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Geometrical frustration arises when a local order cannot propagate throughout the space because of
geometrical constraints. This phenomenon plays a major role in many systems leading to disordered
ground-state configurations. Here, we report a theoretical and experimental study on the behavior of
buckling-induced geometrically frustrated triangular cellular structures. To our surprise, we find that
buckling induces complex ordered patterns which can be tuned by controlling the porosity of the structures.
Our analysis reveals that the connected geometry of the cellular structure plays a crucial role in the
generation of ordered states in this frustrated system.
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A geometrically frustrated system cannot simultaneously
minimize all interactions because of geometric constraints
[1,2]. The origin of this phenomenon can be easily
illustrated by looking at the arrangement of spins with
antiferromagnetic interactions on a triangle. In contrast to
the case of a square, each spin on a triangle cannot be
antialigned with all of its neighbors [see Fig. 1(a)].
Therefore, the system is frustrated and is characterized
by degenerate ground states [3]. Given the difficulty of
probing individual spin states in a system without dis-
rupting their states [4], a number of artificial frustrated
systems with individual discrete elements that can be
directly monitored have been investigated to understand
how spins accommodate the frustration of their inter-
actions. These include artificial spin ice systems [4–11],
colloid systems [2,12,13], and periodically arranged mag-
netic rotors [14]. Since geometrical frustration typically
gives rise to disordered configurations, there has been
growing interest in investigating mechanisms to generate
order in frustrated systems. Interestingly, it has been
reported that ordered configurations can be achieved either
by introducing long-range interactions or lifting the geo-
metrical constraints. In fact, the ordering of both pyrochlore
magnets [15] such as Ho2Ti2O7 and Dy2Ti2O7 and
artificial spin ice [11] is attributed to long-range dipolar
interactions [3,16,17]. In addition, ordered configurations
have been achieved by introducing dopants or defects
[18,19] and distorting the lattice [2,20,21] to relax the
geometrical constraints.
Here, we report a system consisting of elastic beams

connected to form a two-dimensional triangular lattice in
which a simple and ubiquitous phenomenon such as
buckling [22] induces geometrical frustration. The essence

of this phenomenon can be easily captured by comparing
a square and a triangular frame, as shown in Fig. 1(b). In
the unfrustrated square frame each beam can buckle into
the most energetically favored configuration—a half
sinusoid—and simultaneously preserve the angles with
all its neighbors at the joints to minimize the deformation
energy. On a triangular frame, however, such configu-
rations are impossible, so the system becomes frustrated.
Then, what kind of patterns induced by buckling would
appear in a triangular cellular structure? Interestingly, we
show both numerically and experimentally that buckling
in frustrated triangular cellular structures results in the
formation of complex ordered patterns.
To understand patterns emerging as the result of buckling

in a triangular cellular structure, we began by analytically

FIG. 1 (color online). Geometrical frustration. (a) In antiferro-
magnetic systems nearest neighbor spins want to align in opposite
directions. This rule can be easily satisfied on a square. However,
due to geometrical frustration it is not possible to satisfy it on a
triangle. (b) Similarly, buckled beams on frames want to preserve
angles at joints to minimize the deformation energy. Again this can
be realized for square frames, butnot for frustrated triangular frames.
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investigating the stability of a single triangular frame
consisting of three elastic beams of bending stiffness EI
and length L, rigidly connected to each other, so that their
relative orientation was fixed. Assuming that the beams
were slender so that the contribution of the shear forces
could be neglected, we used the stiffness matrix of a beam
column [23] and imposed equilibrium conditions at each
joint to determine the critical load and the corresponding
modes (see Supplemental Material [24] for details). The
analysis revealed that if all the three beams experienced the
same compressive force P, the frame buckles as early as
P ¼ 14.87ðEI=L2Þ , leading to the formation of patterns for
which

θA þ θB þ θC ¼ 0; (1)

where θA, θB, and θC denote the rotation of the three
junctions [see Fig. 2(a)]. Therefore, this simple analysis
confirmed that buckling introduces degeneracy, since there
are an infinite number of modes satisfying Eq. (1), ranging
from a symmetric pattern with θB ¼ 0 and θA ¼ −θC to a
chiral configuration with θA ¼ −2θC and θB ¼ θC [see
Fig. 2(a) and Fig. S3].
We next performed finite element (FE) simulations to

investigate the patterns induced by buckling in finite size
periodic triangular cellular structure. We built two-
dimensional models consisting of different numbers of
unit cells [here we considered a unit cell composed of
two adjacent triangles, see Fig. 2(c)] and investigated the
stability of the system under equibiaxial compression using
the commercial finite element package ABAQUS. We used a
linear perturbation procedure to predict the critical strains
(eigenvalues) associated with various buckled configura-
tions (eigenmodes) and we expected the observed buckled
configuration to be the one with the smallest critical strain.
We find that the system—independent of its size and
porosity—is characterized by two eigenmodes with very
close critical strains [the critical strain difference is less
than 0.1% for the 11 × 12 unit cells shown in Fig. 2(b). See
also Tables S1—S3 in the Supplemental Material [24]].
Interestingly, if we focus on the center part of the models,
which is only minimally influenced by edge effects, we see
that both eigenmodes are characterized by ordered patterns
with a periodic unit consisting of 3 × 3 unit cells, as shown
in Fig. 2(b) for a structure with 11 × 12 unit cells.
Recognizing that the finite-sized specimens are neces-

sarily influenced by boundary conditions at the edges, we
also investigated the stability of infinite periodic triangular
lattices. Since buckling may alter the periodicity of the
structure, we considered super cells consisting of m × n
undeformed unit cells subjected to periodic boundary
conditions and calculated the critical strain for each of
them. The critical strain of the infinite periodic structure is
then defined as the minimum critical strain on all consid-
ered super cells. The results confirmed those of the finite

size simulations and showed that the 3 × 3 configuration
has the minimum critical strain with two possible eigenm-
odes [Figs. 2(c) and 2(d) and Tables S4 and S5].
To investigate the origin of the ordered patterns induced

by buckling in our frustrated system, we introduced a spin-
like model. Our goal is to construct a simple model for
estimating the energy associated with different spin con-
figurations corresponding to buckled beams, and for
identifying the minimum energy configurations. Since in
two dimensions a beam can buckle “up” or “down,” we
represent its buckling direction with an Ising-like unit spin
vector si [see Fig. 3(a)]. Such spins are placed at the centers
of prebuckled beams, forming the well-known kagome
lattice [25,26]. For the sake of simplicity, we first consider

FIG. 2 (color online). Analytical and numerical modeling.
(a) Representative critical eigenmodes obtained from the buck-
ling analysis of a single triangular frame. The dotted line indicates
the mirror plane for the symmetric pattern. The beam that buckles
into a full sinusoid is indicated in red. (b) First and second
eigenmodes obtained from the finite element analysis for a lattice
structure comprising 11 × 12 unit cells under equibiaxial com-
pression. The frame is constructed from beams with thickness (t)
to length (L) ratio of 0.2. Note that the eigenvalues associated
with the two modes are very close to each other. Both the full
structures and the magnified views of their central regions are
shown. (c) Critical strain for super cells with t=L ¼ 0.2 consist-
ing of m × n unit cells, where a unit cell consists of two adjacent
triangles. In the analysis, we used periodic boundary conditions
to eliminate edge effects. The results indicate that the 3 × 3
configuration has the minimum critical strain. (d) Two buckling
patterns (one symmetric and one chiral) are associated with the
critical strain of the 3 × 3 configuration. For the chiral pattern, the
mirror image of the pattern can also appear.
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the case where every beam buckles into a half sinusoid so
that the energy difference between configurations comes
from changes in relative orientation at the joints (i.e., at
triangle corners). Here, the deformation of the π=3 angle
between neighboring beams is associated with the energy
cost J1 > 0. Therefore, the total energy of a buckled
configuration is given by

E ¼ −
X

hi;ji
J1ðsi · sj − 1=2Þ; (2)

where si and sj are two nearest neighbor spins [e.g., purple
arrows with respect to the reference spin in Fig. 3(a)]. Such
antiferromagnetic spin model on the kagome lattice has
been studied extensively [25,26]. For a structure compris-
ing N triangles, the minimum energy configurations
correspond to a tiling with N buckled units α from
Fig. 2(a) (Emin ¼ NJ1), and it has been shown that there
are exponentially many ground states due to geometric
frustration [25,26]. Therefore, we find exponentially many
disordered tilings [e.g., see Fig. 3(b)] and only a small
number of ordered tilings, one of which corresponds to the
symmetric ordered pattern observed in the numerical
analysis [Fig. 3(c)].
However, the finite element simulations described

above are favoring ordered structures. The reason for this
might be interactions among neighboring triangles coupled
through joints. To take this into account, we consider
the second nearest neighbor interactions between spins
[see Fig. 3(a)] and assign an energy cost J2ð0 < J2 ≪ J1Þ
to connected beams that deform the 2π=3 angle. For
simplicity, we assume that the energy costs of deformations
of π=3 and 2π=3 angles at joints are additive, so that

E ¼ −
X

hi;ji
J1ðsi · sj − 1=2Þ þ

X

hk;li
J2ðsk · sl þ 1=2Þ; (3)

where sk and sl are pairs of second nearest neighbor
spins [e.g., blue arrows with respect to the reference spin
in Fig. 3(a)] and J1 and J2 are positive quantities, since any
elastic deformation is associated with a positive energy
cost. This additional interaction breaks the degeneracy,
so that the symmetric ordered configuration shown in
Fig. 3(c) is the only one that minimizes the energy given
in Eq. (3) [26]. Our findings nicely agree with previous
observations reported for antiferromagnetic systems [7]
where additional interactions (often long ranged) are
needed for ordered ground states to emerge. Moreover, it
is worth noting that for this ordered symmetric pattern we
find a striking correlation between its arrangement of spins
and that of the ideal spin solid [9].
The spinlike model described above can also be gener-

alized to allow for a second buckling mode of the beams,
which is associated with the energy costΔ. This is achieved
by assigning two spins to each beam, where aligned

and antialigned spins correspond to the first and second
buckling mode, respectively [see Fig. 3(d)]. The energy
cost of a buckled configuration can then be calculated as

E ¼ −
X

hi;ji
J1ðsi · sj − 1=2Þ þ

X

hk;li
J2ðsk · sl þ 1=2Þ

−
X

hm;ni

Δ
2
ðsm · sn − 1Þ; (4)

where sm and sn are two spins assigned to the same beam.
In this case, in addition to the ordered configuration
described above [Fig. 3(c)], a new chiral ordered state
emerges [Fig. 3(e)], which can be constructed from tiling
the plane with the buckled triangular unit β from Fig. 2(a).
This chiral configuration preserves both the first and the
second nearest angles at joints and is associated with the

FIG. 3 (color online). Spin-like model. (a) A schematic show-
ing how spins define a buckled pattern when all of the beams
buckle into a half sinusoid. (b) Disordered and (c) ordered
symmetric configurations predicted by the model. When con-
sidering only first nearest neighbor interactions (i.e., J2 ¼ 0),
there are exponentially many disordered tilings that minimize the
energy for a lattice structure with N triangles and only a small
number of ordered patterns. However, only the symmetric
ordered configuration minimizes the energy if second nearest
neighbor interactions are considered (i.e., J2 > 0). (d) The
spinlike model can be generalized to allow for the second
buckling mode of the beams by assigning two spins to each
beam. (e) A new chiral ordered state emerges when two spins are
assigned to each beam. Again, the mirror image of the chiral
pattern can also appear.
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energy costNΔ=2, where the factor 1/2 comes from sharing
the second mode buckled beam between two triangles.
Thus, when Δ=2 > J1, the minimum energy configuration
is the symmetric one [Fig. 3(c)], while when Δ=2 < J1 it is
the chiral one [Fig. 3(e)].
Next, we conduct a simple scaling analysis to determine

how the parameters J1, J2, and Δ depend on the geometry
of the beams (thickness t, length L, and out-of-plane height
h) and the elastic property of the material (Young’s
modulus E). We start by noting that the buckled shape
of a thin beam (t ≪ L) can be well approximated by [27]

yðsÞ ¼ Am sin
!
mπs
L

"
; (5)

wherem is an integer representing the buckling mode and s
is the intrinsic length parameter of the beam, s ∈ ½0; L&. It
follows that y0 and y00 scale as

y0 ∼ Am
m
L
; y00 ∼ Am

m2

L2
: (6)

Furthermore, the amplitude Am can be related to the small
compressive strain ε ≪ 1 by considering that the beam is
inextensible (i.e., ds2 ¼ dx2 þ dy2), so that

Lð1 − ϵÞ ¼
Z

L

0
dx

¼
Z

L

0
ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðy0Þ2

q
≈ L

!
1 −m2π2A2

m

4L2

"
: (7)

By comparing the left and right sides of Eq. (7) we find

Am ∼
ffiffiffi
ϵ

p
ðL=mÞ: (8)

An estimate for the energy cost Δ associated with the beam
buckling into the second mode can then be obtained using
elastic plate theory and approximating the bending energy
of the buckled beam as

energy∼ plate area× bending rigidity× ðcurvature∼ y00Þ2;

energy∼Lh×Et3 ×
εm2

L2
; (9)

so that

Δ ∼ ϵEht3=L: (10)

In a similar way, we can estimate the energy cost J1
and J2 for deforming the π=3 and 2π=3 angles between
neighboring beams at joints. Since these deformations are
localized near joints and only affect a beam region of length
∼t, we have

J1; J2 ∼ volume × elastic constant × ðlocal strain ∼ y0Þ2;
J1; J2 ∼ ht2 × E × ϵ ¼ ϵEht2: (11)

From the scaling analysis above we find that Δ=J1 scales
as t=L, indicating the opportunity to tune the formation of
the symmetric or chiral pattern by controlling the beam
aspect ratio. In fact, we expect that the chiral and symmetric
patterns emerge for small and large t=L, respectively, and
numerical FE simulations predict a sharp first-order-like
transition at t=L ≈ 0.24 [see Table S6]. Finally, it is worth
noting that the chiral pattern arises with a new spin
configuration, thus, highlighting the richness of our frus-
trated system.
Guided by our theoretical analysis, we fabricated cen-

timeter scale elastomeric triangular cellular structures with
t=L ¼ 0.2 and 0.3 (L ¼ 5 mm) comprising 11 × 12 unit
cells [Figs. 4(a) and 4(b), left]. The experimental results
show an excellent agreement with the analytical and
numerical predictions. When tested under equibiaxial
compression, we, indeed, observed the formation of an
ordered chiral pattern for t=L ¼ 0.2 [Fig. 4(a), center and
right]. Moreover, as predicted by the scaling analysis, an
ordered symmetric pattern emerged for t=L ¼ 0.3
[Fig. 4(b), center and right]. Since geometrical frustration
in our continuum system is induced by a mechanical
instability that is scale independent (where the continuum
assumption holds), our findings can be extended to differ-
ent length scales, materials, and stimuli. In fact, similar
patterns were also observed by swelling surface-attached
triangular cellular structures [Fig. S5], providing us oppor-
tunities to study the effects of kinetics on geometrical
frustration.

FIG. 4 (color online). Experimental observation of ordered
chiral or symmetric patterns. (a), (b) Initial and buckled con-
figurations (at ϵ ¼ 0.16) for a sample characterized by t=L ¼ 0.2
and t=L ¼ 0.3 (L ¼ 5 mm), respectively. The insets on the right
show magnified images of the buckled patterns obtained
experimentally and numerically.

PRL 112, 098701 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

7 MARCH 2014

098701-4



In summary, we have studied analytically, numerically,
and experimentally geometrical frustration induced by
buckling in continuum triangular cellular structures.
Interestingly, we found that the connected geometry favors
the formation of complex ordered symmetric or chiral
patterns, and the appearance of a specific configuration is
controlled by the porosity of the system. In stark contrast to
most of the artificial frustrated systems previously studied,
ordered configurations emerge naturally in our structures,
indicating that the coupling between elasticity and geo-
metrical frustration in continuum structures opens the door
to a new class of phenomena waiting to be explored. In fact,
while the symmetric pattern induced by buckling has a
striking correlation with the arrangement of spins in the
ideal spin solid, no analogous spin arrangement to that of
our chiral configuration has been reported. Our results also
indicate that simple changes in the geometry of the elastic
structures may lead to novel effects that can be easily
visualized, since—unlike for the case of magnetic
systems—our experimental system can be quickly fabri-
cated and tested. With their intriguing and rich behavior
originating from the interplay between geometry and
deformation, continuum geometrically frustrated lattice
structures offer many novel phenomena to be investigated.
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STABILITY OF A TRIANGULAR FRAME

Here we investigate analytically the stability of a single triangular frame consisting of three elastic beams of bending
sti↵ness EI and length L, rigidly connected to each other, so that their relative orientation is fixed. Assuming that
the beams are slender so that the contribution of the shear forces can be neglected, we use the sti↵ness matrix of a
beam-column[1, 2] and impose equilibrium conditions at each joint to determine the critical load and the corresponding
modes.

We start by recalling that the response of an initially straight elastic beam AB with bending sti↵ness EI and length
L subject to an axial load P and end moments MA and MB (see Fig. 1) is described by[1]

d

2
y

dx

2
+

P

EI

y = �MA

EI

⇣
1� x

L

⌘
+

MB

EI L

x, (1)

where x and y(x) denote the distance and the lateral displacement along the beam, respectively.

FIG. 1: Schematic of a beam under compression.

The solution of the Eq. (1) is given by

y = A sin(k x) +B cos(k x)� MA

P

⇣
1� x

L

⌘
+

MB

P

x

L

, (2)

where k

2 = P/EI. The coe�cients A and B in Eq. (2) can be obtained by imposing the boundary conditions
y(0) = y(L) = 0, yielding

B =
MA

P

, and A = �MA

P

cot(k L)� MB

P

csc(kL). (3)

After substitution of Eqs. (3) into Eq. (2) the slope at the two ends A and B can be calculated as
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It is often convenient to invert Eqs. (4), yielding
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L

✓
�

�

2 � ↵

2
✓A +

↵

↵

2 � �

2
✓B

◆
=

EI

L

(S✓A + SC✓B) ,

MB =
EI

L

✓
↵

↵

2 � �

2
✓A +

�

�

2 � ↵

2
✓B

◆
=

EI

L

(SC✓A + S✓B)

(6)

where

S =
(1� kL cot kL)kL

2 tan( 12kL)� kL

, C =
kL csc kL� 1

1� kL cot kL
. (7)

Next we consider an equilateral triangular frame with all beams compressed by an axial force P , as shown in Fig. 2.
In this case Eqs. (6) specialize to

MAB =
EI

L

(S✓AB + SC✓BA), MAC =
EI

L

(S✓AC + SC✓CA),

MBA =
EI

L

(S✓BA + SC✓AB), MBC =
EI

L

(S✓BC + SC✓CB),

MCA =
EI

L

(S✓CA + SC✓AC), MCB =
EI

L

(S✓CB + SC✓BC),

(8)

FIG. 2: Schematic of a triangular frame under equibiaxial compression. a, A compressive load P was applied to all
three beams with length L and bending sti↵ness EI. b, Buckling of a triangular frame.

Since we consider beams that are rigidly connected to each other, ✓AB = ✓AC = ✓A, ✓BA = ✓BC = ✓B and
✓CA = ✓CB = ✓C . Also, since there are no applied external moments at the joints, equilibrium requires that
MAB = �MAC , MBA = �MBC , MCB = �MCA. Therefore, Eqns. (8) reduce to

(S✓A + SC✓B) + (S✓A + SC✓C) = 0,
(S✓B + SC✓A) + (S✓B + SC✓C) = 0,
(S✓C + SC✓A) + (S✓C + SC✓B) = 0,

(9)

which can be rewritten in matrix form as
0

@
2S SC SC

SC 2S SC

SC SC 2S

1

A

0

@
✓A

✓B

✓C

1

A =

0

@
0
0
0

1

A
. (10)

Non-trivial solutions exist when the determinant of the matrix (i.e. the sti↵ness matrix ) in Eq. (10) is zero,

S

3(C3 � 3C2 + 4) = S

2(C � 2)2(C + 1) = 0. (11)

Since S = 0 yields only trivial solutions, it is easy to see that Eq. (11) is satisfied when
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• (i) (C � 2) = 0, so that

kL csc kL� 1

1� kL cot kL
= 2, (12)

from which kL can be solved numerically, yielding kL ⇠ 3.8567. Therefore, the corresponding critical load is
given by

Pcr,1 = k

2
EI =

✓
3.8567

L

◆2

EI ⇠ 14.87
EI

L

2
. (13)

Moreover, the corresponding eigenmode can be obtained by substituting C = 2 into Eq. (10), yielding

✓A + ✓B + ✓C = 0. (14)

• (ii) (C + 1) = 0, so that

kL csc kL� 1

1� kL cot kL
= �1, (15)

from which kL can be solved numerically, yielding kL ⇠ 5.1362. Therefore, the corresponding critical load is
given by

Pcr,2 = k

2
EI =

✓
5.1362

L

◆2

EI ⇠ 26.38
EI

L

2
, (16)

and the corresponding eigenmode is

✓A = ✓B = ✓C . (17)

FIG. 3: Examples of critical eigenmodes. ✓0 is used as reference angle.

Therefore, the analysis indicates that the frame buckles when P = Pcr,1 = Pcr ⇠ 14.87EI
L2 and that buckling

introduces degeneracy, since there are an infinite number of modes satisfying Eq. (14), some of which are shown in
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Fig. 3. Note that these modes have been obtained by substituting the critical load and corresponding eigenmode into
Eq. (2) and that they include also the symmetric pattern with ✓B = 0 and ✓A = �✓C and the chiral configuration
with ✓A = �2✓C and ✓B = ✓C shown in Fig. 2-a in the main text.

Finally it is worth noting that buckling does not induce geometrical frustration in both (i) triangular frames with
rigid junctions compressed uniaxially and (ii) triangular frames with free-to-rotate junctions compressed equibiaxially.
In fact, for a triangular frame uniaxially compressed buckling occurs when P = 16EI/L

2 leading to a mode for
which ✓A = ✓B = ✓C [1]. Moreover, when the beams at the junctions are free-to-rotate the frame buckles when
P = Pcr = ⇡

2EI
L2 , leading to a mode in which each beam buckles into a perfect half-sinusoid.
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STABILITY OF A TRIANGULAR CELLULAR STRUCTURE SUBJECTED TO EQUIBIAXIAL
COMPRESSION

To investigate the patterns induced by buckling in triangular cellular structures, we investigated numerically the
stability of finite size and infinite periodic samples subjected to equibiaxial compression using the commercial finite
element package Abaqus 6.11. We built 2D models using quadratic plain strain elements (Abaqus type CPE8H and
CPE6H) and modeled the material using an almost incompressible Neo-Hookean hyper-elastic model[3] with initial
bulk modulus K0 = 100µ0, µ0 denoting the initial shear modulus. The accuracy of each mesh was ascertained
through a mesh refinement study.

Finite size structures.

We considered finite size structures in which each triangle has the same dimensions as in the experiments (i.e.
length L = 5 mm and thickness t 2 [0.025, 1.625] mm) and we investigated their stability using eigenvalue analysis.
To simulate the experimental test conditions the bottom and left edges were fixed in the vertical and horizontal
direction, respectively, whereas the top and right edges were uniformly compressed in the vertical and horizontal
direction, respectively. A linear perturbation procedure was used and was accomplished within the commercial finite
element code ABAQUS/Standard using the *BUCKLE module. Eigen analysis of the unloaded structures and of the
structures after application of a modest compression yielded very similar results. The analysis yielded the transformed
pattern (the eigenmode) and the critical nominal strain (the eigenvalue).

We started by investigating the stability of a structure with the same size as that used in the experiments (i.e.
11 ⇥ 12 unit cells composed of two adjacent triangles - see Fig. 2c in the main text). The results reported in the
Fig. 2b of the main text show that there are two buckling patterns (symmetric and chiral) with very close energy
states (✏chiralcr = �0.03780 and ✏

sym
cr = �0.03782). The symmetric pattern consists of the symmetric buckled units

(↵) from our analytical study and the chiral pattern consist of the chiral units (�). Interestingly, both patterns are
characterized by a periodic unit comprising 3 ⇥ 3 undeformed unit cells.

To make sure the response of the structure is not influenced by size e↵ects, we investigated the stability of structures
with t/L = 0.2 comprising of a di↵erent number of unit cells. We find that all the structures are characterized by
two very close eigenvalues (see Table I) associated to the symmetric and chiral patterns shown in Fig. 2b of the main
text. The simulated samples had up to 51 ⇥ 50 unit cells and we did not found any significant size e↵ect.

Next, we investigated the e↵ect of the wall aspect ratio t/L on the stability of structures comprising of 5⇥6 and
11⇥12 unit cells. The results reported in Tables II and III indicate that the critical strain values are similar between
the two patterns regardless of the geometrical parameter t/L.
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TABLE I: Critical strains associated to the chiral and symmetric pattern for finite size structures with with t/L = 0.2 comprising
m⇥ n unit cells.

m n ✏chiralcr ✏symcr

6 6 �4.239⇥ 10�2 �4.307⇥ 10�2

8 6 �4.136⇥ 10�2 �4.070⇥ 10�2

6 8 �4.156⇥ 10�2 �4.257⇥ 10�2

7 7 �4.091⇥ 10�2 �4.150⇥ 10�2

10 6 �3.999⇥ 10�2 �4.027⇥ 10�2

8 8 �4.070⇥ 10�2 �4.010⇥ 10�2

10 8 �3.938⇥ 10�2 �3.959⇥ 10�2

9 9 �3.957⇥ 10�2 �3.978⇥ 10�2

8 12 �4.020⇥ 10�2 �3.954⇥ 10�2

12 8 �3.900⇥ 10�2 �3.906⇥ 10�2

10 10 �3.914⇥ 10�2 �3.929⇥ 10�2

14 8 3.879⇥ 10�2 �3.869⇥ 10�2

11 11 �3.897⇥ 10�2 �3.873⇥ 10�2

12 12 �3.853⇥ 10�2 �3.860⇥ 10�2

13 13 �3.822⇥ 10�2 �3.843⇥ 10�2

18 10 �3.812⇥ 10�2 �3.813⇥ 10�2

20 10 �3.805⇥ 10�2 �3.801⇥ 10�2

18 12 �3.797⇥ 10�2 �3.798⇥ 10�2

15 15 �3.804⇥ 10�2 �3.807⇥ 10�2

16 16 �3.792⇥ 10�2 �3.797⇥ 10�2

22 12 �3.780⇥ 10�2 �3.782⇥ 10�2

51 50 �3.406⇥ 10�2 �3.405⇥ 10�2

TABLE II: Critical strains associated to the chiral and symmetric pattern for finite size structures with 5 ⇥ 6 unit cells and
di↵erent aspect ratios t/L.

t/L ✏chiralcr ✏symcr

0.050 �3.120⇥ 10�3 �3.143⇥ 10�3

0.075 �6.789⇥ 10�3 �6.840⇥ 10�3

0.100 �1.167⇥ 10�2 �1.175⇥ 10�2

0.125 �1.759⇥ 10�2 �1.772⇥ 10�2

0.150 �2.441⇥ 10�2 �2.458⇥ 10�2

0.175 �3.194⇥ 10�2 �3.215⇥ 10�2

0.200 �3.999⇥ 10�2 �4.023⇥ 10�2

0.225 �4.831⇥ 10�2 �4.859⇥ 10�2

0.250 �5.684⇥ 10�2 �5.720⇥ 10�2

0.275 �6.559⇥ 10�2 �6.592⇥ 10�2

0.300 �7.956⇥ 10�2 �7.955⇥ 10�2

0.325 �8.494⇥ 10�2 �8.540⇥ 10�2

0.350 �9.006⇥ 10�2 �9.211⇥ 10�2
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TABLE III: Critical strains associated to the chiral and symmetric pattern for finite size structures with 11 ⇥ 12 unit cells and
di↵erent aspect ratios t/L.

t/L ✏chiralcr ✏symcr

0.050 �2.967⇥ 10�3 �2.968⇥ 10�3

0.100 �1.104⇥ 10�2 �1.105⇥ 10�2

0.150 �2.316⇥ 10�2 �2.317⇥ 10�2

0.200 �3.780⇥ 10�2 �3.782⇥ 10�2

0.250 �5.395⇥ 10�2 �5.397⇥ 10�2

0.275 �6.239⇥ 10�2 �6.245⇥ 10�2

0.300 �7.378⇥ 10�2 �7.378⇥ 10�2
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Infinite periodic structures.

Recognizing that the finite-sized specimens are necessarily influenced by boundary conditions at the edges, we also
investigated the stability of infinite periodic triangular lattices. Taking as primitive cell two adjacent triangles (as
shown in Fig. 3c of the main text), the infinite periodic structure is modeled as representative volume elements
(RVEs) consisting of m ⇥ n cells subjected to periodic boundary conditions. The critical strain of the infinite periodic
structure is then defined as the minimum of ✏cr on all possible periodic RVEs. In Fig. 2c of the main text and in
Tables IV and V we report the critical strains for periodic RVE with m ⇥ n cells for both t/L = 0.2 and 0.3. The
results indicate that the critical strain is minimum for the periodic unit comprising 3 ⇥ 3 unit cells and that there
are two possible eigenmodes (one chiral and one symmetric, as shown in Fig. 3d of the main text) associated to it.
Therefore, this analysis confirm the results of the finite size simulations and show that the 3⇥3 configuration has the
minimum critical strain.

Finally, since our scaling analysis shows that �/J1 scales as t/L and indicates the opportunity to tune the formation
of the symmetric or chiral pattern by controlling the beam aspect ratio t/L, we used FE simulations to study this
transition. In particular, we considered a super-cell consisting of 3⇥3 undeformed unit cells subjected to periodic
boundary conditions and numerically calculated its critical strain for increasing values of t/L. As shown in Table VI,
we find that the chiral and symmetric patterns emerge for t/L  0.235 and t/L > 0.235, respectively. Therefore,
t/L = 0.235 marks a sharp transition from the chiral to the symmetric pattern.

TABLE IV: Critical strains for periodic RVEs of di↵erent size with t/L = 0.2.

m⇥ n 1 2 3 4 5 6
1 �6.982⇥ 10�2 �3.659⇥ 10�2 �4.381⇥ 10�2 �3.663⇥ 10�2 �3.936⇥ 10�2 �3.659⇥ 10�2

2 �3.659⇥ 10�2 �3.626⇥ 10�2 �3.626⇥ 10�2 �3.629⇥ 10�2 �3.628⇥ 10�2 �3.628⇥ 10�2

3 �4.381⇥ 10�2 �3.626⇥ 10�2 �3.255⇥ 10�2 �3.350⇥ 10�2 �3.338⇥ 10�2 �3.255⇥ 10�2

4 �3.663⇥ 10�2 �3.629⇥ 10�2 �3.350⇥ 10�2 �3.624⇥ 10�2 �3.344⇥ 10�2 �3.357⇥ 10�2

5 �3.936⇥ 10�2 �3.628⇥ 10�2 �3.338⇥ 10�2 �3.344⇥ 10�2 �3.395⇥ 10�2 �3.334⇥ 10�2

6 �3.659⇥ 10�2 �3.628⇥ 10�2 �3.255⇥ 10�2 �3.357⇥ 10�2 �3.334⇥ 10�2 �3.255⇥ 10�2

TABLE V: Critical strains for periodic RVEs of di↵erent size with t/L = 0.3

m⇥ n 1 2 3 4 5 6
1 �1.412⇥ 10�1 �8.000⇥ 10�2 �9.375⇥ 10�2 �8.000⇥ 10�2 �8.700⇥ 10�2 �8.000⇥ 10�2

2 �8.000⇥ 10�2 �8.000⇥ 10�2 �8.000⇥ 10�2 �8.000⇥ 10�2 �8.000⇥ 10�2 �8.000⇥ 10�2

3 �9.375⇥ 10�2 �8.000⇥ 10�2 �7.100⇥ 10�2 �7.300⇥ 10�2 �7.320⇥ 10�2 �7.100⇥ 10�2

4 �8.000⇥ 10�2 �8.000⇥ 10�2 �7.320⇥ 10�2 �8.000⇥ 10�2 �7.300⇥ 10�2 �7.300⇥ 10�2

5 �8.700⇥ 10�2 �8.000⇥ 10�2 �7.300⇥ 10�2 �7.300⇥ 10�2 �7.500⇥ 10�2 �7.250⇥ 10�2

6 �8.000⇥ 10�2 �8.000⇥ 10�2 �7.100⇥ 10�2 �7.300⇥ 10�2 �7.300⇥ 10�2 �7.100⇥ 10�2

TABLE VI: Critical strains for periodic RVEs of di↵erent aspect ratios t/L.

t/L ✏chiralcr ✏symcr

0.180 �3.0866⇥ 10�2 �3.0870⇥ 10�2

0.200 �3.6924⇥ 10�2 �3.6991⇥ 10�2

0.220 �4.3190⇥ 10�2 �4.3214⇥ 10�2

0.230 �4.6391⇥ 10�2 �4.6417⇥ 10�2

0.235 �4.8064⇥ 10�2 �4.8077⇥ 10�2

0.240 �4.9736⇥ 10�2 �4.9682⇥ 10�2

0.250 �5.3118⇥ 10�2 �5.3085⇥ 10�2
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EXPERIMENTAL TESTS ON FREE-STANDING STRUCTURES

Fabrication.

Macroscale free-standing triangular lattice structures were fabricated by first making negative molds using a 3D
printer (Connex 500 available from Objet, Ltd.) with VeroBlue (product number: RGD840, Objet) material and
casting positive structures using a silicone rubber (Mold Max 10 from Smooth-On or Elite Double 32 available from
Zhermack). Before replication, a releasing agent (Easy Release 200 available from Smooth-On, Inc.) was sprayed on
to the molds for easy separation[4]. The casted mixture was first placed in vacuum for degassing and was allowed to
set at room temperature for curing. In the free-standing structures each wall/beam has length L ⇠ 5 mm, thickness
t ⇠ 1 or 1.5 mm and out-of-plane height h ⇠ 10 mm to minimize out-of-plane buckling.

Buckling-induced pattern formation through equibiaxial compression.

Buckling in the free-standing samples was induced by equibiaxial compression using a custom-built testing setup
(see Fig. 4) with four linear actuators (controlled by in-house LabView codes). The resulting patterns were recorded
using a Nikon D90 digital SLR camera.

FIG. 4: The picture of the biaxial compression setup used for our experiments.
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EXPERIMENTAL TESTS ON SURFACE-ATTACHED STRUCTURES

Although in the main text we present results for free-standing triangular cellular structures under equibiaxial
compression, similar patterns can also be observed by swelling surface-attached triangular cellular structures.

Fabrication.

Macroscale surface-attached triangular lattice structures were fabricated using the same procedure described above
for free-standing structures. Each wall/beam has L ⇠ 5 mm, t ⇠ 0.9 mm, and h ⇠ 5 mm and the lattice structure is
attached to a rigid substrate.

FIG. 5: Buckling of a surface-attached triangular lattice. The triangular lattice was buckled by immersing the sample
in an organic solvent. The inset on the right shows a magnified image of the buckled pattern.

Buckling-induced pattern formation through swelling.

Buckling in the surface-standing samples was induced by swelling using organic solvents such as toluene or hexane
(Anhydrous, 99.8% or 95% available from Sigma Aldrich). Buckling occurred due to compressive stresses arising
from the geometric constraint that suppresses swelling near the rigid substrate where the structure is clamped. The
resulting patterns were recorded using a Nikon D90 digital SLR camera. Fig. 5 shows the buckling pattern induced
by swelling in a surface-attached triangular cellular structure, which is very similar to the chiral pattern observed in
highly porous free-standing structures under equibiaxial compression.
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