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We explore how thermal fluctuations affect the mechanics of thin amorphous spherical shells. In flat
membranes with a shear modulus, thermal fluctuations increase the bending rigidity and reduce the in-
plane elastic moduli in a scale-dependent fashion. This is still true for spherical shells. However, the
additional coupling between the shell curvature, the local in-plane stretching modes, and the local out-of-
plane undulations leads to novel phenomena. In spherical shells, thermal fluctuations produce a radius-
dependent negative effective surface tension, equivalent to applying an inward external pressure. By
adapting renormalization group calculations to allow for a spherical background curvature, we show that
while small spherical shells are stable, sufficiently large shells are crushed by this thermally generated
“pressure.” Such shells can be stabilized by an outward osmotic pressure, but the effective shell size grows
nonlinearly with increasing outward pressure, with the same universal power-law exponent that
characterizes the response of fluctuating flat membranes to a uniform tension.
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I. INTRODUCTION

Continuum elastic theories for plates [1–3] and shells
[4,5] have been under development for over a century, but
they are still actively explored because of the “extreme
mechanics” generated by geometrical nonlinearities [6,7].
Initially, these theories were applied to the mechanics of
thin macroscopic structures, where the relevant elastic
constants (a Young’s modulus and a bending rigidity)
are related to the bulk material properties and the plate
or shell thickness. However, these theories have also been
successfully applied to describe mechanical properties of
microscopic structures, such as viral capsids [8–11],
bacterial cell walls [12–15], membranes of red blood cells
[16–18], and hollow polymer and polyelectrolyte capsules
[19–23]. Note that in these more microscopic examples, the
effective elastic constants are not related to bulk mechanical
properties but instead depend on details of microscopic
molecular interactions.
At the microscopic scale, thermal fluctuations become

important, and their effects on flat two-dimensional solid
membranes have been studied extensively, starting in the
late 1980s. Unlike long one-dimensional polymers, which
perform self-avoiding random walks [24,25], arbitrarily

large two-dimensional membranes remain flat at low
temperatures because of the strong thermal renormaliza-
tions triggered by flexural phonons, which result in
strongly scale-dependent enhanced bending rigidities and
reduced in-plane elastic constants [26–37] (see also books
and reviews in Refs. [38–41]). The scale dependence
of renormalized elastic constants was confirmed in
Monte Carlo simulations [42–49] and experimentally in
an ensemble-averaged sense via a related scaling law for the
membrane structure function that was extracted from
elegant x-ray and light scattering experiments of a solution
of spectrin skeletons of red blood cells [50]. Recent
advances in growing and isolating freestanding layers of
crystalline materials such as graphene, boron nitride, or
transition metal dichalcogenides [51] (not adsorbed onto a
bulk substrate or stretched across a supporting structure)
hold great promise for exploring how flexural modes affect
the mechanical properties of individual sheet polymers that
are atomically thin. Recent experiments with graphene have
in fact observed a nearly 4000-fold enhancement of the
bending rigidity [52] and a reduced Young’s modulus [53],
although these results may also be influenced by quenched
random disorder (e.g., ripples or grain boundaries), which
can compete with thermal fluctuations to produce similar
effects [40,54–59].
Our focus here is on the statistical mechanics of spherical

shells at low temperatures. However, at high temperatures,
one might expect a transition from a flat phase to an
entropically dominated crumpled ball with the fractal
dimension Df defined as Rg ∝ M1=Df , where M is the
mass and Rg the gyration radius of the crumpled ball.
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A simple Flory-type argument, which takes into account
self-avoidance, predicts the fractal dimension Df ¼ 5=2
[40,60]. The crumpling transition at high temperatures was
in fact observed in Monte Carlo simulations of phantom
membranes without self-avoidance [61,62]. However, a
number of simulations with purely repulsive self-avoiding
interactions find that the flat phase persists for arbitrarily
high temperatures [63–67]. We note that a pair potential
with an attractive as well as a repulsive part can produce
a compact phase (Df ¼ 3) at low temperatures, which
transitions to a flat phase with Df ¼ 2 at high temperatures
[68,69]. It is still unclear whether an intermediate crumpled
phase with Df ≈ 2.5 exists in a temperature window in
between. Despite interesting theoretical progress [70,71],
the existence of a crumpled phase with self-avoidance
remains unclear at the present time [32,40]. We note that
crumpled objects with fractional dimensions can be
obtained experimentally by rapidly evaporating a solution
containing graphene oxide membranes [72]. Remarkably,
the measured fractal dimension Df ≈ 2.5–2.7 is in good
agreement with the Flory-type argument, but one should
note that such balls may be out of equilibrium and
dominated by sticky van der Waals attractions. Similarly,
crushing a thin aluminum foil in an attempt to form a ball
also produces balls with fractal dimension Df ≈ 2.5
[40,73]. See also the study of forced crumpling of self-
avoiding elastic sheets in Ref. [74].
While thermal fluctuations of flat solid sheets are well

understood, many microscopic membranes correspond to
closed shells, and much less is known about their response
to thermal fluctuations. The simplest possible shell is an
amorphous spherical shell. This shell was studied by
Paulose et al. [75], where perturbative corrections to elastic
constants at low temperatures and external pressures were
derived and tested with Monte Carlo simulations.
Remarkably, these simulations found that, at high temper-
atures, thermalized spheres begin to collapse at less than
half the classical buckling pressure (see Fig. 1). However, it
was not possible to quantify this effect because the
perturbative corrections to thin-shell theory at zero temper-
ature diverge with shell radius. Here, we go well beyond
perturbation theory by employing renormalization group
techniques, which enable us to study spherical shells over a
wide range of sizes, temperatures, and external pressures.
We show that, while spherical shells retain some features of
flat solid sheets, there are remarkable new phenomena,
such as a thermally generated negative tension, which
spontaneously crushes large shells even in the absence of
external pressure. We find that shells can be crushed by
thermal fluctuations even in the presence of a stabilizing
outward pressure. Note that such collapsed shells still
remain locally two dimensional (Df ¼ 2) and are thus
different from crumpled balls (see Fig. 1). We expect that
distant self-avoidance, neglected here, will only become
important deep in the collapsed phase.

In Sec. II, we review the shallow-shell theory description
of thin elastic spheres [4,5], while in Sec. III, we show how
to set up the statistical mechanics leading to the thermal
shrinkage and fluctuations in the local displacement normal
to the shell. Low-temperature perturbative corrections to
quantities such as the effective pressure p (a sum of
conventional and osmotic contributions), bending rigidity
κ, and Young’s modulus Y diverge like

ffiffiffi
γ

p
, where γ ¼

Y0R2
0=κ0 is the Föppl–von Karman number of the shell with

radius R0 and microscopic elastic moduli Y0 and κ0 [75]. A
momentum-shell renormalization group is then imple-
mented directly for shells embedded in d ¼ 3 dimensions
to resolve these difficulties in Sec. IV. At small scales,
the bending rigidity and Young’s modulus renormalize
like flat sheets; however, at large scales, the curvature of the
shell produces significant changes. At low temperatures
(kBT

ffiffiffi
γ

p
=κ0 ≪ 1), the renormalization is cut off already

at the elastic length lel ¼ ðκ0R2
0=Y0Þ1=4. At large temper-

atures (kBT
ffiffiffi
γ

p
=κ0 ≫ 1) and beyond an important thermal

length scale lth ∼ κ0=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTY0

p
, the bending rigidity and

Young’s modulus renormalize with length scale l like
flat sheets with κR ≈ κ0ðl=lthÞη and YR ≈ Y0ðlth=lÞηu ,
where η ≈ 0.8 and ηu ≈ 0.4 [27]. However, this renormal-
ization is interrupted as one scales out to the shell radius R0.
For zero pressure, we find that shells become unstable
to a finite wave-vector mode appearing at the scale l�∼
lth½lel=lth�4=ð2þηÞ ∝ R2=ð2þηÞ

0 ≪ R0. A sufficiently large
(negative) outward pressure stabilizes the shell and leads
to an alternative infrared cutoff given by a pressure-
dependent length scale lp. Detailed results for correlation

FIG. 1. Snapshots of thermalized spheres from Monte Carlo
simulations under inward external pressure p0 at 36% of the
classical buckling pressure p0

c at varying temperatures T. All
three snapshots are for identical amorphous spherical shells with
size R0 ¼ 55a (a is the average mesh size) with bending rigidity
κ0 ¼ 50ϵ and Young’s modulus Y0 ¼ 577ϵ=a2 (ϵ sets the energy
scale); the Föppl–von Karman number characterizing the non-
linear shell mechanics is γ ¼ Y0R2

0=κ0 ≈ 35;000. Shells are under
the same inward external pressure p0 ¼ 0.08ϵ=a3, but they are at
different temperatures kBT ¼ 0.267ϵ, kBT ¼ 2.67ϵ, and kBT ¼
20ϵ (from left to right). Note that the shell on the right is crushed
even though the inward external pressure p0 ≈ 0.36p0

c is much
lower than the classical buckling pressure p0

c ¼ 4
ffiffiffiffiffiffiffiffiffiffi
κ0Y0

p
=R2

0.
Images are courtesy of Gerrit Vliegenthart and details of
simulations are provided in Ref. [75].
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functions, renormalized couplings, and the change in the
shell radius can be obtained by integrating the renormal-
ization group flow equations out to scales where the
thermal averages are no longer singular. In Sec. IV, we
also present a simple, intuitive derivation of the scaling
relation ηu þ 2η ¼ 2, originally derived using Ward iden-
tities associated with rotational invariance in Refs. [27,28].
In Sec. V, we use the renormalization group method to
study the dependence of the renormalized buckling pres-
sure pc on temperature, shell radius, and the elastic
parameters, which defines a limit of metastability for
thermalized shells. The calculated scaling function ΨðxÞ
defined by pc ¼ p0

cΨðkBT ffiffiffi
γ

p
=κ0Þ gives a reasonable

description of the buckling threshold found in simulations
of thermalized shells [75] with no adjustable parameters.
Especially interesting is a result that holds when the
pressure difference p between the inside and outside of
the shell vanishes, as might be achievable experimentally
by creating a hemispherical elastic shell, or a closed shell
with regularly spaced large holes. In this case, we find that
thermal fluctuations must necessarily crush spherical shells
larger than a certain temperature-dependent radius given by
Rmax ¼ cðκ0=kBTÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
κ0=Y0

p
, where the numerical constant

c ≈ 160. Even shells with a small stabilizing outward
pressure can be crushed by thermal fluctuations (see
Fig. 5). We conclude in Sec. VI by estimating the
importance of thermal fluctuations for a number of thin
shells that arise naturally in biology and materials science.
For a very thin polycrystalline monolayer shell of a
graphenelike material (so that it is approximately amor-
phous), this radius is only Rmax ≈ 160 nm at room
temperature.

II. ELASTIC ENERGY OF DEFORMATION

The elastic energy of a deformed thin spherical shell of
radius R0 can be estimated with a shallow-shell theory
[4,76], which considers a small patch of spherical shell that
is nearly flat. This may seem a limiting description at first,
but as discussed below, the shell response to thermal
fluctuations is completely determined by a smaller elastic
length scale

lel ¼
�
κ0R2

0

Y0

�
1=4

∼
ffiffiffiffiffiffiffiffi
R0h

p
≪ R0; ð1Þ

where κ0 is the microscopic bending rigidity, Y0 is the
microscopic Young’s modulus, and we introduced the
effective thickness h ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
κ0=Y0

p
. For thin shells, we require

that h ≪ R0 or, equivalently, that the Föppl–von Karman
number γ ¼ Y0R2

0=κ0 ≫ 1 [8].
For a nearly flat patch of spherical shell, it is convenient

to use the Monge representation near the South Pole to
describe the reference undeformed surface

Xuðx; yÞ ¼ xêx þ yêy þ wðx; yÞêz; ð2Þ

where wðx; yÞ ≈ ðx2 þ y2Þ=ð2R0Þ, and then decompose the
displacements of a thermally deformed shell configuration
Xdðx; yÞ into tangential displacements uiðx; yÞ and radial
displacements fðx; yÞ, such that

Xd ¼ Xu þ uxt̂x þ uyt̂y þ fn̂; ð3Þ

where t̂i ¼ ½êi þ ð∂iwÞêz�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂iwÞ2

p
is a unit tangent

vector, n̂ ¼ ½êz − ð∂iwÞêi�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þPið∂iwÞ2

p
is a unit nor-

mal vector that points inward from the South Pole, and
i ∈ fx; yg. Note that positive radial displacements fðx; yÞ
correspond to shrinking of the spherical shell. With this
decomposition, the free energy cost of shell deformation
can be described as [76]

F ¼
Z

dxdy

�
κ0
2
ð∇2fÞ2 þ λ0

2
u2ii þ μ0u2ij − p0f

�
; ð4Þ

where summation over indices i; j ∈ fx; yg is implied. The
first term describes the bending energy with a microscopic
bending rigidity κ0, and the next two terms describe the in-
plane stretching energy with two-dimensional Lamé con-
stants λ0 and μ0; the corresponding Young’s modulus is
Y0 ¼ 4μ0ðμ0 þ λ0Þ=ð2μ0 þ λ0Þ. The last term describes the
external pressure work, where p0 is a combination of
hydrostatic and osmotic contributions. We assume that the
interior and exterior of the spherical shell are filled with a
fluid such as water, which can pass freely through a
semipermeable shell membrane on the relevant time scales.
Additionally, there may be nonpermeable molecules inside
or outside the shell giving rise (within ideal solution theory)
to an osmotic pressure contribution kBTðcout − cinÞ [77].
Here, cout and cin are the concentrations of such molecules
outside and inside the shell, respectively. Note that for
p0 > 0, introduction of thermal fluctuations into Eq. (4)
requires that we deal with the statistical mechanics of a
metastable state—a macroscopic inversion of the shell
(“snap-through” transition) can lower the free energy
[78], although often with a very large energy barrier.
In the shallow-shell approximation, the strain tensor

is [76]

uij ¼
1

2
ð∂iuj þ ∂juiÞ þ

1

2
ð∂ifÞð∂jfÞ − δij

f
R0

; ð5Þ

where δij is the Kronecker delta. The first term describes
the usual linear strains due to tangential displacements. The
second describes similar in-plane strains due to displace-
ments in the direction of the surface normals; this nonlinear
term makes the analysis of thin plates and shells quite
challenging [38]. The last term of Eq. (5), which linearly
couples radial deformations fðx; yÞ to the sphere curvature
1=R0, tells us that spherical shells cannot be bent without
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stretching, a striking change from flat plates where
R0 → ∞. The importance of this stretching can be esti-
mated by considering a small radial deformation of
amplitude f0 over some characteristic length scale l, such
that the nonlinear term ð∂ifÞð∂jfÞ=2 in the strain tensor uij
is negligible. The bending energy cost scales as ∼κ0f20=l4,
while the stretching energy cost scales as ∼Y0f20=R

2
0. The

bending energy dominates for deformations on small scales
l ≪ lel, while the stretching energy cost dominates for
deformations on large scales l ≫ lel, where the transition
elastic length scale lel was defined in Eq. (1).

III. THERMAL FLUCTUATIONS

The effects of thermal fluctuations are reflected in
correlation functions obtained from functional integrals
such as [38,39,75]

hf0i≡ hfðr1Þi ¼
1

Z

Z
D½ui; f�fðr1Þe−F=kBT; ð6aÞ

Gffðr2 − r1Þ≡ hδfðr1Þδfðr2Þi;

Gffðr2 − r1Þ ¼
1

Z

Z
D½ui; f�δfðr1Þδfðr2Þe−F=kBT; ð6bÞ

Z ¼
Z

D½ui; f�e−F=kBT; ð6cÞ

where T is the ambient temperature, kB is Boltzmann’s
constant, r≡ ðx; yÞ, and δfðrÞ ¼ fðrÞ − hf0i. Here, f0
represents the uniform part of the fluctuating contraction
or dilation of the spherical shell. One can define similar
correlation functions for tangential displacements uiðx; yÞ,
but they are not the main focus of this study.
Besides separating tangential displacements uiðrÞ and

radial displacements fðrÞ, it is also useful to further
decompose radial displacements as fðrÞ ¼ f0 þ ~fðrÞ,
where f0 is the uniform part of the fluctuating radial
displacement defined in the above paragraph. The quantity
~fðrÞ is then the deformation with respect to f0, such that
ð1=AÞ R d2r ~f ¼ h ~fi ¼ 0, where A is the area. Finally, it is
convenient to integrate out the in-plane phonon degrees of
freedom uiðrÞ as well as f0 and study the effective free
energy for radial displacements. The effective free energy
then becomes [75]

Feff ¼ −kBT ln

�Z
D½ui; f0�e−F=kBT

�
; ð7aÞ

Feff ¼
Z

d2r

�
1

2

�
κ0ð∇2 ~fÞ2 − p0R0

2
j∇ ~fj2 þ Y0

~f2

R2
0

�

þY0

8
½PT

ijð∂i
~fÞð∂j

~fÞ�2 − Y0
~f

2R0

½PT
ijð∂i

~fÞð∂j
~fÞ�
�
;

ð7bÞ

where PT
ij ¼ δij − ∂i∂j=∇2 is the transverse projection

operator. From the effective free energy above, we see
that an inward pressure p0 acts like a negative surface
tension σ ¼ −p0R0=2. (A negative outward pressure
p0 < 0 would stabilize the shell, similar to a conventional
surface tension.) The two terms that involve both the
Young’s modulus Y0 and radius R0 are new for spherical
shells, and they arise from the coupling between radial
displacements and in-plane stretching induced by the
Gaussian curvature [see Eq. (5)]. Note that the last term
of Eq. (7b) breaks the symmetry between inward and
outward normal displacements ~fðx; yÞ of the shell.
Functional integrals similar to those in Eqs. (6) and (7a)

determine the average contraction of a spherical shell

hf0i ¼ hfðr1Þi ¼
p0R2

0

4ðμ0 þ λ0Þ
þ R0

4
hj∇ ~fj2i; ð8Þ

where the first term, controlled by the bulk modulus
μ0 þ λ0, describes the usual mechanical shrinkage due to
an inward external pressure p0 > 0, and the second
describes additional contraction due to thermal fluctua-
tions. This additional shrinking arises because nonuniform
radial fluctuations ~fðrÞ at fixed radius would increase the
integrated area, with a large stretching energy cost. The
system prefers to wrinkle and shrink its radius to gain
entropy while keeping the integrated area of the convoluted
shell approximately constant.
The effective free energy for radial displacements ~fðrÞ in

Eq. (7b) suggests that the Fourier transform of the corre-
lation function GffðqÞ ¼

R ðd2r=AÞe−iq·rGffðrÞ can be
represented as [75]

GffðqÞ ¼ hj ~fðqÞj2i;

GffðqÞ ¼
kBT

A½κRðqÞq4 − 1
2
pRðqÞR0q2 þ YRðqÞ

R2
0

�
; ð9Þ

where A is the area of a patch of spherical shell. The
functional form in Eq. (9) above is dictated by quadratic
terms in Eq. (7b); the effect of the anharmonic terms is to
replace bare parameters κ0, Y0, and p0 with the scale-
dependent renormalized parameters κRðqÞ, YRðqÞ, and
pRðqÞ, as was shown previously for solid flat membranes
in the presence of thermal fluctuations [38,39]. Note that
the last term in the denominator of Eq. (9) suppresses radial
fluctuations due to the stretching energy cost and makes
them finite even for long-wavelength modes (small q).
Conversely, the amplitude of long-wavelength fluctuations
diverges more strongly in the limit R0 → ∞ of large shells.
Before we discuss the renormalizing effect of non-

linearities in Eq. (7b), it is useful to note that for large
inward external pressure p0 > 0, the denominator in Eq. (9)
can become negative for certain wave vectors q, which
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indicates that these radial deformation modes ~fðqÞ become
unstable [75]. If we neglect nonlinear effects and replace
the renormalized couplings κR, YR, and pR by their bare
values, the minimal value of external pressure p0

c, where
these modes first become unstable, is

p0
c ¼

4
ffiffiffiffiffiffiffiffiffiffi
κ0Y0

p
R2
0

; ð10Þ

which corresponds to the classical buckling pressure
for spherical shells [76]. The magnitude of the wave
vectors qc for the unstable modes at the critical external
pressure p0

c is [79]

qc ¼
�

Y0

κ0R2
0

�
1=4

¼ l−1
el : ð11Þ

When these ideas are extended to finite temperatures, this
threshold becomes a limit of metastability, and we expect
hysteresis loops as the external pressure is cycled up and
down [80].
Some insights into the statistical mechanics associated

with Eqs. (7a) and (7b) follow from calculating the
renormalized bending rigidity, Young’s modulus, and
effective pressure at long wavelengths via low-temperature
perturbation theory in kBT=κ0. When the external pressure
is zero, Paulose et al. found that [75]

κR ≈ κ0

�
1þ 61

4096

kBT
κ0

ffiffiffi
γ

p �
; ð12aÞ

YR ≈ Y0

�
1 −

3

256

kBT
κ0

ffiffiffi
γ

p �
; ð12bÞ

pR ≈
p0
c

24π

kBT
κ0

ffiffiffi
γ

p
; ð12cÞ

where γ ¼ Y0R2
0=κ0 is the Föppl–von Karman number and

the critical pressure parameter p0
c is given by Eq. (10).

Perturbation theory reveals that thermal fluctuations
enhance the bending rigidity and soften the Young’s
modulus. However, the corrections to κR and YR are
multiplied by

ffiffiffi
γ

p
, which diverges as the radius R0 of the

thermalized sphere tends to infinity. Especially striking is a
similar divergence in the effective pressure pR; see
Eq. (12c). Evidently, even if the microscopic pressure
difference p0 between the inside and outside of the sphere
is zero, thermal fluctuations will nevertheless generate an
effective pressure that eventually exceeds the buckling
instability of the sphere for sufficiently large R0. A naive
estimate for the critical radius Rmax can be obtained by
requiring that the renormalized pressure pR becomes equal
to the buckling pressure p0

c in Eq. (12c), which leads to

Rmax ≈ c½κ0=kBT�
ffiffiffiffiffiffiffiffiffiffiffiffi
κ0=Y0

p
, with c ¼ 24π ≈ 75. Some

evidence in this direction already appears in the computer
simulations of Ref. [75], where amorphous thermalized
spheres already begin to collapse at less than half the
classical buckling pressure (see also Fig. 1, where the
pressure is 36% of p0

c). Similar perturbative divergences in
the bending rigidity and Young’s modulus of flat mem-
branes of size R0 (here, the corrections diverge with γ rather
than

ffiffiffi
γ

p
[38]) can be handled with integral equation

methods [26,29], which sum contributions to all orders
in perturbation theory, or alternatively, with the renormal-
ization group [27]. We take the latter approach in the next
section.

IV. PERTURBATIVE RENORMALIZATION
GROUP

The effect of the anharmonic terms in Eq. (7b) at a given
scale l� ≡ π=q� can be obtained by systematically inte-
grating out all degrees of freedom on smaller scales (i.e.,
larger wave vectors). Formally, this renormalization group
transformation proceeds by splitting radial displacements
~fðrÞ into slow modes ~f<ðrÞ ¼

P
jqj<q�eiq·r ~fðqÞ and fast

modes ~f>ðrÞ ¼
P

jqj>q�eiq·r ~fðqÞ, which are then inte-
grated out as

Feffðl�Þ ¼ −kBT ln

�Z
D½ ~f>�e−Feff=kBT

�
: ð13Þ

These functional integrals can be approximately evaluated
with standard perturbative renormalization group calcula-
tions [81] and lead to an effective free energy with the same
form as in Eq. (7b), except that renormalized parameters
become scale dependent; i.e., they are replaced by κRðl�Þ,
YRðl�Þ and pRðl�Þ.
To implement this momentum-shell renormalization

group, we first integrate out all Fourier modes in a thin
momentum shell Λ=b < q < Λ, where a ¼ π=Λ is a
microscopic cutoff (e.g., the shell thickness) and
b≡ l=a ¼ es, with s ≪ 1. Next we rescale lengths and
fields [27,54],

r ¼ br0; ð14aÞ

~fðrÞ ¼ bζf ~f0ðr0Þ; ð14bÞ

where the field-rescaling exponent ζf is chosen to simplify
the resulting renormalization group equations. We find it
convenient to work directly with a D ¼ 2-dimensional
spherical shell embedded in d ¼ 3 space, rather than
introducing an expansion in ϵ ¼ 4 −D [27]. Finally, we
define new elastic constants κ0, Y 0, and a new external
pressure p0, such that the free-energy functional in Eq. (7b)
retains the same form after the first two renormalization
group steps. It is common to introduce β functions [81],
which define the renormalization flow of elastic constants.
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It is not possible to calculate these β functions exactly, but
one can use diagrammatic techniques [81] to obtain
systematic approximations in the limit s ≪ 1. To one-loop
order (see Fig. 2), the renormalization group flows are
given by

βκ ¼
dκ0

ds
¼ 2ðζf − 1Þκ0 þ 3kBTY 0Λ2

16πD

−
3kBTY 02Λ2

8πR02D2

�
1þ Iκ1

D2
þ Iκ2
D4

�
; ð15aÞ

βY ¼ dY 0

ds
¼ 2ζfY 0 −

3kBTY 02Λ6

32πD2
; ð15bÞ

βp ¼ dp0

ds
¼ ð2ζf þ 1Þp0 þ 3kBTY 02Λ4

4πR03D2

�
1þ Ip

D2

�
; ð15cÞ

βR ¼ dR0

ds
¼ −R0; ð15dÞ

where we introduced the denominator term

D ¼ κ0Λ4 −
p0R0Λ2

2
þ Y 0

R02 : ð16Þ

The derivation of recursion relations in Eq. (15) is given in
Appendix A, where we also provide detailed expressions
for Iκ1, Iκ2, and Ip in Eq. (A8). The βY recursion relation in
Eq. (15b) describes changes in the quadratic “mass”
proportional to Y in Eq. (7b). Similarly, we can calculate
the recursion relations for the cubic and quartic terms in
Eq. (7b), and we find that the only significant change is that
the 2ζfY term now becomes ð3ζf − 1ÞY and ð4ζf − 2ÞY,
respectively. To ensure that the free energy retains the same
form after the first two steps in the renormalization
procedure, we choose ζf ¼ 1 so that these three terms
renormalize in tandem. The final results are independent of
the precise choice of ζf, as illustrated in Appendix B for
thermalized flat sheets.
The scale-dependent parameters κ0ðsÞ, Y 0ðsÞ, and p0ðsÞ,

obtained by integrating the differential equations in
Eqs. (B5) up to a scale s ¼ lnðl=aÞ with initial conditions
κ0ð0Þ ¼ κ0, Y 0ð0Þ ¼ Y0 and p0ð0Þ ¼ p0, are related to the
scaling of propagator GffðqÞ as [81]

Gffðqjκ0; p0; Y0; R0; AÞ ¼ hjfðqÞj2i ¼ e2ζfshjf0ðq0Þj2i
¼ e2ζfsGff(qesjκ0ðsÞ; p0ðsÞ; Y 0ðsÞ; R0e−s; Ae−2s); ð17Þ

where we explicitly insert the rescaled momenta q0 ¼ qes,
the rescaled radius R0 ¼ R0e−s, and the rescaled patch area
A0 ¼ Ae−2s. By replacing the left-hand side in Eq. (17) with
the renormalized propagator GffðqÞ in Eq. (9), we find the
scale-dependent renormalized parameters

κRðsÞ ¼ κ0ðsÞeð2−2ζfÞs ¼ κ0ðsÞ; ð18aÞ

YRðsÞ ¼ Y 0ðsÞeð−2ζfÞs ¼ Y 0ðsÞe−2s; ð18bÞ

pRðsÞ ¼ p0ðsÞeð−1−2ζfÞs ¼ p0ðsÞe−3s; ð18cÞ

where we used ζf ¼ 1, and parameter s is related to the
length scale l ¼ aes or, equivalently, to the magnitude of
wave vector q≡ π=l.
Note that by sending the shell radius to infinity

(R0 → ∞) and the pressure p0 → 0, such that the product
σ ¼ −p0R0=2 remains fixed in Eq. (7b), we recover the
renormalization flows for solid flat membranes with the
addition of a tension σ [54,82]. However, for spherical
shells with finite R0, thermal fluctuations renormalize and
effectively increase the external pressure [see Eq. (15c)], in
striking contrast to the behavior of flat membranes. Note, in

(a)

(c)

(f) (g)

(h) (i)

(d) (e)

(b)

FIG. 2. Feynman diagrams contributing to the renormalization
flows of Eq. (15). (a) Four-point and (b) three-point vertices
describe the quartic and cubic terms in the free energy, Eq. (7b).
Legs represent radial displacement fields ~fðqÞ, and slashes on
legs correspond to spatial derivatives, which lead to additional
factors of wave vectors in the Fourier space. The red part of the
three-point vertex in (b) connects to a field without a slash, while
the blue parts connect to derivative terms. The four-point vertex
carries a factor Y, while the three-point vertex carries a factor
Y=R. (c–i) One-loop diagrams that contribute to the renormal-
ization flows of (c–g) the bending rigidity κR, (f–g) the external
pressure pR, and (g) the Young’s modulus YR in the propagator
GffðqÞ in Eq. (9). Diagrams (h) and (i) describe one-loop
contributions to the renormalization flows of the Young’s
modulus YR associated with three-point and four-point vertices,
respectively. The connected legs in these diagrams represent the
propagators GffðqÞ, with wave vectors k restricted to the
momentum shell Λ=b < k < Λ.
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particular, that an effective pressure is generated by
Eq. (15c), even if the microscopic pressure p0 vanishes.
Before discussing the detailed renormalization group

predictions for spherical shells, it is useful to recall that for
flat membranes with no tension, thermal fluctuations
become important on scales larger than thermal length
[26–28,54,82]

lth ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3κ20
3kBTY0

s
; ð19Þ

and the renormalized elastic constants become strongly
scale dependent,

κRðlÞ ∼
�

κ0 l ≪ lth

κ0ðl=lthÞη lth ≪ l;

YRðlÞ ∼
�

Y0 l ≪ lth

Y0ðl=lthÞ−ηu lth ≪ l;
ð20Þ

where η ≈ 0.80–0.85 [26–29,54,82] and the exponents η
and ηu are connected via a Ward identity ηu þ 2η ¼ 2
associated with rotational invariance [27,28]. In the one-
loop approximation used here for 2dmembranes embedded
in three dimensions, we obtain [82] η ¼ 0.80, which is
adequate for our purposes. In the absence of an external
tension, the renormalized bending rigidity κR can become
very large, and the renormalized Young’s modulus YR can
become very small for large solid membranes in the flat
phase, as seems to be the case for graphene [52,53].
However, positive external tension acts as an infrared
cutoff, and the renormalized constants remain finite beyond
a tension-induced length scale [46,82].
Although the scaling relation ηu þ 2η ¼ 2 originally

arose from aWard identity [27,28], an alternative derivation
provides additional physical insight: Suppose we are given
a two-dimensional material (graphene, MoS2, the spectrin
skeleton of red blood cells, etc.) with a 2dYoung’s modulus
Y0 and a 2d bending rigidity κ0. With these material
parameters, we associate the elastic constants of an equiv-
alent isotropic bulk material with 3d Young’s modulus E0,
3d Poisson’s ratio ν0, and thickness h by [78]

κ0 ¼
E0h3

12ð1 − ν20Þ
; Y0 ¼ E0h: ð21Þ

When thermal fluctuations are considered, we obtain the
scale-dependent, 2d elastic parameters displayed in
Eq. (20), κRðlÞ ≈ κ0ðl=lthÞη and YRðlÞ ≈ Y0ðl=lthÞ−ηu ,
where lth ≪ l ≪ L, L is the system size, and the corre-
sponding scale-dependent 2d Poisson’s ratio νðlÞ remains
of order unity [27]. From these results and Eq. (21), we can
define a scale-dependent effective thickness h2effðlÞ ∼
κRðlÞ=YRðlÞ so that

h2effðlÞ ∼ h2ðl=lthÞηþηu : ð22Þ

For a 10 μm× 10 μm square of graphene, where lth ≈
1 nm at room temperature, this thermal amplification
(assuming ηþ ηu ≈ 0.8þ 0.4 ¼ 1.2) converts an atomic
thickness to an effective thickness, whose ratio to the size
of graphene sheet matches that of the ordinary writing
paper, suggesting that room-temperature graphene ribbons
and springs can be studied with simple paper models [52].
To determine a scaling relation between η and ηu, we note
that an alternative definition of the effective thickness
follows from [38]

h2effðlÞ ¼ hfðrÞ2Þil;

h2effðlÞ ¼
Z
jqj≥π=l

d2q
ð2πÞ2

kBT
κRðqÞq4

∼ l2−η; ð23Þ

where the average is evaluated over an l × l patch of the
membrane, so q ≥ π=l in the integration. Requiring similar
scaling of Eqs. (22) and (23) with l leads to ηu þ 2η ¼ 2.
By rewriting the renormalization group flows in Eq. (15)

in dimensionless form, it is easy to see that the renormal-
ized parameters can be expressed in terms of the following
scaling functions of ratios of important length scales and of
p0=p0

c, where p0
c is the classical buckling pressure in

Eq. (10),

κRðlÞ ¼ κ0Φκ

�
l
lth

;
lel

lth
;
p0

p0
c
;
a
lth

�
; ð24aÞ

YRðlÞ ¼ Y0ΦY

�
l
lth

;
lel

lth
;
p0

p0
c
;
a
lth

�
; ð24bÞ

pRðlÞ ¼ p0
cΦp

�
l
lth

;
lel

lth
;
p0

p0
c
;
a
lth

�
: ð24cÞ

We expect that the scaling functions above are insensitive to
the choice of microscopic cutoff a (e.g., shell thickness or a
carbon-carbon spacing in a large spherical buckyball),
provided this cutoff is much smaller than other relevant
lengths (a ≪ lth;lel). In principle, we could evaluate
renormalized parameters on the whole interval
l ∈ ½a; R0�, but for some values of bare parameters κ0,
Y0, p0, the renormalization flows in Eq. (15) diverge, when
denominators become zero. This singularity indicates the
buckling of thermalized spherical shells, which occurs
when the renormalized external pressure pRðl�Þ reaches
the renormalized critical buckling pressure

pcRðl�Þ≡ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κRðl�ÞYRðl�Þp

R2
0

; ð25Þ

where l� corresponds to the length scale of the unstable
mode. In order for the shell to remain stable in the presence
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of thermal fluctuations, the renormalized pressure pRðlÞ
has to remain below the renormalized critical buckling
pressure pcRðlÞ for every l ∈ ½a; R0�.
Figure 3 displays some typical flows of renormalized

parameters. We find that for spherical shells, the renor-
malized elastic constants initially renormalize in the same
way as for flat membranes [see Eq. (20)], but these
singularities are eventually cut off by the Gaussian curva-
ture. At low temperatures (lel=lth ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=κ0

p
γ1=4 ≪ 1)

and small inward pressures p0, the corrections to renor-
malized bending rigidity κRðlÞ=κ0 and renormalized
Young’s modulus YRðlÞ=Y0 grow as ðkBT=κ0ÞY0l2=κ0,
while the renormalized pressure pRðlÞ − p0 grows as
kBTY2

0l
4=ðκ20R3

0Þ. The renormalization is cut off at the
elastic length scale lel [see Fig. 3(a)], where the Y 0=R02

term starts dominating over the κ0Λ4 term in denominators
D of the recursion relations in Eqs. (15). This cutoff gives

rise to corrections of size ðkBT=κ0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y0R2

0=κ0
p

[see
Eq. (12)] for spherical shells, in contrast to the corrections
of size ðkBT=κ0ÞY0L2

0=κ0 for flat sheets of size L0.
At high temperatures (lel=lth ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=κ0

p
γ1=4 ≫ 1)

and small external pressures p0, the corrections to the
renormalized parameters κRðlÞ, YRðlÞ, pRðlÞ initially
still grow in the same way as described above for low
temperatures. However, a transition to the new regime
happens at the thermal length scale lth ∼ κ0=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTY0

p
,

where corrections to the renormalized bending rigidity
κRðlthÞ=κ0 and the renormalized Young’s modulus
YRðlthÞ=Y0 become of order unity and the renormalized

FIG. 3. Typical renormalization group flows at various microscopic pressures p0 and ratios of lel ¼ ðκ0R2
0=Y0Þ1=4 to

lth ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3κ20=ð3kBTY0Þ

p
. (a) Spherical shells at low temperature with lel=lth ¼ 10−2, R0=lth ¼ 1, a=R0 ¼ 10−6, and zero

external pressure (p0 ¼ 0). In this case, there is practically no renormalization of the elastic constants κR and YR, while the
renormalization of the thermally generated external pressure pR is cut off at l ≈ πlel. (b,c) Spherical shells at high temperature with
lel=lth ¼ 102, R0=lth ¼ 104, a=R0 ¼ 10−6, and (b) zero external pressure (p0 ¼ 0) or (c) large stabilizing outward pressure
(p0=p0

c ¼ −100). In both of these cases, the elastic constants κR and YR initially renormalize in the same way as flat membranes
[see Eq. (20)]. In case (b), even in the absence of external pressure p0 ¼ 0, this large shell buckles because the thermally generated
inward pressure pRðlÞ eventually reaches the renormalized critical buckling pressure pcRðlÞ. In case (c) with a large outward pressure
(p0 < 0), spherical shells remain stable and the renormalization of elastic constants is cut off at the scale lp=lth∼
ðp0

c=jp0jÞ1=ð2−ηÞðlel=lthÞ2=ð2−ηÞ ∼ ðkBTY0=jp0jR0κ0Þ1=ð2−ηÞ, which is analogous to the cutoff provided by an outward in-plane tension
in flat solid membranes [82]. For sufficiently large internal pressure p0 ≲ −kBTY0=R0κ0 (not shown), the renormalization of κ and Y is
completely suppressed. (d–f) Heat maps of (d) the renormalized bending rigidity κRðR0Þ, (e) the renormalized Young’s modulus YRðR0Þ,
and (f) the thermally induced part of renormalized external pressure pRðR0Þ − p0 evaluated at the scale of the shell radius R0. In (d–f),
we used R0=lel ¼ 102 and a=R0 ¼ 10−6. The large black buckled region is a direct consequence of thermal fluctuations, and its border,
denoted with a solid cyan line, corresponds to the critical buckling pressure in Eqs. (34) and (35) displayed as the solid black curve in
Fig. 5. Note that both positive (inward) and negative (outward) pressures appear along the y axis.
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pressure is pRðlthÞ − p0 ∼ p0
cðlth=lelÞ2 ≪ p0

c. On scales

larger than the thermal length scale, the renormalized
parameters scale according to

κRðlÞ ∼ κ0ðl=lthÞη; ð26aÞ
YRðlÞ ∼ Y0ðl=lthÞ−ηu ; ð26bÞ

pRðlÞ − p0 ∼ p0
cðlth=lelÞ2ðl=lthÞ2η; ð26cÞ

where η ¼ 0.8 and ηu ¼ 0.4 are the same exponents as for
flat sheets. If the external pressure p0 is properly tuned,
such that the renormalized pressure pRðlÞ remains small,
then the renormalization gets cut off at the length scale l�,
where the Y 0=R02 term starts dominating over the κ0Λ4 term
in denominators of recursion relations in Eqs. (15). This
scale is given by

l� ∼ lth

�
lel

lth

�
4=ð4−η−ηuÞ

∼ lth

�
lel

lth

�
4=ð2þηÞ

∝ R2=ð2þηÞ
0 ;

ð27Þ
where we used the exponent relation ηu þ 2η ¼ 2.
Because of this cutoff, we now find renormalized bending

rigidity κRðR0Þ ∝ R2η=ð2þηÞ
0 and the renormalized Young’s

modulus YRðR0Þ ∝ R−2ηu=ð2þηÞ
0 , which is again different

from flat sheets of size L [κRðLÞ ∝ Lη, YRðLÞ ∝ L−ηu].
Note that in the absence of a microscopic pressure
(p0 ≡ 0), thermal fluctuations generate a renormalized
pressure pRðl�Þ ∼ p0

c½lel=lth�ð6η−4Þ=ð2þηÞ, which is of the
same order as the renormalized buckling pressure
pcRðl�Þ ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κRðl�ÞYRðl�Þp

=R2
0 ∼ p0

c½lel=lth�ð6η−4Þ=ð2þηÞ.
Numerically, we find that at zero external pressure, the
renormalized pressure pRðl�Þ is actually large enough to
crush the shell [see Fig. 3(b)]. In fact, spherical shells can
only be stable if the outward pressure is larger than

p0;min ¼ −C1p0
c

�
lel

lth

�ð6η−4Þ=ð2þηÞ
;

¼ −C2p0
c

�
kBT
κ0

ffiffiffiffiffiffiffiffiffiffiffi
Y0R2

0

κ0

s �ð3η−2Þ=ð2þηÞ
; ð28Þ

where we find C1 ≈ 0.10, C2 ≈ 0.047, and
ð3η − 2Þ=ð2þ ηÞ ≈ 0.14. For large outward pressures
(p0 ≪ p0;min < 0), the renormalization gets cut off at a
pressure length scale lp given by

lp

lth
∼
�
p0
c

jp0j
�

1=ð2−ηÞ�lel

lth

�
2=ð2−ηÞ

∼
�

kBTY0

jp0jR0κ0

�
1=ð2−ηÞ

;

ð29Þ

when the p0R0Λ2 term starts dominating over the κ0Λ4 and
Y 0=R02 terms in denominators of recursion relations in

Eq. (15). As can be seen from Fig. 3(c), the Young’s
modulus YRðlÞ stops renormalizing at the length scale lp,
while the renormalization of bending rigidity still continues
until the Y 0=R02 term in denominators of recursion relations
in Eq. (15) starts to dominate. Note that for sufficiently
large internal pressure p0 ≪ −kBTY0=ðR0κ0Þ, the cutoff
length scale lp becomes smaller than the thermal length
scale lth and the effects of thermal fluctuations are
completely suppressed.
In Fig. 3, we also present heat maps of (d) the renor-

malized bending rigidity κRðR0Þ, (e) the renormalized
Young’s modulus YRðR0Þ, and (f) the thermally induced
part of renormalized external pressure pRðR0Þ − p0 evalu-
ated at the scale of shell radius R0, as a function of p0=p0

c

and lel=lth ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=κ0

p
γ1=4. These are the renormalized

parameters that one could measure in experiments by
analyzing the long-wavelength radial fluctuations
described by Eq. (9), once the thermal fluctuations are
cut off by either the elastic length (lel) or a sufficiently
large outward pressure (p0 < 0), which stabilizes the
shells. Although the scaling functions in Eq. (24) could,
in principle, depend directly on the shell size R0, this is not
the case because the renormalization group cutoffs at lp or
lel intervene before l ¼ R0.
In experiments, one could also measure the average

thermal shrinking of the shell radius hf0i [see Eq. (8)],
relative to its T ¼ 0 value, which is related to the integral of
the correlation functions in Eq. (9),

hf0i ≈
p0R2

0

4ðμ0 þ λ0Þ
þ R0

8π

Z
π=a

π=R
dqq3GffðqÞA;

hf0i≡ p0R2

4ðμ0 þ λ0Þ
þ kBTR0

8πκ0
Φf

�
R0

lth
;
lel

lth
;
p0

p0
c
;
a
lth

�
: ð30Þ

Here, A is the area of the patch that defines shallow-shell
theory; it drops out of the scaling function defined by the
second line—see Eq. (9). Note that the integral above
diverges logarithmically for q≲ π=a, i.e., at distances close
to the microscopic cutoff a, where GffðqÞ ≈ kBT=ðAκ0q4Þ.
This divergent part can be subtracted from the scaling
function Φf defined in the second part of Eq. (30); the
remaining piece, which we call Θf, is approximately
independent of the microscopic cutoff a and the shell size
R0. Figure 4(a) shows, via a heat map, how the scaling
function Θf depends on the other important parameters,

lel=lth ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=κ0

p
γ1=4 and p0=p0

c. The average shrinking
of the shell radius can then be expressed as

hf0i ¼
p0R2

0

4ðμ0 þ λ0Þ
þ kBTR0

8πκ0

�
ln

�
lth

a

�
þ Θf

�
lel

lth
;
p0

p0
c

��
:

ð31Þ
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Finally, we find that for large shells with lth ≪ lel that
are under a stabilizing outward pressure (p0 < 0), the
renormalization procedure leads to a nonlinear dependence
of the average shell radius shrinkage hf0i with internal
pressure jp0j as [see Fig. 4(b)]

hf0i ≈ −
jp0jR2

0

4ðμ0 þ λ0Þ
þ kBTR0

8πκ0

�
ln

�
lth

a

�
þ 1

η

�

− C
kBTR0

κ0

�jp0jR0κ0
kBTY0

�
η=ð2−ηÞ

; ð32Þ

where C ≈ 0.3 and the dimensionless combination
jp0jR0κ0=kBTY0 ∼ ðjp0j=p0

cÞðlth=lelÞ2. For sufficiently

small outward pressures, the usual linear response term
controlled by the bulk modulus ðμ0 þ λ0Þ is dominated by a
nonlinear thermal correction ∼jp0jη=ð2−ηÞ ∼ jp0j0.67. A sim-
ilar breakdown of Hooke’s law appears in the nonlinear
response to external tension for thermally fluctuating flat
membranes with the same exponent η=ð2 − ηÞ [82]. The
importance of the nonlinear contribution is determined by
the condition p� ≲ 1, where

p� ≡ jp0jR0κ0
kBTY0

: ð33Þ

An alternative renormalization group matching pro-
cedure [83] also exploits scaling relations such as
Eq. (17) but instead integrates the recursion relations out
to the intermediate scale l� defined by Eq. (27) and then
matches onto perturbation theory to calculate corrections
beyond that scale. We have checked that there are only
order-of-unity differences from the results described here.

V. BUCKLING OF SPHERICAL SHELLS

By systematically varying the bare external pressure p0

as an initial condition in our renormalization group calcu-
lations, we identified the critical buckling pressure pc for
spherical shells in the presence of thermal fluctuations. In
agreement with the scaling description embodied in
Eqs. (24), we found that the critical buckling pressure
can be described with a scaling function that depends on a
single dimensionless parameter

pc ¼ p0
cψ

�
lel

lth

�
¼ p0

cΨ

 
kBT
κ0

ffiffiffiffiffiffiffiffiffiffiffi
Y0R2

0

κ0

s !
; ð34Þ

where ΨðxÞ is a monotonically decreasing scaling function
with

ΨðxÞ ≈
�

1 − 0.28x0.4 x ≪ 1

−0.047xð3η−2Þ=ð2þηÞ x ≫ 1.
ð35Þ

The small x behavior comes from a fit to our numerical
calculations. The η-dependent power law ∼ −x0.14 for large
x matches the minimal stabilizing pressure p0;min intro-
duced in Eq. (28). Note that thermal fluctuations lead to a
substantial reduction in the critical buckling pressure pc
and that ΨðxÞ becomes negative for x≳ 160 (see Fig. 5). A
remarkable consequence is that, even when the pressure
difference vanishes (p0 ≡ 0), spherical shells are only
stable provided they are smaller than

Rmax ≈ 160
κ0
kBT

ffiffiffiffiffi
κ0
Y0

r
: ð36Þ

Larger shells are spontaneously crushed by thermal
fluctuations. The condition of zero microscopic pressure
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FIG. 4. Heat map depicting the average thermal shrinking of the
shell radius hf0i, as described by the scaling function
Θfðlel=lth; p0=p0

cÞ [see Eq. (31)]. (a) Contours of the scaling
function Θf are shown with R0=lel ¼ 102 and a=R0 ¼ 10−6. The
solid cyan line corresponds to the critical buckling pressure in
Eqs. (34) and (35) displayed as the solid black curve in Fig. 5.
(b) Nonlinear response for large membranes (lth ≪ lel) under
large outward pressure p0 < 0 [see Eq. (32)]. Here, the parameter
on the y axis C0 ≈ kBT=ð8πκ0Þ½ln ðlth=aÞ þ 1=η�, whereas
lel=lth ¼ 101, R0=lel ¼ 103, and a=R0 ¼ 10−6.

ANDREJ KOŠMRLJ and DAVID R. NELSON PHYS. REV. X 7, 011002 (2017)

011002-10



difference could be achieved experimentally by studying
hemispheres or spherical patches, which should have
similar buckling thresholds to spheres as long as the
patches are much larger than the elastic length scale lel,
or spheres which (like whiffle balls) have a regular array of
large holes.
The temperature-dependent critical buckling pressures

obtained via numerical renormalization group methods are
in reasonable agreement with the Monte Carlo simulations
of Ref. [75] (see Fig. 5). Note that at small temperatures T
and shell sizes R0, where we expect that the critical
buckling pressure pc is approximately equal to the classical
buckling pressure p0

c, simulations show systematically
lower buckling pressures. This also happens in experiments
with macroscopic spherical shells, where the lower buck-
ling pressure is due to shell imperfections [84]. Similar
effects could arise at low temperatures for the amorphous
shells simulated in Ref. [75]. Note that the temperature-
dependent critical buckling pressure obtained in this paper
was determined by identifying deformation modes, for
which the free-energy landscape becomes unstable. In
practice, we expect that even perfectly homogeneous
thermalized spherical shells will buckle at a slightly lower
external pressure because the metastable modes embodied
in a pressurized sphere exist in a shallow energy minimum
and can escape over a small energy barrier of the order kBT
in the presence of thermal fluctuations.

VI. CONCLUSIONS

In this paper, we demonstrated, with renormalization
group methods, that thermal fluctuations in thin
spherical shells become significant when the thermal length
scale lth [see Eq. (19)] becomes smaller than the elastic
length scale lel [see Eq. (1)] or, equivalently, when
ðkBT=κ0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y0R2

0=κ0
p ≳ 1. An identical combination of

variables was uncovered in the perturbation calculations
of Ref. [75]. If we assume that shells of thickness h are
constructed from a 3D isotropic elastic material with
Young’s modulus E0 and Poisson’s ratio ν0 [see
Eq. (21)], then the relevant dimensionless parameter can
be rewritten as

kBT
κ0

ffiffiffiffiffiffiffiffiffiffiffi
Y0R2

0

κ0

s
¼ ½12ð1 − ν20Þ�3=2

kBTR0

E0h4
: ð37Þ

Thus, this critical dimensionless parameter varies as the
inverse fourth power of shell thickness h. For thermal
fluctuations to become relevant at room temperature, shells
that are only a few nanometers thick may be required. For
such shells, thermal fluctuations renormalize elastic con-
stants in the same direction as for flat solid membranes [see
Eq. (20) and Figs. 3(d) and 3(e)]; i.e., bending rigidity gets
enhanced, in-plane elastic constants get reduced, and all
elastic constants become scale dependent. However, in
striking contrast to flat membranes, where an isotropic
external tension does not get renormalized [82], thermal
fluctuations can strongly enhance the effect of an inward
pressure p0. As a consequence, spherical shells get
crushed at a lower external pressure than the classical
zero-temperature buckling pressure (see Fig. 5). In fact,
shells that are larger than Rmax ≈ 160ðκ0=kBTÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
κ0=Y0

p
become unstable even at zero or slightly negative external
pressure. Such large shells can be stabilized by a suffi-
ciently large outward pressure p0 < 0, which cuts off the
renormalization of elastic constants [see Fig. 3(b)]. We then
find that the shell size increases nonlinearly with internal
pressure with a universal exponent characteristic of flat
membranes [see Eq. (32) and Fig. 4]. Note that for
sufficiently large outward pressure p0 ≲ −kBTY0=R0κ0,
the renormalization is completely suppressed, and we
recover the behavior of classical shells at zero temperature.
How do these results impact the physics of currently

available microscopic shells? Shells of microscopic organ-
isms come in various sizes and shapes, and they need not be
perfectly spherical. Therefore, we just report some char-
acteristic parameters at room temperature T ¼ 300 K,
where the radius R0 is identified with half a characteristic
shell diameter. For an “empty” viral capsid of bacterio-
phage ϕ29 (water inside and water outside) with
R0 ≈ 20–25 nm, h ≈ 1.6 nm, and E0 ≈ 1.8 GPa [9], we
find that thermal fluctuations have only a small effect
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FIG. 5. Thermal fluctuations reduce critical buckling pressure
pc below its classical value p0

c in Eq. (10), to a point where it can
even assume negativevalues when ðkBT=κ0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y0R2

0=κ0
p

≫ 1. The
solid black line corresponds to the theoretical prediction based on
renormalization group calculations and symbols are buckling
transitions extracted from the Monte Carlo simulations of
Ref. [75]. Green arrows point to the locations in parameter space
ðkBT=κ0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y0R2

0=κ0
p

and p0=p0
c, that correspond to the snapshots

of spherical shells from the simulations shown in Fig. 1. Because
for large temperatures T (or equivalently for large shells R0) the
critical buckling pressure pc becomes negative, thermal fluctua-
tions spontaneously crush spherical shells even at zero or some-
what negative external pressures.
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[ðkBT=κ0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y0R2

0=κ0
p

∼ 0.3]. When a capsid of bacterio-
phage ϕ29 is filled with viral DNA, the capsid is under a
huge outward osmotic pressure (p0 < −6 MPa ¼
−60 atm), which completely suppresses thermal fluctua-
tions [p� ¼ jp0jR0κ0=ðkBTY0Þ ∼ 7; see Eq. (33)]. For
gram-positive bacteria, which have a thick cell wall,
thermal fluctuations can be ignored; e.g., for Bacillus
subtilis with R0 ≈ 0.4 μm, h ≈ 30 nm, and E0 ≈
10–50 MPa [15], we obtain ðkBT=κ0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y0R2

0=κ0
p

∼ 10−3.
For gram-negative bacteria with thin cell walls, one might
think that thermal fluctuations could be important; e.g.,
for Escherichia coli with R0 ≈ 0.4 μm, h ≈ 4 nm, and
E0 ≈ 30 MPa [15], we obtain ðkBT=κ0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y0R2

0=κ0
p

∼ 8.
However, bacteria are under a large outward osmotic
stress called turgor pressure, which completely suppresses
thermal fluctuations; e.g., for E. coli p0 ≈ −0.3 MPa ¼
−3 atm [15], and dimensionless pressure is p� ¼
jp0jR0κ0=ðkBTY0Þ ∼ 40 ≫ 1. Note that bacteria regulate
osmotic pressure via mechanosensitive channels; hence,
they might have evolved to the regime with large turgor
pressure in order to protect their cell walls from thermal
fluctuations. Somewhat similar to bacteria are nuclei in
eukaryotic cells, where genetic material is protected by a
nuclear envelope with R0 ≈ 8 μm, h=R0 ∼ 10−3–10−2, and
E0 ∼ 102–104 Pa [85], such that ðkBT=κ0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y0R2

0=κ0
p

∼
101–107. When cells are attached to a substrate, densely
packed genetic material generates a large outward osmotic
pressure p0=E0 ≈ −8 × 10−2, which suppresses thermal
fluctuations [p� ¼ jp0jR0κ0=ðkBTY0Þ∼3–300]. However,
upon detachment of cells from the substrate, the cell
volume shrinks because of the release of traction forces,
and the resulting cytoplasm osmotic pressure crushes cell
nuclei [85], a phenomenon that could be influenced by
thermal fluctuations.
Thermal fluctuations definitely play an important role in

red blood cell membranes. The red blood cell membrane is
composed of a lipid bilayer with bending rigidity κ0 ≈
6–40kBT [17,18] and an attached spectrin network,
which contributes to a Young’s modulus Y0 ≈ 25 μN=m
[16,18], giving the composite system a resistance
to shear. For a characteristic size of R0 ≈ 7 μm, we find
ðkBT=κ0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y0R2

0=κ0
p

≈ 2–40. Here, we neglect interesting
nonequilibrium effects in living cells, where ATP can be
burned to turn spectrin into an “active” material [86]. Note
that by treating red blood cells with mild detergents, which
lyse the cells, one can produce red blood cell “ghosts” that
are composed of spectrin skeleton alone. Such membranes
have smaller bending rigidity and exhibit much larger
fluctuations, confirming the scale dependence of elastic
constants via x-ray and light-scattering experiments
in Ref. [50].
As discussed in Ref. [75], artificial microscopic shells

have also been constructed from polyelectrolytes [22],
proteins [87], and polymers [88]. Such microcapsules

can be made extremely thin, with the thickness of several
nanometers, where thermal fluctuations can become
relevant. For example, microcapsules with h ≈ 6 nm
thickness were fabricated from reconstituted spider silk
[87] with R0 ≈ 30 μm and E0 ≈ 1 GPa, where we find
ðkBT=κ0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y0R2

0=κ0
p

∼ 3. Similar polymersomes can be
made 10 times larger with R0 ≈ 300 μm while being
thinner than 10 nm [88]. Polycrystalline shells or hemi-
spheres of graphene provide a particularly promising
candidate for observing the effects of thermal fluctuations
on solid membranes with a spherical background curvature.
Indeed, with graphene parameters (κ0 ¼ 1.1 eV [89]
and Y0 ¼ 340 N=m [90]), the maximum allowed radius
when p0 ¼ 0 at room temperature, from Eq. (36), is
Rmax ≈ 160 nm.
We expect that many features described in this paper for

spherical shells also carry over to nonspherical shells with a
background curvature. Here, we briefly sketch how one
could analyze the effects of thermal fluctuations on a small
patch of shell with arbitrary constant principal curvatures
1=Rx and 1=Ry, where Rx ¼ Ry ¼ R0 corresponds to a
spherical patch of radius R0, and a cylinder of radius R0

with the axis in the x direction is described by Rx → ∞ and
Ry ¼ R0. The strain tensor in Eq. (5) generalizes to

uij ¼
1

2
ð∂iuj þ ∂juiÞ þ

1

2
ð∂ifÞð∂jfÞ − δij

f
Ri

; ð38Þ

and the effective free-energy functional for normal undu-
lations f in Eq. (7b) becomes

Feff ¼
Z

d2r
�
1

2
κ0ð∇2 ~fÞ2 þ 1

2
σijð∂i

~fÞð∂j
~fÞ

þY0

2

�
1

2
PT
ijð∂i

~fÞð∂j
~fÞ − PT

kk
~f

Rk

�2�
; ð39Þ

where PT
ij ¼ δij − ∂i∂j=∇2 is the transverse projection

operator and the σij tensor describes the stress inside the
shell due to the external load, such as external pressure. To
capture the effects of thermal fluctuations, one would need
to analyze the renormalization group flows of the effective
free energy for normal undulations in Eq. (39). As for
spherical shells, we expect that thermal fluctuations effec-
tively produce negative tensions, which spontaneously
crush shells even for zero external stresses at sufficiently
high temperatures or at sufficiently small curvatures 1=Rx
and 1=Ry. For example, for a cylinder oriented along the x
axis with no external load (σij ≡ 0), one can show that
thermal fluctuations effectively generate an axial compres-
sion σR;xx < 0, while σR;yy ≈ σR;xy ≈ 0. These results arise

because small undulations ~fðxÞ along the cylinder axis
involve the stretching of the shell, while small undulations
~fðyÞ in the azimuthal direction require no stretching (only
bending). As a consequence, we expect that in, e.g., carbon
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nanotubes, thermal fluctuations significantly reduce the
critical axial load, while the critical shear load and pressure
load are practically unmodified. These expectations are
consistent with the results of molecular dynamics simu-
lations for carbon nanotubes [91]. Similar to spherical
shells, we expect that nanotubes of sufficiently large
radius Rmax ∼ ðκ0=kBTÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
κ0=Y0

p
are spontaneously crushed

because of thermally generated axial compression, even in
the absence of external loads. The value of the numerical
prefactor would require detailed renormalization group
calculations, but a rough extrapolation of our results for
spherical shells suggests that, for carbon nanotubes at
room temperature, the critical radius is on the order
of Rmax ∼ 100 nm.
In conclusion, we have found that thermalized shells can

behave in significantly different ways compared to flat
membranes. In shells, thermal fluctuations effectively
generate negative tension, which spontaneously crushes
large shells, while even infinitely large flat membranes
remain stable. Note that shells remain locally two dimen-
sional just above the crushing instability and do not
necessarily correspond to the crumpled phase with fractal
dimension 2 < Df < 3 (see Fig. 1). We expect that distant
self-avoidance will only become important deep in the
crushed phase. Thermalized shells are also quite different
from fluctuating ring polymers, which retain their integrity
at low temperatures [92] but transition to a swollen-coil
state with fractal dimension Df ¼ 1=0.591 ≈ 5=3 when the
persistence length becomes much smaller than the polymer
ring size [25].
We hope this paper will stimulate further experimental,

numerical, and theoretical investigations of the stability and
mechanical properties of these fascinating thermalized
shells and also the analysis of postbuckling behavior where
steric interactions become important.
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APPENDIX A: RENORMALIZATION GROUP
RECURSION RELATIONS FOR

SPHERICAL SHELLS

In this appendix, we derive the renormalization group
recursion relations displayed in Eqs. (15). We start by
rewriting the free energy in Eq. (7) in Fourier space as

Feff ¼ F0 þ Fint; ðA1aÞ

F0

A
¼
X
q

1

2

�
κ0q4 −

p0R0q2

2
þ Y0

R2
0

�
~fðqÞ ~fð−qÞ; ðA1bÞ

Fint

A
¼

X
q1þq2¼q≠0
q3þq4¼−q≠0

Y0

8
½q1iPT

ijðqÞq2j�½q3iPT
ijðqÞq4j�

× ~fðq1Þ ~fðq2Þ ~fðq3Þ ~fðq4Þ
þ

X
q1≠0

q2þq3¼−q1

Y0

2R0

½q2iPT
ijðq1Þq3j� ~fðq1Þ ~fðq2Þ ~fðq3Þ;

ðA1cÞ

where A is the area, ~fðqÞ ¼ R ðd2r=AÞe−iq·r ~fðrÞ, and
PT
ijðqÞ ¼ δij − qiqj=q2 is the transverse projection oper-

ator. Note that the sums over wave vectors can be
converted to integrals in the shallow-shell approximation
as
P

q → A
R
d2q=ð2πÞ2.

To implement the momentum-shell renormalization
group, we first integrate out all Fourier modes in a thin
momentum shell Λ=b < q < Λ, where a ¼ π=Λ is a
microscopic cutoff and b ¼ es with s ≪ 1. Next we rescale
lengths and fields [27,54]

r ¼ br0; ðA2aÞ

q ¼ b−1q0; ðA2bÞ

~fðqÞ ¼ bζf ~f0ðq0Þ; ðA2cÞ

where the field rescaling exponent ζf will be chosen to
simplify the resulting renormalization group equations.
Finally, we define new elastic constants κ0, Y 0, and external
pressure p0, such that the free-energy functional in Eq. (A1)
retains the same form after the first two renormalization
group steps.
The integration of Fourier modes in a thin momentum

shell Λ=b < k < Λ is formally done with a functional
integral

F0
eff ½fqg� ¼ −kBT ln

�Z
D½ ~fðkÞ�e−ðF0½fq;kg�þFint½fq;kg�Þ=kBT

�
;

F0
eff ½fqg� ¼ F0½fqg� − kBT ln he−Fint½fq;kg�=kBTi0;k; ðA3Þ

where q < Λ=b and we introduced the average

hOi0;k ¼
R
D½ ~fðkÞ�Oe−F0½fkg�R
D½ ~fðkÞ�e−F0½fkg�

: ðA4Þ

The term involving a logarithm in Eq. (A3) can be
expanded in terms of the cumulants
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F0
eff ½fqg� ¼ F0½fqg� þ

X
n

ð−1Þn−1
n!ðkBTÞn−1

hðFint½fq;kg�ÞniðcÞ0;k; ðA5Þ

where hOiðcÞ ¼ hOi, hO2iðcÞ ¼ hO2i − hOi2, etc. The infinite series in Eq. (A5) above can be systematically approximated
with Feynman diagrams [81]; Fig. 2 displays all relevant diagrams to one-loop order. The contributions of the diagrams in
Figs. 2(c)–2(i) are

F0
eff ½fqg�ðcÞ

A
¼
X
q

1

2
~fðqÞ ~fð−qÞ

Z
Λ=b<jkj<Λ

d2k
ð2πÞ2 AYGff

�
kþ q

2

��
qiPT

ij

�
k −

q
2

��
kj þ

qj
2

��
2

; ðA6aÞ

F0
eff ½fqg�ðd−gÞ

A
¼
X
q

1

2
~fðqÞ ~fð−qÞ

Z
Λ=b<jkj<Λ

d2k
ð2πÞ2

ð−1ÞY2A2

kBTR2
Gff

�
kþ q

2

�
Gff

�
k −

q
2

�

×

��
qiPT

ij

�
kþ q

2

��
kj −

qj
2

��
2

−
�
qiPT

ij

�
k −

q
2

��
kj þ

qj
2

���
qiPT

ij

�
kþ q

2

��
kj −

qj
2

��

þ2

�
qiPT

ij

�
k −

q
2

��
kj þ

qj
2

����
ki −

qi
2

�
PT
ijðqÞ

�
kj þ

qj
2

��
þ 1

2

��
ki −

qi
2

�
PT
ijðqÞ

�
kj þ

qj
2

��
2
�
;

ðA6bÞ

F0
eff ½fqg�ðhÞ

A
¼

X
q≠0

q2þq3¼−q

Y
2R

½q2iPT
ijðqÞq3j� ~fðqÞ ~fðq2Þ ~fðq3Þ

Z
Λ=b<jkj<Λ

d2k
ð2πÞ2

ð−1ÞYA2

2kBT
Gff

�
kþ q

2

�
Gff

�
k −

q
2

�

×

��
ki −

qi
2

�
PT
ijðqÞ

�
kj þ

qj
2

��
2

; ðA6cÞ

F0
eff ½fqg�ðiÞ

A
¼

X
q1þq2¼q≠0
q3þq4¼−q≠0

Y
8
½q1iPT

ijðqÞq2j�½q3iPT
ijðqÞq4j� ~fðq1Þ ~fðq2Þ ~fðq3Þ ~fðq4Þ

×
Z
Λ=b<jkj<Λ

d2k
ð2πÞ2

ð−1ÞYA2

2kBT
Gff

�
kþ q

2

�
Gff

�
k −

q
2

���
ki −

qi
2

�
PT
ijðqÞ

�
kj þ

qj
2

��
2

; ðA6dÞ

where GffðqÞ ¼ kBT=½Aðκq4 − pRq2=2þ Y=R2Þ�, and subscripts (c), (d − g), (h), and (i) describe contributions from the
corresponding diagrams in Fig. 2. The integrands in the equations above must now be expanded for small wave vectors q.
The relevant contributions to κ0, p0, and Y 0 are related to terms that scale with q4, q2, and q0 in Eqs. (A6a) and (A6b),
respectively. The contributions to three-point and four-point vertices are described by Eqs. (A6c) and (A6d), respectively,
and here it is enough to keep only the q0 terms in the integrands.
After the integration of Fourier modes in a thin momentum shell Λ=b < k < Λ, where b ¼ es with s ≪ 1, rescaling

fields, momenta, and lengths according to Eq. (A2), we find the recursion relations

βκ ¼
dκ0

ds
¼ 2ðζf − 1Þκ0 þ 3kBTY 0Λ2

16πD
−
3kBTY 02Λ2

8πR02D2

�
1þ Iκ1

D2
þ Iκ2
D4

�
; ðA7aÞ

βY ¼ dY 0

ds
¼ 2ζfY 0 −

3kBTY 02Λ6

32πD2
; ðA7bÞ

βp ¼ dp0

ds
¼ ð2ζf þ 1Þp0 þ 3kBTY 02Λ4

4πR03D2

�
1þ Ip

D2

�
; ðA7cÞ

βR ¼ dR0

ds
¼ −R0; ðA7dÞ

where we introduce a denominator factor D and the results of various integrations as
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D ¼ κ0Λ4 −
p0R0Λ2

2
þ Y 0

R02 ; ðA8aÞ

Iκ1 ¼
1

48

�
−
4Y 02

R04 þ 8
Y 0

R02 ð2p0R0Λ2 − 9κ0Λ4Þ

− ð5p02R02Λ4 − 32p0R0κΛ6 þ 36κ02Λ8Þ
�
; ðA8bÞ

Iκ2 ¼
1

768

�
−
24Y 03κ0Λ4

R06 þ Y 02

R04 ð9p02R02Λ4 − 76p0R0κ0Λ6

þ 268κ02Λ8Þ þ Y 0

R02 ð−5p03R03Λ6 þ 52p02R02κ0Λ8

− 204p0R0κ02Λ10 þ 160κ03Λ12Þ
þ ðp04R04Λ8 − 12p03R03κ0Λ10 þ 56p02R02κ02Λ12

− 96p0R0κ03Λ14 þ 60κ04Λ16Þ
�
; ðA8cÞ

Ip ¼ 1

48

�
Y
R2

ð3p0R0Λ2 − 16κ0Λ4Þ

þ ð−p02R02Λ4 þ 7p0R0κ0Λ6 − 8κ02Λ8Þ
�
: ðA8dÞ

The βY recursion relation in Eq. (A7b) describes changes in
the quadratic “mass” proportional to Y in Eq. (A1).
Similarly, we can calculate the recursion relations for the
cubic and quartic terms in Eq. (A1). The only significant
change is in the effect of rescaling: The 2ζfY term now
becomes ð3ζf − 1ÞY and ð4ζf − 2ÞY, respectively.

APPENDIX B: INDEPENDENCE OF
RENORMALIZATION GROUP RESULTS

ON THE CHOICE OF ζ f

In this section, we illustrate the insensitivity of the
renormalization procedure to the precise choice of the
field rescaling factor that appears in ~fðqÞ ¼ bζf ~f0ðq0Þ.
Specifically, we demonstrate that for a flat thermalized
sheet, we show that the renormalized bending rigidity
κRðlÞ and renormalized Young’s modulus YRðlÞ are
identical, when we choose either ζfðsÞ≡ 1, as we did,
for convenience, with spherical shells, or we choose ζfðsÞ
such that the κ0ðlÞ≡ κ0 remains fixed, as is the case in the
usual renormalization group procedure [54].
The recursion relations for flat sheets are [54,82]

βκ ¼
dκ0

ds
¼ 2ðζf − 1Þκ0 þ 3kBTY 0

16πκ0Λ2
; ðB1aÞ

βY ¼ dY 0

ds
¼ ð4ζf − 2ÞY 0 −

3kBTY 02

32πκ02Λ2
: ðB1bÞ

The scale-dependent parameters κ0ðsÞ and Y 0ðsÞ, which are
obtained by integrating the differential equations in

Eqs. (B5) up to s ¼ lnðl=aÞ with initial conditions κ0ð0Þ ¼
κ0 and Y 0ð0Þ ¼ Y0, are related to the scaling of propagator
GffðqÞ according to [81]

Gffðqjκ0; AÞ ¼ e
R

s

0
2ζfðs0Þds0Gffðqesjκ0ðsÞ; Ae−2sÞ; ðB2Þ

where Gffðqjκ; AÞ ¼ kBT=½Aκq4�, and we explicitly wrote
the rescaled momenta q0 ¼ qes and the rescaled patch area
A0 ¼ Ae−2s. By replacing the left-hand side in Eq. (B2)
with the propagator GffðqÞ ¼ kBT=½AðκRðqÞq4Þ�, we find
the renormalized bending rigidity

κRðsÞ ¼ κ0ðsÞe
R

s

0
½2−2ζfðs0Þ�ds0 : ðB3Þ

From a similar scaling relation for the four-point vertex,
we find

YRðsÞ ¼ Y 0ðsÞe
R

s

0
½2−4ζfðs0Þ�ds0 : ðB4Þ

First we choose ζfðsÞ≡ 1, which leads to the recursion
relations

dκ0

ds
¼ 3kBTY 0

16πκ0Λ2
; ðB5aÞ

dY 0

ds
¼ 2Y 0 −

3kBTY 02

32πκ02Λ2
: ðB5bÞ

By integrating the differential equations in Eqs. (B5)
up to s ¼ lnðl=aÞ with initial conditions κ0ð0Þ ¼ κ0 and
Y 0ð0Þ ¼ Y0, we find (see Fig. 6)

κ0ðlÞ ∼
�

κ0 l ≪ lth

κ0ðl=lthÞ4=5 l ≫ lth;
ðB6aÞ

Y 0ðlÞ ∼
�

Y0ðl=aÞ2 l ≪ lth

Y0ðlth=aÞ2ðl=lthÞ8=5 l ≫ lth;
ðB6bÞ

where lth ∼ κ0=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTY0

p
. Upon removing scaling factors

according to Eqs. (B3) and (B4), we obtain our final scale-
dependent renormalized elastic constants

κRðlÞ ∼
�

κ0 l ≪ lth

κ0ðl=lthÞ4=5 l ≫ lth;
ðB7aÞ

YRðlÞ ∼
�

Y0 l ≪ lth

Y0ðl=lthÞ−2=5 l ≫ lth;
ðB7bÞ

where we recognize the usual scaling exponents η ¼ 4=5
and ηu ¼ 2=5, which satisfy identity ηu þ 2η ¼ 2.
A more conventional choice [27,54] is to take ζfðsÞ such

that the κ0ðsÞ≡ κ0 remains fixed. Upon setting βκ ¼ 0 in
Eq. (B1a), we find
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ζfðsÞ ¼ 1 −
3kBTY 0ðsÞ
32πκ20Λ

2
; ðB8aÞ

dY 0ðsÞ
ds

¼ 2Y 0ðsÞ − 15kBTY 0ðsÞ2
32πκ20Λ

2
: ðB8bÞ

By integrating the differential equations in Eqs. (B8) up to
s ¼ lnðl=aÞ with initial condition Y 0ð0Þ ¼ Y0, we find a
fixed point, which is reached at the thermal scale, l ∼ lth
(see Fig. 6), such that

ζfðlÞ ∼
�
1 l ≪ lth
3
5

l ≫ lth;
ðB9aÞ

Y 0ðlÞ ∼
(
Y0ðl=aÞ2 l ≪ lth

64πκ2
0
Λ2

15kBT
l ≫ lth:

ðB9bÞ

By taking into account scaling factors in Eqs. (B3)
and (B4), it is easy to see that the value of exponent ζ�f ¼
3=5 at the fixed point leads to the scaling exponents

η ¼ 2 − 2ζ�f ¼ 4=5 and ηu ¼ 4ζ�f − 2 ¼ 2=5. From these
relations, one also finds the identity ηu þ 2η ¼ 2 regardless
of the precise value of ζ�f. From Fig. 6, we see that the
renormalized bending rigidity κRðlÞ and the renormalized
Young’s modulus YRðlÞ are identical to the ones obtained
in Eq. (B7) with the choice of ζðsÞ≡ 1.
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