y is determined by minimizing the
effective Hamiltonian Hy(#) with respect to y.  is determined by constraining the average energy
to the range (F,, E,), while maximizing entropy. For g > 0, positive selection is dominant and
stronger amino acids are selected, whereas for 8 < 0, negative selection is dominant and weaker
amino acids are selected. The resulting phase diagram is shown in Figure 3e.

The complementary theoretical (62, 63) and experimental studies (49, 50) summarized above
have shed light on the specificity/degeneracy puzzle and mechanisms underlying how the antigen-
recognition properties of the T cell repertoire are shaped during development. In addition to fur-
ther examining these ideas, we suggest an important future direction of research. Unlike the inbred
mice used in experimental models, the outbred human population has a vast diversity of MHC
genes. How do particular MHC genes affect the characteristics of the T cell repertoire that an indi-
vidual possesses? Answering this question might shed light on why individuals with certain MHC
genes are more prone to autoimmunity or more likely to be able to control certain viral infections.

B CELL DEVELOPMENT UPON ANTIGEN RECOGNITION

Antibodies secreted by B cells were discovered much earlier than T cells. Most of the early
understanding of adaptive immunity emerged from thinking about antibodies, and the first major
concept in adaptive immunity, Burnet’s clonal selection theory (73, 74), was tested in their context.
This concept posits that a diversity of cells, each with its own antigen specificity, is synthesized, and
upon interaction with infectious agents, the pathogen-specific cells (clones) proliferate. These ideas
have proven to be largely correct. Remarkably, Burnet’s ideas precede Tonegawa’s (75) discovery of
stochastic recombination of immunoglobulin genes that produce combinatorial diversity of BCRs
or an understanding of B cell developmental processes.

Like T cells in the thymus, B cells undergo negative selection in the bone marrow
(Figure 4a); B cells expressing BCRs that recognize self-antigens are eliminated. Activation of a

Figure 4

B cell development and the original antigenic sin. (#) Immature B cells are synthesized in the bone marrow
where they are exposed to self-antigens on the surface of stromal cells. B cells that bind too strongly to
self-antigens are removed by negative selection. The rest of the B cells are released in the bloodstream as
short-lived naive B cells. Upon antigen recognition, activated naive B cells migrate to the germinal center,
where they develop better binding affinity for antigen (affinity maturation). First they enter the dark zone,
where they proliferate and their receptors undergo somatic hypermutations in the variable region. Next they
enter the light zone, where they die by apoptosis unless they receive two survival signals. The first signal
comes from binding to antigens presented on the surface of follicular dendritic cells (FDCs). B cells with
higher affinity for antigens have an advantage (clonal selection) when competing for low amounts of antigen
presented on FDCs. The second signal is provided by an activated T helper cell, as shown in Figure 15.

B cells that leave the germinal centers differentiate into memory cells and plasma cells. (#) The effect of
vaccination with viral strain on subsequent infection with mutated viral strain. Depending on the genetic
distance between the vaccinating and infecting strains, vaccination can be advantageous or deleterious.
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GC: germinal center
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B cell that emerges from the bone marrow requires its BCR to bind with moderate affinity to a
ligand. These similarities notwithstanding, the development and activation of T cells and B cells
occur quite differently.

BCRs recognize diverse structurally distinct ligands, unlike T'CRs, which can only recognize
pathogen-derived peptides presented in complex with a defined MHC protein. Naive B cells
cannot be activated just by their BCRs binding sufficiently strongly to ligands (Figure 154). The
need for cooperation with T helper cells in order to be activated should provide B cells with an
additional level of protection against erroneous autoimmune responses compared with T cells.
Once activated, B cells undergo a round of developmental processes in the lymphoid organs
wherein mutations to the BCR occur, and the mutants that bind more strongly to the infecting
pathogen are selected. Activated T cells do not undergo further developmental processes after
activation. Thus, it appears that characteristics that confer T cells with pathogen specificity and
self-tolerance must be tuned in the thymus once, whereas BCRs on B cells can evolve these
attributes after they exit the bone marrow. The implications of these differences on how the TCR
and BCR repertoires are shaped, and how this affects their recognition of antigens, compose a
largely unexplored area that would benefit from interdisciplinary studies.

The processes that have been described extensively by mathematical models (76-88) occur
after a naive B cell recognizes a pathogen via its BCR. These processes (Figure 4a), collectively
termed affinity maturation, involve a period of rapid proliferation, mutation in variable regions of
BCR, selection of strongly binding mutants (clones), and differentiation into memory and plasma
cells. In a few weeks, affinity maturation results in antibodies that bind to pathogens strongly and
eliminate them by diverse processes.

Activated naive B cells migrate to dynamically created areas within lymph nodes called germinal
centers (GCs) (Figure 4a). B cells first enter a so-called dark zone where they rapidly proliferate
and their receptors undergo mutations in the genes encoding the variable regions of the BCR
and their flanking regions (89, 90). These mutations are called somatic hypermutations because
the rate of mutation is extraordinarily high (89). Rapid proliferation and somatic hypermutations
produce some cells with receptors of higher binding affinity for antigen, but also many cells with
receptors of unchanged or lower affinity. Clonal selection occurs in the light zone where the
receptors on B cells compete for the limited amount of antigen presented on follicular dendritic
cells (91, 92). Cells that bind to antigens will receive survival signals, whereas others die. Cells with
high-affinity receptors are more likely to be successful during this competition. B cell survival is
also predicated on the binding of T helper cells (93-95).

During GC processes, the affinity of antibodies for the infecting antigen are increased by at least
one or two orders of magnitude (1) via a large number (5 to 10, or sometimes higher) of mutations
(78, 89). Soon after high-affinity mutants appear, they take over GCs and are thus oligoclonal (90,
96, 97). Another important feature of in vivo GC reactions is an all-or-none behavior (96, 98).
GCs either have no high-affinity cells at all or are dominated by them.

Although there have been many theoretical studies of these processes (76-88), the most signifi-
cant early analyses are those due to Perelson and coworkers (76-78, 86, 88). For example, Kepler &
Perelson (77) developed a deterministic model of B cell proliferation, mutation, and competition
for antigen. B cells were divided into a discrete number of classes based on the affinity of their
BCRs for the infecting pathogen. Events occurring in the GC were described with first-order
differential equations that represented clonal selection (proliferation and death determined by
affinity in a proportional manner) and transitions between affinity classes via a time-dependent
mutation rate.

The main findings from this model can be summarized as follows. Using the Pontryagin
maximum principle (99), they determined that the optimal schedule of mutations during B cell
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development, which maximizes the total binding affinity for antigen, is a periodic function with
mutations turning on and off. This is consistent with the fact that proliferation and high mutation
rates are observed in the dark zone, and clonal selection occurs in the light zone. This periodicity
suggests that some B cells may re-enter the GC after maturation, an idea referred to as the
recycling hypothesis. Experimental data supporting the recycling hypothesis are still missing.
However, Perelson and colleagues (78) analyzed the effect of only one pass through the GC and
found that this does not produce the observed number of high-affinity B cells. Perhaps, this is why
more recent studies also employ the recycling hypothesis.

Deterministic models without explicit treatment of protein sequences, exemplified by the stud-
ies of Perelson and coworkers, led to significant new insights. Yet they cannot describe the interplay
between stochastic effects and the selection of certain sequences during the GC reaction. Thus,
they cannot describe oligoclonality (most developed cells are descendants of very few cells) and
the all-or-none behavior noted above. Two recent classes of studies aim to describe these features
and their origins.

Shakhnovich and coworkers (100) developed a stochastic mesoscopic model of the humoral
response, in which population dynamics of the main components (B cells, host cells, and pathogens)
are determined by stability and interactions of the relevant proteins. Following their earlier work
(101) on the statistical mechanics of protein folding, they modeled proteins as sequences of 27
amino acids folded into compact structures on a lattice. In this model, the stability of the native
structure of the protein and the interaction strength (affinity) between two proteins are calculated
in terms of Boltzmann probabilities. Sequences of pathogen-derived proteins as well as BCRs and
antibodies are allowed to mutate. Only stable proteins are functional. The processes of B cell
activation, differentiation, and the production of antibodies were treated by making the dynamics
of the immunoglobulin proteins depend on their interaction with pathogen-derived and host cell
proteins. The clonal selection of B cells in the GC was incorporated by having a faster replication
rate and slower death rate for those cells that bind the pathogen-derived proteins better. For a
pathogen to infect a cell, its proteins need to be stable, and bound antibodies prevent pathogens
from infecting the host cell. Once the free pathogen infects a host cell, it starts replicating. Once a
threshold number of pathogens is produced, it kills the host cell and free pathogens are released.
Host cells also divide.

Compared with earlier work (76-88), the main new feature of this model is a qualitative
genotype-phenotype relationship, because protein characteristics are determined from coarse-
grained sequences of their genomes. This allows the recapitulation of the observed oligoclonality
of the antibody response and the all-or-none behavior of GC reactions. The number of progeni-
tor B cells (those at the time of infection) that seeded the population of B cells at the end of the
immune response depends on the death rate of B cells in the model. The optimal death rate that
results in monoclonal B cells and does not impair the healing probability of the host is ~2.5 per
day, which is consistent with experimental observations (102), but it does depend on parameters
in the model. By computing the sequence entropy of the developed antibodies, Shakhnovich and
coworkers (100) show that a monoclonal population is still quite diverse, as there are many amino
acid sequences on protein surfaces that do not impair binding affinity. The distribution of mature
affinity shows a bimodal (all-or-none-like) distribution, which was captured because stochastic
effects were included.

Another class of models incorporates sequence information in descriptions of B cell develop-
ment using a variant of ideas from spin-glass physics that were first explicated in the context of
biological evolution by Kauffman and colleagues (82, 83) as the NK model. Deem and coworkers
(103-107) have used NK models to study biophysical problems, including B cell development and
host-pathogen dynamics. The total free energy of the BCR-antigen complex is a sum of random
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free energies of interactions within a BCR subdomain, between BCR subdomains, and between
BCRs and antigen. GC events are represented by several rounds of BCR mutations, and clonal
selection of BCRs with antigen affinities in the top 20%.

This model was used (104) to describe a well-known phenomenon, called the original antigenic
sin (108, 109). Because of high mutation rates of some viruses, the infecting viral strain is different
from the strain used in a vaccine (e.g., in a flu shot). Using the NK model, a relationship between
the binding affinity of the mature antibody and the infecting viral strain was calculated as a function
of the genetic distance between the infecting and vaccinating strains (Figure 4b). If the genetic
distance between these strains is short, vaccination promotes the development of better antibodies.
If the strains are quite different, vaccination is obviously irrelevant. For intermediate differences
in genotypes of the strains, the developed antibodies have a lower binding affinity for the pathogen
compared to if the individual had not been vaccinated. The free energy landscape of NK models
is rugged. Deem and coworkers (104) describe original antigenic sin as trapping in a locally deep
minimum in this landscape, which would not occur without prior vaccination. Physically, this is
because of two effects. First, memory cells specific for the vaccinating strain are present in larger
numbers than naive B cells specific for the infecting strain (1). However, the memory cells bind
to the infecting strain more weakly if there is a sufficiently large genetic distance between them.
Therefore, existing memory cells dominate the response, which results in weaker binding mature
antibodies. Furthermore, because the memory cells were the product of affinity maturation, they
acquired many mutations to bind strongly to the vaccinating strain. These mutations may need to
be undone to bind strongly to an infecting strain that is sufficiently different. Naive B cells may
not require the undoing of mutations.

NK models have been used to consider T cell vaccination strategies against cancer (107). In
agreement with previous experiments (110), calculations suggest that it is better to vaccinate with
different strains in different lymph nodes compared to vaccinating with the same strains in one
lymph node. The former protocol produces memory cells with broader coverage because there is
no competition for different strains.

The studies noted above, which include mesoscopic representations of protein sequences, have
recapitulated well-understood phenomena and have provided new insights into the phenotype-
genotype relationships during B cell development and host-pathogen dynamics. However, new
experimental consequences have not been explicated. Therefore, new concepts in immunology
emerging from these studies are not yet evident.

SUMMARY AND FUTURE DIRECTIONS

Understanding how an adaptive immune response emerges and how it is misregulated presents
an interesting challenge in basic science. New discoveries in this regard will have important
implications for human health. Uncovering the principles that determine molecular and cellular
phenomena pertinent to adaptive immunity will greatly benefit by bringing together approaches
from the physical and life sciences. Restricted by our scientific expertise, we focus on the interface
of statistical mechanics and cell biology in this review, but experimental techniques drawn from
physical chemistry can contribute greatly.

Because of space limitations, above we discuss only one topic to illustrate the crossroad of
immunology and statistical mechanics, e.g., the development of the T and B cell repertoires.
We present a mechanism for how T cell recognition of antigenic peptides is both specific and
degenerate that has emerged from recent work. These studies suggest that the origin of specificity
in T cell recognition of antigen may be distinct from the lock-and-key metaphor used to describe
specificity of enzyme-substrate interactions. We also describe studies on B cell development, which
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extend previous more phenomenological models to provide insights into the genotype-phenotype
relationships during the evolution of activated B cells (and antibodies). Some of these ideas, if
pursued further, may have implications for vaccination strategies.

Many problems in immunology at the molecular, cellular, and organism level remain unsolved
and present future research opportunities. However, a key challenge just beginning to be addressed
is the following. Much progress (theoretical and experimental) has been made to describe host-
pathogen dynamics in humans (especially in the context of HIV). Basic molecular and cellular
immunology has focused largely on experimental models that are inbred mice or cell lines. This
is because these models can be readily manipulated to test ideas (such as predictions emerging
from statistical mechanical theory and computation). A fundamental challenge is to bridge the gap
between basic molecular discoveries and the immune response of individual humans with specific
genes (e.g., people have diverse MHC genes). Much is to be gained by making the two meet, and
understanding the effects of fluctuations in host genetics is an interesting statistical mechanics
problem.
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