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SUMMARY

Asymmetric damage segregation (ADS) is a mecha-
nism for increasing population fitness through non-
random, asymmetric partitioning of damagedmacro-
molecules at cell division. ADS has been reported
across multiple organisms, though the measured
effects on fitness of individuals are often small.
Here, we introduce a cell-lineage-based framework
that quantifies the population-wide effects of ADS
and then verify our results experimentally in E. coli
under heat and antibiotic stress. Using an experi-
mentally validated mathematical model, we find
that the beneficial effect of ADS increases with
stress. In effect, low-damage subpopulations divide
faster and amplify within the population acting like
a positive feedback loop whose strength scales
with stress. Analysis of protein aggregates shows
that the degree of asymmetric inheritance is damage
dependent in single cells. Together our results indi-
cate that, despite small effects in single cell, ADS ex-
erts a strong beneficial effect on the population level
and arises from the redistribution of damage within
a population, through both single-cell and popula-
tion-level feedback.

INTRODUCTION

To cope with unfavorable environmental conditions, cells have

evolved myriad strategies that operate on both the single-cell

and population level. As a first line of defense, cells use versatile

cellular repair mechanisms to counteract macromolecular dam-

age caused by environmental stress. However, the repair is

not perfect andmay not prevent accumulation of DNAmutations

or protein aggregates within single cells. To accommodate this,

additional stress responses operate at the population level within

populations of genetically identical individuals. In particular, dur-

ing cellular division in bacteria (Winkler et al., 2010; Stewart et al.,

2005), yeasts (Coelho et al., 2013; Aguilaniu et al., 2003; Zhou

et al., 2011; Liu et al., 2011), and stem cells (Fuentealba et al.,

2008; Bufalino et al., 2013; Rujano et al., 2006), accumulated
C

damage is unequally allotted to the two resulting cells. This

asymmetric damage segregation (ADS) produces one faster-

growing ‘‘rejuvenated’’ cell at the cost of a more damaged,

slower-growing ‘‘aged’’ cell. In silico models suggest that ADS

increases the reproductive rate and survival of cellular popula-

tions (Chao, 2010; Ackermann et al., 2007; Erjavec et al., 2008;

Watve et al., 2006) under the conditions when efficiency of repair

is low compared to the rate of damage accumulation (Clegg

et al., 2014). Despite these potential benefits, ADS is not an obli-

gate response and is observed in only a fraction of cells (Yennek

et al., 2014), cell types (Bufalino et al., 2013), and environments

(Stewart et al., 2005; Wang et al., 2010; Coelho et al., 2013; Yen-

nek et al., 2014; Rang et al., 2012).

While the single-cell mechanisms underlying ADS are partially

understood (Spokoini et al., 2012; Liu et al., 2011; Malinovska

et al., 2012; Kaganovich et al., 2008; Specht et al., 2011; Winkler

et al., 2010), it remains unclear what the key determinants are

for ADS to emerge and become beneficial at the level of the

population. To characterize the extent of asymmetry, many

studies focus on pairwise comparisons of cells after division

(Coelho et al., 2013; Stewart et al., 2005; Lindner et al., 2008;

Winkler et al., 2010; Ackermann et al., 2007; Bufalino et al.,

2013; Yennek et al., 2014). This approach may underestimate

population-level effects as it relies on the assumptions that all

cell pairs exhibit the same level of ADS. To our knowledge, thor-

ough analysis of the actual population structure has been

performed. Moreover, it is unknown how significant the effects

of ADS are when compared to other sources of cell-to-cell

heterogeneity.

Here, we address these issues using asymmetric division of

protein aggregates in Escherichia coli as a model system. In

E. coli, damaged proteins form aggregates throughout the cell;

these localize to the older pole (pre-existing from previous

division) after several cellular divisions (Lindner et al., 2008).

By combining whole-population experiments—where single-

cell growth and aggregate dynamics were measured for over

11,000 E. coli cells—with mathematical model, we find that the

magnitude of ADS within a population is an emergent property

that scales with the level of stress applied. The emergence is

mediated by single-cell and population-level feedback loops,

acting to continuously re-distribute damage within individuals

and optimize population-level growth. Contrary to earlier as-

sumptions, this comprehensive whole-population mapping re-

veals that the levels of ADS are not the same in all cells but are
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Figure 1. Model Formulation and Key Predictions

(A) Schematic of the damage segregation in a lineage-based model. Old poles are marked in magenta and new poles in green; cell pole age is measured by its

number of consecutive old-pole divisions. Blue stars mark inherited damage; orange stars mark new damage acquired between two consecutive divisions. Right

panel summarizes key equations of the mathematical model.

(B) Mean doubling time hTi increases with stress, l, but decreases with asymmetry, a. Circles, simulation; dashed lines, theoretical expression (Equation S7). We

use a stochastic simulation algorithm for computational efficiency (see Experimental Procedures), and the error bars indicate the SEM caused by the

stochasticity.

(C) The population benefit B from ADS increases with stress and asymmetry. The benefits for doubling times, BhTi and damage BhDi, are defined as fold decrease

in mean doubling time and damage due to ADS (see Experimental Procedures). Error bars indicate the SE of the benefit due to the use of a stochastic algorithm.

(D and E) Both the asymmetry and stress affect the shape of the doubling-time distribution by increasing the cell-to-cell variability, which is quantified by

distribution width, s, in (E). Dashed lines show theoretical results of the deterministic model (Equation S8); filled circles mark the distribution widths from

simulations in (D).

See also Figure S1.
determined by the cell’s lineage history, such that cells withmore

damage exhibit a higher level of asymmetry. Finally, using line-

age-based tools for ADS analysis that we introduce here, we

show that measured levels of ADS indeed confer a population-

level advantage even when masked by cell-to-cell variability

that is unrelated to ADS.

RESULTS

Predictions of the Population Benefit from ADS Using a
Lineage-Based Mathematical Model
To investigate how ADS affects population structure and dy-

namics, we considered a conceptually simple mathematical

model of cells in growing population subject to ADS (Figure 1A).
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Many molecular details regarding ADS remain obscure, or cell-

or damage-type specific, so we focused instead on simple

mathematical implementations of general concepts relevant to

ADS. While similar in silico models were investigated earlier

(Ackermann et al., 2007; Erjavec et al., 2008; Chao, 2010), the

effects of environmental stress nonetheless remain largely un-

explored. By treating the population as a set of evolving lineages

rather than a collection of individual cells (see Supplemental In-

formation, section V), we derived analytical relationships be-

tween (1) the severity of environmental stress l, (2) physiological

properties such as doubling times T, damages D, and (3) and

cell-to-cell variation s, representing the population effects of

ADS (see Figure 1 and Equations S7 and S8). Theoretical results

were paralleled by numerical simulation of the model (see



Experimental Procedures and Supplemental Information, sec-

tion IV).

In thismodel, each cell inherits a lineage-dependent amount of

accumulated damage, Dinh, from its ancestor (Figure 1A). Over

its lifetime between divisions, each cell acquires additional dam-

age, proportional to the severity of stress l, resulting in the total

damage

D=Dinh + l (Equation 1)

prior to division. Accumulated damage slows down cell growth

(Lindner et al., 2008), so we set the doubling time T of the cell

to linearly depend on its total amount of damage,

T = tmin +mD= tmin +mðDinh + lÞ; (Equation 2)

where m is a proportionality constant relating damage and time,

and tmin is the minimum doubling time of a cell set by mecha-

nisms unrelated to ADS. ADS is introduced into the model

through an asymmetry parameter a ð0%a%1Þ that dictates the

amount of damage inherited by each sister cell at division. The

old-pole (magenta, Figure 1A) cell inherits a larger fraction of

the ancestor’s damage Dold
inh = ð1+ aÞ=2Dancestor , while the new-

pole cell inherits a fraction Dnew
inh = ð1� aÞ=2Dancestor , resulting in

a doubling-time difference between two sister cells

Told � Tnew =maDancestor : (Equation 3)

This equation reveals that the difference in sister-cell doubling

times is a product of both the lineage history (via Dancestor ) and

single-cell behavior (via a). We initially treat the asymmetry

parameter as a constant across all cells, but we will later relax

this assumption. To speed up the convergence of our simula-

tions, we have added small zero-mean noise to the cell’s

doubling time. Theoretical results are deterministic (see Experi-

mental Procedures).

In linewithprevious insilicofindings (Ackermannetal., 2007;Er-

javec et al., 2008; Chao, 2010), our modeling results show that

ADS reduces the mean doubling time. We find that this effect is

greater under higher stress (Figures 1B and S1A). Consequently,

the benefit of ADS (defined as the fold-change improvement of

physiological properties at some asymmetry ðaR0Þ relative to

symmetry ða= 0Þ, Experimental Procedures) increaseswith stress

and is thus stress adaptive (Figure 1C). We emphasize that the

term ‘‘adaptive’’ refers to phenotypic changes in response to var-

iations in the external environment, and not to evolutionary

changes mediated by natural selection. Moreover, we find that

stressalsohasastrong influenceonpopulationstructurebecause

of ADS (see Figure 1D). As a result of the continuous and non-

random redistribution of damage at division, each cell lineage

has a unique lineage history of damage-evasion and -accumula-

tion events (Figure 1A). These unique lineage histories diversify

the cells in the population, and our model predicts that the popu-

lation diversity (characterized by width s of the distribution

of doubling times) increases with both asymmetry and stress

(Figures 1E and S1B).This is likely why ADS has primarily been

observed (prior to this study) under conditions of significant stress

(Stewart et al., 2005; Lindner et al., 2008; Winkler et al., 2010;

Coelho et al., 2013; Rang et al., 2012; Iyer-Biswas et al., 2014).

The stress-adaptive behavior of ADS stems from a positive

feedback that amplifies population diversity. This feedback oc-
curs because low-damage cells divide faster than the rest of the

population (Equation 2) and at the same time gives rise to low-

damage progeny. In thisway, damage-evading lineages (lineages

that consecutively inherit the smaller fraction of damage) become

over-represented, reducing the mean doubling time. The feed-

back strength is related to the sister-cell difference in doubling

times, DT, which depends on the level of environmental stress l

through the lineage damageDancestor (Equation 3). Thus, the feed-

back is stronger (resulting in stress adaptation) under higher

stress. Moreover, since the feedback strength also depends on

a, higher asymmetries also lead to increased stress adaptation.

Our model reveals that this population-level stress response is

an emergent property of a population in which two simple rules

hold for single cells: (1) cells ‘‘interact’’ through asymmetric inher-

itance of damage (e.g., protein aggregates or mutated DNA

strands) and (2) cells with lower damage have phenotypical

advantage (e.g., shorter doubling time or increased number of

times cell divides before senescence). Thus, we expect that

this effect should emerge regardless of the exact mechanism

of ADS.

Experimental Validation of Model Predictions
We tested the predictions experimentally in exponentially

growing populations of E. coli by monitoring single-cell doubling

times and protein aggregates. Constant environmental stress

was imposed in the form of heat shock or antibiotic stress (kana-

mycin), as both are known to induce protein aggregation (Van-

Bogelen and Neidhardt, 1990). To track the effects of ADS

acrossmultiple lineage histories, wemonitored growing colonies

starting from single cell and up to �300 cells. Since protein ag-

gregates are known to be the predominant factor in E. coli

ADS (Lindner et al., 2008; Winkler et al., 2010), we expressed

the heat shock chaperone ClpB fused to YFP via a medium-

copy plasmid within clpB knockout cells (see Experimental

Procedures and Figure 4A). This reporter allowed us to experi-

mentally measure the asymmetry parameter a by monitoring

aggregate formation and inheritance. Compared to other chap-

erones, ClpB showed a higher level of co-localization with aggre-

gates, and the fusion has been shown to be functional (Winkler

et al., 2010), making it an effective marker. We also verified the

results of experiments with wild-type E. coli (all experiments

are summarized in Table S1).

Lineage-Based Data Analysis Captures the Population-
Level Effects of ADS
Wedeveloped a lineage-baseddata-analysis framework centered

on binning cells with similar lineage histories to properly investi-

gate the population structure. If the damage re-distribution is

governed primarily by ADS, cells in the same bin would have

similar damage levels. Variations between bins (caused by differ-

ences in accumulated damage) is therefore a signature of

ADS, while within-bin variations would be caused by ADS-unre-

lated variations, which we refer to as noise. We approximated

the full lineages by binning the cells based on the number h

of consecutive events of damage accumulation (positive h) or

evasion (negative h) for both the current cell and its immediate

ancestor: hcurrent, hancestor (see Experimental Procedures and

Figure 2B). The median doubling time in each lineage served

as our noise-filtered readout coupling to the lineage-specific
Cell Systems 3, 187–198, August 24, 2016 189
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Figure 2. Lineage-Based Approach to Quantify Population Effect of ADS

(A) Each lineage represents a unique history of damage-accumulation (+)/evasion (�) events and therefore results in different doubling timeswithin the population.

The extreme, damage-accumulating (all magenta) and damage-evading (all green) lineages are shown.

(B) Lineage groups are created by pooling together lineages with similar histories of damage redistribution events. The median doubling times of the each lineage

group (dash-dotted lines) are used as a proxy of the noise-filtered doubling time.

(C) The heatmap gives pairwise differences in median doubling times for each pair of lineage groups. We approximate the history of the lineage by a pair of

numbers ‘‘hancestor, hcurrent’’ where hancestor is the number of consecutive damage-evasion (�)/accumulation (+) events for the ancestor and hcurrent is the same

quantity calculated for the current cell. The entries are symmetric around the diagonal, with a difference only in sign.

(D) Distributions of noise-filtered doubling times. Each value underlying the distribution represents the median doubling time of a lineage group and carries a

weight corresponding to the fraction of the population in this group. Null distributions reflect ADS-unrelated variations due to finite sample size and are obtained

separately at each stress level by random reshuffling of single-cell doubling times between the lineage groups.

See also Figure S2.
accumulated damage, and we confirmed that the statistical prop-

erties of the noise were similar across all lineages. Including all lin-

eages of the population in our analysis (Figure 2B), we obtained a

noise-filtered population distribution of doubling times (Figure 2D).
190 Cell Systems 3, 187–198, August 24, 2016
To test this approach,we re-analyzed the low-stressdatasampled

from a different strain (MG1655) by Stewart et al. (2005). The line-

age-based analysis applied to this vast dataset, which consists of

over90colonies, capturessignificantdifferences indoubling times



between lineages differing by only one damage-accumulation/

evasion event (Figure S2).

Heat Shock Experiments Confirm Predicted Stress-
Adaptive Population Response from ADS
We compared the growth of MC4100DclpB E. coli expressing

ClpB-YFP under minimal stress at 37�C to the heat stress at

42�C. Our data-analysis methods revealed that the doubling

time of a cell is indeed highly dependent on its lineage history.

We quantified this by the difference in median doubling times

between pairs of lineages in Figures 2C, 3A, 3B, and S2. As ex-

pected from our model, pairs of lineages with more consecutive

damage-accumulating/evading events were characterized by

larger time differences. Also, while doubling times did converge

to a finite value after successive rounds of damage accumulation

(or damage evasion) (Figure S3B), most lineages yielded

doubling times that were between the two extremes (Figures

3C and 3D). These observations are in agreement with themodel

(Figure 1D) and provide experimental confirmation that ADS

diversifies cells into numerous subpopulations, and not two

subpopulations as suggested earlier (Wang et al., 2010).

Next, we investigated the effects of stress on the distribution

of doubling times. We found that the mean doubling time from

the noise-filtered data increased for cells exposed to heat stress

(from 26.9 at 37�C min to 28.8 min at 42�C, p < 0.01 (bootstrap-

ping, see Experimental Procedures), Figures 3C and 3D), which

is in agreement with themodel (Figure 1B and Equation 2). More-

over, we found that the population diversity (quantified by the

width s of the doubling-time distributions in Figures 3C and 3D

and heatmaps in Figures 3A and 3B) is nonzero at low stress (sta-

tistically significant compared to the null distribution, see Exper-

imental Procedures) and furthermore increased under the heat

stress (from s37 = 1.1 min to s42 = 2.0, p < 0.01, bootstrapping;

see Experimental Procedures and Figure S3A). These findings

confirm the stress adaptation predicted by the model.

Taken together, these observations confirm the key model

predictions about the population-level effects of ADS. Our re-

sults also illustrate that, while ADS is not absent under low levels

of stress, it becomesmore pronounced at higher stresses. These

findings appear to be general, as we have found qualitatively

similar results in repeat experiments with antibiotic stress in

MC4100DclpB + ClpB-YFP E. coli (0.5 mg/ml kanamycin) (Fig-

ures S3C–S3F) and in the parental MC4100 strain under both

types of stress (Figures S3G–S3P).

While the stress-induced increase in ADS appears to be gen-

eral across strains and stress types, the assumed increase in

mean doubling time hTi is not. This metric actually decreases

in WT E. coli under 42�C heat shock (Figures S3I–S3K), due to

increased ribosomal activity at higher temperatures (Farewell

and Neidhardt, 1998). In terms of our model, this means that

the minimum doubling time tmin, which we assumed to be

constant, is in fact environment dependent. We emphasize that

variations in tmin between different stress levels does not quali-

tatively affect our findings.

Mechanistic Explanation of Stress-Adaptive Effect of
ADS from Aggregate Dynamics
Having confirmed the existence of the stress adaption (mani-

fested by increase in s), we next investigated the mechanism
by which population diversity increases with stress. Our theoret-

ical investigations predicted two different mechanisms (see

Equation 3). The first is an increase in the total inheritable dam-

age from each cell Dancestor , which is tied to the distribution

of damage within the population and thus a signature of popu-

lation-level response. Second, ADS can also be increased

by changes in single-cell response, if the asymmetry param-

eter, a, changes with stress. By distinguishing between the

two, one can gain significant insight into mechanisms behind

observed ADS.

Consistent with the first mechanism, we found that higher

stress was associated with larger amounts of damage, as indi-

cated by the increased frequency and size of fluorescently

labeled protein aggregates (see Figures 4B, 4E, S4A, and

S4B). However, it was not clear whether this was due to

increased aggregate inheritance or solely due to an increased

rate of new aggregate formation. Upon closer investigation,

we observed that the aggregates became more stable under

stress, with half-lives larger than cell doubling times (Figures

4C and S4C). This illustrates that damage inheritance—the

fundamental mechanism of ADS—does increase with stress.

Moreover, the rate of formation of new aggregates also

increased (Figure 4D), and formation occurred equally at each

cell pole (Figure S4D), as reported earlier (Lindner et al.,

2008). Notably, the frequency of new aggregate formation

decreased (Figure S4E), while the probability of finding an

aggregate at the old pole increased (Figure S4F) with cell

pole age. This could be caused by fusion of misfolded proteins

to pre-existing aggregates, similar in effect to aggregate fusion

recently reported for S. pombe (Coelho et al., 2014) and

M. tuberculosis (Vaubourgeix et al., 2015). Thus, the data in

Figure 4 provide the following mechanistic explanation for

stress-adaptive benefit from ADS: higher environmental stress

increases the stability and size of aggregates, leading to larger

differences DT between sister cells at division (causing larger s)

and consequently a stronger positive feedback amplifying the

subpopulation of low-damage cells. As a result, ADS reduces

the population doubling time more at higher stress. The

increased aggregate formation rate further amplifies the pop-

ulation effect of ADS as more cells experience asymmetric

division.

Single-Cell Damage-Dependent Asymmetry at Division
Contributes to the Feedback Loop at the Single-Cell
Level
We have shown that stress-adaptive effects of ADS can be ex-

plained by an increase in heritable damagewithin the population.

However, it was unclear whether this mechanism is sufficient to

account for the observed effects. We therefore tested whether

the strength of ADS at each stress level could be explained solely

by the stress parameter, l, assuming no change in the asymme-

try parameter, a. We used the difference in doubling times DT of

the extreme lineages to fit our model (the damage-accumulating

and damage-evading lineages highlighted by thick magenta and

green lines in Figure 1A, Supplemental Experimental Proce-

dures, III.6). The model successfully captured most of the fea-

tures in DT (dashed lines in Figure 5A) and passed two validation

criteria. First, it reproduced the increased difference in doubling

times at higher stress. Second, it captured the near-linear
Cell Systems 3, 187–198, August 24, 2016 191
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Figure 3. ADS Signatures at Low and High Stress

(A and B) Heatmaps of pairwise differences in median doubling times at 37�C and 42�C show that differences between lineage groups are larger under heat

stress. Statistically significant entries are outlined in black.

(C and D) Noise-filtered distributions of doubling times at 37�C and 42�C. The mean and the width of the distribution are larger under heat stress.

See also Figure S3.
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Figure 4. Aggregate Dynamics Provides the Mechanism of Stress-Adaptive ADS

(A) Representative bright-field image of E. coli cells (MC4100DclpB) with fluorescence image of ClpB-YFP overlaid in green; fluorescent foci mark protein ag-

gregates (Winkler et al., 2010).

(B) Fraction of cells with protein aggregates. More cells harbor aggregates at higher stress. Here and in (D) and (E), error bars indicate the SE of the frequency

caused by the finite counting statistics (see Experimental Procedures).

(C) Distribution of aggregate lifetimes. Aggregates are longer lived at higher stress, with very few aggregates persisting longer than a mean doubling time of

�27 min under low stress.

(D) Fraction of cells with newly formed aggregates. Aggregates form at a higher rate under stress.

(E) Frequency of aggregates per cell as a function of pole age (mean with error bars showing 95% confidence interval) is constant around 0.1 and independent of

pole age for low stress (blue) but exhibits a strong dependence on pole age and a much higher level at higher stress (red). Only pole ages where at least one

aggregate was detected have been included.

See also Figure S4.
relationship between DT at low and high stress we observed in

experimental data (Figure S5A and Supplemental Information,

section IV.6.2). However, it failed to fit the data for the early

pole ages (Figure 5A). Furthermore, the fit did not improve

when the asymmetry parameter, a, was fitted independently at

each stress level.

The relatively poor fit of the model with constant asymmetry

a suggested that the increase in stress alone is insufficient to

explain the increase in observed ADS. We therefore consid-

ered the possibility that a could have a more complex depen-

dency on stress or damage levels. To test this, we analyzed

the inheritance of aggregates as a function of pole age. If a

is constant, then the probability of aggregate inheritance

should not depend on the pole age. However, Figure 5B shows

that older-pole cells have a higher probability of retaining

aggregates following division. Contrary to the underlying

assumption of most previous studies (Erjavec et al., 2008;

Wang et al., 2010; Ackermann et al., 2007; Watve et al.,

2006; Rang et al., 2012), a is not the same for all cells in a pop-

ulation, but depends on the pole age and the amount of accu-
mulated damage in the cell. Aggregate inheritance at the

single-cell level is mostly binary because cells typically have

either zero or one aggregate (the frequency is less than 1 in

Figures 4E and S4B). However, the averaged damage-depen-

dent asymmetry measured from aggregate inheritance follows

a sigmoidal, Hill-like function (Figures 5C, S5B, and S5C),

described by Equation 4 (constant c3 corresponds to hill coef-

ficient, c1 and c2 control the offset and the inflection point,

best-fit values are given in Figure S5C).

aðDÞ= c1 +Dc3

c2 +Dc3
: (Equation 4)

The damage-dependent asymmetry is a direct conse-

quence of long-lived aggregates passively migrating to the

old pole after a few divisions, as described by Lindner et al.

(Lindner et al., 2008) (see also Figure S4F). This occurs

because aggregates, which initially form anywhere in the

cell, will get pushed toward the cell poles due to nucleoid oc-

clusion (Winkler et al., 2010; Potten et al., 2002). Furthermore,
Cell Systems 3, 187–198, August 24, 2016 193
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B Figure 5. Experimental Evidence for Dam-

age-Dependent Asymmetry

(A) The difference in experimental doubling times

between the damage-accumulating and damage-

evading lineages starting from the same cell. Error

bars indicate the SEM. The dashed lines show the

fit of the ‘‘constant a’’ model, while the solid lines

show the fit of the ‘‘a(D) model’’ (see Experimental

Procedures).

(B) Frequencies of inherited aggregates f inhNP and

f inhOP of new-pole and old-pole lineages at 42C

illustrate an increasing probability of aggregate

inheritance with pole age of old-pole lineages and

near-constant frequency for new-pole lineages.

We do not plot the values for low stress, since the

aggregates did not typically persist for multiple

generations. Error bars indicate SE of the fre-

quency (see Experimental Procedures).

(C) Asymmetry measured by area of aggregates at

division plotted as a function of the aggregate area

of ancestor.

See also Table S2 and Figure S5. Error bars

indicate SE.
the non-linearity of the stress dependent asymmetry may

result from a combined effect of larger aggregates diffusing

slower (Potten et al., 2002), as well as recently reported

fluid-to-glass like transition of the bacterial cytoplasm (Parry

et al., 2014) contributing to further immobilization of the

larger aggregates. Thus, damage-dependent asymmetry is

a single-cell emergent property arising � without any cellular

regulation � when an aggregate is inherited sufficiently

many times.

To confirm that single-cell damage-dependent asymmetry

indeed improves the model, we included this feature (Equa-

tion 4 with parameters as in Figure S5C) and refitted to the

experimental data of DT (Figure 5A, full lines). We found that

these fits were statistically significantly better under high

stress compared to the previous attempt (dashed lines). The

goodness of the fit and the statistical significance was quan-

tified according to the Akaike model selection criteria – a

statistical aid when choosing between the competing models

(Burnham and Anderson, 2002) (Supplemental Information,

section III.9; Table S2). The discrepancy between the adaptive

asymmetry a(D) model and the experimental data at one to two

consecutive accumulation/evasion events likely arise because

a cannot be measured for small aggregates below the detec-

tion limit. In the simulations, we have set a(D) to follow Equa-

tion 4. for all aggregate sizes. However, the actual asymme-

tries may be lower for small aggregates, e.g., due to their

shorter half-life and faster diffusion. Also, at low aggregate

numbers, stochastic effects not included in our model might

cause discrepancies.
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The adaptive asymmetry aðDÞ model

also provided a better fit for both the

MC4100DclpB + ClpB-YFP and WT

strain under both stress types (Fig-

ure S5D; Table S2). Both the mechanistic

insights in Figure 4 and the evidence that

aggregates tend to merge (reported in
E. coli (Lindner et al., 2008) and fission yeast (Coelho et al.,

2014)) suggest that the damage-dependent asymmetry may

not be limited to E. coli.

Population-Level Benefits fromADSPersist under Noise
The significant ADS-unrelated cell-to-cell variations in doubling

times (s42C
noise = 6:8 min, see Figure S5E) compared to the effect

of ADS (s42C
ADS = 2:1 min) casts doubt on the relevance of ADS.

We explore the effect of this noise, and found that the benefit

of ADS is still significant. First, while the overall effect of

ADS on population diversity, s, is comparable to the noise,

ADS consistently showed a larger response to stress (1.8-fold

compared to 1.3-fold for coefficient-of-variance, see Supple-

mental Information, section III.10; Figures S3A, S3F, S3L, and

S3P). Second, simulations incorporating physiological levels of

noise into our experimentally validated model indicated that

the benefits of ADS, in terms of mean doubling time and popula-

tion damage, are significant even in the presence of this large

noise (see Figure 6A). The benefits of ADS also increased with

stress level in our simulations, just as our noise-free theory pre-

dicted (Figure 1C).

The effects of ADS on doubling times weremasked by noise at

small population sizes in the simulations (Figure 6A, n� 9). How-

ever, differences in damage inheritance were amplified along

the lineages and were detectable after a few generations (Fig-

ure 6A, n � 5,000). Therefore, the population-level benefits of

ADS emerge for biologically reasonable population sizes, even

when ADS-unrelated growth variance (Figure S5E) dominates

at the level of sister pairs.



A B Figure 6. Population and Single-Cell Feed-

backs Ensure Population Benefit from ADS

(A) Estimates of the population benefits from

ADS when accounting for ADS-unrelated cell-to-

cell variations (model simulations with parameters

derived from experimental data). The population

benefits are significantly different for large popu-

lation of nz5; 000 cells but not for small pop-

ulations of nz9 cells. The error bars indicate the

SE across 103 repeat simulations. Top: doubling-

time benefit, BhTi, taken as fold decrease in mean

doubling time in presence of ADS as compared to

no ADS. Bottom: damage benefit, BhDi, taken as

fold decrease in mean damage levels (see Exper-

imental Procedures for exact expressions). **Sig-

nificant difference of the mean (t test, p < 0.01),

*(t test, p < 0.05), ns, not significant (t test,

p > 0.05).

(B) Summary of the single-cell and population-

level stress-adaptive ADS. Stress increases the

difference between sister cells, Told � Tnew, either

directly on whole-population level by increasing

the amount of accumulated damage, Dancestor ,

or indirectly, on a single-cell level, by damage-

dependent asymmetry at division, aðDÞ. On a

population level, the difference in doubling times

across lineages creates an ADS-mediated positive

feedback. Resulting is a stress-adaptive strategy

amplifying the proportion of low-damage cells,

while concentrating most of the damage in a few

cells.
DISCUSSION

Macromoleculardamagesareunavoidableby-productsof cellular

functioningandareknown tobeassociatedwithagingandvarious

human disorders (Tyedmers et al., 2010). While single-cell ADS

has been known for the last decade, its role (if any) in mitigating

the effects of stress has remained obscure. Here, we combined

theoretical and in silico modeling with experiments and analysis

methods to uncover a population stress response emerging due

to ADS – an adaptive population stress response. This adaptive

population stress response, which arises in a completely self-

organized fashion when the population is exposed to environ-

mental stress, may be summarized as follows (Figure 6B). At

each division, a difference in doubling times between the two

resulting cells is set up by ADS (Equation 3). This difference is

amplifiedwithin thepopulationasprogeny fromthe faster-growing

sister inherit less damage and therefore divide more often, result-

ing in an over-representation of low-damage cells. As a result,

there is a positive feedback that acts on low-damage cells within

a population. The stress-adaptation arises from acceleration of

the positive feedback under high stress, due to an increase in

inheritable damage Dancestor . The inheritable damage is the dam-

age that escaped the repair. The increased amounts of Dancestor ,

due to increased rateofaccumulationandstability (Figure4;Clegg

et al., 2014), reflect the limitations of the repair mechanisms.

Adaptation is further improved via damage-dependency of the

asymmetry parameter a. The extent to which this asymmetry is

due to binary effects (e.g., frequency of aggregate inheritance)

or graded effects (e.g., size of inherited aggregates) is still un-

clear. Nevertheless, the similarity of aggregate dynamics under

both heat and antibiotic stresses (Figures S4A–S4C) suggest
that aggregate formation and inheritance is functionally similar

across different stresses. These results in combination with

research on S. pombe (Coelho et al., 2014), indicate that dam-

age-dependent asymmetry is likely a general feature of ADS

and is not specific to a specific type of cell.

Dynamic Picture of Damage-Distribution Questions
Previous Analyses of ADS
Our results provide a new dynamic picture of how damage is

distributed within a population, with redistribution at each cell

division that imparts structure to the population as a whole.

This picture stands in contrast with earlier studies. Wang et al.

(Wang et al., 2010) suggested that the entire population con-

verges toward the fixed doubling time because the doubling

time of aging cells converges toward such a finite value. The

work by Rang et al. (Rang et al., 2011) reinterpreted their data

and proposed that cells converge to two steady states, one

with a doubling time of a fully rejuvenated cell, often likened to

a gamete cell, and the other of the most ‘‘aged’’ cell within the

population (the somatic cell). A consequence of this simplifica-

tion is that every division can be thought of as producing one

of each of these cell types, and the intermediate cell types could

be ignored.While the somatic cell- germ cell paradigm is a useful

conceptual tool, we found that seemingly binary events such as

single-aggregate inheritance (Figure 4E) do not result in two

distinct subpopulations of cells. Since the size of the aggregates

increases within each generation (Figure S4A) the changes in

damage and division times across lineages are graded, not

binary. So while a few extreme branches (consecutively accu-

mulating/evading lineages; referred to as new- and old-pole

attractors by Rang et al., 2011) eventually converge to fixed
Cell Systems 3, 187–198, August 24, 2016 195



damage levels (indicated by doubling times in Figure S3B and re-

ported in Wang et al., 2010), most of the lineages are constantly

moving in between these two extremes according to their

sequence of damage-accumulation and damage-evasion

events (e.g., Figures 3C and 3D). Nonetheless, the population

is in a dynamic equilibrium where the overall damage distribution

remains constant in time.

Another reason for examining population structure when

quantifying ADS is that metrics such as cell doubling time are

environment and strain dependent. This observation has an

important consequence for the choice of a right ADS measure:

while the change in tmin between strains and environments

does not affect distribution widths s as it is based on difference

in doubling times (see Equation 3), it does perturb the ratio

of sister doubling times – a commonly used metric of ADS.

(For illustration, consider the case of full asymmetry, a = 1

when newly acquired damage has a small contribution to the

doubling time, ml � tmin. The ratio of sister doubling times

Told=Tnew = ðtmin +mDancestorÞ=tmin is strongly affected by tmin).

Population-Level Effects of ADS May Apply More
Generally: Predictions and Implications for Observed
Asymmetric DNA and Aggregate Segregation in Stem
Cells
While this work has focused on ADS in E. coli, our framework and

predictions are likely to apply more generally to any self-ampli-

fying heritable traits, including any cell population subject to

macromolecular damage. A particularly intriguing candidate is

the Immortal Strand Hypothesis (ISH) for adult stem cell popula-

tions (or alternatively, the Silent Sister Hypothesis). ISH predicts

that stem cells will minimize the accumulation of errors within

their DNA through retention of template DNA following division.

The replicated DNA, which will incur replicative errors, is passed

on to a less multipotent, or terminally differentiated, daughter

cell. As a result, the total number of mutations within all cells is

minimized. Our mathematical framework can be used to track

the accumulation of mutations through each lineage. l would

correspond to the frequency of mutations due to replicative

errors, and tmin would correspond to spontaneous mutation of

non-replicating DNA. In this case, it is not the doubling time

of each cell, but the length of each lineage that would be dam-

age- dependent. High-damage lineages would consist of fewer

cell-doubling events, as per ISH these cells are more likely to

differentiate and exit the stem-cell pool. We would expect that

the ISH in this model will result in a reduced mutational load in

a population of adult stem cells.

Although the analogy between the protein aggregates and

mutational frequency has a number of limitations and there are

many experimental difficulties in using a lineage-based approach

to test the ISH, such as incomplete knowledge of differentiation

hierarchies or lack of effective DNA probes, we urge caution in

drawing conclusions from cell-pairs alone. We expect that, as

in the case of ADS in E. coli, strand retention does not create

two distinct populations of cells – the mutation-free DNA of

stem cells, and the mutated DNA of differentiated cells. Strand

retention will impose a much more graded change in mutational

frequency across all cells, requiring a population-level analysis.

When applied to DNA and aggregate segregation in stem cells,

the lineage-based analysis may resolve ADS effects that are
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currently below detection limit and thus reveal why ADSmanifes-

tation is environment and cell type-specific (Bufalino et al., 2013;

Rujano et al., 2006; Yennek et al., 2014; Conboy et al., 2007).

EXPERIMENTAL PROCEDURES

Cell Lines and Fluorescent Reporter

We performed experiments with the E. coli strain MC4100 (Smith, 2005) and a

deletion mutant for clpB, which encodes a protein involved in disassembly of

aggregates of misfolded proteins (Winkler et al., 2010). To visualize protein

aggregates, mutant cells were transformed with a plasmid containing YFP-

tagged ClpB (pHSGClpB-YFP) under the lac promoter together with a plasmid

containing constitutively expressed lacI (pBB529).The reporter was induced

by supplying IPTG (200 mM). Our ‘‘wild-type’’ cells were MC4100 transformed

with the pBB529 plasmid for selection purposes grown without the inducer.

Plasmids and the MC4100DclpbB strain were kindly donated by Juliane Win-

kler. See Supplemental Experimental Procedures for details.

Experiments, Microscopy, and Image Analysis

Freshly inoculated cells were grown overnight in a heat-controlled shaking

incubator under the prescribed stress level. For the experiments, exponen-

tial-phase cells were plated on freshlymade agarose (1.5%, including inducers

and antibiotic stressors when appropriate), which was placed directly on a mi-

croscope coverslip and sealed from the external environment using a custom

setup, enabling stable experimental conditions over extended periods of time.

We imaged the cells using 1003 objective every 3–4 min in bright field and

every �15 min in fluorescence (only mutant cells) on a temperature-controlled

microscope. The images were analyzed using custom image analysis soft-

ware. Image analysis provided single-cell growth rates and aggregate dy-

namics together with pedigree. Single-cell growth rates g were obtained

from experimental measurements of single-cell length as a function of time

[ðtÞ by fitting to exponential function [ðtÞ= [0e
gt . Filters were applied to ignore

cells with too few or corrupted data points. Single-cell doubling times T were

computed from accepted growth rates as

T =
ln 2

g
:

Aggregates were accepted if their average fluorescence intensity was at

least 1.6 times the average cell intensity. Each experiment yielded eight to

14 independent colonies and was repeated at least once on a separate day us-

ing freshly inoculated cells. See Supplemental Experimental Procedures and

Table S1, summarizing all reported experiments, for details.

Statistical Analyses

The width of the distribution of doubling times is s=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðT � hTiÞ2i

q
. For

normally distributed data, this definition is equivalent to the SD. However,

we specifically refrain from using this terminology since most of our

distributions are skewed and highly non-normal.

Averages

Population averages of some quantity X are denoted by angle brackets ðhXiÞ,
and averages over all cells in a lineage group (defined above) are denoted by

an overline, X. The lineage-group averages are used to filter away non-ADS-

related noise in the experimental data. In Figure 5A, multiple lineage pairs

were analyzed per micro-colony.

The Error Introduced by Lineage Grouping

The histories of lineages pooled together in the same lineage group are similar,

but not identical. This results in a small variation in doubling times among

lineages within the same group even in the absence of noise. By running com-

puter simulations at different values of asymmetry and stress, we find this vari-

ation, quantified by coefficient of variation (CV), is below 2% (with only two bins

above 1%) and is considerably smaller than the variations introduced by noise

(CV �20%) or typical significant changes between bins across our experi-

ments (15%–50%).

Aggregate Statistics

Very few cells were observed to have more than one aggregate, and under

low-stress conditions many cells had none. Thus, we analyzed aggregate

presence/absence at the single-cell level under the approximating assumption



that it follows a binomial distribution using the corresponding standard

formulae: at any pole age, j, for the case of Nj
agg aggregates and Nj

cells cells,

the fraction of cells with aggregates is fj = ðNj
agg=N

j
cellsÞ and the SE of the

frequency sfj =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfjð1� fjÞ=Nj

cellsÞ
q

.

Significant Differences of Mean Doubling Times from Different

Stresses

Weusedbootstrapping toobtainstatistical significancewhencomparing thedif-

ference of mean doubling times at two conditions (Figures 3C and 3D, dashed

lines) since the underlying distributions were noticeably non-normal. We sepa-

rately resampled the data with replacement at each of the two conditions,

thereby obtaining a single estimate of the mean value from each distribution.

We repeated this process 104 times, each time obtaining a mean value from

each distribution. For each of the 104 repeats, we then subtracted the mean

value from one condition from its sister at the other condition, resulting in a

normal distribution of differences between themean of the two original distribu-

tions,whichwecomparedagainst thenull hypothesisof zeromeanusinga t test.

Null Distributions and Significant Differences of DistributionWidth s

Null distributions for population growth rates (Figures 3C and 3D, gray bars)

were obtained by reshuffling doubling times between lineage groups, taking

the mean, and repeating a total of 500 times. Increases in population width

with stresswere also obtained via bootstrapping by randomly sampling the un-

derlying distributions at low and high stress and comparing to the same result

from the null distribution, repeating the process a total of 104 times.

Single-Cell Statistics

Distributions of single-cell doubling times were not normal, so we used boot-

strapping to obtain SEM: we resampled the data with replacement to obtain a

single estimate of the population mean, and repeat a total of 104 times. The

resulting distribution of means follows a normal distribution and is thus well

characterized by its SD.

All statistical analyses were and simulations were performed in MATLAB

(2012b), with details of the statistical procedures given in Supplemental Exper-

imental Procedures.

Theoretical Results

Theoretical Results are given in Supplemental Experimental Procedures, sec-

tion VI. In Figure 1B, we used Equation S7 for hTi and Equation S8 for s in Fig-

ure 1E. In Figure 5A, we used Equation S3 to describeDT. Details of theoretical

derivations will be published elsewhere.

Numerical Simulations of the Model

The models have been implemented as agent-based simulations. In all re-

ported cases, we have started the simulations from a single cell with no in-

herited damage. To simulate the growing population, we first construct the

entire population tree for a specified number of generations. Next, for each

cell in the tree, we compute and record the cell’s damage and doubling time

as given in Equation 1 and 2 and add small zero-mean noise to the doubling

times for faster convergence. For further details, see Supplemental Experi-

mental Procedures, section IV.

Population Benefit from ADS, BhTi, and BhDi
The benefit in reducing the population mean doubling time due to ADS,

BhTi = ðhTia=0=hTiaR0Þ is defined as the fold-change decrease in mean

doubling time hTiaR0 in a population dividing damage with some asymmetry

ðaR0Þ, relative to mean doubling time hTia= 0 in a population dividing damage

symmetrically ða= 0Þ. Similarly, the benefit in reducing the population mean

damage levels: BhDi = ðhDia= 0=hDiaR0Þ.

Fitting Experimental Data Using Model and Simulations

To fit our model to the data in Figure 5A, we let the two stress levels lL (low

stress) and lH (high stress) be free parameters but required that m be the

same for both low and high stress. The ADS-free minimum generation time

tmin is also a free parameter, but its value has no implication on DT and so it

cannot be determined. We set it to the plausible value tmin = 22 in our model

(obtain same results by varying it within reasonable bounds). Fitting was per-

formed using the least-squares fitting routine lsqcurvefit in MATLAB. For the

case of damage-dependent asymmetry, we simulated the model numerically

with a(D) taken from Equation 3 (parameters in Figure S5C) during the fitting

routine, requiring m to be the same at low and high stress.
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D., Song, J., Yang, X., Öling, D., et al. (2011). Segregation of protein aggre-

gates involves actin and the polarity machinery. Cell 147, 959–961.

Malinovska, L., Kroschwald, S., Munder, M.C., Richter, D., and Alberti, S.

(2012). Molecular chaperones and stress-inducible protein-sorting factors

coordinate the spatiotemporal distribution of protein aggregates. Mol. Biol.

Cell 23, 3041–3056.

Parry, B.R., Surovtsev, I.V., Cabeen, M.T., O’Hern, C.S., Dufresne, E.R., and

Jacobs-Wagner, C. (2014). The bacterial cytoplasm has glass-like properties

and is fluidized by metabolic activity. Cell 156, 183–194.

Potten, C.S., Owen, G., and Booth, D. (2002). Intestinal stem cells protect their

genome by selective segregation of template DNA strands. J. Cell Sci. 115,

2381–2388.

Rang, C.U., Peng, A.Y., and Chao, L. (2011). Temporal dynamics of bacterial

aging and rejuvenation. Curr. Biol. 21, 1813–1816.

Rang, C.U., Peng, A.Y., Poon, A.F., and Chao, L. (2012). Ageing in Escherichia

coli requires damage by an extrinsic agent. Microbiology 158, 1553–1559.

Rujano, M.A., Bosveld, F., Salomons, F.A., Dijk, F., van Waarde, M.A., van der

Want, J.J., de Vos, R.A., Brunt, E.R., Sibon, O.C., and Kampinga, H.H. (2006).

Polarised asymmetric inheritance of accumulated protein damage in higher

eukaryotes. PLoS Biol. 4, e417.

Smith, G.H. (2005). Label-retaining epithelial cells in mouse mammary gland

divide asymmetrically and retain their template DNA strands. Development

132, 681–687.

Specht, S., Miller, S.B., Mogk, A., and Bukau, B. (2011). Hsp42 is required for

sequestration of protein aggregates into deposition sites in Saccharomyces

cerevisiae. J. Cell Biol. 195, 617–629.
198 Cell Systems 3, 187–198, August 24, 2016
Spokoini, R., Moldavski, O., Nahmias, Y., England, J.L., Schuldiner, M., and

Kaganovich, D. (2012). Confinement to organelle-associated inclusion struc-

tures mediates asymmetric inheritance of aggregated protein in budding

yeast. Cell Rep. 2, 738–747.

Stewart, E.J., Madden, R., Paul, G., and Taddei, F. (2005). Aging and death in

an organism that reproduces by morphologically symmetric division. PLoS

Biol. 3, e45.

Tyedmers, J., Mogk, A., and Bukau, B. (2010). Cellular strategies for controlling

protein aggregation. Nat. Rev. Mol. Cell Biol. 11, 777–788.

VanBogelen, R.A., and Neidhardt, F.C. (1990). Ribosomes as sensors of heat

and cold shock in Escherichia coli. Proc. Natl. Acad. Sci. USA 87, 5589–5593.

Vaubourgeix, J., Lin, G., Dhar, N., Chenouard, N., Jiang, X., Botella, H., Lupoli,

T., Mariani, O., Yang, G., Ouerfelli, O., et al. (2015). Stressed mycobacteria use

the chaperone ClpB to sequester irreversibly oxidized proteins asymmetrically

within and between cells. Cell Host Microbe 17, 178–190.

Wang, P., Robert, L., Pelletier, J., Dang, W.L., Taddei, F., Wright, A., and Jun,

S. (2010). Robust growth of Escherichia coli. Curr. Biol. 20, 1099–1103.

Watve, M., Parab, S., Jogdand, P., and Keni, S. (2006). Aging may be a condi-

tional strategic choice and not an inevitable outcome for bacteria. Proc. Natl.

Acad. Sci. USA 103, 14831–14835.

Winkler, J., Seybert, A., König, L., Pruggnaller, S., Haselmann, U., Sourjik, V.,

Weiss, M., Frangakis, A.S., Mogk, A., and Bukau, B. (2010). Quantitative and

spatio-temporal features of protein aggregation in Escherichia coli and conse-

quences on protein quality control and cellular ageing. EMBO J. 29, 910–923.
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I. CELL CULTURE AND TIME-LAPSE MICROSCOPY

Cells were inoculated from the LB agarose plate in M63 minimal media with selection markers and were grown
overnight at the specified temperature in 10 mL tubes in a shaking incubator. Cells were diluted into fresh media
(with selection markers etc.) in the morning and left for ∼ 2.5 h in the incubator to reach the exponential phase.
Experiments were commenced following another dilution.

Low-density cells were transferred to a 1.5% agarose pad (containing all relevant selection markers, antibiotics etc.
in same concentrations as in the liquid culture), which was inverted and placed directly on a microscope cover slip
(No. 1.5) and sealed with an air-tight top made from a glass cover and PDMS gasket to form a transparent container
with cells growing between the cover slip and the agarose. All the components were kept at the target temperature
at all times. All experiments were conducted on a Nikon Eclipse Ti microscope fitted with a feedback-controlled heat
cage (OkoLab H201 bold line cage incubator), Sutter Instruments Lambda SC shutter and Andor NEO SCC-1758
camera using a Nikon Plan Apo 100X (DIC N2) oil objective, and images acquired using the manufacturer-supplied
NIS software.

For each experiment we identified 8-14 isolated single cells on the agar pad, each giving rise to a single colony. Each
colony was imaged every 3-4 min in bright field (3.5 V lamp, ∼ 60 ms exposure) and every 15 min in YFP fluorescence
channel (500 ms exposure). Previous studies have used fluorescence for single-cell segmentation and tracking [1–4].
However, exciting fluorescent markers in cells is known to stress them, so we opted for the less stressing brightfield
microscopy. Image segmentation and cell-tracking are performed on brightfield images taken slightly out of focus (∼
half cell diameter) at every time step. We ensured that the resulting cell boundaries are in agreement with in-focus
images; fluorescence images are taken in focus.

Mutant: Heat shock stress
Strain and plasmids Environmental stress # of independent exp. # of colonies # of accepted cells

* MC4100∆clpB w/ClpB-YFP and lacIq 37 ◦C 2 10 1756

MC4100∆clpB w/ClpB-YFP and lacIq 42 ◦C 2 11 1704

Mutant: Antibiotic stress
Strain and plasmids Environmental stress # of independent exp. # of colonies # of accepted cells

* MC4100∆clpB w/ClpB-YFP and lacIq 37 ◦C + 0.0 µg/mL Km 2 10 1756

MC4100∆clpB w/ClpB-YFP and lacIq 37 ◦C + 0.5 µg/mL Km 2 11 1804

Wild-type: Heat shock stress

Strain and plasmids Environmental stress # of independent exp. # of colonies # of accepted cells

** MC4100 w/lacIq 37 ◦C 2 10 2090

MC4100 w/lacIq 42 ◦C 2 13 2084

Wild-type: Antibiotic stress

Strain and plasmids Environmental stress # of independent exp. # of colonies # of accepted cells

** MC4100 w/lacIq 37 ◦C + 0.0 µg/mL Km 2 10 2090

MC4100 w/lacIq 37 ◦C + 0.5 µg/mL Km 3 16 1948

*This is the same data used for reference in both mutant studies.
**This is the same data used for reference in both wild-type studies.

TABLE S1. Summary of all Experiments Reported in this Study, Related to Experimental Procedures. We simultaneously
tracked 8-14 independent and non-interacting colonies in each experiment as described in Supplemental Experimental Proce-
dures, Sec. I.

II. CHEMICALS AND REAGENTS

All reagents were purchased from Sigma-Aldrich except for agarose and IPTG, which was purchased from Serva
(Agarose SERVA). Reagents were dissolved in either ethanol (chloramphenicol) or DI water (all other reagents) and
filter-sterilized prior to use.



III. STATISTICAL ANALYSIS

III.1. Statistical significance of different doubling times between lineage-groups

Supplementary to Figures 2C and 3A,B and Figures S3C,G,H,M. Since not all lineage-groups exhibit normally
distributed doubling times, we used non-parametric statistics, and to furthermore avoid artifacts of low sample sizes,
we used both the two-sample Kolmogorov–Smirnov test and the Wilcoxon rank-sum/Mann–Whitney U-test with 5%
significance level. As shown by black outline in main Figure 3A,B and Figures S3C,G,H,M, we do observe significant
difference for groups which are separated further in the population tree. For groups with little separation, the within-
group noise is comparable with the between-group variation. We note that significantly increasing the number of cells
in our experiments will lead to statistically significant differences between a larger set of groups, as is illustrated by
the extensive data set by Stewart et al. [1] (see Figure S2).

III.2. Generating null-distributions for populations of lineage-grouped doubling times

Supplementary to Figures 2D, and 3C,D and S3D,E,I,K N,O. We generated the non-ADS null distributions for the
lineage-grouped data sets as follows. Using the unfiltered (including within-group variations) lineage-sorted data, we
randomly shuffled two cells between groups and repeated this process 100 times the total number of cells in all groups
to get good mixing while preserving the number of cells in each group. After shuffling the median of each group
was computed and stored, and the process repeated over 500 times, each time starting from the original, unfiltered
lineage-sorted data set. The 500 distributions of medians from each reshuffling process were pooled to generate the
presented null distribution. The point of repeating 500 times is to get an idea of how much the data shifts around as
a consequence of a reshuffling event, which relates to the variance of the null distribution.

III.3. Investigation of statistically significant difference of population diversities σ

Supplementary to Figures S3A,F,L,P. To test if the population diversities (equivalent to widths of distributions of
doubling times), σ, are significantly different at low and high stress we use bootstrapping to estimate the statistical
significance of the difference

∆σ = σ42 ◦C − σ37 ◦C (S1)

of the population diversities σ42 ◦C, σ37 ◦C at 42 ◦C and 37 ◦C respectively. To account for the fact that the associated
null distributions change between the two temperatures, see Figure 3C in the main text. we performed the following
statistical analysis

Step (i) perform bootstrapping (random sampling with replacement) on lineage grouped data at 37 ◦C (using the
same number of data points as the original data set) to obtain a value for σ37 ◦C.

Step (ii) perform the same analysis on the lineage-grouped data at 42 ◦C to obtain a value for σ42 ◦C.

Step (iii) compute ∆σ from Eq. (S1).

Step (vi) repeat steps (i)− (iii) 104 times to obtain distribution of differences ∆σLS.

Step (v) repeat steps (i)− (iv) using the associated null-distribution data instead of the lineage-grouped data at
each temperature to obtain distribution of differences ∆σnull.

The null-distribution difference ∆σnull reflects the variation in sample-size in lineage groups between the two tem-
peratures. The population diversities at low and high stress are statistically significantly different, if the distribu-
tion of actual differences ∆σLS is significantly different from the distribution of differences in corresponding null
distributions∆σnull. This is indeed the case as shown in Figure S3A,F,L,P. The distributions under all stresses are
significantly different (P<0.01, two-sample t-test analysis). Thus the population diversity σ increase significantly
under heat and kanamycin stress in both wild-type (MC4100) and MC4100∆ClpB+ ClpB-YFP strains.

III.4. Aggregate data statistics

Supplementary to Figures 4 and S4. At any pole age, the aggregate data follows a binomial distribution with an
age-specific probability pa of having an aggregate. For the case with Na

agg aggregates and Na
cells cells we compute



the frequency (estimated probability) of aggregates fa =
Na

agg

Na
cells

, and the standard deviation of the frequency σfa =√
fa(1−fa)
Ncells

using the standard formulae for the binomial distribution.

III.5. Standard error of the mean for populations of cells

Supplementary to Figures 5A and S5D. Distributions of single-cell doubling times were not normal, so we used
bootstrapping to obtain standard error of the mean (SEM): we resampled the data with replacement to obtain a
single realization of the population mean, and repeat a total of 104 times, thereby producing a distribution of means.
This resulting distribution of means follows a normal distribution and is thus well-characterized by its standard
deviation, which is the SEM.

III.6. Difference of doubling times ∆T of damage accumulating/evading lineages

Supplementary to Figure 5A, S5A and S5D. In Figures 5A and S5D we show the difference in doubling times
between the consecutively damage-accumulating and consecutively damage-evading lineages (corresponding to all-
green and all-magenta lineages in Figure 2A) originating from the same ancestor. We always start from an ancestor
which has once undergone damage-evading event and at each generation record doubling times of consecutively
damage-accumulating cells. This produces a sequence of doubling times Taccum(n) as a function of generation number
n following the initial cell for damage-accumulating. Repeating the analysis for the consecutively damage-evading
lineage produces the sequence Tevad. The difference ∆T is at each generation n the difference between the two
sequences, ∆T (n) = Taccum(n)− Tevad(n).

The repeats in the experimental data are averaged at each generation n before subtracting; we use the to denote
average within each generation of such a lineage, our experimental results are expressed as ∆T (n) = T accum(n) −
T evad(n).

III.6.1. Analytical expression

Experimentally, cells were grown at some temperature for ∼ 24 h prior to the start of an experiment, and they have
therefore adapted to this state. Since the state of the initial cell in an experiment is unknown, we take it to be the

average 〈D〉. Since 〈D〉 scales linearly with λ we will also write λ ˜〈D〉 = 〈D〉. Damage-accumulating lineages inherit
the fraction (1 + a)/2 of ancestor damage, while damage-evading inherit (1− a)/2 of ancestor damage.

Starting from the average damage 〈D〉, the damage in the damage-accumulating sibling in the first few generations
is

Gen. 0 : λ ˜〈D〉,

Gen. 1 : λ

[
1 +

1 + a

2
˜〈D〉
]
,

Gen. 2 : λ

[
1 +

1 + a

2

[
1 +

1 + a

2
˜〈D〉
]]

= λ

[
1 +

1 + a

2
+

(
1 + a

2

)2

˜〈D〉

]
,

(S2)

Thus, the damage in the consecutive old-pole lineage at generation q after the common ancestor is given by

Hold(q) = λ

[
q−1∑
i=0

(
1 + a

2

)i
+

(
1 + a

2

)q
˜〈D〉

]
for q > 0,

Similarly, we find for the new-pole history starting from average damage 〈D〉

Hnew(q) = λ

[
q−1∑
i=0

(
1− a

2

)i
+

(
1− a

2

)q
˜〈D〉

]
for q > 0.



The difference ∆T (q) of doubling time histories (old pole minus new pole) at generation q following the common
ancestor is therefore given by

∆T (q) = tmin + µHold(q)− [tmin + µHnew(q)]

= µλ

([
q−1∑
i=0

(
1 + a

2

)i
+

(
1 + a

2

)q
˜〈D〉

]
−

[
q−1∑
i=0

(
1− a

2

)i
+

(
1− a

2

)q
˜〈D〉

])
, (S3)

which holds for q > 0.
This formula (Eq. (S3)) was fitted to the experimental data in Figure 5A and S5D.

III.6.2. Linear scaling of ∆T (n) under different stresses

Equation S3 predicts that the difference ∆T (n) will follow almost the same functional form under different stresses,
since the stress-dependence of 〈D〉 is secondary compared to the linear dependence of the prefactor. Higher stresses
(larger λ) shift the the curve up, so plotting against each other ∆T (n) under two different stresses 1 and 2, the slope
α of the curve will be well approximated by the ratio of their stress levels α = λ2/λ1. This prediction is confirmed
from our experimental data in Figure S5A.

III.7. Fitting population model to experimental data for the doubling-time difference of
damage-accumulating/evading lineages ∆T = T accum − T evad

We fit our population model using both constant asymmetry and damage-dependent asymmetry to the experimental
population data for the difference of doubling times of the damage-accumulating/evading lineages. For the analytical
model we use Eq. (S3), while we rely on simulations for the model with damage-dependent asymmetry.

We fit simultaneously to the data under low and high stress, because both can be used to infer system-specific
parameter values, while each independently can be used to infer the specific stress-level. These fits serve the dual
purpose of (i) determining which of the two models best describe the data (i.e. as a test of whether damage-dependent
asymmetry indeed is detectable at the population level), and (ii) determine the remaining free model parameters
µ, and λ under both low and high stress, henceforth denoted λL and λH. The minimum doubling time tmin is not
know directly from our measurements, and the difference of doubling times ∆T (n) depends only very weakly on the
exact value (tested the plausible range tmin ∈ [15; 30] min). We set tmin = 22 min (corresponding to the low stress
conditions in our data) in all fitting procedures.

We have fitted the experimental data using the analytical model with the value a = c1 = 0.7411 obtained above
from the aggregate inheritance data (see Table S2), the theoretical optimum at a = 1, and using damage-dependent
asymmetry with parameters from Table S2. We find that model with damage-dependent asymmetry is by far superior,
indicating that experiments support only a(D) (Akaike weight w ≈ 0.99) and exclude models with constant asymmetry.

III.8. Analyses of the damage-dependent asymmetry

Using the experimental data on aggregate area asymmetry at cell division (Figure S5B), we can estimate the
asymmetry function a = a(D) that this data implies, see Figure S5C. The asymmetry is clearly not constant, but has
sigmoidal dependence on aggregate area. Sigmoidal functions assures that asymmetry will lie between physiologically
plausible values 0 and 1. We find that the best fitting function is a = c1+D

c3

c2+Dc3
, with parameters shown in Figure S5C.

The parameter values obtained from least-squares fitting.

III.9. Calculation of AICc values in the Akaike Information Criterion

Formally, the value of AICc is given by

AICc = −2 log
(
L(θ̂|y)

)
+ 2K +

2K(K + 1)

n−K − 1
, (S4)

where θ̂ is a vector containing the model parameters (the model-specific ci’s and the unknown “noise” variance σ
of the residuals) maximizing the likelihood function given the experimental data y, L is the maximized likelihood
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Condition Model λL [µm2] (37C, no KM) λH [µm2] µ [min µm−2] χ2
red Akaike weight, w

MC4100∆clpB Const. asym. a = 0.7411 0.1330 0.4797 3.9723 12.7834 1.098 × 10−3

Heat stress Const. asym. a = 1 0.1042 0.3779 3.1468 12.2756 9.3149 × 10−3

Dam. dep. asym. 0.0869 0.1610 12.8364 4.0668 0.9896

MC4100∆clpB Const. asym. a = 0.7411 0.3001 9.0944 2.3674 × 10−4

Kanamycin stress Const. asym. a = 1 same as above 0.2294 same as above 6.9103 4.3942 × 10−3

Dam. dep. asym. 0.1228 3.3245 0.9954

MC4100 Const. asym. a = 0.7411 0.1995 0.3343 3.5126 5.1804 8.955 × 10−5

Kanamycin stress Const. asym. a = 1 0.1484 0.2648 2.7448 3.8387 1.9786 × 10−3

Dam. dep. asym. 0.1188 0.1693 6.9518 1.2389 0.9979

MC4100 Const. asym. a = 0.7411 0.2418 4.2229 1.457 × 10−4

Heat stress Const. asym. a = 1 same as above 0.1905 same as above 3.0803 3.290 × 10−3

Dam. dep. asym. 0.1417 1.0000 0.9966

TABLE S2. Supporting table for Figure 5A and Figure S5 showing best-fit parameters λL, λH and µ for the three models:
“Const. asym. a = 0.7411“, “Const. asym. a = 1“ and “Dam. dep. asym.“ with tmin = 22 min. The low-stress parameter, λL,
corresponds to the condition of 37C and no Kanamycin, thus we use same values of λL for the same strain. Stress parameter
is expressed in units of aggregate size. Last two columns show the goodness of the fit: the reduced χ2-values (χ2

red) for each
model indicating how well it fits the experimental data relative to the uncertainty of the experimental measurement and the
Akaike weights w which estimates the relative level of support in favor of each model best describing the data relative to the
two other models. The best model (highlighted in boldface) is damage-dependent asymmetry according to the Akaike weights,
while the two other models are doing substantially worse. The residuals of this best model is on par with the measurement
error and are consequently as good as can be expected.

function (likelihood function evaluated at its maximum point, i.e. at the parameter values θ̂) of the model given the
experimental data y, n is the sample size and K is the number of free parameters in the model together with the
unknown noise variance of the residuals (that is, K = K̃ + 1 where K̃ is the number of free parameters in the model,
e.g. the number of cis). The last term on the right hand side of this equation is the second-order correction term
needed to provide better estimates at small sample sizes.

We used least-squares fitting to obtain the optimal parameters. For our models, the least-squares optimal parameters
are related to the maximum-likelihood optimal parameters through a simple relationship, assuming the residuals follow
a normal distribution [5]. This relationship stipulates

log
(
L(θ̂|y)

)
≈ −n

2
log σ̂2 (S5)

where σ̂2 =
∑
i ε

2
i /n is given in terms of the squared residuals εi from the least-squares fit and the number of samples

n. The approximation in Eq. (S5) consists of dropping constant terms which are the same for all models, which
become irrelevant since only the differences in AICc values between models is of importance. We therefore replace
Eq. (S4) by

AICc = n log
(
σ̂2
)

+ 2K +
2K(K + 1)

n−K − 1
, (S6)

and use this to compute the AICc values. We have checked that using actual maximum likelihood estimation provides
numerically indentical results for the ci’s, ∆ and w for all three models, with irrelevant differences in raw AICc values
between the two approaches a consequence of the approximation in Eq. (S5).

III.10. Quantification of the ADS-unrelated cell-to-cell variation

The statistical similarity of the within-age-group noise at each temperature allowed us to pool all noise from
each age group. Interestingly, the resulting distributions, given as full lines in Figure S5, appear fairly similar.
However, the fold-increase in noise distribution width σn is 1.37 between the two temperatures (σn

37 ◦C = 4.97 min
and σn

42 ◦C = 6.79 min). For comparison the fold-increase in the width σLS of the distribution of lineage-sorted data
is 1.93 (σLS

37 ◦C = 1.06 min and σLS
42 ◦C = 2.05 min). To take into account the difference in means, we computed

the coefficient-of-variance of population doubling times C̃ = σ/〈T 〉 for lineage-sorted data and noise (in both cases
normalizing the population-mean) at the two stress levels, and found that while the parameter does increase for



the noise distributions by a factor 1.28 (from C̃ = 0.18 to C̃ = 0.23) this increase is larger for the lineage-sorted

data (increase by a factor 1.8; from C̃ = 0.04 to C̃ = 0.07). These results are conistenet across all the strains and
conditions. It follows that the variations of width of whole-population-distributions of doubling times in response to
increasing stress are caused primarily by asymmetric damage segregation, and are only secondarily a consequence of
noise increasing in response to stress as well.

IV. AGENT-BASED NUMERICAL SIMULATIONS

The models have been implemented in Matlab R2012b. In all reported cases we have started the simulations from
a single cell with 0 inherited damage. Matlab code for both models will be made available per request.

To simulate the growing population, we first construct the entire population tree for a specified number of genera-
tions. Next for each cell in the tree we compute and record cell’s damage and doubling time as given in Eq. 1 and 2
in the main text. To extract population quantities such as population-average doubling time, population-distribution
of damage etc., we make a second sweep through the population tree and query for any property of interest. Up to
∼ 30 generations of cell divisions can be simulated on a laptop within reasonable time (yielding about 109 cells).

Since the cells divide a deterministic time tmin + µD following last division, and the simulations start from a single
cell, there is a transient period when cells are synchronously divide at the same time. After about 10 generations the
divisions are slowly desynchronized. The synchronous divisions affect the sampling of distributions of doubling times
(one has to go beyond 30 generations to reach steady state distributions) and to avoid it we add small-amplitude
zero-mean noise to tmin for 5 consecutive generations to all cells present, starting at generation 5. The amplitude of
this noise is µλ/5 but seems to be largely irrelevant within reasonable ranges. By this process we can thus reach a
faster convergence of the damage distribution without affecting the population growth rate. This approach is valid as
real doubling times are also noisy (see Figure S5E).

IV.1. Simulations with physiological levels of noise, Figure 6A

For these simulationsthe noise is added on the ADS-unrelated minimum generation time tmin, by adding a random
number ξ to tmin for each cell, with ξ taken from the experimentally determined zero-mean distribution of physiological
noise 42 ◦C shown Figure S5E.

IV.2. Mean and standard deviation of population-distribution of doubling times, Figure 1A-C and 6A

At each time point in the simulations we obtain the instantaneous means of damage D(t) and doubling time T (t) and

width

√
T 2 − T 2

of the population-distribution of doubling time. We store all values starting at t = 20× (tmin +µλ),

and for each statistic D(t), T (t) or

√
T 2 − T 2

obtain a mean and a standard deviation over the storage interval which
we use for the true population-averaged values of these statistics 〈D〉, 〈T 〉 and σ. For each statistic we also estimate
and show the variations (standard deviation) across the sampling interval. Results using this approach are given in
Figure 1B,C,E.

V. THEORETICAL MODEL

Here we sketche out an overall description of our analytical approach and present the final formulae. The details
of model derivation will be published elsewhere.

The whole-population effects of ADS can be analyzed analytically by mapping the problem of ADS to the Ising
model in physics[6]. This enables us to relate microscopic details of interactions between ancestral and current cells to
the macroscopic observables on the population level, e.g. growth rate and damage distribution among cells. The Ising
model describes the behavior of a system of interacting physical particles. Each system state is a specific combination
of individual particle states. The particle states are binary (denoted by ±1 and often referred to as spin up and spin
down states), and the probability that a particle occupies a given state is affected by the states of the nearest-neighbor
particles. In the one-dimensional case, this corresponds to a linear chain of particles, known as an Ising chain.

Here, we map each lineage in a growing bacterial population onto a unique system state of an Ising chain. A lineage
encompasses all known ancestors of a given cell, and every lineage begins with the first cell in the bacterial colony.



Two examples of lineages are highlighted by the green and magenta lines in Figure 1A. The state (±1) of a single cell
within a lineage dictates the amount of damage inherited from its ancestor, preserving the concept of nearest-neighbor
interactions. By relating damage inheritance to the division time of a cell (Eq. 2), we find that the sequence of cell
states (±1) within a lineage determines the total time elapsed from the first cell to the most recent division in the
lineage. Thus, the time spanned by a lineage is analogous to the energy of a specific Ising chain configuration. The
goal is to determine the statistical properties of a bacterial population at time t, which is equivalent to the statistical
properties across many Ising chains with fixed system energy E. Thus, by this analogy, statistical moments such as
the mean and standard deviation (population width) of e.g. doubling times across the biological population of cells
can be computed using the ensemble averages of the equivalent model in statistical physics. This method allows us
to derive approximate analytical expressions for the mean doubling time 〈T 〉 and the width σ of the distribution of
doubling times.

V.1. Mean and variance of population damage and doubling time

Using these approach we find the following approximate result for the mean doubling time

〈T 〉 ≈ tmin + µλ

[
2 + a2λµβε∗

(27βε∗λµ− 2)a2 − 18

8

]
. (S7)

We furthermore find for the width of the population-distribution of doubling times

σ ≈ µλa

4

√
20 + a2 [4 + βε∗λµ (−44− 45βε∗λµ+ a2 {2 + 9βε∗λµ [1 + βε∗λµ (27 + a2 {2− 18βε∗λµ})]})] (S8)

where βε∗ = 8λµ+4tmin−2f(a,λ,µ,tmin)
a2(9+2a2)λ2µ2 and f(a, λ, µ, tmin) =

√
2
√

8λµtmin + 2t2min − λ2µ2 [9a2 ln 2− 8 + a4 ln 4]. In

these expressions, a is the asymmetry parameter, tmin is the minimum damage-independent single-cell doubling time,
λ is the amount of acquired environmental damage per generation, and µ is the conversion factor between damage
and doubling time. All expressions have been derived assuming a > 0.

The two results from Eqs. (S7) and (S8) are given in Figure 1B and E in the main text. We find good agreement
with simulation results throughout, except for the width σ for a close to 1 when λµ is large (λµ > 1), where Eq. (S8)
slightly overshoots.

V.2. Special case of symmetric division, a = 0

The special case of symmetric division (a = 0) is not handled by our approximate analytical expressions, however,
in this special case all cells carrying the same amount of damage and divide and average population-properties are
identical to single-cell properties; thus, we can easily provide exact analytical expressions for the population behavior.

Inheriting exactly 50 % of the ancestor’s damage, the damage in generation n of a single cell starting from
0 damage at the first generation and acquiring λ damage from the environment in each generation, is given by
D(n) = λ

∑n
j=1

1
2j−1 . For large n, this damage stabilizes to a constant level D(n) = 2λ because the geometric series∑n

j=1 1/2j−1 converges to 2 for n → ∞. In this long-time limit, all cells in the population have the same amount

of damage, and so it follows directly that 〈D〉 = 2λ and σD =
√
〈D(n)2〉 − 〈D(n)〉2 = 0. From the relationship

between damage and doubling time Eq. (2) in the main text, we find for the distribution of doubling times

〈T 〉 = tmin + µ〈D〉 = tmin + 2µλ and σ = µσD = 0. (S9)
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Figure S1. Effects of Asymmetry 𝑎 on Model Predictions, Related to Figure 1. Errorbars on simulation 

results indicate standard deviations on the presented metrics. These arise as a consequence of using a 

stochastic simulation algorithm. A. Mean doubling time 〈𝑇〉 decreases with asymmetry 𝑎. Theoretical 

results computed from Eq. S30. B. Width of population-distribution of doubling times 𝜎 increases with 

𝑎, with theoretical prediction given in Eq. S8. Results shown are for the model where all cells have the 

same asymmetry parameter, tmin = 1 min, λ = 1μ2 and μ = 1 min μ-2. Details of theoretical calculations 

and agent-based simulations are given in Supplemental Experimental Procedures, Sections IV and V. 

 

 

 

 
Figure S2. Validation of Lineage-Based Analyses Using Data from Stewart et al.[1], related to Figure 2  

A. Heatmap of the pairwise differences in median doubling times for each pair of lineage-groups, with 

notations as in main Figure 2C. Each colored square in the heat map color-codes the difference between 

the corresponding vertical and horizontal lineage-groups. Significant differences are outlined in black. 

Statistical significance was computed using the non-parametric Wilcoxon rank-sum test (Mann-

Whitney U-test) at the 5% significance level. Similar results are obtained with non-parametric two-

sample Kolmogorov-Smirnov test.  



 
Figure S3. ADS Quantification across Strains and Stresses, Related to Figure 3. 

A. The distributions of the differences 𝛥𝜎 used to statistically test the increase in population 



diversity, 𝜎, under heat stress (for data presented in Figure~3C,D). The distributions are obtained as 

described in Supplemental Experimental Procedures, Sec.III.3. The differences are calculated 

independently for the lineage-grouped data (filled bars) and the associated null-distribution data (open 

bars). The population diversity at 42℃, 𝜎42℃ , is statistically significantly different from the population 

diversity at 37℃, 𝜎42℃. *** denotes statistically significant difference (P<0.01, by two-sample t-test 

analysis). B. Doubling times of lineage-groups with successive rounds of damage-accumulation (or 

damage-evasion) converge to steady values. We plot the experimentally obtained doubling times of the 

consecutive old-pole lineage (magenta) and new-pole lineage (green) as a function of the number of 

generations from the initial cell. Errorbars mark standard error of the mean obtained via bootstrapping. 

 C. Heatmap, obtained as in Figure 2C, for population of MC4100ΔclpB + ClpB-YFP cells stressed by 

0.5 μg/ml kanamycin. The heatmap for unstressed cells is shown in main Figure 3A. 

 D-E. Distributions of doubling times, obtained as in Figure 2D, for populations of MC4100ΔclpB + 

ClpB-YFP cells that were either not stressed (blue) or kanamycin-stressed (red). 

 F. The distributions of the differences 𝛥𝜎, obtained as in A. and used to statistically test the increase in 

population diversity, 𝜎, under kanamycin stress for MC4100ΔclpB + ClpB-YFP population. 

 G-H. Heatmaps, obtained as in Figure 2C, for populations of wild-type (MC4100) cells at 37℃ and 

heat-stressed at 42℃. The colorbar is the same as in M. 

 I-K. Distributions of doubling times, obtained as in Figure 2D, for populations of wild-type cells at 

37℃ (blue) and heat-stressed at 42℃(red). 

 L. The distributions of the differences 𝛥𝜎, obtained as in A. and used to statistically test the increase in 

population diversity, 𝜎, under heat stress. 

 M-P. Figures corresponding to H-L, but in response to kanamycin stress. 

 



 



Figure S4. Dynamics of Protein Aggregates Provides Mechanistic Explanation of Stress-Induced ADS, 

Related to Figure 4. 

A. Aggregate size increases with pole age and under stress. This confirms the model assumption that 

damage gradually increases through the old-pole lineage. Errorbars indicate 95% confidence interval. 

 B. Supporting figure to main Figure 4E, showing the frequency of aggregates in kanamycin-stressed 

cells. Errorbars indicate standard deviation (see Methods). 

C. Supporting figure to main Figure 4C, showing the stability of aggregates in kanamycin-stressed 

cells. 

 D. Aggregates are equally likely to form in any of the three regions of the cell. Dots mark the mean 

over all colonies and errorbars represent standard deviation, quantifying colony-colony variations.   

E. Frequency of formation of new aggregates for sister cells as a function of the pole-age of their 

common ancestor. Frequency at 37℃ and 42℃  is nominally constant, except for old-pole cells at 42℃ 

where we observe a decrease for older pole ages, corresponding to the increasing frequency of 

inheritance 𝑓𝑖𝑛ℎ   seen in the main Figure 5B. Errorbars indicate standard deviation (see Methods). 

F. Fraction of all aggregates found in the three intracellular regions at each pole age. Aggregates 

passively move to the old pole after a few divisions when aggregate inheritance is prevalent (42℃) but 

cannot do this when the aggregates are short-lived and the inheritance is thus insignificant (37℃). This 

confirms the earlier observations by Lindner et al. [2]. 

All data is sampled in the mutant strain MC4100ΔclpB + ClpB-YFP. 

 



 
Figure S5. Model Validation Steps, Related to Figure 5. 

A. Model and data agree on the near-linear correlation between mean doubling time difference of 



consecutive damage accumulating/evading lineages under low and high stress (∆𝑇̅ℎ𝑖𝑔ℎ 𝑠𝑡𝑟𝑒𝑠𝑠 ∝
∆𝑇̅𝑙𝑜𝑤 𝑠𝑡𝑟𝑒𝑠𝑠  , see Sec. III.6). Circles are the means and errorbars are the standard error of the means. 

Dashed lines are the error-weighted best fits and full lines are 95% confidence interval. 

 Pearson linear correlation coefficient ρ and the associated probabilities P of having a similar value of ρ 

under the null hypothesis of no correlation between the low-stress and high-stress data indicate 

statistically significant (positive) linear correlation between low-stress and high-stress conditions across 

all investigated strains and stresses at the 5 % level. 

B. Supplementary figure to main Figure 5C. Experimental measurements of average asymmetry 〈𝑎〉 =

 
𝐴𝑂𝑃

𝑖𝑛ℎ−𝐴𝑁𝑃
𝑖𝑛ℎ  

𝐴𝑂𝑃
𝑖𝑛ℎ+𝐴𝑁𝑃

𝑖𝑛ℎ , where 𝐴𝑂𝑃
𝑖𝑛ℎ  and 𝐴𝑁𝑃

𝑖𝑛ℎ  is the total are of inherited aggregates to the old-pole and new-pole 

offspring, respectively.  

C. Lines show the best fits of the models with constant (red) and damage-dependent (blue) asymmetry. 

B.-C. Errorbars mark standard deviation. 

D. Supplemental to main Figure 5A. Difference ∆𝑇̅ of doubling times of extreme-branch lineages in the 

population tree for both low (blue) and high stress (red) obtained from experimental data (filled 

circles). The parameters inferred from model fits are summarized in Table S2. Dashed lines give result 

using model with constant asymmetry (𝑎 = 1) while full lines shows a superior result from model with 

damage-dependent asymmetry.  

E. Quantification of ADS-unrelated noise through the distribution of ``centered'' doubling times (for 

MC4100ΔclpB). For each cell, the mean of the lineage-group is subtracted from the measured doubling 

time: 𝑇̃𝑖
𝑘 =  𝑇𝑖

𝑘 − 𝑇̅𝑘, where 𝑇𝑖
𝑘 is the doubling time of cell i in lineage group k and 𝑇̅𝑘 is the mean 

doubling time in lineage group k. 
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