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We explore thermal fluctuations of thin planar membranes with a frozen spatially varying background metric
and a shear modulus. We focus on a special class of D-dimensional “warped membranes” embedded in a
d-dimensional space with d � D + 1 and a preferred height profile characterized by quenched random Gaussian
variables {hα(q)}, α = D + 1, . . . ,d , in Fourier space with zero mean and a power-law variance hα(q1)hβ (q2) ∼
δα,β δq1,−q2 q

−dh

1 . The case D = 2, d = 3, with dh = 4 could be realized by flash-polymerizing lyotropic
smectic liquid crystals. For D < max{4,dh} the elastic constants are nontrivially renormalized and become
scale dependent. Via a self-consistent screening approximation we find that the renormalized bending rigidity
increases for small wave vectors q as κR ∼ q−ηf , while the in-hyperplane elastic constants decrease according to
λR, μR ∼ q+ηu . The quenched background metric is relevant (irrelevant) for warped membranes characterized
by exponent dh > 4 − η

(F )
f (dh < 4 − η

(F )
f ), where η

(F )
f is the scaling exponent for tethered surfaces with a flat

background metric, and the scaling exponents are related through ηu + ηf = dh − D (ηu + 2ηf = 4 − D).
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I. INTRODUCTION

Thermal fluctuations strongly affect the long-wavelength
elastic properties of thin tethered membranes, giving rise to
scale-dependent elastic moduli. Due to the interplay between
the local stretching and bending, the macroscopic bending
rigidity diverges at long wavelengths, while the bulk and
shear moduli tend to zero. These remarkable effects have
been measured experimentally through the flickering of red
blood cells [1] and in a number of numerical studies [2–5].
Recently, these effects have received a lot of attention for
graphene membranes [6–8] and they are now being inves-
tigated experimentally as well [9]. Membranes of general
shapes are hard to treat analytically, but progress is possible
for simple flat surfaces [10–14] even in the presence of
quenched disorder (e.g., quenched random metric or curvature)
[15–19]. Quenched disorder can result in scale-dependent
elastic properties even in the absence of thermal fluctuations
at zero temperature [15–19].

In this paper we study how thermal excitations renormalize
the elastic properties of a particularly simple “unfrustrated”
class of nearly flat quenched random D-dimensional mem-
branes embedded in d-dimensional space, which we call
“warped membranes” [19]. In the Monge representation a
preferred membrane configuration X0(xk) is described with
a random height profile hα(xk) such that

X0 = xi êi + hα êα, (1)

where we use the convention of summing over repeated
indices unless otherwise stated. Here, {êi ,êα} are orthonormal
Euclidian vectors and Latin and Greek indices run from
1, . . . ,D and from D + 1, . . . ,d respectively. As discussed
in Ref. [19], this system lacks geometrical frustration, similar
to Mattis models of random spin systems [20], and hence is
particularly simple to analyze. In Fourier space the quenched
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height profiles hα(q) = ∫
dDx e−iq·xhα(x)/A are assumed to

be independent random Gaussian variables with zero mean
and a power-law variance for small q,

hα(q1)hβ(q2) = δα,βδq1,−q2

�2

Aq
dh

1

≡ δα,βδq1,−q2Ghh(q1), (2)

where δ is the Kronecker’s delta, A is a D-dimensional
projected area of the membrane, and the overbar denotes
averaging over a quenched random Gaussian probability
distribution.

In a previous publication [19] we described how (D = 2)-
dimensional warped membranes characterized by undulation
exponents dh = 4, 2, and 0 could be realized experimentally by
flash-polymerizing thermally fluctuating flat lipid bilayers, or
by using a rough surface of the crystal as a membrane template.
There we focused on mechanical properties of such warped
membranes embedded in (d = 3)-dimensional space at T = 0
(i.e., in the absence of thermal fluctuations) and demonstrated,
by using the self-consistent screening approximation [21,22],
that elastic constants become scale dependent for membranes
with dh > 2 and scale as κR ∼ q−ηf and λR,μR ∼ q+ηu , with
ηf = ηu = (dh − 2)/2. In this paper we generalize our results
to abstract membranes in an arbitrary number of dimensions
and include the effects of thermal fluctuations to predict the
scaling exponents ηu and ηf . We show that for membranes
characterized by dh < 4 − η

(F )
f the quenched random back-

ground metric is irrelevant and the exponents ηu and ηf have
the same value as those for the thermally fluctuating surfaces
with a flat (F) background metric. The quenched background
metric becomes relevant for dh � 4 − η

(F )
f and changes the

exponents of the scale-dependent elastic constants.
The rest of the paper is organized as follows. In Sec. II we

discuss the free energy cost of warped membrane deforma-
tions, which are decomposed into in-hyperplane deformations
and out-of-hyperplane deformations. In Sec. III we introduce
the correlation functions of such deformations and make
connections to the scale-dependent elastic constants. Finally,
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in Sec. IV we use the self-consistent screening approximation
to estimate the scaling exponents ηf and ηu that describe these
quantities at long wavelengths.

II. FREE ENERGY COST OF THIN MEMBRANE
DEFORMATIONS

Deformations of a nearly flat reference warped membrane
are described by mapping a configuration X0(xk) into a con-
figuration X(xk), together with an associated free energy cost.
For small deformations the free energy cost of deformation
[10,15,16,18,19] can be expressed as

F [X] =
∫

dDx
1

2

[
λu2

ii + 2μu2
ij + κKii

2
]
, (3)

where uij (xk) and Kij (xk) are respectively the local strain and
the local bending strain tensors and are defined as

uij = (∂iX · ∂j X − Aij )/2, Kij = ∂i∂j X − Bij . (4)

Here, Aij (xk) and Bij (xk) are quenched random matrices that
arise from the preferred local metric and the curvature tensors,
respectively. For arbitrary Aij and Bij there is in general
no membrane configuration X(xk) that would correspond to
the zero free energy in Eq. (3). However, a unique ground
state without strains is in fact possible when these quenched
tensors satisfy the Gauss-Codazzi-Mainardi relations [23]
and can thus be expressed in terms of the metric tensor
Aij = ∂iX0 · ∂j X0 and the curvature tensor Bij = ∂i∂j X0 of
a preferred membrane configuration X0(xk) that corresponds
to the minimum free energy. Such an unfrustrated model
resembles Mattis models of spin glasses [20]. The mechanical
properties of these “warped membranes” at T = 0 were
discussed in Ref. [19].

Thermal fluctuations of membranes in a presence of
independent quenched random tensors Aij (xk) and Bij (xk)
have been studied before and it was shown that quenched
averaged renormalized elastic constants can become length
scale dependent [15–18], with scaling exponents that differ
from those for flat surfaces (Aij = δij , Bij = 0). In this pa-
per we study the effect of thermal fluctuations on a particular
class of quenched random tensors, which are no longer
independent and correspond exactly to the metric tensor Aij

and the curvature tensor Bij of the preferred random membrane
configuration X0(xk) displayed in Eq. (1); i.e.,

Aij = ∂iX0 · ∂j X0, Bij = ∂i∂j X0. (5)

Deformations of membranes are typically decomposed into
in-hyperplane displacements ui(xk) and out-of-hyperplane
displacements fα(xk), such that

X = X0 + ui t̂i + fαn̂α, (6)

where t̂i = [êi + ∑
α(∂ihα)êα]/

√
1 + ∑

α(∂ihα)2 are local
tangent vectors and n̂α=[êα− ∑

i(∂ihα)êi]/
√

1+ ∑
i(∂ihα)2

are local normal vectors. In this decomposition the local strain
tensor uij (xk) and bending strain tensor Kij (xk) become

uij = 1
2 (∂iuj + ∂jui) + 1

2 (∂ifα)(∂jfα) − fα∂i∂jhα,

Kij = (∂i∂jfα)êα, (7)

where we kept only the lowest order terms in ui , fα , and hα .
As discussed in detail in Ref. [19] for the case T = 0, d = 3,
D = 2, this parametrization generalizes shallow shell theory
[24–26] for arbitrary nearly flat membranes with D internal
dimensions embedded in an external space of dimension d.

III. CORRELATION FUNCTIONS

By adapting the fluctuation-response theorems of statistical
mechanics [27], the effective elastic properties of warped
membranes can be extracted from appropriate correlation
functions. To explain our procedure, we first introduce the
harmonic approximation, where we keep only the first term in
the strain tensor uij in Eq. (7). In this harmonic approximation
the in-hyperplane deformations ui and out-of-hyperplane
deformations fα are decoupled and in the Fourier space the
free energy can be expressed as

F0

A
= λ

2

(
u0

ii

)2 + μ
(
u0

ij

)2 +
∑

q

κq4

2
fα(q)fα(−q)

+
∑

q

q2

2
ui(q)

[
(2μ + λ)P L

ij (q) + μP T
ij (q)

]
uj (−q),

(8)

where A is a D-dimensional projected area of the membrane.
Here, we separated out the uniform strain u0

ij , and introduced
the longitudinal and transverse projector operators P L

ij (q) =
qiqj /q

2 and P T
ij (q) = δij − qiqj /q

2, which decouple the in-
hyperplane displacements ui(q) into one longitudinal mode
uL(q) and D − 1 orthogonal transverse modes ua

T (q), a =
1, . . . ,D − 1. In the harmonic approximation the correlation
functions are

〈fα(q1)fβ(q2)〉0 = δα,βδq1,−q2

kBT

Aκq4
,

〈uL(q1)uL(q2)〉0 = δq1,−q2

kBT

A(2μ + λ)q2
, (9)

〈
ua

T (q1)ub
T (q2)

〉
0 = δa,bδq1,−q2

kBT

Aμq2
,

where a and b correspond to indices of D − 1 trans-
verse in-hyperplane modes and brackets denote thermal
averaging 〈O〉0 = ∫

D[ui,fα]Oe−F0/kBT /Z0, where Z0 =∫
D[ui,fα] e−F0/kBT is the partition function in the harmonic

approximation.
As we shall see, the nonlinear couplings between the in-

hyperplane displacements ui , the out-of-hyperplane displace-
ments fα , and the quenched random background metric hα ,
through the strain tensor uij in Eq. (7), effectively renormalize
the correlation functions at long wavelengths (q → 0) to

〈fα(q1)fβ(q2)〉c ≡ δα,βδq1,−q2 Gff (q1) ∼ q
−4+ηf

1 ,

〈uL(q1)uL(q2)〉c ≡ δq1,−q2GuLuL
(q1) ∼ q

−2−ηuL

1 , (10)〈
ua

T (q1)ub
T (q2)

〉
c

≡ δa,bδq1,−q2GuT uT
(q1) ∼ q

−2−ηuT

1 .

In the expressions above we first perform the thermal averaging
denoted with brackets 〈 〉 (as above but with the free energy
F replacing the F0) and the subscript c corresponds to the
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cumulants or “connected” averages 〈AB〉c = 〈AB〉 − 〈A〉〈B〉.
The second averaging denoted with the overbar O =∫
D[hα]OP(hα) is done over the quenched random back-

ground metric, withP(hα) being a Gaussian distribution with 0
mean and the variance described in Eq. (2). In comparison with
correlation functions within the harmonic approximation in
Eq. (9), which we refer to as G0

ff , G0
uLuL

, and G0
uT uT

in the rest
of the paper, the scaling behavior of the correlation functions
in Eq. (10) can be interpreted as a scale-dependent (i.e., wave
vector dependent) effective elastic constants κR(q) ∼ q−ηf ,
2μR(q) + λR(q) ∼ q+ηuL , μR(q) ∼ q+ηuT . For the rest of the
paper our main goal is to determine the scaling exponents ηf ,
ηuL

, and ηuT
.

In addition to the cumulants we will also discuss the
“disconnected” averages

〈fα(q1)〉〈fβ(q2)〉 ≡ δα,βδq1,−q2 G′
ff (q1) ∼ q

−4+η′
f

1 ,

〈uL(q1)〉〈uL(q2)〉 ≡ δq1,−q2G
′
uLuL

(q1) ∼ q
−2−η′

uL

1 , (11)〈
ua

T (q1)
〉〈
ub

T (q2)
〉 ≡ δa,bδq1,−q2G

′
uT uT

(q1) ∼ q
−2−η′

uT

1 .

Note that for tethered surfaces that are flat in the ground state,
such averages vanish.

Since the correlation functions cannot be evaluated exactly,
we have to make certain approximations. Perturbation expan-
sions in temperature T [10,15] and in quenched disordered
metric amplitude � [see Eq. (2)] [19] converge only when
the membrane dimensionality is D > max{4,dh}. In this case
the elastic constants have a finite renormalization and are
scale independent (ηf = ηuT

= ηuL
= 0) for long wavelengths

(small q), as in conventional elasticity theory. The more
interesting case is when D < max{4,dh} and the elastic
constants become scale dependent at long wavelengths; this
case is considered in the rest of the paper. Because the
perturbation expansion diverges, we use the self-consistent
screening approximation (SCSA) [21,22] to approximate the
scaling exponents ηf , ηuL

, and ηuT
. Note that the quenched

averaged properties can sometimes be calculated using the
replica trick [28]. However, the approach taken here avoids the
usual zero-replica limit, by recognizing that the SCSA method
evaluates an infinite subset of all terms in the perturbation
expansion (e.g., see [19]).

IV. SELF-CONSISTENT SCREENING APPROXIMATION

The SCSA was first introduced to estimate critical expo-
nents in the Landau-Ginzburg model of critical phenomena
[21,22] and was later applied to calculate the effective elastic
constants due to thermal fluctuations of flat tethered surfaces
[8,14,29] and also to study their properties in the presence of
quenched random disorder [17–19]. For thermally fluctuating
flat tethered membranes, the SCSA method [8,14,29] gives
more accurate scaling of elastic constants than the first-order
ε = 4 − D expansion in renormalization group [12,30]. The
SCSA method is equivalent to a 1/(d − D) expansion and thus
becomes exact when the embedding space dimension d is large
compared to the manifold dimension D. Additionally, it has
been shown that the SCSA method is also exact to the lowest
order in ε = 4 − D and for d = D for membranes with flat
background metric [14].

First we focus on the out-of-hyperplane displacements fα .
The algebra is greatly simplified if we initially integrate out
the in-hyperplane displacements ui by [10]

e−Feff/kBT ≡
∫

D[ui]e
−F/kBT , (12)

which leads to the effective free energy

Feff

A
=

∑
q

κq4

2
fα(q)fα(−q)

+
∑

q1 + q2 = q 	= 0
q3 + q4 = −q 	= 0

Sij (q1,q2)R0
ij,kl(q)Skl(q3,q4). (13)

Here, we introduced the vertex R0
ij,kl and the tensor Sij ,

R0
ij,kl = μ

2

(
P T

ikP
T
jl + P T

il P
T
jk + 2λ

(2μ + λ)
P T

ij P T
kl

)
,

Sij (q1,q2) = 1

2
q1iq2j fα(q1)fα(q2) − q2iq2j fα(q1)hα(q2),

(14)

where we again use the transverse projector operator P T
ij (q) =

δij − qiqj /q
2. Note that the vertex R0

ij,kl can be rewritten [14]
as R0

ij,kl = μMij,kl + ρNij,kl , where

Nij,kl = 1

(D − 1)
P T

ij P T
kl ,

(15)

Mij,kl = 1

2

(
P T

ikP
T
jl + P T

il P
T
jk

) − Nij,kl,

μ is the shear modulus, and ρ = μ(2μ + Dλ)/(2μ + λ).
The convenience of this decomposition is that M and
N are mutually orthogonal under matrix multiplication
(e.g., Mij,klMkl,mn = Mij,mn, Mij,klNkl,mn = 0, etc.).

The SCSA approximation is schematically presented in
Fig. 1, which summarizes a set of coupled integral equations

= + +

= + +

(a)

(b)

FIG. 1. (Color online) Schematic description of the SCSA
method for (a) the renormalized propagator Gff and (b) the renor-
malized vertex R. Single and double solid lines represent the bare
propagator G0

ff and the renormalized propagator Gff , respectively,
red dashed lines represent the quenched disorder propagator Ghh, and
empty and solid rectangles correspond to the bare vertex R0 and the
renormalized vertex R, respectively.
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for the renormalized propagator Gff (q) and for the renormalized vertex Rij,kl(q), namely

1

Gff (q)
= 1

G0
ff (q)

+ 2A

kBT

∑
p

[Gff (q + p) + Ghh(q + p)]qiqjRij,kl(p)qkql,

(16)

Rij,kl(q) = R0
ij,kl(q) − (d − D)A

kBT

∑
p

Gff (q + p)[Gff (p) + 2Ghh(p)]R0
ij,mn(q)pmpnprpsRrs,kl(q).

The matrix equation for the renormalized vertex R above can be solved in terms of the renormalized elastic constants for
orthogonal matrices M and N :

1

μR(q)
= 1

μ
+ 2�(q),

(17)
1

ρR(q)
= 1

ρ
+ (D + 1)�(q),

where �(q) is

�(q) = (d − D)A

kBT (D2 − 1)

∑
p

(
piP

T
ij (q)pj

)2
Gff (q + p)[Gff (p) + 2Ghh(p)]. (18)

The set of integral equations above can be solved self-consistently by assuming that Gff (q) = Cf q−4+ηf /A and deriving a
self-consistent equation for ηf . Insertion of this power-law ansatz into Eq. (18) leads to

�(q) = (d − D)Cf

kBT (D2 − 1)

[
Cf I

(
2 − ηf

2 ,2 − ηf

2

)
q4−D−2ηf

+ 2�2I
(
2 − ηf

2 , dh

2

)
qdh−D−ηf

]
, (19)

where we introduced the function I through the integral

I (α,β)

q2(α+β)−4−D
=

∑
p

[
piP

T
ij (q)pj

]2

Ap2α|q + p|2β
. (20)

The integral above can be evaluated exactly and can be expressed in terms of Gamma functions

I (α,β) = 
(2 + D)
(α + β − 2 − D/2)
(2 + D/2 − α)
(2 + D/2 − β)

2(2D+1)π (D−1)/2
[(D − 1)/2]
[1 + D/2]
[α]
[β]
[4 + D − α − β]
. (21)

Note that the expression above is only correct for 2(α + β) >

4 + D; otherwise the integral has an ultraviolet divergence.
These divergences can be treated by introducing a microscopic
cutoff of order the membrane thickness; the resulting integral
has a finite q-independent value as q → 0.

From Eqs. (17) and (19) we notice that in the thermody-
namic limit of large wavelengths the renormalized elastic con-
stants scale as μR(q),ρR(q) ∼ q+ηu (the subscripted notation
ηu will be justified later) and there are two possible scenarios:
For dh < 4 − ηf the contribution from the quenched random
background metric [the bubble diagram in Fig. 1(b) with a
red dashed line] is negligible and the renormalized elastic
constants scale as ηu = 4 − D − 2ηf , while for dh > 4 − ηf

that contribution dominates and we find ηu = dh − D − ηf .
These relations between scaling exponents are general and are
not a consequence of the SCSA approximation.

In the first equation in Eq. (16) for the renormalized
propagator Gff , the dominant contributions come from small
p values, where we can use the asymptotic expressions for the
renormalized vertex R(q) or equivalently μR(q) and ρR(q). We
find again that the quenched random background metric [the
loop diagram in Fig. 1(a) with a dashed red line] is irrelevant
(relevant) for dh < 4 − ηf (dh > 4 − ηf ). In both cases we
find that in the long-wavelength limit the dominant term on

the right-hand side of the Eq. (16) scales as AB(ηf )q4−ηf /Cf

and the scaling exponent ηf is determined self-consistently by
satisfying B(ηf ) = 1.

For the case when the quenched random background metric
is irrelevant (dh < 4 − ηf ) we recover the results of Le
Doussal and Radzihovsky in [14] for tethered surfaces that are
flat in the ground state, with ηf determined by the equation

1 = D(D − 1)

dc

I
(
2 − ηf

2 ,ηf + D
2

)
I
(
2 − ηf

2 ,2 − ηf

2

) , (22)

where dc = d − D and ηu = 4 − D − 2ηf . For (D = 2)-
dimensional membranes, the solution of the above equation is

ηf = 2
(√

16 − 2dc + d2
c − dc

)
(8 − dc)

, (23)

which for the physical membranes (dc = 1) evaluates
to ηf ≈ 0.821 and ηu ≈ 0.358. The quenched random
background metric is irrelevant for dh < 3.18. We mentioned
before that the SCSA is equivalent to a 1/dc expansion (with
dc = d − D), where we find [14]

ηf = 8(D − 1)

dc(D + 2)


[D]


[2 − D/2]
[D/2]3
+ O

(
1

d2
c

)
, (24)
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and for (D = 2)-dimensional membranes we get ηf = 2/dc.
The SCSA is correct to the first order in ε = 4 − D expansion
[12,30] and results in

ηf = 12ε

24 + dc

+ O(ε2). (25)

The SCSA also gives correct results for the
(d = D)-dimensional membranes, where ηf = (4 − D)/2
and ηu = 0. This case corresponds to bulk elastic
materials, where elastic properties are scale independent
even in the presence of quenched disordered metric.

When the quenched random background metric is relevant,
i.e., dh > 4 − ηf , we obtain a self-consistent equation for ηf ,

1 = D(D − 1)

2(d − D)

I
(

dh

2 ,2 − (dh−D−ηf )
2

)
I

(
dh

2 ,2 − ηf

2

) , (26)

and ηu = dh − D − ηf . For the physical membranes (with
d = 3, D = 2) we find ηf = ηu = (dh − 2)/2, which is
consistent with the scaling exponents calculated earlier for the
mechanical properties of warped membranes at zero tempera-
ture [19]. For the large embedding space dimension we find

ηf = D(D − 1)

dc


[dh/2]
[2 + D − dh/2]


[D/2]
[2 + D/2]
[(dh − D)/2]
[2 + (D − dh)/2]
+ O

(
1

d2
c

)
. (27)

We expect that the SCSA is also correct to the first order in
ε = dh − D expansion, where

ηf = ε

1 + 2dc/
(
d2

h − dh

) + O
(
ε2

)
. (28)

As above the SCSA again gives correct results for bulk
(d = D)-dimensional elastic materials, where ηf = dh − D

and ηu = 0.
The scaling exponents ηf and ηu for membranes charac-

terized with different values of dh and D with dc = 1 and
dc = 2 are displayed in Fig. 2. Note the small transition
region between the dashed white lines, where ηf = 4 − dh

and ηu = 2dh − 4 − D. For a related situation arising for
ferromagnets with long-range interactions and for critical
phenomena in systems with long-range correlated disorder,
see Refs. [31,32].

We now return to the correlation functions for the in-
hyperplane displacements ui . The diagrammatic representa-
tion for these correlation functions is displayed in Fig. 3(a);
note the similarity with the renormalized vertex function R

in Fig. 1. For both the longitudinal and transverse modes the
dominant terms scale like

Guu(q) ∼ [
G0

uu(q)
]2 ∑

p

q2p4Gff (q + p)[Gff (p) + Ghh(p)]

∼ q−2−ηu , (29)

where ηu is identical to the exponent that appeared in the
renormalized vertex function. It follows that ηuL

= ηuT
= ηu.

From Eq. (17) we see that the in-hyperplane elastic constants
scale like μR ∼ Cqηu/2 and ρR ∼ Cqηu/(D + 1) or equiva-
lently λR ∼ −Cqηu/(D + 2). These results suggest a universal
Poisson’s ratio in the long-wavelength limit

lim
q→0

νR(q) = lim
q→0

λR(q)

2μR(q) + (D − 1)λR(q)
= −1

3
, (30)

and generalizes the results for membranes with flat back-
ground metric [14]. The numerical simulations for thermally
fluctuating flat tethered surfaces [3,33] (without quenched
disorder) are indeed consistent with this value. However, our
numerical simulations [19] for the mechanical properties of
(D = 2)-dimensional warped membranes at zero temperature

suggested a positive Poisson ratio, even though the scaling
exponents were in good agreement with the SCSA predictions.
This suggests that the SCSA captures the scaling exponents of
elastic properties, but might be less accurate for predicting the
amplitudes.

Finally, we comment on the “disconnected” correlation
functions. The most divergent terms are sketched in Fig. 3
and a simple power counting gives us the scaling exponents
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D
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D
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2

(a) (b)d − D = 1 d − D = 2ηf

ηu

ηf

ηu

FIG. 2. (Color online) Heat maps for scaling exponents ηf (first
row) and ηu (second row) as a function of dh, the exponent charac-
terizing a quenched random background metric, and the membrane
dimensionality D embedded in (a) (d = D + 1)-dimensional space
and (b) (d = D + 2)-dimensional space. Regions to the left (right) of
the pairs of dashed white lines represent regimes where the quenched
random background metric is irrelevant (relevant). The space between
the pairs of dashed lines corresponds to the transition regions, where
ηf = 4 − dh and ηu = 2dh − 4 − D. Note that in the top left region
separated with solid white lines, i.e., for D > max{4,dh}, the scaling
exponents are ηf = ηu = 0.
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(a)

(b)

= + +

(c)

FIG. 3. (Color online) Schematic description for the calculations
of (a) the in-hyperplane correlation function Guu and “disconnected”
correlation functions (b) G′

ff and (c) G′
uu. The nomenclature

“disconnected” means these graphs would be disconnected without
the average over the quenched random background metric. Double
solid lines represent the renormalized propagator Gff ; blue single and
double wavy solid lines represent respectively the bare propagator
G0

uu and the renormalized propagator Guu. The red dashed lines
represent the quenched disorder propagator Ghh, and solid rectangles
correspond to the renormalized vertex R.

[see Eq. (11)]

η′
f = 2D + 2ηu + 4ηf − 4 − dh � ηf ,

(31)
η′

u = dh − D − η′
f � ηu,

where the equality is reached only when ηf = 4 − dh. These
results imply that the correlation functions discussed before
always dominate, when calculating correlation functions
such as 〈fα(q)fα(−q)〉=〈fα(q)fα(−q)〉c+〈fα(q)〉〈fα(−q)〉.

V. CONCLUSIONS

We have used the self-consistent screening approximation
to calculate the scalings of elastic properties for thermally
fluctuating warped membranes, an especially simple class
of quenched random tethered surfaces with a preordained
unfrustrated ground state at T = 0. The quenched random
background metric becomes relevant and changes the scale
dependence whenever dh � 4 − η

(F )
f , where η

(F )
f corresponds

to the scaling exponent for the bending rigidity in the tethered
surfaces with a flat background metric, and dh characterizes
the scale dependence of the quenched random disorder. That
crossover can be understood heuristically as follows: In
our previous study [19] of the zero-temperature mechanical
properties of warped membranes we found that the divergence
of the height profile variance |hα(x)2| ∼ Ldh−D with the
membrane size L controls the scaling of elastic properties.
For the thermally fluctuating tethered surfaces considered
here the out-of-hyperplane displacement variance diverges as
〈|fα(x)|2〉 ∼ L4−ηf −D . These results suggest that the quenched
random background metric characterizing warped membranes
becomes relevant only when the typical height fluctuations due
to the frozen metric are larger than the thermal undulations for
the normal out-of-hyperplane displacements.
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