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Phase behavior and morphology of
multicomponent liquid mixtures†

Sheng Mao, a Derek Kuldinow,ab Mikko P. Haataja*ac and Andrej Košmrlj *ac

Multicomponent systems are ubiquitous in nature and industry. While the physics of few-component

liquid mixtures (i.e., binary and ternary ones) is well-understood and routinely taught in undergraduate

courses, the thermodynamic and kinetic properties of N-component mixtures with N 4 3 have

remained relatively unexplored. An example of such a mixture is provided by the intracellular fluid, in

which protein-rich droplets phase separate into distinct membraneless organelles. In this work, we

investigate equilibrium phase behavior and morphology of N-component liquid mixtures within the

Flory–Huggins theory of regular solutions. In order to determine the number of coexisting phases and

their compositions, we developed a new algorithm for constructing complete phase diagrams, based on

numerical convexification of the discretized free energy landscape. Together with a Cahn–Hilliard approach

for kinetics, we employ this method to study mixtures with N = 4 and 5 components. We report on both

the coarsening behavior of such systems, as well as the resulting morphologies in three spatial dimensions.

We discuss how the number of coexisting phases and their compositions can be extracted with Principal

Component Analysis (PCA) and K-means clustering algorithms. Finally, we discuss how one can reverse

engineer the interaction parameters and volume fractions of components in order to achieve a range of

desired packing structures, such as nested ‘‘Russian dolls’’ and encapsulated Janus droplets.

1 Introduction

Phase separation and multi-phase coexistence are commonly
seen in our everyday experience, from simple observations of
the demixing of water and oil to sophisticated liquid extraction
techniques employed in the chemical engineering industry to
separate certain components of solutions. In non-biological
systems, phase separation has been studied for a long time
dating back to Gibbs.1 Very recently, it has been demonstrated
that living cells are also mixtures composed of a large number
of components, with phase separation behavior reminiscent of
those found in inanimate systems in equilibrium.2–8 This
process has been shown to drive the formation of membraneless
organelles in the form of simple droplets,7–13 and even hierarchical
nested packing structures.14

The physics of binary (N = 2) and ternary (N = 3) mixtures are
well-understood by now, with binary mixtures comprising
standard material in undergraduate statistical thermodynamics
courses. Given, say, a molar Gibbs free energy of the mixture as
a function of composition, the presence of coexisting phases
can be ascertained via the common tangent construction, and
repeating this process at several temperatures, the phase diagram
can be readily constructed. Similar arguments also hold for
ternary15,16 and N 4 3 mixtures, while the construction of phase
diagrams becomes rapidly more challenging, in accordance
with the Gibbs phase rule,1 which states that the maximum
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number of coexisting phases in an N-component mixture is
N + 2. On the other hand, when N c 1, statistical approaches
for predicting generic properties of phase diagrams become
applicable.

In their pioneering work, Sear and Cuesta17 modeled an
N-component system with N c 1 within a simple theoretical
approach, which incorporated entropy of mixing terms and
interactions between the components at the level of second
virial coefficients; the virial coefficients were in turn treated as
Gaussian random variables with mean b and variance s2. In the
special case of an equimolar mixture, their analysis based on
Random Matrix Theory showed that for N1/2b/s o �1, the
system is likely to undergo phase separation via spinodal
decomposition, leading to compositionally distinct phases.
On the other hand, for N1/2b/s 4 �1, the mixture will likely
undergo a condensation transition, which leads to the formation of
two phases differing in only density (and not relative compositions).
These predictions were later confirmed by Jacobs and Frenkel using
grand canonical Monte Carlo simulations of a lattice gas model with
up to N = 16 components.18 In subsequent work,19 Jacobs and
Frenkel argued that multiphase coexistence in biologically-relevant
mixtures with N c 1 does not result from the presence of a large
number of components, but requires fine tuning of the inter-
molecular interactions.

In order to begin to bridge the gap between the well-studied
binary and ternary systems on one hand, and mixtures with
N c 1 on the other, herein we systematically investigate the
phase behavior and morphology of liquid mixtures with N = 4
and 5 components. We develop a method to construct full
phase diagrams of such systems based on free energy convexification
within the Flory–Huggins theory of regular solutions,20,21 and
employ the Cahn–Hilliard22 formalism to study associated domain
growth and coarsening processes during morphology evolution.
In order to identify and locate the emerging phases in the
simulations, we employ a combination of principal component
analysis (PCA)23 and K-means clustering method24 to translate local
compositions to phase indicator functions. The phase indicator
functions are, in turn, employed to quantify the domain growth and
coarsening kinetics. Specifically, characteristic domain sizes for
each phase are extracted from time-dependent structure factors,
and their behavior is compared against classical theories of
coarsening kinetics.25–28 Finally, we demonstrate how tuning
the interfacial energies between phases enables one to engineer
morphologies with a wide range of packing structures, including
Janus-particle like domains and nested ‘‘Russian doll’’ droplets-
within-droplets with up to 5 layers.

The rest of this paper is organized as follows. In Section 2,
the equilibrium phase behavior of an N-component liquid
mixture is examined within the Flory–Huggins (F–H) theory of
regular solutions. An algorithm based on convex hull construc-
tion to compute the phase diagram of the mixture is developed,
and a graph theory based method is employed to determine the
number of coexisting phases corresponding to a given set of
interaction parameters within the F–H theory and average
composition. In Section 3, the Cahn–Hilliard formalism
is employed to both incorporate interfacial effects within the

F–H theory and model the spatio-temporal evolution of the
local compositions. The method to construct local phase indicator
functions is also outlined in this section. Resulting microstructures
for representative 4-component systems are presented in Section 4.
We also demonstrate how interaction parameters can be tuned to
achieve different final packing morphologies of the coexisting
phases. In Section 5, we focus on the coarsening kinetics of the
phase separation process. We examine the validity of the
dynamic scaling theory in multicomponent settings and discuss
the coarsening behavior due to the multiple coexisting phases.
In Section 6, we provide guidelines for the design of hierarchical
nested structures, and employ them to design three different
nested structures in 5-component mixtures. Finally, brief con-
cluding remarks can be found in Section 7.

2 Equilibrium phase behavior
2.1 Flory–Huggins theory

In this study, we model a dilute solution as a continuum
multicomponent incompressible fluid composed of N different
components, where fi represents the volume fraction of

component i
PN
i¼1

fi ¼ 1

� �
. For simplicity, we only focus on

the phase behavior of condensates and solvent is not explicitly
considered in our treatment. Furthermore, we assume that all
components in the condensates have equal density, such that
buoyancy effects can be neglected.

First, we briefly review some properties of binary mixtures.
According to the Flory–Huggins theory of regular solutions20,21

the free energy density (per volume) is expressed as

fFH(f1, f2) = c0RT[f1 lnf1 + f2 lnf2 + f1f2w12], (1)

where c0 is the total molar concentration of solutes, R is the gas
constant, T the absolute temperature, and f1 + f2 = 1 due to
incompressibility. The first two terms in eqn (1) incorporate
the entropy of mixing, which favors a homogeneous binary
mixture. The last term describes the enthalpic part of the free
energy. The Flory interaction parameter w12 is related to the
pairwise interaction energies oij between components i and j
as w12 = z(2o12 � o11 � o22)/(2kBT), where kB denotes the
Boltzmann constant and z is the coordination number.22 When
w12 o 0, the two different components attract each other and
favor mixing. When w12 4 0, the two components repel each
other, which can drive the system to demix and form two
coexisting phases (one enriched with component 1 and one
enriched with component 2) once the Flory parameter becomes
sufficiently large (w12 4 2), such that enthalpy dominates over
the mixing entropy15,16 (see Fig. 1a).

The Flory–Huggins free energy density in eqn (1) can be
easily generalized to describe an incompressible liquid mixture
with N different components as28

fFH fif gð Þ ¼ c0RT
XN
i¼1

fi lnfi þ
1

2

XN
i;j¼1

fifjwij

" #
: (2)
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The first term describes the mixing entropy and the second
term describes the enthalpic part, where wij = z(2oij � oii � ojj)/
(2kBT) are the Flory interaction parameters between components i
and j. Note that by definition wii = 0.

The Flory–Huggins theory presented above has been widely
used to model mixtures of regular solutions in dilute limit and
was also generalized to model polymeric systems.28–32 Now,
according to the Gibbs phase rule,1 there can be as many as N
coexisting liquid phases at fixed temperature and pressure, but
the actual number depends on the interaction parameters {wij}
and the average composition { �fi}. In the next subsection we
describe an algorithm for constructing a complete phase diagram
for a given set of interaction parameters {wij}, which is based on
the convexification of the free energy density in eqn (2).

2.2 Phase diagram based on the convex hull construction

In order to construct a phase diagram, one needs to find the
convex envelope of the free energy density in eqn (2). For binary
mixtures the free energy density depends on a single variable
(f1) and the two phase coexistence regions can be identified via
the standard common tangent construction.15,16 For mixtures
with N components, the free energy landscape can be represented as
an (N � 1)-dimensional manifold embedded in an N-dimensional
space. The regions in composition space that correspond to the P
coexisting phases can in principle be obtained by identifying
common tangent hyperplanes that touch the free energy manifold
at P distinct points. This is a very daunting task for mixtures with

many components. Here we describe how a complete phase
diagram can be obtained via a convex hull construction of the
discretized free energy manifold, which is implemented via
the standard Qhull algorithm.33 This method was initially
introduced by Wolff et al.34 for the analysis of ternary mixtures,
and here we generalize it to systems with an arbitrary number
of components N.

To illustrate the main idea of the algorithm, it is useful to
first recall the phase diagram construction process for binary
mixtures (N = 2). When the Flory parameter is sufficiently large
(w12 4 2), the free energy density becomes a double well potential
with two minima located at fa

1 and fb
1 (see Fig. 1a). When the

average composition �f1 is between the two minima (fa
1 o �f1 ofb

1),
the free energy of the system can be lowered by demixing and
thus forming two phases a and b with compositions fa

1 and fb
1,

respectively. The volume fractions Za and Zb (Za + Zb = 1) of the
two phases can then be obtained from the lever rule,15,16 such
that �f1 = Zaf

a
1 + Zbf

b
1.

Now, we show how identical information can be obtained
via the convex hull construction of the discretized free energy
landscape. First, we discretize the composition space f1 A [0, 1]
with regular segments and make a discrete approximation of
the free energy function (see Fig. 1a). Then, we construct the
convex hull of the discretized free energy function and we
project it back onto the composition space f1 A [0, 1]. Note
that the projected segments remain unchanged in the regions
that correspond to a single phase (i.e. for �f1 o fa

1 and �f1 4 fb
1),

Fig. 1 Construction of phase diagrams based on finding the convex hulls of free energy functions for (a) binary and (b and c) ternary mixtures. (a) The
original free energy function (black solid line in left) and the convexified one using the common tangent construction (black solid line in right) for a binary
mixture with Flory interaction parameter w12 = 2.31. Red dots and lines correspond to a discrete approximation of the free energy function evaluated on a
uniform grid (left) and to the convex hull of the free energy function (right). Red points are projected to the abscissa (composition space). Short projected
segments from the convex hull correspond to single phase regions, while long projected segments correspond to two phase ones. (b) Discrete
approximation of the free energy function (left) and its convex hull (right). (c) Projected triangles from the original free energy function (left) and from the
convex hull (middle). The number of stretched sides for projected triangles corresponds to the number of coexisting phases for the composition points
that reside within such triangles. This information is used to construct the ternary phase diagram (right).
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while all the segments between the two free energy minima are
replaced with a single stretched line segment. The stretched
segment of the projected free energy convex hull thus denotes
the two phase coexisting region, where the two ends of the
segment correspond to the compositions fa

1 and fb
1 of the two

coexisting phases, respectively. Note that the discretized points
may not exactly coincide with the true free energy minima, but
the error can be made arbitrarily small by refining the mesh.

For a ternary mixture we follow the same procedure. First,
we discretize the composition space with small equilateral
triangles and we make a discrete approximation of the free
energy function (see Fig. 1b). Then, we construct the convex
hull of the discretized free energy function and project it back
onto the composition space. Now, there are in general three
different types of projected triangles: triangles with three short
sides, triangles with two elongated sides, and triangles with
three elongated sides (see Fig. 1c). According to Wolff et al.,34

the three different types of triangles correspond to a single
phase regions, 2-phase regions, and 3-phase regions, respec-
tively. For the 3-phase region, the corners of triangles describe
the equilibrium compositions {fa

i } of the phases, where i and a
denote the indices of the component and of the phase, respectively.

For a mixture with average composition { �fi}, that resides inside
such a triangle, the mixture phase separates into three phases with

volume fractions 0 o Zao 1, such that �fi ¼
P
a
Zaf

a
i and

P
a
Za ¼ 1.

For the 2-phase regions, the two long sides of a projected triangle
are approximations for the tie-lines that connect the two coexisting
phases, while the two corners that are connected by the short side
correspond to the identical phase. For a mixture with an average
composition that lies inside such a triangle, the mixture phase
separates into the two phases located at the ends of the tie-line.
Refining this process with arbitrarily small mesh sizes enables
one to obtain complete information about ternary phase diagrams34

(see Fig. 1c).

Conceptually, it is straightforward to generalize the phase
diagram construction to mixtures with N 4 3 components.
First, we discretize the composition space with regular (N � 1)-
simplexes and make a discrete approximation of the free energy
function. Then, we construct the convex hull of the discretized
free energy function and project it back onto the composition
space. The projected (N � 1)-simplexes are distorted when they
correspond to regions with multiple coexisting phases. In Fig. 2
we display all distinct types of distorted tetrahedra (simplexes)
for an N = 4 component mixture. Next we demonstrate that
determining the number P of different coexisting phases for
distorted simplexes can be mapped to the problem of counting
the number of distinct connected components in a simple graph.

To this end, based on our knowledge from ternary mixtures
(see Fig. 1c), we make the observation that the two vertices of
simplexes that are connected by a stretched line segment corre-
spond to two distinct phases, while the two vertices that are
connected by a short line segment correspond to the identical
phase. Now, the vertices of simplexes can be represented as graph
vertices. The two simplex vertices i and j are considered con-
nected (disconnected), i.e. they correspond to the identical phase
(two distinct phases), when their Euclidian distance 8-

ri �
-
rj8 in

the composition space is smaller (larger) than some threshold D,
which we typically set to be slightly larger than the initial mesh
size. Note that the threshold needs to be slightly larger, because
the convex hull algorithm may return small irregular simplexes in
the 1-phase regions (see Fig. 1c). In practice we find that the
threshold D needs to be set at about B5 times the initial mesh
size. Thus we define the adjacency matrix Aij for such graph as

Aij ¼
1; ~ri �~rik k � D;

0; otherwise:

(
(3)

The number of distinct phases P for a given simplex is thus
equivalent to determining the number of distinct connected

Fig. 2 Distinct types of stretched tetrahedra, which correspond to regions with different numbers of coexisting phases, resulting from the projection of
the free energy convex hull to the composition space, and their respective adjacency matrices A (see text). Vertices with identical colors which are
connected with short line segments correspond to the same phase, while vertices with opposite colors that are connected with long line segments
correspond to different phases.

Paper Soft Matter

Pu
bl

is
he

d 
on

 2
6 

N
ov

em
be

r 
20

18
. D

ow
nl

oa
de

d 
by

 P
ri

nc
et

on
 U

ni
ve

rs
ity

 o
n 

2/
6/

20
19

 1
:0

1:
32

 P
M

. 
View Article Online

http://dx.doi.org/10.1039/c8sm02045k


This journal is©The Royal Society of Chemistry 2019 Soft Matter, 2019, 15, 1297--1311 | 1301

components for a graph characterized with the adjacency
matrix Aij. From graph theory35 we know that this number is
related to the spectrum of the Laplacian of A, which is defined
as Lij = Dij � Aij, where Dij is the weight matrix defined as
Dii ¼

P
k

Aik and Dij = 0 for i a j. The number of distinct

connected components is then equal to the algebraic multi-
plicity of the eigenvalue 0. The examples for tetrahedra in N = 4
component mixtures are shown in Fig. 2. The locations of
vertices also provide approximate values for the compositions
{fa

i } of each phase a. For a mixture with an average composition

{ �fi} that resides inside a simplex, the mixture phase separates
into P coexisting phases with volume fractions 0 o Za o 1, such

that �fi ¼
PP
a¼1

Zaf
a
i . The volume fractions {Za} can be determined by

calculating the pseudo-inverse36,37 of the N � P matrix F � fa
i as

Za = Raj
�fj, R = (FTF)�1FT. (4)

With this procedure we were able to construct phase diagrams
for mixtures with N = 4 (see Fig. 3 and Video S1, ESI†) and N = 5
components.

The algorithm described above is general and can in principle
be used to construct phase diagrams for mixtures with an
arbitrary number N of components with a given set of interaction
parameters {wij}. However, it is practically impossible to use this
procedure for constructing phase diagrams for mixtures with
N 4 5 components, which can be demonstrated by considering
the scaling of computational complexity. First, we need to
generate a uniform mesh for an N � 1 dimensional simplex to
discretize the composition space (see Fig. 1c). The number of
different points scales as Mp B M(N�1), where M is the number
of grid points for each component. In order to precisely capture
the boundaries between different regions on a phase diagram,
one has to use sufficiently fine mesh (M c 1) of the discretized
composition space. For N 4 3 the computational time of the
Qhull algorithm scales as O(Mpfv/Mv), where Mv r Mp is the
number of vertices on the convex hull and fv is the maximum
number of facets for a convex hull of Mv vertices.33 We note that
the number of facets grows as fv B MIN/2m

v /IN/2m!, where I�m
is the floor function. This means that, in the worst case scenario,
the computational complexity scales as O(M(N�1)N/2), when the free
energy landscape is convex to begin with (Mv = Mp). In practice,
we managed to use this algorithm to construct phase diagrams
for mixtures with up to N = 5 components.

3 Phase separation kinetics:
Cahn–Hilliard formalism and
microstructural characterization
3.1 Cahn–Hilliard formalism

The convex hull algorithm described in the previous section
can predict the number of coexisting phases, but it cannot
provide any information about the equilibrium microstructure,
which is governed by the interfacial properties between phases.

To account for such effects, we follow the treatment of Cahn–
Hilliard.22

With regard to kinetics, Hohenberg and Halperin38 introduced
several standard dynamic models of domain growth and
phase separation processes. The form of the dynamic evolution
equations depends on the nature of the order parameter
(conserved or non-conserved) and the physics of the problem
(e.g., relative importance of diffusive vs. advective transport
processes). Such models have been successfully employed to
study a wide spectrum of problems in materials science, e.g.
solidification, spinodal decomposition and many others.39

Recently, these models have also been used to study compositional
domain formation in lipid bilayer membranes.40–42 Several
different models have been proposed for the investigation of
multicomponent multiphase systems.43,44 In this paper we
follow the treatment by Cahn and Hilliard22 to investigate phase
separation of N = 4 and N = 5 component mixtures in three
spatial dimensions.

Before writing the general expression incorporating interfacial
effects for an N-component mixture, it is useful to briefly comment
on binary mixtures. For such systems, Cahn and Hilliard postulated
the free energy density f (f1,rf1) = fFH(f1, 1� f1) + c0RTw12l12

2(rf1)2,
where the first term describes the Flory–Huggins part of the free
energy in eqn (1) and the second term is related to the inter-
facial energy of the system. Here, l12 is related to the characteristic
width of the interface (usually taken proportional to the range of
interaction between molecules22). Note that a stable interface can
form only when w12 4 0. The Cahn–Hilliard approach assumes
that the interfacial energies are primarily coming from enthalpic
interactions. However, for long-chain polymers the entropic effects
may become important, and for such systems the interfacial part
can be described within the Flory–Huggins–de Gennes approach.45

Fig. 3 Phase diagram for a 4-component mixture with symmetric inter-
actions wij � 3.10 for i a j. From (a) to (d) the slicing planes are at
f4 = 0.025, 0.25, 0.50, and 1.0, respectively.
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In order to generalize the Cahn–Hilliard formalism to
mixtures with N components, it is useful to first rewrite the
Cahn–Hilliard free energy density for a binary mixture in a
symmetric form as

f = c0RT[f1 lnf1 + f2 lnf2 + w12f1f2 � l12
2w12rf1�rf2],

(5)

where f1 + f2= 1, and thus rf1 + rf2 = 0. The negative sign
before the l12

2 is thus merely a consequence of incompressibility,
while interfacial stability still requires that w12 4 0. Following the
procedure documented in ref. 22, we can generalize the above free
energy density to an N-component mixture as

f ¼ c0RT
XN
i¼1

fi lnfi þ
1

2

XN
i;j¼1

wijfifj �
l2

2

XN
i;j¼1

wijrfirfj

" #
;

(6)

where, for simplicity, we assumed that the ranges of inter-
molecular interactions are identical such that lij � l. The
parameter l thus describes the characteristic width of all
interfaces in the system.

Now, the equilibrium packing (i.e., morphology) of coexisting
phases can in principle be obtained by minimizing the total free
energy functional

F ¼
ð
V

d3~rf fið~rÞ;rfið~rÞf g½ �; (7)

subject to the fixed average composition �fi ¼
Ð
Vd

3~rfið~rÞ. This is
in general a very hard optimization problem, but one can learn
much about the local microstructure by considering the inter-
facial energies (also called surface tensions) gab between different
phases. According to Cahn and Hilliard,22 the interfacial energy
between the two phases a and b with compositions {fa

i } and {fb
i },

respectively, can be estimated as

gab � 2lc0RT
ð1
0

dZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kabD~fFHðZÞ

q
; (8)

where Z is a parameter that interpolates between the two phases
such that fi = Zfa

i + (1 � Z)fb
i . The other two quantities in eqn (8)

are defined as kab ¼ �
1

2

P
i;j

wij fa
i � fb

i

� �
fa
j � fb

j

� �
, and Df̃FH(Z) =

f̃FH(fi) � Zf̃FH(fa
i ) � (1 � Z)f̃FH(fb

i ), where f̃FH = fFH/(c0RT). Note
that the interface between phases a and b is stable only when
kab 4 0, due to the fact that the excess free energy f̃FH(Z) is
always positive. This observation provides some restrictions for
the Flory interaction parameters {wij}, that must satisfy relationPN
i;j¼1

aiwijaj o 0 for any {ai} with
P
i

ai ¼ 0.

Here we briefly comment on the special case, where each of
the two phases a and b are predominantly composed of
components a and b, respectively, i.e. fa

i E dia and fb
i E dib,

where dij denotes the Kronecker delta. This special case
typically occurs when Flory interaction parameters are large
(wij c 1). For this special case, it is easy to show that

Df̃FH EwabZ(1 � Z) and kab E wab. Hence the interfacial energy
can be estimated as

gab �
pc0lRT

4
wab; (9)

which is directly proportional to the Flory interaction para-
meter wab. The relation above is used in Section 6, where we
comment on how the desired packing morphology of coexisting
structures can be obtained by appropriately choosing the relations
between surface tensions {gab}, which are functions of the Flory
interaction parameters {wij}.

Note that the expression for the interfacial energy in eqn (8)
assumes that the interface is straight in composition space.
However, in our simulations we observed that the interfaces are
typically curved in composition space (see, e.g., Fig. 6). Hence
the expression in eqn (8) overestimates the true interfacial
energy, while still providing a very useful estimate.

3.2 Kinetics and numerical implementation

Rather than numerically minimizing the total free energy in
eqn (7) to obtain the morphology of coexisting phases, we
instead focus on the dynamic evolution of the mixture. Since
the absolute concentrations {ci � c0fi} are fixed in our system,
we employ the so-called model B dynamics38

@ci
@t
¼ r �

X
j

Mijr
df
dcj

� �" #
; (10)

where Mij are the Onsager mobility coefficients and df/dcj

denotes a functional derivative of the free energy density.
Furthermore, we adopt Kramer’s model46 to model the fluxes,
and write the mobility coefficients as Mij = (Dc0/RT)� (fidij� fifj).
We also assume that all components have identical diffusion
coefficients Dij � D. It should be noted that in eqn (10) we have
omitted terms accounting for any advective hydrodynamic flow
behavior and thermal noise. In this paper we focus on the regions
of phase space that undergo diffusion-dominated spinodal decom-
position, for which the free energy is locally unstable and thermal
fluctuations are unimportant.47 Thermal fluctuations are of course
important for the nucleation and growth within the binodal
regions,16,48 processes which are not investigated in this paper but
are left for future work.

Now, instead of the absolute concentrations ci, we work with
relative compositions fi that evolve via

@fi

@t
¼ Dr � fi

X
j

dij � fj

� �
r~mj

" #
; (11)

where we introduced the dimensionless chemical potentials

~mj ¼
d~f

dfj

¼ 1þ lnfj þ
XN
k¼1

wjk 1þ l2r2
� �

fk (12)

in terms of the dimensionless free energy density f̃ = f/(c0RT).
Note that the constraint

P
i

fi ¼ 1 is automatically satisfied,

when mobility coefficients Mij are set as per Kramer’s model.
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Hence, there are only N � 1 independent volume fractions and
N � 1 independent chemical potential gradients.

The nonlinear partial differential equations in eqn (11) were
solved numerically in a 3D cubic box with linear dimension L
discretized with 128 � 128 � 128 uniform grid points and
periodic boundary conditions. A semi-implicit time-integration
scheme49 was used, which enabled us to use relatively large
time steps. To do so, we first discretized eqn (11) in time and
separated the implicit linear and the explicit non-linear terms
following the usual IMEX (implicit–explicit) scheme50 as

fnþ1
i � fn

i

Dt
¼ Ni f

n
i

� �
þ Li f

nþ1
i

� �
; (13)

where fn
i is the volume fraction field of component i at time

step n. Ni and Li denote the nonlinear and linear parts of
the right hand side of eqn (11), respectively. In the present
problem, the stiffest term of the numerical integration corre-
sponds to the r4 operator, which is actually nonlinear, because
the mobilities {Mij} are functions of the compositions {fi}. To
overcome this difficulty, we followed the procedure in ref. 49
and introduced an artificial linear r4 term to stabilize the
nonlinear term as

Ni fif gð Þ ¼ Dr � fi

X
j

dij � fj

� �
r~mj

" #
þ ADl2r4fi; (14)

Li(fi) = �ADl2r4fi, (15)

where the numerical prefactor A is chosen empirically to ensure
numerical stability. In ref. 49 the value A = 0.5w12 was used for
the study of binary mixtures. Based on their experience, the
value A = 0.5 max{wij} was used in the present work.

Now, when evaluating nonlinear terms Ni({fi}), the products
of composition fields fn

i (-r) are carried out in real space, while
the spatial derivatives are evaluated in Fourier representation

f̂
n

i ð~kÞ ¼
Ð
Vd~re

�i~k�~rfn
i ~rð Þ=V. The Fast Fourier Transform (FFT)

algorithm was used to convert back and forth between real
space and Fourier space representations.51 In Fourier space, the
implicit eqn (13) can be solved to obtain

f̂
nþ1
i ¼

f̂
n

i þ N̂i f
n
i

� �
Dt

1þ Al2k4DDt
; (16)

where �̂ denotes a Fourier transform and k = |
-

k| is the magnitude

of the wave vector
-

k.
To make equations dimensionless, the lengths are measured

in units of the cubic box size L and time is measured in units of
t = l2/D, which describes the characteristic time of diffusion
across the interface between two phases. We chose l/L = 0.45 �
10�2 and a time step equal to 1/2 in dimensionless units. Our
system is initialized with the desired average composition { �fi}
with some small perturbation (uniform random noise with
small magnitude), and then the simulation runs for a total
duration of 105–106 timesteps.

3.3 Post-processing methods

The model B dynamics described above can be used to study
phase separation of mixtures with an arbitrary number of
components N. Once the mixture phase separates, we need to
find a way to extract the number P of coexisting phases and the
compositions {fa

i } of each phase. In order to do this, it is useful
to represent a simulation configuration in the composition
space, where the compositions {fi} at each of the 128 �
128 � 128 grid points are represented as points in an (N � 1)-
dimensional composition space (see Fig. 4). Note that there are
only N � 1 independent components due to the constraintP
i

fi ¼ 1. Once a mixture phase separates into P coexisting

phases, all the data points lie on a (P� 1)-dimensional manifold
in the composition space (see Fig. 4). Majority of the points are
located in P corners that correspond to the compositions {fa

i } of
P distinct phases denoted with Greek labels. Points that connect
these corners correspond to the compositions associated with
interfacial regions between phases. Below we describe how
this information can be extracted with Principal Component
Analysis (PCA) methods to estimate the number P of coexisting
phases together with a K-means clustering algorithm to estimate
the compositions of phases {fa

i }.
3.3.1 Estimation of the number of coexisting phases with

the principal component analysis. The PCA method can be
thought of as the fitting of an N-dimensional ellipsoid to the
composition data, where each axis of the ellipsoid represents a

Fig. 4 An example of the post-processing procedure for a N = 4 component
mixture with P = 3 coexisting phases. (a) The composition map of the
simulation data. Large gray dots correspond to the equilibrium compositions
of the three coexisting phases a, b, g as determined from the convex hull
algorithm. (b) The composition map for the filtered simulation data (see text).
Note that most points are concentrated in the neighborhood of equilibrium
phase compositions. (c and d) K-means clustering based on the (c) original
and (d) filtered simulation data. Crosses mark the cluster centers and data
points are colored according to the cluster to which they belong. Data in
this figure was obtained from simulations with Flory interaction parameters
w12 = 4.50, w13 = 2.50, w23 = 3.50, wi4 = 1.50, (i = 1, 2, 3) and initial
compositions { �fi} = {0.30, 0.20, 0.45, 0.05}.

Soft Matter Paper

Pu
bl

is
he

d 
on

 2
6 

N
ov

em
be

r 
20

18
. D

ow
nl

oa
de

d 
by

 P
ri

nc
et

on
 U

ni
ve

rs
ity

 o
n 

2/
6/

20
19

 1
:0

1:
32

 P
M

. 
View Article Online

http://dx.doi.org/10.1039/c8sm02045k


1304 | Soft Matter, 2019, 15, 1297--1311 This journal is©The Royal Society of Chemistry 2019

principal component.23 As can be seen in Fig. 4 the composition
points lie approximately on a (P � 1)-dimensional hyperplane.
Therefore, the PCA method produces an ellipsoid with P � 1
axes of finite size, while the other N � P + 1 axes are nearly zero.

First, we construct the dataset X for the PCA. The composition
{fi} for each of the 128 � 128 � 128 grid points is treated as one
entry in the dataset X, which is thus a matrix of dimensions
1283 � N. Second, we construct the covariance matrix C = XTX of
dimension N � N and calculate its eigenvalues and eigenvectors.
Eigenvectors and eigenvalues in turn correspond to the directions
and lengths of ellipsoid axes, respectively. For the solution with
P coexisting phases, we thus expect P � 1 non-zero eigenvalues
and N� P + 1 eigenvalues that are nearly zero. However, as can be
seen in Fig. 4, the interfacial points that connect certain two
phases do not necessarily lie on a straight line. Due to the curvature
of interfaces in the composition space some points may reside
outside the (P � 1)-dimensional hyperplane, and in such cases,
the PCA analysis produces additional nonzero eigenvalues. This
problem can be avoided by removing the interfacial points,
which correspond to regions with large compositional gradients
D = maxi|rfi|

2. By filtering out interfacial points with gradients
larger than D = 0.002/l2, (see Fig. 4), we kept only points that
correspond to P bulk phases. After the filtering, the PCA analysis
in fact produces only P � 1 nonzero eigenvalues. For the N = 4
component mixture with P = 3 coexisting phases in Fig. 4, the
eigenvalues of the covariance matrix C are 1.69 � 10�1, 6.51 �
10�2, 1.01 � 10�5, and 2.34 � 10�12. In practice, we find that there
is good agreement for the number of coexisting phases P with the
convex hull algorithm described in the previous section, if we define
nonzero eigenvalues as those that are larger than 10�4.

3.3.2 Estimation of phase compositions with K-means.
Compositions of stable phases correspond to regions of densely
clustered points in the composition space (see Fig. 4). There-
fore, once we determine the number P of coexisting phases with
the PCA method, we can then use the standard K-means
clustering method24 to compute the centers of clusters, which
yield the compositions of phases {fa

i }. In the present work, we
employed the scikit-learn package52 to compute the centers of
clusters. In analogy with PCA method, it is important to filter out the
interfacial points, otherwise the centers of clusters may be shifted
away from the actual compositions (see Fig. 4). With the caveats
noted above, the compositions of phases obtained from the K-means
clustering method agree very well with the compositions obtained
from the convex hull method described in Section 2 (see Fig. 4).

Once the compositions of phases are known, we can use this
information to construct local phase indicator functions {Za(

-
r)}

such that

Zað~rÞ ¼
1 in the bulk phase a;

0 in the bulk of all other phases:

(
(17)

For each grid point -
r, we can prescribe that the local composition

{fi(
-
r)} is a mixture of P phases with volume fractions {Za(

-
r)},

such that

fið~rÞ ¼
X
a

fa
i Za: (18)

These phase indicator functions can be thought of as proxies
for the intensity of fluorescent markers that are often employed
in experiments to mark individual phases. In the bulk of
each phase b the local concentration fi(

-
r) E fb

i and hence
Za(

-
r) E dab. The system of N equations for the P r N unknowns

{Za(
-
r)} in eqn (18) can be approximately solved by calculating

the pseudo-inverse of the N � P matrix F � fa
i . The phase

indicator functions can then be calculated as

Za = Rajfj, R = (FTF)�1FT. (19)

Note that within the interfacial regions the values of Za may
become negative or larger than 1. To remedy this, we apply the
following transformation to regularize the indicator functions:44

we set Za = 1 if Za 4 1, and Za = 0 if Za o 0. After this, we
normalize the indicator functions such that

P
a
Za ¼ 1. In this

way, we ensure that Za A [0, 1] and represents the fractions of
different phases at a given location.

4 Morphology of coexisting phases

In previous sections we described how the number of coexisting
phases P and their compositions {fa

i } can be obtained either
with the convex hull construction of the free energy function
(Section 2) or by analyzing the dynamic evolution of the mixture
together with the PCA and K-means clustering methods (Section 3).
In this section we compare the results of these two approaches for
the case of 4-component mixtures. Furthermore, we investigate the
microstructure of P coexisting phases that depends on both the
surface tensions {gab} between phases and on the volume fractions
of the phases, which are functions of interaction parameters

{wij} and average compositions { �fi}, respectively. Note that for
any triplets of phases a, b, and g, with surface tensions gab Z

gag Z gbg, the triple-phase junctions are mechanically stable
(unstable) when gab o gag + ggb (gab 4 gag + ggb).53 When triple-
phase junctions are mechanically unstable, the phase g penetrates
between phases a and b to minimize the total interfacial energy

(see Fig. 5). The
P
3

� �
inequalities between surface tensions

thus dictate the equilibrium morphology of phase separated
mixtures. We show that the packing morphologies found in

Fig. 5 Schematic of morphologies in a system with three phases a, b, and
g based on the magnitudes of surface tensions gab Z gag Z gbg.
(a) Mechanically stable triple-phase junctions. Finite contact angles between
different phases are related to the force balance via surface tensions.
(b) Mechanically unstable triple-phase junctions. Phase g completely wets
phases a and b so as to minimize the overall interfacial energy.
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simulations are consistent with the estimated surface tensions
in eqn (8) from the Cahn–Hilliard formalism. While the micro-
structure is primarily determined from equilibrium properties,
we show an example where kinetic pathways, which lead to
multi-stage phase separation, are responsible for the formation
of ‘‘pearled-chain’’ structures.

4.1 Symmetric quench

First, we analyze the simplest possible case, where all the
interaction parameters are equal wij � w, (i a j), and also the
average compositions for all components are equal to �fi � 1/N.
The N-component mixture is thus completely symmetric and
either stays mixed in a single phase, or phase separates into N
coexisting phases, each of which is enriched with one of the
components. In each phase, the N � 1 minority components
have a composition 0 o f r (1/N), while the majority compo-
nent has composition 1 � (N � 1)f. Note that the f = 1/N case
corresponds to an initially equimolar mixture. Due to the
symmetry of the system, the free energy density can be
expressed in terms of a single variable f as

~fFHðfÞ ¼ ðN � 1Þf lnfþ ½1� ðN � 1Þf� ln½1� ðN � 1Þf�

þ wðN � 1Þf 1�N

2
f

� �
;

(20)

where f̃FH(f) = fFH(f)/(c0RT) is the dimensionless free energy
density.

This special case can thus be mapped to an equivalent
binary mixture, which can be analyzed with standard tools.
For sufficiently large value of the interaction parameter w 4 wc,
the system phase separates into N coexisting phases. For a
symmetric solution with many components (N c 1) we find
that the critical interaction parameter scales as wc B 2 ln N and

in each phase the concentration of minority components scales
as f B 1/N2. Note that the spinodal region, where the free
energy becomes locally unstable for the uniform mixture, is
achieved only when the interaction parameter becomes very
large (wZ N c wc). Thus, for wE wc, the system phase separates
via nucleation and growth by crossing an energy barrier
Df̃ B (ln N)/4, as estimated from eqn (20).

4.2 Pair of strongly repelling components

Next, we investigate a slightly more complicated case, where a
pair of two components repel very strongly (large value of w),
while all the other interactions are moderate. As a representa-
tive system, we take a 4-component solution, where the com-
ponents 1 and 4 interact strongly (w14 = 5.50), while for all other
components, wij = 2.70. Because of the strong repulsion, the
system typically phase separates into at least two phases (see
Fig. 6), where one of the phases (a) is enriched with component
1 and devoid of component 4, while another phase (b) is
enriched with component 4 and devoid of component 1. Note
that when the average composition { �fi} is in a region of
composition space, where the system separates into 3 phases,
then the additional phase g, which is enriched with components
2 and 3, penetrates between the phases a and b in order to
minimize the total interfacial energy (see Fig. 6b and c). This
happens whenever surface tensions satisfy the inequality

gab 4 gag + gbg, (21)

which makes the triple-phase junctions mechanically unstable. For
the parameters used in Fig. 6b and c, we estimated dimensionless
surface tensions {~gab = 0.708, ~gag = 0.109, ~gbg = 0.107} from the
Cahn–Hilliard procedure in eqn (8), where dimensionless surface
tensions are defined as {~gab} � {gab/(2lc0RT)}. The estimated

Fig. 6 Four distinct morphologies of 4-component mixtures that include a pair of strongly interacting components. (a) Stable two-phase region, (b and
c) stable three-phase regions, and (d) metastable two-phase region. Bottom row displays points in the composition space, where large colored dots mark
the phase compositions obtained from the convex hull algorithm. Top row displays indicator functions of phases in real space (colors correspond to the
colored dots in the bottom row). The majority phase, which is marked with the gray dot in the composition map, is transparent in top rows. The
interaction parameters were set to w14 = w41 = 5.50 and all others wij = 2.70, (i a j).
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surface tensions are consistent with the inequality in eqn (21).
While the phase g penetrates between phases a and b in both
Fig. 6b and c, the two morphologies are quite distinct due to
differences in the volume fractions of the three phases.

Here, we make another observation. In some regions of com-
position space, the convex hull construction predicts 3 coexisting
phases, while in simulations of noise-free model B dynamics we
see only 2 coexisting phases (see Fig. 6d). This is due to the fact
that our dynamics is restricted to the spinodal region, and hence
the system can get trapped in metastable states in the absence of
thermal noise.

4.3 Multistage phase separation

In binary mixtures, spinodal decomposition occurs instantaneously,
while in mixtures with more components, phase separation can
happen in several stages. Here, we report on an example of such
behavior in a 4-component mixture with symmetric interaction
parameters wij � 4.5, (i a j). The solution with average composition
{ �fi} = {0.10, 0.10, 0.10, 0.70} first separates into 2 phases, and
subsequently one of the phases demixes into 3 phases (see Fig. 7
and Video S2, ESI†).

This can be understood by considering the local stability of

the free energy function. The Hessian matrix Hij ¼
@2fFH
@fi@fj

evaluated at the initial composition, has one negative value
with the corresponding eigenvector {fe

i } = {�0.2, �0.2, �0.2,
0.94}. At early stages of the phase separation process, the
mixture thus initially forms two phases by following the free

energy gradients, which are initially primarily oriented in the
direction of the eigenvector {fe

i }. By minimizing the free energy
in the direction of the eigenvector {fe

i } we find two local
minima located at {fa

i } = {0.0234, 0.0234, 0.0234, 0.9298} and

fa0
i

n o
¼ f0:31; 0:31; 0:31; 0:07g. These are approximately the

compositions of the two phases a and a0 that form at the initial
stages of the phase separation process (see Fig. 7a). By analyzing
the eigenvalues of Hessian matrix at compositions {fa

i } and

fa0
i

n o
we find that the phase a corresponds to a local minimum

(positive eigenvalues), while the phase a0 actually corresponds to
a saddle point (two negative eigenvalues). Therefore the phase a0

eventually phase separates into 3 phases (see Fig. 7b and c),
leading to the emergence of all 4 equilibrium phases.

We can also rationalize the resulting morphology of the
system via the following arguments. From eqn (4) we can
estimate the volume fractions Za = 0.7 and Za0 = 0.3 of the two
phases that form initially. Because the volume fraction of phase
a0 is above the percolation threshold,54 the two phases form a
bicontinuous structure. After a0 phase separates, the three new
phases form within a bicontinuous structure. As a consequence,
the system initially forms ‘‘pearl chain’’-like structures of the 3
phases (see Fig. 7b), while during the later coarsening stage, these
long chains break into droplets, courtesy of the Plateau–Rayleigh
instability,53,55 leading to the formation of triplet ‘‘Janus-like’’
droplets. We note that if the volume fraction of the intermediate
phase a0 was below the percolation threshold, then the system
would first form droplets of the phase a0, which subsequently
phase separate into triplet ‘‘Janus particle’’-like droplets.

Fig. 7 Multistage phase separation. (a) At t = 1000t, the initial instability leads to the formation of two phases a and a0. (b) At t = 150 000t, a secondary
instability causes phase a0 to split into three equilibrium phases b, g, and d, which form the ‘‘pearl chain’’-like structure. (c) At t = 292 000t, pearled chains
break into triplet ‘‘Janus particle’’-like droplets due to the Plateau–Rayleigh instability. Bottom row displays points in the composition space, where large
colored dots mark the phase compositions obtained from the convex hull algorithm. Top row displays indicator functions of phases in real space (colors
correspond to the colored dots in the bottom row). The majority phase, which is marked with the gray dot in the composition map, is transparent in top
rows. Interaction parameters were set to wij � 4.50, (i a j), with an average composition { �fi} = {0.1, 0.1, 0.1, 0.7}.
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4.4 Nested structures

In this section we briefly comment on how one can rationally
design nested ‘‘Russian doll’’-like droplets by tuning the surface
tensions between different phases. In Section 4.2 we already
mentioned that in order to make a nested structure with 3
phases a, b and g, surface tensions have to satisfy the inequality
in eqn (21). The nested structure in Fig. 6b satisfies this
inequality, but does not form droplets, as the volume fraction
of the intermediate green phase is large enough that it percolates.
However, once the inequality between surface tensions is satisfied,
then it is straightforward to tune the volume fractions of the
coexisting phases by changing the average compositions { �fi}
[see eqn (4)] to get the ‘‘core–shell’’ droplets for the 3 phases
structures (see Fig. 8a).

Next, we will design a morphology with nested ‘‘Russian-doll’’
droplets with 4 coexisting phases, such that phase a domains
reside completely inside phase b domains, which themselves
reside inside phase g domains, which in turn are surrounded by
domains corresponding to phase d. To ensure that the triple-

phase junctions between any of the possible
4
3

� �
¼ 4 triplets are

mechanically unstable, we now have 4 different inequalities for
surface tensions

gag 4 gab + gbg, gad 4 gab + gbd,

gbd 4 gbg + ggd, gad 4 gag + ggd. (22)

Note that if any of the above inequalities is not satisfied, then
some triple-phase-junctions are mechanically stable and the

desired nested structure does not form. An example of such
behavior is displayed in Fig. 8b, where the inequality for the
triplet a, b, d is slightly violated based on the estimated surface
tensions {~gab = 0.090, ~gag = 0.474, ~gad = 0.881, ~gbg = 0.264,
~gbd = 0.860, ~ggd = 0.142}, and, as a consequence, the red phase
a appears ‘‘pinned’’ to the boundary with other phases.

The final question that remains is how do we choose Flory
interaction parameters {wij}, such that the surface tension
inequalities in eqn (22) are all satisfied? We note that in the
4-component mixture, the 4 coexisting phase regions typically
form only, when the interaction parameters {wij} are quite large.
In this case, each phase is enriched with one of the components,
and thus the surface tensions between different phases are
approximately proportional to the interaction parameters [see
eqn (9)]. Therefore, we can translate the inequalities for surface
tensions in eqn (22) to similar inequalities for interaction para-
meters {wij}. Using this idea we were able to construct nested
‘‘Russian-doll’’ droplets with 4 coexisting phases (see Fig. 8c and
Video S3, ESI†). We verified that the estimated surface tensions
{~gab = 0.113, ~gag = 0.457, ~gad = 1.64, ~gbg = 0.0752, ~gbd = 0.940,
~ggd = 0.595} satisfy the inequalities in eqn (22).

5 Domain coarsening kinetics

Next, we turn to the quantitative description of domain growth
and coarsening kinetics during phase separation of multicomponent
mixtures. Upon quenching into the spinodal regions of the phase
diagram, small compositional heterogeneities are rapidly amplified
in time and lead to the formation of compositional domains

Fig. 8 Nested ‘‘Russian doll’’ droplets. (a) A 3-phase ‘‘Russian doll’’, (b) an improper 4-phase ‘‘Russian doll’’, and (c) a proper 4-phase ‘‘Russian doll’’.
Bottom row displays points in the composition space, where large colored dots mark the phase compositions obtained from the convex hull algorithm.
Top row displays indicator functions of phases in real space (colors correspond to the colored dots in the bottom row). The majority phase, which
is marked with the gray dot in the composition map, is transparent in top rows. The interaction parameters and initial compositions were set to:
(a) w12 = 2.50, w13 = 5.50, w23 = 3.50, wi4 = 1.50, (i = 1, 2, 3) and { �fi} = {0.10, 0.15, 0.70, 0.05}; (b) w12 = 2.50, w13 = 4.00, w23 = 3.00, w14 = 5.50, w24 = 5.00,
w34 = 2.50 and { �fi} = {0.10, 0.10, 0.20, 0.60}; (c) w12 = 2.50, w13 = 4.10, w23 = 2.40, w14 = 7.00, w24 = 5.10, w34 = 3.70, and { �fi} = {0.06, 0.09, 0.12, 0.73}.

Soft Matter Paper

Pu
bl

is
he

d 
on

 2
6 

N
ov

em
be

r 
20

18
. D

ow
nl

oa
de

d 
by

 P
ri

nc
et

on
 U

ni
ve

rs
ity

 o
n 

2/
6/

20
19

 1
:0

1:
32

 P
M

. 
View Article Online

http://dx.doi.org/10.1039/c8sm02045k


1308 | Soft Matter, 2019, 15, 1297--1311 This journal is©The Royal Society of Chemistry 2019

with a characteristic length scale, as evident in Fig. 7a. Once the
spinodal instability is exhausted, phase separating systems enter
a so-called domain coarsening regime, during which capillary
forces drive competitive growth of larger domains at the expense
of smaller ones so as to minimize the total interfacial energy of
the system. In two phase liquid systems, coarsening can be
quantitatively captured via a single time-dependent length scale
(average domain size of the minority phase droplets) R(t) B ta,
where the coarsening exponent a = 1/3 for systems in which
diffusive transport processes dominates over advective ones.25–28

Importantly, in this so-called scaling regime, morphologies are
self-similar, and structural correlation functions only depend on
r/R(t). Bray26,27 has argued that when scaling behavior is observed
in systems with more than two coexisting phases, the coarsening
exponent should still be given by a = 1/3. Below, we first introduce
appropriate structure factors and subsequently examine domain
coarsening kinetics in systems with 4 coexisting phases in light of
Bray’s theoretical prediction.

As mentioned already in Section 3, we employ a family of
phase indicator functions {Za} to characterize the morphology
of the phase separating N-component system. The indicator
functions are constructed such that, within domains of a
particular phase b, Zb = 1, while all other Za = 0. In order to
quantitatively calculate the characteristic length scale of domains
belonging to a specific phase, we introduce the following structure
factors

Sabð~k; tÞ ¼ Ẑað~k; tÞẐbð�~k; tÞ; (23)

where Ẑa(
-

k,t) denote the Fourier transforms of phase indicator

functions defined as Ẑað~k; tÞ ¼
Ð
Vd

3~re�i
~k�~rZað~r; tÞ=V . Given a

structure factor Sab(
-

k,t), we define our characteristic length scale
in a commonly adopted way40,56–58 via

RaðtÞ ¼ 2p

Ð
d3~kSaað~k; tÞÐ

d3~k ~k
			 			Saað~k; tÞ

(24)

As a benchmark, we first analyzed the coarsening of a binary
mixture, which reaches the usual asymptotic coarsening behavior
with exponent a = 1/3 at around (tD/l2)1/3 E 15 (see Fig. 9a). We first
compare it to the coarsening of a 4-component mixture that is
trapped in a metastable region with two coexisting phases (see
Fig. 6d). This mixture also reaches the t1/3 asymptotic coarsening
stage, but at a later time (tD/l2)1/3 E 25 (see Fig. 9b). Small
deviations at large times can be attributed to the presence of
finite size effects.

In the case of 4-component mixtures with 4 coexisting phases,
our numerical coarsening data indeed indicate convergence
towards the predicted t1/3 behavior,26,27 as shown in Fig. 10. Very
little coarsening takes place during the first stage of the multi-
stage phase separation process involving two coexisting phases
displayed in Fig. 7. Once all 4 coexisting phases have emerged,
however, the domains of all phases begin to coarsen at the same
rate and the asymptotic coarsening is achieved at around
(tD/l2)1/3 E 30. On the other hand, in the case of the ‘‘Russian doll’’
morphology in Fig. 8c, all phases appear roughly simultaneously,

and begin to coarsen, albeit with different rates. We attribute
this to the fact that the initial formation of the nested micro-
structure imposes correlations on the local compositions, which
are not accounted for in standard coarsening theories. On the
other hand, once the nested microstructure has formed, a single
length scale is sufficient to describe the morphology, and hence
a crossover to the predicted t1/3 behavior is reached at around
(tD/l2)1/3 E 30. Small deviations at large times are again
attributed to the presence of finite size effects. We expect that
the crossover time scale depends on the number of coexisting
phases and the droplet morphology, and plan to investigate this
in more detail in future work. We also note that small nested
droplets that are disappearing during the coarsening process
gradually dissolve in a layer-by-layer fashion until they completely
vanish (see Video S3, ESI†).

6 Design of target microstructures

In this section we discuss how one can rationally design the
interaction parameters {wij} and average compositions { �fi} to
achieve target microstructures. As was already alluded to in
previous sections, the equilibrium microstructure is completely

Fig. 9 Coarsening kinetics of two coexisting phases for (a) a binary
mixture (N = 2) with an interaction parameter w12 = 2.50 and composition
{ �fi} = {0.5, 0.5}, and (b) the 4-component mixture in Fig. 6d that is trapped
in a metastable state. Solid black lines are linear fits to Ra at large times.

Fig. 10 Coarsening of 4-component mixtures with 4 coexisting phases.
(a) Coarsening kinetics of the mixture with multistage phase separation
displayed in Fig. 7. The transition from the initial instability to the secondary
one is denoted by the dashed line. (b) Coarsening kinetics for the mixture
with nested ‘‘Russian-doll’’ droplet morphology shown in Fig. 8c. Solid
black lines are linear fits for the characteristic length scale of the majority
phase (marked with gray crosses) at large times.

Paper Soft Matter

Pu
bl

is
he

d 
on

 2
6 

N
ov

em
be

r 
20

18
. D

ow
nl

oa
de

d 
by

 P
ri

nc
et

on
 U

ni
ve

rs
ity

 o
n 

2/
6/

20
19

 1
:0

1:
32

 P
M

. 
View Article Online

http://dx.doi.org/10.1039/c8sm02045k


This journal is©The Royal Society of Chemistry 2019 Soft Matter, 2019, 15, 1297--1311 | 1309

determined from surface tensions between phases and their
volume fractions. In general, the relation between the surface
tensions and interaction parameters is quite complex. However,
it can be drastically simplified in the limit where interaction
parameters {wij} are large. In this limit the surface tensions are
approximately proportional to the interaction parameters [see
eqn (9)]. By using this relationship, we discuss how one can
rationally design three different microstructures in 5-component
mixtures with 5 coexisting phases: ‘‘Russian-doll’’ droplets,
encapsulated triple ‘‘Janus-like’’ droplets, and encapsulated
‘‘micro-emulsions’’ (see Fig. 11).

The ‘‘Russian-doll’’ droplets with P = N phases a1, a2,. . ., aN,
such that the phases are numbered sequentially with a1 (aN)
being the innermost (outermost) phase of the nested structure,
require that the surface tensions for an arbitrary triplet ai� aj�
ak of phases satisfy the inequality gaiak

4 gaiaj
+ gajak

, where
i o j o k. By relating the surface tensions to interaction
parameters according to the eqn (9) and by satisfying these
inequalities, we were able to generate the ‘‘Russian-doll’’ droplets
with 5 phases (see Fig. 11a). Note that the formation of droplets
requires that the volume fraction of the outermost phase aN is
sufficiently large to prevent the formation of a nested bicontin-
uous structure (see Fig. 6b). While we were able to successfully
generate ‘‘Russian-dolls’’ in this 5-component solution, this
might be more challenging in solutions with N 4 5 components
within the Flory–Huggins approach. This state of affairs arises
due to the fact that the number of inequalities between surface

tensions
N
3

� �
is larger than the number of interaction para-

meters
N
2

� �
. Thus, it might not be possible to satisfy all the

inequalities within the Flory–Huggins model.
Next, we discuss how to design encapsulated triple ‘‘Janus

particle’’-like droplets, which we refer to as triplets (see
Fig. 11b). For simplicity, we assume that the 3 phases a, b,
and g, that are forming the triplets, are equivalent, such that
their surface tensions gab = gag = gbg. The phase d that is
encapsulating triplets is shielding them from the surrounding

matrix phase e. Therefore, the surface tensions must satisfy the
inequalities gme 4 gmd + gde, where m A {a, b, g}. By satisfying
these inequalities and by setting the volume fraction of the
matrix phase e to be sufficiently large, we were indeed able to
obtain encapsulated triplets (see Fig. 11b).

Finally, we comment on how to modify interaction parameters
to transform the encapsulated triplets to emulsions of 3 different
encapsulated phases. This time, the phase d must also shield the
phases a, b, and g from each other. The surface tensions thus
need to obey the following inequalities: gmn4 gmd + gdn, where m,
n A {a, b, g, e}. By tuning the volume fractions of individual
phases one could obtain either encapsulated emulsions of 3
phases (see Fig. 11c, where e is the majority phase) or emulsions
of 4 phases (see Fig. 11d, where d is the majority phase).

To summarize, we demonstrated the first steps towards
reverse engineering interaction parameters {wij} and average

compositions { �fi} to construct the target microstructure. To

specify the morphology of P coexisting phases, there are
P
3

� �
different inequalities between surface tensions. To ensure that
there is enough flexibility, there must be sufficient number of
components N, such that there are at least as many interaction
parameters {wij} as there are inequalities between surface tensions
N
2

� �
	 P

3

� �
. The average compositions { �fi} must be chosen,

such that they lie in a region of phase space that correspond to
the P coexisting phases with compositions {fa

i }. By moving the
average compositions { �fi} inside that region one can tune the
volume fractions of phases [see eqn (19)]. This can be a very
complicated task for mixtures with many components and many
coexisting phases within the Flory–Huggins model.

7 Conclusions

In this paper we investigated phase diagrams, coarsening and
morphologies of 4- and 5-component mixtures. The algorithm
developed for constructing phase diagrams based on the

Fig. 11 Designed nested morphologies for 5-component mixtures with 5 coexisting phases. (a) ‘‘Russian-doll’’ droplets, (b) encapsulated triplets, and
(c) encapsulated ‘‘emulsions’’. By increasing the volume fraction of the lubricating gray phase in (c), we obtained emulsion with 4 different types of
droplets in (d). The majority phase is completely transparent in all panels. The internal structure can be seen in Videos S4–S7 (ESI†). Interaction
parameters and initial compositions were set to: (a) w12 = 2.50, w13 = 5.10, w23 = 2.40, w14 = 6.00, w24 = 5.75, w34 = 2.75, w15 = 7.75, w25 = 7.50, w35 = 6.50,
w45 = 3.00, { �fi} = {0.06, 0.07, 0.08, 0.09, 0.70}; (b) w14 = w15 = w45 = 4.25, w23= 4.00, wi2 = 3.00, wi3 = 7.00, (i = 1, 4, 5), { �fi} = {0.067, 0.10, 0.70, 0.066,
0.066}; (c) w14 = w15 = w45 = 6.00, w23 = 4.00, wi2 = 3.00, wi3 = 7.00, (i = 1, 4, 5), { �fi} = {0.05, 0.15, 0.70, 0.05, 0.05}; (d) w14 = w15 = w45 = 6.00, w23 = 4.00,
wi2 = 3.00, wi3 = 7.00, (i = 1, 4, 5), { �fi} = {0.16, 0.42, 0.15, 0.14, 0.13}.
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convex hull construction of free energy functions is general and
can be adapted to an arbitrary physical system with N r 5
components. The PCA and K-means clustering methods in turn
provide convenient means to extract both the number of
coexisting phases and their compositions from a given physical
realization, also in systems with N 4 5 components that are not
directly amenable to phase diagram analysis.

In agreement with the predictions by Bray,26,27 we found
that the coarsening kinetics of multiphase mixtures approaches
the t1/3 scaling in the long-time limit. However, our data show
that phase separation can occur in several stages, and it remains
unclear how the coarsening during intermediate stages depends
on the number of coexisting phases and their morphology.

As for the equilibrium packing morphology of coexisting
fluid phases, it is completely determined by volume fractions
and surface tensions between phases. To this end, we provided
guidelines for a rational design of parameters in the Flory–Huggins
model that produce target nested morphologies, such as ‘‘Russian
doll’’ droplets, encapsulated triplets, and encapsulated emulsions
in 5 component systems with 5 coexisting phases. The design of
such structures provides the first steps towards the design of novel
self-assembled, autonomic, and hierarchical compartments, that
could be used, e.g., for controlled-release systems in medical
applications, capable of encapsulating more components than
currently achievable with other methods. We note that it might
be hard to design arbitrary morphologies in mixtures with more
than 5 components within the Flory–Huggins approach, given that
the number of inequalities between surface tensions becomes
larger than the number of free parameters. This is simply a
limitation of the Flory–Huggins model, while other models with
more adjustable parameters (or real systems) may provide enough
flexibility to achieve the desired structure.

An appealing feature of the Cahn–Hilliard approach employed
in the present work is that it naturally incorporates both interfacial
and bulk thermodynamics (with the former driving the coarsening
process), and accounts for complex topological changes associated
with splitting and merging of droplets. On the other hand, in
order to properly numerically resolve the diffuse interfaces, our
simulations are limited to systems with linear dimensions on
the order of B100l, where l is the interfacial width. Extending
simulations to much larger scales in order to assess the
convergence to the asymptotic coarsening behavior remains a
challenge.

We note that the work reported in this manuscript solely focused
on phase separation processes involving spinodal decomposition.
At the present time, how nucleation and growth proceeds in
multicomponent systems with complex energy landscapes with
many local minima and energy barriers, remains an open
question. In closing, we hope our work will stimulate further
experimental, numerical, and theoretical investigations of phase
behavior and phase transitions in multicomponent systems.
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