
 

Designing the Morphology of Separated Phases in Multicomponent Liquid Mixtures
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Phase separation of multicomponent liquid mixtures plays an integral part in many processes ranging
from industry to cellular biology. In many cases the morphology of coexisting phases is crucially linked to
the function of the separated mixture, yet it is unclear what determines the morphology when multiple
phases are present. We developed a graph theory approach to predict the topology of coexisting phases
from a given set of surface energies, enumerate all topologically distinct morphologies, and reverse
engineer conditions for surface energies that produce the target morphology.
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Phase separation and multiphase coexistence are ubiqui-
tous ranging from the simple demixing of water and oil to
more sophisticated industrial processes related to medicine,
food, cosmetics, energy, environment, etc. [1]. Phase
separation and multiphase coexistence also occur in nature,
where they give rise to structural colors in birds [2–4] and
produce a plethora of intracellular condensates [5–8].
Coexisting liquid phases can adopt a variety of morphol-

ogies [9–15],which areoften directly linked to some function,
e.g., the nested morphology of separated phases can assist
with drug delivery [16] and with the biogenesis of ribosomes
inside cell nuclei [17], while the tunable morphologies
of multiphase droplets can serve as microlenses with
tunable focal length [14]. The control of the morphology
of separated liquid phases could open the avenue for new
applications, but we currently lack tools for designing the
morphology of more than three coexisting phases. In this
Letter we make an important step in this direction.
The phase separation process is rooted in thermodynam-

ics and the main principles have been known since Gibbs
[18]. More recently these arguments have been extended to
multicomponent systems and several tools have been
developed that enable predicting the number of coexisting
phases, their compositions and volume fractions, and sur-
face energies between them by minimizing the bulk free
energy [19–25]. To determine how these phases arrange in
space, we also need to minimize the surface energies. Here,
we neglect buoyancy effects, hydrodynamics, and chemical
reactions, which can also affect the morphology [1,7,26].
The focus of this Letter is to explain how surface

energies determine the topology of separated liquid phases,
which can be represented with a connectivity graph, and we

also briefly comment how volume fractions affect the
geometry of separated phases. We show how to use graph
theory to predict the topology of separated phases from a
given set of surface energies (forward problem), enumerate
all topologically distinct morphologies, and reverse engi-
neer conditions for surface energies that produce the target
morphology (inverse problem).
The graph theory approach presented below is general

and can be applied to any model system, where the surface
energies can be measured experimentally or numerically.
To introduce relevant concepts, we first discuss the
morphology of three coexisting phases R (red), G (green),
and B (blue), with surface energies γRB ≥ γRG ≥ γGB > 0.
When surface energies satisfy the triangle inequality
(γRB < γRG þ γGB), the phases partially wet each other.
Triple junctions, where three phases meet, are stable
[Fig. 1(a)]. The equilibrium angles between different
phases can be obtained from the force balance of surface
tensions, which is known as the Neumann construction
[27]. In contrast, when surface energies do not satisfy the
triangle inequality (γRB > γRG þ γGB), the phase G com-
pletely wets the phases R and B to eliminate the high
surface energy γRB [Fig. 1(b)]. Here, triple junctions are
unstable because surface tensions γRG and γGB cannot
balance the high surface tension γRB [Fig. 1(b)].
The topology of separated phases can be represented

with a connectivity graph, where vertices correspond to
phases and edges connect phases that share a 2D interface.
Note that phases that meet only at points or 1D lines are
disconnected in the graph representation. The fully con-
nected graph describes the partial wetting case, where all
phases are in contact with each other [Fig. 1(a)], while the
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graph with a missing edge corresponds to the complete
wetting case [Fig. 1(b)].
The wetting conditions presented above can be used to

infer the behavior of mixtures with Np > 3 coexisting
phases. For any model system with Nc components, the
first step is to predict the number Np of coexisting phases,
their compositions and volume fractions, and surface
energies fγIJg between them by using the tools described
in Refs. [19–25]. For each of the ðNp

3
Þ subsets of three

phases fI; J; Kg, the local arrangement of phases depends
on the surface energies fγIJ; γIK; γJKg and can be repre-
sented with triplet connectivity graphs (Fig. 1). The fully
connected graph corresponds to the partial wetting
case with stable triple junctions I-J-K, where surface
energies satisfy the triangle inequality (γIJ < γIK þ γJK ,
γIK < γIJ þ γJK, γJK < γIJ þ γIK). The graph with a miss-
ing edge I-J describes the case where the phase K
completely wets the phases I and J and surface energies
satisfy the inequality γIJ > γIK þ γJK. Analogously we can
interpret the two other graphs with either a missing edge
I-K or a missing edge J-K.
The information from the triplet connectivity graphs for

each of the ðNp
3
Þ subsets of three phases is then used to

construct the connectivity graph for the whole system with
Np phases. Starting with a fully connected graph with Np

vertices, we iterate over each of the ðNp
3
Þ triplet graphs and

for each missing edge, we remove the corresponding
edge in the Np connectivity graph. This construction is
based on the local minimization of surface free energies.
The resulting connectivity graph describes the topology of

the mixture, assuming that the mixture was initially well
mixed, such that during the early stages of phase separation
all possible pairs of phases come in contact. See the
Supplemental Material for details [28].
Figure 2 shows a few representative cases for mixtures

with Np ¼ 4 coexisting phases (red, green, blue, white),
where ð4

3
Þ ¼ 4 triplet connectivity graphs are used to

construct the connectivity graph with four vertices that
describes the topology of separated phases. When all four
triplet connectivity graphs are fully connected, then the
connectivity graph with four vertices is also fully connected
[Fig. 2(a)]. Distinct sets of triplet graphs can construct the
same four-component connectivity graph. One such example
can be seen in Figs. 2(b) and 2(c), where the graph is missing
an edge between the white and blue and between the white
and green phases because the red phase completely wets the
white and blue and white and green phases. The different
wetting conditions [highlighted in Figs. 2(b) and 2(c)]
between the white, green, and blue phases in these distinct
cases do not affect the final connectivity graph (or topology),
but they affect the transient dynamics. For the case in
Fig. 2(b), the white, green, and blue phases form stable
triple junctions, which get broken once the red phase comes
along and separates the white phase from the green and blue
phases. In contrast, for the case in Fig. 2(c), the green phase
completely wets the white and blue phases, but the presence
of the red phase separates the green and white phases.
To demonstrate how the graph theory representa-

tion applies to a specific model system, we use the

(a) (b)

FIG. 1. Morphologies of three coexisting phases R (red), G
(green), and B (blue) are determined by the magnitudes of surface
tensions (γRB ≥ γRG ≥ γBG > 0) and volume fractions. First row:
schematics of local arrangements of phases and corresponding
graph representations for (a) partial wetting (γRB < γRG þ γGB),
and (b) complete wetting (γRB > γRG þ γGB). Second row:
representative simulation snapshots at 106 time steps (see Video
S1 for the time evolution [28]). The blue phase is semitransparent
for the snapshots with unequal volume fractions. The simulation
parameters are given in Table S1 [28].

(a)

(b)

(c)

FIG. 2. Prediction of the topology of separated phases from the
set of surface energies fγIJg. Surface energies are used to produce
the set of graphs of triplets of phases, from which we construct
the connectivity graph describing the topology of separated
phases (see text). (a) When all four triplet connectivity graphs
are fully connected, then the connectivity graph with four vertices
is also fully connected. (b),(c) Different sets of graphs (yellow
boxes indicate the difference) can produce the same topology of
separated phases. The last column shows representative simu-
lation snapshots at 106 time steps. The simulation parameters are
given in Table S1 [28].
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Flory-Huggins [36,37] model of regular solutions together
with a Cahn-Hilliard approach for kinetics and interfacial
energies [29] for Np ¼ 3, 4, and 5 coexisting phases in 3D.
The free energy density f of the mixture with Nc different
components is written as [7,25,38]

f
cRT

¼
XN

i¼1

ϕi lnϕiþ
1

2

XN

i;j¼1

χijϕiϕj−
λ2

2

XN

i;j¼1

χij∇ϕi∇ϕj; ð1Þ

where c is the total concentration of the mixture, R the
gas constant, T the temperature, ϕi the volume fraction of
the component i with

P
i ϕi ¼ 1, χij the interaction

parameter between components i and j with χii ¼ 0, and
λ is the characteristic width of the interface. In Eq. (1) the
three terms describe the entropy of mixing, the interaction
energy, and the interfacial energy [39]. The volume
fractions evolve as

∂ϕi

∂t ¼ Di∇ ·

�
ϕi

X

j

ðδij − ϕjÞ∇μ̃j

�
; ð2Þ

whereDi is the diffusion coefficient [40], δij the Kronecker
delta, and μ̃j ¼ 1þ lnϕj þ

P
k χjkð1þ λ2∇2Þϕk are the

dimensionless chemical potentials. Here, we also assume
that the interaction parameters χij are sufficiently large,
such that the mixture separates into Np ¼ Nc distinct
phases via spinodal decomposition, where each of the
phases I is enriched with the component i [25], and the
volume fractions of separated phases are approximately
equal to the average volume fractions fϕ̄ig of components.
In this limit, the surface energies can be estimated as
γIJ ≈ ðπcλRT=4Þχij. The details of the simulations are
provided in the Supplemental Material [28] and Ref. [25].
In Figs. 1 and 2 we checked that the connectivity graphs

accurately predict the topology of separated phases in
simulations with Nc ¼ 3 and Nc ¼ 4 components, respec-
tively, where the interaction parameters χij ∝ γIJ were
chosen to be consistent with the set of inequalities for
surface energies described by the graphs of triplets of
phases. Note that the topology of separated phases is fully
determined by surface tensions, while the geometry of
separated phases also depends on the volume fractions of
phases (Fig. 1). Phases percolate through the whole space,
when their volume fractions exceed the percolation thresh-
old (≈0.34 in 3D [41]), but otherwise they break into
droplets to minimize the surface energy, which is known as
the Rayleigh-Plateau instability [27,42].
The representation of the topology of separated phases in

terms of the connectivity graphs enables us to enumerate all
topologically distinct morphologies, which correspond to
all connected unlabeled graphs [43]. For Np ¼ 3 phases
there are two distinct graphs, which are shown in Fig. 1. For
Np ¼ 4 phases there are six distinct graphs (Fig. 3), which
can all be realized by appropriately adjusting surface

energies (as described below). Since some of the topologies
can be obtained from multiple sets of graphs for triplets of
phases [Figs. 2(b) and 2(c)], we systematically investigated
all possibilities for the mixture with Np ¼ 4 phases.
First we generated all 4ðNp

3 Þ ¼ 44 ¼ 256 sets of ðNp
3
Þ ¼ 4

triplet connectivity graphs, where each graph can either be
fully connected or is missing one of the three edges. Then we
removed all duplicate sets of graphs that can be obtained by
permutations of labels, resulting in 19 distinct sets of graphs
(Figs. S1, S2 [28]). Each set of graphs of triplet phases
corresponds to a set of inequalities for surface energies fγIJg
as described above, which can have either infinite solutions
or no solutions. We found that 6 of the 19 sets have no
solutions (Figs. S2 [28]). To obtain representative values of
interaction parameters fχijg for the other 13 sets (Figs. S1
[28]), we solved a linear programming problem by mini-
mizing the sum

P
ij χij subject to the inequalities provided

by the set of graphs, where we took into account that
χij ∝ γIJ. To ensure that the inequalities were strictly
enforced we added a small ϵ ¼ 0.2–0.5 to each inequality,
e.g., χij ≥ ϵþ χik þ χjk. Furthermore, we imposed addi-
tional constraints χij ≥ χmin ¼ 2–3, where χmin has to be
sufficiently large to ensure that the mixture actually separates
into four phases via spinodal decomposition [25].
This way we were able to obtain representative simu-

lations for all 13 distinct sets of graphs (Fig. S1 [28]) and
the topologies of separated phases were consistent with
predictions from the graph theory approach described
above. These 13 cases can be grouped in 6 distinct
topologies, which are shown in Fig. 3 (see Video S2 for
time evolution [28]), where we also show how changes in
volume fraction of phases change the geometry, but not the
topology of separated phases (Note that the morphologies
in 2D and 3D are equivalent (Fig. S3 [28]).) In Fig. 3(e) we
observed stable quadruple junctions, where all four phases
meet [44]. While quadruple junctions are typically

(a) (b) (c) (d) (e) (f)

FIG. 3. Graph representations and simulation snapshots at 106

time steps for all (a)–(f) six distinct topologies of four coexisting
phases with equal volume fractions (top) and nonequal volume
fractions with transparent white phase (bottom). See Video S2 for
time evolution [28]. The simulation parameters are given in Table
S1 [28].
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energetically unstable, we show that for this case the
conditions for surface tensions are such that they stabilize
the quadruple junctions (Fig. S4 [28]).
The number of distinct topologies (i.e., the number of

connected unlabeled graphs) rapidly increases with the
number Np of coexisting phases and scales as eαN

2
p , where

α ∼ 0.3 [43]. It remains unclear whether all of them can be
realized by appropriately tuning the values of ðNp

2
Þ surface

energies.
Finally, we comment on how to reverse engineer surface

energies to obtain target structures. Figure 4 sketches the
procedure for two target morphologies with Np ¼ 5 co-
existing phases. Starting from a target structure, we con-
struct the connectivity graph, where vertices correspond to
phases and edges connect phases that share a 2D interface.
The connectivity graph can then be broken down into
ðNp
3
Þ ¼ 10 subgraphs for triplets of phases. Each connected

subgraph with three edges (partial wetting) or two edges
(complete wetting) can be translated to the inequalities for
surface energies as described above. However, there could
also be disconnected subgraphs with only one edge or no
edges (highlighted with yellow boxes in Fig. 4), which do
not provide any restrictions on surface energies. For the
case in Fig. 4(a) the nine subgraphs provide enough
conditions on surface tensions to generate the target
connectivity graph with five vertices and no additional
constraints are needed for the red-green-blue subgraph.
However, for the case in Fig. 4(b) the six subgraphs are not
sufficient and we need to impose another restriction to
ensure that the edge between the green and dark gray
phases is removed, e.g., by requiring that the red (R)
phase wets the green (G) and dark gray (D) phases
(γGD > γRG þ γRD). The set of surface energies can then
be obtained by solving the linear programming problem
subject to the inequalities imposed by the subgraphs and

any other constraints provided by the model or experi-
mental system. The next step is to convert the values of
surface energies to interaction parameters between compo-
nents. This is in general a highly nontrivial inverse
problem, but here we again use the Flory-Huggins model
in the regime, where χij ∝ γIJ. The final step is to adjust the
volume fractions fϕ̄ig for components, such that the
volume fractions of separated phases are consistent with
the target structure. This way we successfully constructed
the model parameters to produce target structures in
simulations (Fig. 4 and Video S3 [28]).
The graph theory approach based on surface energies

presented here is general. It can be used to explain how
cells dynamically tune the morphology of intracellular
condensates [5–8]. It can be applied to any model or
experimental liquid mixture, and can also be generalized to
other systems, such as block copolymers [45] or liquid
crystals [46] by considering the effects of surface energies.
In experiments it may be challenging to find immiscible
fluids with sufficiently distinct surface energies to realize
some complex target structures, but the promising new
avenue is the phase separation of the solution of DNA
strands [47,48], where the interactions between DNA
strands can be programmed via their sequences. Note that
in a liquid environment separated phases continue to
coarsen over time, but in some applications it may be
beneficial to produce monodisperse structured droplets.
Monodisperse structured droplets can be produced very
efficiently with microfluidic devices [9,11,12], or by
infusing a liquid mixture in a nonwetting elastomer, where
the elastic deformation of the elastomer matrix can arrest
the coarsening to produce monodisperse droplets [49–52].
We hope that our study will stimulate further theoretical
and experimental investigation of phase separation of
multicomponent liquid mixtures in a wide range of fields.

(a)

(b)

FIG. 4. Reverse engineering of (a), (b) two target structures. To reverse engineer the model parameters for target structures, we first
construct a connectivity graph, which is then divided into subgraphs of triplets of phases that are associated with inequalities of surface
energies. The subgraphs highlighted with yellow boxes do not provide any constraints on surface energies. The linear programming is
used to find a set of surface energies that satisfy these inequalities (see text), which are then converted to interaction parameters χij. The
average volume fractions fϕ̄ig of components are chosen such that the volume fractions of separated phases are consistent with the target
structure. The resulting simulation snapshots at 4 × 105 time steps are shown on the right (see Video S3 for time evolution [28]).
The simulation parameters are given in Table S1 [28].
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JUSTIFICATION FOR THE GRAPH APPROACH TO PREDICT THE TOPOLOGY OF THE MIXTURE

In the main text we described how the set of surface energies {γIJ} can be used to predict the topology of the
mixture via the graph approach. Here, we repeat the procedure and provide the justification based on the local
minimization of surface free energies, where we assume that the mixture was initially well mixed, such that during
the early stages of phase separation all possible pairs of phases come in contact.

For each of the
(
Np

3

)
subsets of three phases {I, J,K}, the local arrangement of phases depends on the surface

energies {γIJ , γIK , γJK} and can be represented with triplet connectivity graphs (see Fig. 1 in main text). The fully
connected graph corresponds to the partial wetting case with stable triple junctions I−J −K, where surface energies
satisfy the triangle inequality (γIJ < γIK + γJK , γIK < γIJ + γJK , γJK < γIJ + γIK). The graph with a missing
edge I − J describes the case where the phase K completely wets the phases I and J and surface energies satisfy the
inequality γIJ > γIK + γJK . Analogously we can interpret the two other graphs with either a missing edge I −K
or a missing edge J − K. The partial and complete wetting cases discussed above are directly related to the local
minimization of the surface free energy for the three phases.

The wetting conditions for the
(
Np

3

)
subsets of three phases are then used to construct the connectivity graph

for the whole mixture consisting of Np phases. If the phases I and J are completely wet by any other phase K
(γIJ > γIK +γJK), then such phases I and J are also not in contact in the mixture consisting of Np phases, otherwise
the surface free energy could be lowered by inserting a small volume of the phase K in between them as indicated on
the sketch below.

E = γIJ A E = γIK A + γJK A>
I

J

I

JK

Such phases I and J are thus disconnected in the connectivity graph. In contrast, if the phases I and J are partially
wet by all the other phases, which means that the phases I and J form stable triple junctions with any other phase,
then they are expected to be connected in the connectivity graph. If the mixture was initially well mixed, then it is
very likely that the phases I and J will meet another phase and form a stable triple junction, which will force the
phases I and J to remain in contact.

Based on the discussion above the connectivity graph that represents the topology of the mixture can be described
in the following way. Starting with a fully connected graph with Np vertices, we iterate over each of the

(
Np

3

)
triplet

graphs and for each missing edge (complete wetting), we remove the corresponding edge in the Np connectivity graph.

While we don’t have a rigorous proof, we expect that the construction of the connectivity graph based on the
physical arguments described above will in most cases describe the topology of well-mixed systems in local equilibrium.
However, it might be possible that there exist some special cases for which the topology of the mixture is different
from the predicted connectivity graph, e.g. if two phases are initially located in different corners of the container they
may not come in contact on the relevant timescales.



2

SIMULATION METHODS

Here, we briefly summarize numerical simulations, which are based on the code that was developed for our previous
work [1]. The volume fraction fields {φi(x)} evolve via a so-called model B or Cahn–Hilliard dynamics [2, 3]:

∂φi
∂t

= ∇ ·

∑
j

M̃ij∇µ̃j

 , (1)

where we introduced the dimensionless chemical potentials µ̃j = 1 + lnφj +
∑N

k=1 χjk(1 + λ2∇2)φk. We adopted the

Kramer’s model [4] for the normalized Onsager mobility coefficients M̃ij = Dij (φiδij − φiφj) to enforce the constraint∑
i φi = 1. When all components have identical diffusion coefficient Dij ≡ D, then the Eq. (1) can be re-written as

∂φi
∂t

= D∇ ·

φi∑
j

(δij − φj)∇µ̃j

 . (2)

Note that there are only N − 1 independent volume fractions and N − 1 independent chemical potentials. Note also
that the interaction parameters {χij} need to satisfy the condition

∑N
i,j=1 aiχijaj < 0 for any {ai} with

∑N
i=1 ai = 0

to ensure the stability of interfaces [1].
The nonlinear partial differential equations in Eqn. (2) were solved numerically in a 3D cubic box with linear

dimension L discretized with 128× 128× 128 uniform grid points and periodic boundary conditions. A semi-implicit
time-integration scheme [5] was used, which enabled us to use relatively large time steps. To do so, we first discretized
Eqn. (2) in time and separated the implicit linear and the explicit non-linear terms following the usual IMEX (implicit-
explicit) scheme [6] as

φn+1
i − φni

∆t
= Ni(φ

n
i ) + Li(φ

n+1
i ), (3)

where φni (x) is the volume fraction field of component i at time step n. Ni and Li denote the nonlinear and linear
parts of the right hand side of Eqn. (2), respectively. Following the procedure in Ref. [5], we introduced an artificial
linear ∇4 term to stabilize the nonlinear term as

Ni({φi}) = D∇ ·

φi∑
j

(δij − φj)∇µ̃j

+ADλ2∇4φi, (4)

Li({φi}) = −ADλ2∇4φi, (5)

where the numerical prefactor A = 0.5 max{χij} is chosen empirically to ensure numerical stability. When evaluating
nonlinear terms Ni({φi}), the products of composition fields φni (x) are carried out in real space, while the spatial

derivatives are evaluated in Fourier representation φ̂ni (k) =
∫
V
dx e−ik·xφni (x)/V . The Fast Fourier Transform (FFT)

algorithm was used to convert back and forth between real space and Fourier space representations [7]. In Fourier
space, the implicit Eq. (3) can be solved to obtain

φ̂n+1
i =

φ̂ni + N̂i(φ
n
i )∆t

1 +Aλ2k4D∆t
, (6)

where ·̂ denotes a Fourier transform and k = |k| is the magnitude of the wave vector k.
To make equations dimensionless, the lengths are measured in units of the cubic box size L and time is measured in

the units of τ = λ2/D, which describes the characteristic time of diffusion across the interface between two phases. We
chose λ/L = 0.45× 10−2 and a time step ∆t = τ/2. For the initial conditions we set φi(x) = φ̄i + ηi(x), where ηi(x)
is a uniform random noise with small magnitude and 0 mean), and then the simulation runs for a total duration of
105− 106τ . The interaction parameters {χij} and the average volume fractions {φ̄i} used in simulations are reported
in Table S1.

ParaView [8] was used for visualization, where we used isovolumes to indicate phases that are enriched in one of
the components: red (φ1 > φcutoff), green (φ2 > φcutoff), blue (φ3 > φcutoff), white (φ4 > φcutoff), and dark gray
(φ5 > φcutoff). The threshold volume fraction for isovolumes was set to φcutoff = 0.5− 0.6.



3

TABLE S1. Simulation parameters

Figure interaction parameters volume fractions

Fig. 1a χ12 = χ13 = χ23 = 3.25 {φi} = {0.333, 0.333, 0.334}
Fig. 1a χ12 = χ13 = χ23 = 3.25 {φi} = {0.15, 0.15, 0.70}
Fig. 1b χ12 = χ23 = 2.5, χ13 = 5.5 {φi} = {0.333, 0.333, 0.334}
Fig. 1b χ12 = χ23 = 2.5, χ13 = 5.5 {φi} = {0.10, 0.20, 0.70}
Fig. 2a χ12 = χ13 = χ23 = χ14 = χ24 = χ34 = 5.0 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. 2b χ12 = χ13 = χ23 = χ14 = 4.0, χ24 = χ34 = 8.2 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. 2c χ12 = χ13 = χ23 = χ14 = 4.0, χ24 = 8.5, χ34 = 13.0 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. 3a χ12 = χ13 = χ23 = χ14 = χ24 = χ34 = 5.0 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. 3a χ12 = χ13 = χ23 = χ14 = χ24 = χ34 = 5.0 {φi} = {0.10, 0.10, 0.10, 0.70}
Fig. 3b χ12 = χ13 = χ23 = χ14 = χ34 = 4.5, χ24 = 10.0 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. 3b χ12 = χ13 = χ23 = χ14 = χ34 = 4.5, χ24 = 10.0 {φi} = {0.12, 0.06, 0.12, 0.70}
Fig. 3c χ12 = χ13 = χ23 = χ14 = 4.0, χ24 = χ34 = 8.2 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. 3c χ12 = χ13 = χ23 = χ14 = 4.0, χ24 = χ34 = 8.2 {φi} = {0.20, 0.05, 0.05, 0.70}
Fig. 3d χ12 = χ13 = χ23 = 7.5, χ14 = χ24 = χ34 = 3.5 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. 3d χ12 = χ13 = χ23 = 10.5, χ14 = χ24 = χ34 = 5.0 {φi} = {0.10, 0.10, 0.10, 0.70}
Fig. 3e χ12 = χ23 = χ14 = χ34 = 3.0, χ13 = χ24 = 6.5 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. 3e χ12 = χ23 = χ14 = χ34 = 3.0, χ13 = χ24 = 6.5 {φi} = {0.10, 0.10, 0.10, 0.70}
Fig. 3f χ12 = χ23 = χ34 = 2.5, χ13 = 5.5, χ14 = 8.5, χ24 = 6.5 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. 3f χ12 = χ23 = χ34 = 3.3, χ13 = 6.9, χ14 = 10.5, χ24 = 7.5 {φi} = {0.03, 0.07, 0.20, 0.70}

Fig. 4a
χ12 = χ23 = χ45 = 8.2, χ13 = χ14 = 4.0, {φi} = {0.11, 0.11, 0.11, 0.62, 0.05}
χ24 = χ34 = χ15 = χ25 = χ35 = 4.0

Fig. 4b
χ12 = χ13 = χ14 = χ24 = χ34 = χ35 = 4.0, {φi} = {0.11, 0.11, 0.08, 0.65, 0.05}

χ23 = χ15 = χ45 = 8.2, χ25 = 12.4

Fig. S1a χ12 = χ13 = χ23 = χ14 = χ24 = χ34 = 5.0 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. S1b.1 χ12 = χ13 = χ23 = χ34 = 4.0, χ14 = 6.0, χ24 = 9.0 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. S1b.2 χ12 = χ13 = χ23 = χ14 = χ34 = 4.5, χ24 = 10.0 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. S1c.1 χ12 = χ13 = χ23 = χ14 = 4.0, χ24 = χ34 = 8.2 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. S1c.2 χ12 = χ13 = χ23 = χ14 = 4.0, χ24 = 8.5, χ34 = 13.0 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. S1d.1 χ12 = χ13 = χ23 = 7.5, χ14 = χ24 = χ34 = 3.5 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. S1d.2 χ12 = χ13 = 5.2, χ23 = 10.6, χ14 = χ24 = χ34 = 2.5 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. S1e.1 χ12 = χ23 = χ34 = 3.0 χ13 = χ24 = 6.5, χ14 = 4.0 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. S1e.2 χ12 = χ14 = 3.2, χ13 = 6.4, χ23 = χ34 = 3.0, χ24 = 6.2 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. S1e.3 χ12 = χ23 = χ14 = χ34 = 3.0, χ13 = χ24 = 6.5 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. S1f.1 χ12 = χ23 = χ34 = 2.5, χ13 = 5.5, χ14 = 8.5, χ24 = 6.5 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. S1f.2 χ12 = χ23 = χ34 = 2.5, χ13 = χ24 = 5.1, χ14 = 7.7 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. S1f.3 χ12 = χ23 = χ34 = 2.2, χ13 = 4.6, χ14 = 7.0, χ24 = 9.4 {φi} = {0.25, 0.25, 0.25, 0.25}
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FIG. S1. All distinct sets of the wetting conditions (4 graphs of triplets) that can be realized for a mixture with Np = 4
phases. These sets are grouped according to the connectivity graphs with 4 vertices describing the topology of separated phases.
For each group the yellow boxes indicate the wetting conditions that differ between sets. For each set we show a simulation
snapshot at 106 timesteps. The simulation parameters are given in Table S1.
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(a) (b) (c) (d) (e) (f)

FIG. S2. All distinct sets of the wetting conditions (4 graphs of triplets) that cannot be realized for a mixture with Np = 4
phases.
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2D 3D 2D 3D

FIG. S3. Comparison of simulation snapshots in 2D and 3D for all distinct sets of the wetting conditions presented in Fig. S1.
The simulation parameters are identical for 2D and 3D simulations and they are the same as in Fig. S1.
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FIG. S4. Stability of quadruple junctions. For simulation snapshots in Fig. S1e the quadruple junctions are stable, because
triple junctions get pulled together due to the force imbalance of surface tensions. For the case in Fig. S1e.1, the R-G-B junction
gets pulled (γRB > γRG + γGB) toward the stable R-B-W junction and the G-B-W junction gets pulled (γGW > γGB + γBW )
toward the stable R-G-W junction. For the case in Fig. S1e.2, the R-G-B and R-B-W junctions are pulled toward each other
(γRB > γRG + γGB , γRB > γRW + γRG) and the G-B-W junction gets pulled (γGW > γGB + γBW ) toward the stable R-G-
W junction. For the case in Fig. S1e.3, the R-G-B and R-B-W junctions are pulled toward each other (γRB > γRG + γGB ,
γRB > γRW +γRG) and the G-B-W and R-G-W junctions are pulled toward each other (γGW > γGB+γBW , γGW > γGR+γRW ).
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