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A B S T R A C T

Steady progress in the miniaturization of structures and devices has reached a scale where
thermal fluctuations become relevant and it is thus important to understand how such fluctua-
tions affect their mechanical stability. Here, we investigate the buckling of thermalized square
sheets under either compression or shear. We demonstrate that thermal fluctuations increase the
critical buckling load compared to the classical Euler buckling load due to the enhanced scale-
dependent bending rigidity for sheets that are much larger than a characteristic thermal length
scale. The presented results are universal and apply to a wide range of microscopic sheets. These
results are especially relevant for atomically thin 2D materials, where thermal fluctuations can
significantly increase the critical buckling load because the thermal length scale is on the order
of nanometers at room temperature.

. Introduction

The mechanics of slender structures has been studied for centuries (Timoshenko, 1953) but is still actively explored to this day
ecause geometrical nonlinearities lead to many interesting phenomena involving buckling, wrinkling, and folding (Brau et al., 2013;
hopin and Kudrolli, 2013; Stoop et al., 2015; Paulsen et al., 2016; Nagashima et al., 2017). In the 19th century, a concentrated
ffort was made to characterize critical loads at the onset of mechanical instabilities (Timoshenko and Woinowsky-Krieger, 1959;
an der Heijden, 2009; Novozhilov, 1959; Ciarlet, 2000; Landau and Lifshitz, 1970), because engineers had to design stable and safe
tructures and machines. However, in recent years, it has become a trend to exploit these instabilities in order to make so-called
echanical metamaterials (Bertoldi et al., 2017; Kadic et al., 2019).

Many slender structures and mechanical metamaterials have been successfully translated from the macroscopic to the microscopic
cale (Blees et al., 2015; Zhang et al., 2015; Leong et al., 2015; Malachowski et al., 2014; Xu et al., 2017; Miskin et al., 2018;
eynolds et al., 2019). As we strive to make devices and machines smaller and smaller, we are ultimately going to reach a scale
here defects and thermal fluctuations become relevant. Thus, it is important to characterize how these two effects are going to
ffect the mechanical properties and the stability of slender structures. In this work, we focus on thermal fluctuations that become
elevant once the narrow dimensions of structures reach the scale of nanometers. In many systems this condition is already satisfied,
uch as for graphene kirigami (Blees et al., 2015) and graphene-based self-folding origami (Xu et al., 2017; Miskin et al., 2018),

∗ Corresponding authors.
E-mail addresses: mjaq@uci.edu (M.J. Abdolhosseini Qomi), andrej@princeton.edu (A. Košmrlj).

1

vailable online 15 January 2021
022-5096/© 2021 Elsevier Ltd. All rights reserved.

These two authors contributed equally.

ttps://doi.org/10.1016/j.jmps.2021.104296
eceived 26 July 2020; Received in revised form 13 December 2020; Accepted 6 January 2021

http://www.elsevier.com/locate/jmps
http://www.elsevier.com/locate/jmps
mailto:mjaq@uci.edu
mailto:andrej@princeton.edu
https://doi.org/10.1016/j.jmps.2021.104296
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmps.2021.104296&domain=pdf
https://doi.org/10.1016/j.jmps.2021.104296


Journal of the Mechanics and Physics of Solids 149 (2021) 104296A. Morshedifard et al.

a
f

2

d
s

F
𝛿
E

s

𝜆
w
R
2
e

where we expect that thermal fluctuations significantly affect their mechanical properties, including the critical buckling load, which
is the focus of this work.

Here, we consider a coarse-grained description of a freely suspended linear elastic sheet with the bending rigidity 𝜅0, the Gauss
bending rigidity 𝜅𝐺0 and the 2D Lamé constants 𝜆0 and 𝜇0, where the 2D Young’s modulus is 𝑌0 = 4𝜇0(𝜇0 + 𝜆0)∕(2𝜇0 + 𝜆0) and the
Poisson’s ratio 𝜈0 = 𝜆0∕(2𝜇0 + 𝜆0). The free energy cost associated with small deformations of sheets around the reference flat state
is (Landau and Lifshitz, 1970)

𝐸 = ∫ 𝑑𝑥𝑑𝑦 1
2

[

𝜆0𝑢
2
𝑖𝑖 + 2𝜇0𝑢2𝑖𝑗 + 𝜅0𝐾

2
𝑖𝑖 − 2𝜅𝐺0 det(𝐾𝑖𝑗 )

]

− ∮ 𝑑𝑠 𝑡𝑖𝑢𝑖, (1)

where summation over all indices 𝑖, 𝑗 ∈ {𝑥, 𝑦} is implied. The first two terms describe the cost of stretching, shearing and
compressing, and the next two terms the cost of bending. The boundary integral measures the work done by external tractions
𝑡𝑖 = 𝜎𝑖𝑗𝑚𝑗 , where 𝜎𝑖𝑗 describes the stress tensor of external loads and 𝑚𝑖 is the unit normal vector in the X–Y plane to the sheet
boundary. The strain tensors

𝑢𝑖𝑗 = 1
2
(𝜕𝑖𝑢𝑗 + 𝜕𝑗𝑢𝑖) +

1
2
(𝜕𝑖ℎ)(𝜕𝑗ℎ),

𝐾𝑖𝑗 = 𝜕𝑖𝜕𝑗ℎ, (2)

describe deformations from the preferred flat metric and zero curvature respectively. We kept only the lowest orders in terms of
the in-plane displacements 𝑢𝑖(𝐫) and out-of-plane displacements ℎ(𝐫) with 𝐫 ≡ (𝑥, 𝑦), which is known as the Föppl–von Kármán
pproximation (Landau and Lifshitz, 1970). The effects of thermal fluctuations are reflected in correlation functions obtained from
unctional integrals (Nelson et al., 2004; Katsnelson, 2012),

𝐺ℎℎ(𝐫2 − 𝐫1) ≡ ⟨ℎ(𝐫2)ℎ(𝐫1)⟩ = 1
𝑍 ∫ [𝑢𝑖(𝐫), ℎ(𝐫)] ℎ(𝐫2)ℎ(𝐫1)𝑒−𝐸[𝑢𝑖(𝐫),ℎ(𝐫)]∕𝑘𝐵𝑇 ,

𝐺𝑢𝑖𝑢𝑗 (𝐫2 − 𝐫1) ≡ ⟨𝑢𝑖(𝐫2)𝑢𝑗 (𝐫1)⟩ =
1
𝑍 ∫ [𝑢𝑘(𝐫), ℎ(𝐫)] 𝑢𝑖(𝐫2)𝑢𝑗 (𝐫1)𝑒−𝐸[𝑢𝑘(𝐫),ℎ(𝐫)]∕𝑘𝐵𝑇 , (3)

where 𝑘𝐵 is the Boltzmann constant, 𝑇 the ambient temperature, and 𝑍 = ∫ [𝑢𝑖(𝐫), ℎ(𝐫)]𝑒−𝐸[𝑢𝑖(𝐫),ℎ(𝐫)]∕𝑘𝐵𝑇 the partition function.
Before discussing the buckling of sheets, we briefly comment on the thermally fluctuating sheets in the absence of external loads
(𝜎𝑖𝑗 ≡ 0) to introduce the relevant terminology.

. Freely suspended fluctuating sheets

For freely suspended sheets without external loads, thermal fluctuations effectively modify elastic constants and make them scale
ependent. We refer to these effective constants as the renormalized elastic constants, which can be extracted from the fluctuation
pectra as (Nelson et al., 2004; Katsnelson, 2012; Amorim et al., 2016; Košmrlj and Nelson, 2016; Ahmadpoor et al., 2017)

𝐺ℎℎ(𝐪) ≡ ⟨ℎ(𝐪)ℎ(−𝐪)⟩ =
𝑘𝐵𝑇

𝐴0𝜅𝑅(𝑞)𝑞4
,

𝐺𝑢𝑖𝑢𝑗 (𝐪) ≡ ⟨𝑢𝑖(𝐪)𝑢𝑗 (−𝐪)⟩ =
𝑘𝐵𝑇𝑃 𝑇

𝑖𝑗 (𝐪)

𝐴0𝜇𝑅(𝑞)𝑞2
+

𝑘𝐵𝑇𝑃𝐿
𝑖𝑗 (𝐪)

𝐴0
(

2𝜇𝑅(𝑞) + 𝜆𝑅(𝑞)
)

𝑞2
, (4)

where 𝐴0 is the undeformed area of the sheet, 𝐪 ≡ (𝑞𝑥, 𝑞𝑦), 𝑞 = |𝐪|, and the Fourier transform is defined as 𝑓 (𝐪) ≡ ∫ (𝑑2𝐫∕𝐴0) 𝑒−𝑖𝐪⋅𝐫𝑓 (𝐫).
or the in-plane fluctuations 𝐺𝑢𝑖𝑢𝑗 (𝐪) the two terms describe the spectra of transverse and longitudinal phonons, where 𝑃 𝑇

𝑖𝑗 (𝐪) =

𝑖𝑗 − 𝑞𝑖𝑞𝑗∕𝑞2 and 𝑃𝐿
𝑖𝑗 (𝐪) = 𝑞𝑖𝑞𝑗∕𝑞2 are the transverse and longitudinal projection operators, respectively. The correlation functions in

q. (4) are plotted in Fig. 1(a–c).
Thermal fluctuations effectively increase the bending rigidity and reduce the 2D Lamé constants and 2D Young’s modulus, which

cale as
𝜅𝑅(𝑞)
𝜅0

∼
{

1, 𝑞 ≫ 𝑞th
(𝑞∕𝑞th)−𝜂 , 𝑞 ≪ 𝑞th

,

𝜆𝑅(𝑞)
𝜆0

,
𝜇𝑅(𝑞)
𝜇0

,
𝑌𝑅(𝑞)
𝑌0

∼
{

1, 𝑞 ≫ 𝑞th
(𝑞∕𝑞th)+𝜂𝑢 , 𝑞 ≪ 𝑞th

. (5)

𝜈𝑅(𝑞) ∼

{

𝜈0, 𝑞 ≫ 𝑞th
− 1

3 , 𝑞 ≪ 𝑞th
,

where the renormalized Young’s modulus 𝑌𝑅(𝑞) and the renormalized Poisson’ s ratio 𝜈𝑅(𝑞) are defined as 𝑌𝑅(𝑞) = 4𝜇𝑅(𝑞)[𝜇𝑅(𝑞) +
𝑅(𝑞)]∕[2𝜇𝑅(𝑞)+𝜆𝑅(𝑞)] and 𝜈𝑅(𝑞) = 𝜆𝑅(𝑞)∕[2𝜇𝑅(𝑞)+𝜆𝑅(𝑞)], respectively. The scaling exponents 𝜂 ≈ 0.80–0.85 and 𝜂𝑢 = 2−2𝜂 ≈ 0.3–0.4,
ere estimated theoretically (Nelson and Peliti, 1987; Aronovitz and Lubensky, 1988; Guitter et al., 1988, 1989; Nelson and
adzihovsky, 1991; Aronovitz et al., 1989; Le Doussal and Radzihovsky, 1992; Kownacki and Mouhanna, 2009; Coquand et al.,
020) and confirmed in atomistic and coarse-grained Monte Carlo simulations (Zhang et al., 1993; Bowick et al., 1996, 1997; Los
2

t al., 2009; Roldan et al., 2011; Tröster, 2013, 2015; Los et al., 2016). These exponents quantify the scale dependence of the elastic
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Fig. 1. Correlation functions for (a) height fluctuations ℎ(𝐪), (b) transverse in-plane phonons 𝑢⟂𝑖(𝐪) = 𝑃 𝑇
𝑖𝑗 𝑢𝑖(𝐪), and (c) longitudinal in-plane phonons

∥𝑖(𝐪) = 𝑃 𝐿
𝑖𝑗 𝑢𝑖(𝐪). Correlation functions are used to extract the renormalized elastic constants: (d) the renormalized bending rigidity 𝜅𝑅(𝑞) =

𝑘𝐵𝑇 ∕𝐴0𝑞4)⟨|ℎ(𝐪)|2⟩−1, (e) the renormalized shear modulus 𝜇𝑅(𝑞) = (𝑘𝐵𝑇 ∕𝐴0𝑞2)⟨|𝐮⟂(𝐪)|2⟩−1, and (f) the renormalized Young’s modulus 𝑌𝑅(𝑞) =
(𝑘𝐵𝑇 ∕𝐴0𝑞2)⟨|𝐮⟂(𝐪)|2⟩−1

[

⟨|𝐮∥(𝐪)|2⟩−1 − ⟨|𝐮⟂(𝐪)|2⟩−1
]

∕⟨|𝐮∥(𝐪)|2⟩−1. Correlation functions and renormalized elastic constants are normalized by the zero temperature
lastic constants values (𝜅0, 𝜇0, 𝜆0, 𝑌0), the undeformed sheet area 𝐴0, the ambient temperature 𝑇 , and the Boltzmann constant 𝑘𝐵 . The temperature dependent
ransition wave vector 𝑞th and the corresponding thermal lengthscale 𝓁th = 2𝜋∕𝑞th are defined in Eqs. (6) and (7). Black solid lines correspond to the theoretical
stimates that were obtained with the perturbative renormalization group procedure (Košmrlj and Nelson, 2016). Data with colored symbols was obtained from
olecular dynamic simulations of nearly square sheets with the undeformed size 𝓁0 that are described in Section 3.1. For simulation data, the correlation

unctions for different wavevectors 𝐪 were binned into annular bins of width 𝛥𝑞 = 2𝜋∕𝓁0.

onstants driven by thermal fluctuations in the range of wave vectors up to the transition scale (Aronovitz and Lubensky, 1988;
uitter et al., 1988, 1989; Nelson and Radzihovsky, 1991)

𝑞th =

√

3𝑘𝐵𝑇𝑌0
16𝜋𝜅2

0

(6)

above which thermal fluctuations are no longer significant. This transition scale can be used to define the thermal length scale

𝓁th ≡ 2𝜋
𝑞th

=

√

64𝜋3𝜅2
0

3𝑘𝐵𝑇𝑌0
(7)

beyond which thermal fluctuations become important.
The scaling functions for the renormalized elastic constants in Eq. (5) are presented in Fig. 1(d–f). Note that in the long

wavelength limit (𝑞 ≪ 𝑞th) these scaling functions are universal and they hold for all isotropic microscopic sheets, where the
continuum theory applies, i.e. for wave vectors 𝑞 that are much smaller than the microscopic cutoff 𝛬 ∼ 1∕𝑎0, where 𝑎0 is e.g. the
lattice spacing in 2D crystalline sheets. Note that in the long wavelength limit the renormalized Poisson’s ratio approaches the
universal value of −1∕3 regardless of the zero temperature value 𝜈0 of the Poisson’s ratio. The universal negative Poisson’s ratio
was first predicted by the self consistent scaling analysis (Le Doussal and Radzihovsky, 1992), which was confirmed by Monte
Carlo simulations (Falcioni et al., 1997). Note also that due to thermal fluctuations the microscopically anisotropic sheets, such
as black phosphorene, behave like isotropic sheets in the long wavelength limit (Toner, 1989). At room temperatures thermal
fluctuations are important for freely suspended 2D crystalline sheets, such as graphene (𝓁th ≈ 4nm, Fasolino et al. (2007), Lee
et al. (2008)) or MoS2 (𝓁th ≈ 40–50nm, Bertolazzi et al. (2011), Lai et al. (2016)), which can easily be fabricated on the microscale.
Thus thermal fluctuations in these systems significantly increase the bending rigidity and reduce the Young’s and shear moduli
(see Fig. 1). Furthermore, the characteristic diameter of clay platelets is ≈ 100–500nm, which is comparable to the thermal length
scale 𝓁 ≈ 100–1000nm at room temperature (Suter et al., 2007; Ploehn and Liu, 2006). Similarly, the diameter of red blood cells
3

th
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Fig. 2. Schematic of mechanical properties of fluctuating sheets that are (a) smaller and (b) larger than the thermal lengthscale 𝓁th, where the amplitude
f height fluctuations is smaller and larger than the sheet thickness, respectively. Height fluctuations that are larger than the sheet thickness make the sheet
ffectively stiffer for bending and softer for stretching as discussed in the main text.

6–8 μm) is comparable to the thermal length scale 𝓁th ≈ 2–10 μm at room temperature (Waugh and Evans, 1979; Evans, 1983; Park
t al., 2010; Evans et al., 2017).

The stiffening of the renormalized bending rigidity and the softening of the in-plane elastic constants beyond the characteristic
hermal lengthscale 𝓁th can be intuitively understood in the following way (see Fig. 2). The amplitude of height fluctuations

√

⟨ℎ(𝐫)2⟩
ncreases with the scale 𝓁 as

√

⟨ℎ(𝐫)2⟩ ∼ 𝓁
√

𝑘𝐵𝑇 ∕𝜅0, where the effects of renormalization have been neglected. On scales shorter
han the thermal lengthscale (𝓁 ≪ 𝓁th), the amplitude of height fluctuations is much smaller than the sheet thickness (∼

√

𝜅0∕𝑌0)
and such fluctuating sheets mechanically behave like classical plates. Conversely, on scales larger than the thermal lengthscale
(𝓁 ≫ 𝓁th), the amplitude of height fluctuations is much larger than the sheet thickness. Such fluctuating sheets are much harder
to bend due to the induced Gaussian curvature, which requires stretching of the sheet. On the other hand, such fluctuating sheets
are easier to stretch, because this requires flattening of the entropic ‘‘wrinkles’’ rather than stretching the material. The effective
stiffening of the bending rigidity and the softening of the in-plane elastic constants, scales with some power of the amplitude of
height fluctuations

√

⟨ℎ(𝐫)2⟩, which explains the observed power-law scalings in Fig. 1d–f. The origin of this effective behavior is
the non-linear coupling between the in-plane displacements 𝑢𝑖(𝐫) and the out-of-plane displacements ℎ(𝐫) in the strain tensor 𝑢𝑖𝑗 in
Eq. (2).

3. Buckling of fluctuating sheets

When the external load 𝜎𝑖𝑗 (𝑖, 𝑗 ∈ {𝑥, 𝑦}) is applied to the boundary of the elastic sheet, the spectrum of height fluctuations
becomes (Roldan et al., 2011; Košmrlj and Nelson, 2016)

𝐺ℎℎ(𝐪) = ⟨ℎ(𝐪)ℎ(−𝐪)⟩ =
𝑘𝐵𝑇

𝐴
[

𝜅𝑅(𝑞)𝑞4 + 𝜎𝑖𝑗𝑞𝑖𝑞𝑗
] . (8)

Note that for sufficiently large compressive loads (negative 𝜎𝑥𝑥 and/or 𝜎𝑦𝑦) or shear loads (𝜎𝑥𝑦 ≠ 0) the denominator in Eq. (8)
an become negative, which reflects the fact that the flat state becomes unstable and the sheet buckles. The critical buckling load
𝑏
𝑅 corresponds to the minimum compressive load, where the denominator in Eq. (8) vanishes. Note that the applied external load
ould affect the renormalization of the bending rigidity 𝜅𝑅(𝑞) as was previously demonstrated for sheets under tension (Guitter et al.,
989; Morse and Lubensky, 1992; Radzihovsky and Toner, 1998; Košmrlj and Nelson, 2016; Burmistrov et al., 2018). This effect
ecomes important when the contribution from external load in the denominator of Eq. (8) becomes dominant, which happens only
fter the sheet buckles. Thus we expect that the renormalization of the bending rigidity is not significantly affected up to the critical
uckling load, but it is likely affected in the post-buckling regime.

Here, we consider the buckling of a square sheet of size 𝓁0 × 𝓁0 with periodic boundary conditions for the biaxial and uniaxial
ompression, and pure shear, as well as the clamped-free boundary conditions for the uniaxial compression (two edges that
xperience the load are clamped, while the other two edges are free). For the biaxial compression (𝜎𝑥𝑥 = 𝜎𝑦𝑦 = −𝜎, 𝜎𝑥𝑦 = 0)
nd the uniaxial compression (𝜎𝑥𝑥 = −𝜎, 𝜎𝑦𝑦 = 𝜎𝑥𝑦 = 0), the critical buckling load is 𝜎𝑏𝑅 = 𝜅𝑅(𝑞min)𝑞2min, where 𝑞min = 2𝜋∕𝓁0 is the
mallest wave vector allowed by the boundary conditions. For the pure shear (𝜎𝑥𝑦 = 𝜎, 𝜎𝑥𝑥 = 𝜎𝑦𝑦 = 0) the critical buckling load is
𝑏
𝑅 = 2𝜅𝑅(𝑞min)𝑞2min and the buckled mode corresponds to 𝑞𝑥 = 𝑞𝑦 = 𝑞min. The critical buckling load 𝜎𝑏𝑅 thus scales as

𝜎𝑏𝑅 = 𝐶𝜅𝑅(𝑞min)𝑞2min ∼

⎧

⎪

⎨

⎪

⎩

𝜅0𝓁−2
0 , 𝓁0 ≪ 𝓁th

𝜅0𝓁
−2+𝜂
0 𝓁−𝜂

th , 𝓁0 ≫ 𝓁th

, (9)

here 𝐶 = 1 for the biaxial and uniaxial compression and 𝐶 = 2 for the pure shear. Note that the critical buckling load is temperature
𝑏 𝜂∕2
4

ependent and scales as 𝜎𝑅 ∼ 𝑇 for elastic sheets that are larger than the thermal length scale (𝓁0 ≫ 𝓁th), e.g. graphene,
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Fig. 3. (a) An elastic sheet is represented as an equilateral triangulation of a rectangle with size 𝓁0𝑥 × 𝓁0𝑦 (𝓁0𝑥 ≈ 𝓁0𝑦) where particles are positioned on lattice
points with bending and stretching energies defined along the edges and plaquettes of the triangulation. (b) The bending energy is described as a penalty of
changing the dihedral angle 𝜃 between two triangles sharing an edge. The stretching energy is described as a penalty of changing the bond length 𝑎 between
the two particles from the rest length 𝑎0.

MoS2, and other 2D crystalline materials. Compared to the classical value for the critical buckling load 𝜎𝑏0 = 4𝜋𝐶𝜅0∕𝓁2
0 at zero

temperature (Timoshenko and Woinowsky-Krieger, 1959; van der Heijden, 2009), thermal fluctuations effectively increase the
critical buckling load due to the enhanced renormalized bending rigidity as

𝜎𝑏𝑅
𝜎𝑏0

=
𝜅𝑅(𝑞min)

𝜅0
≡

𝜅𝑅(𝓁0)
𝜅0

. (10)

Note that thermal fluctuations reduce the projected length of the square sheet by ⟨𝛥𝓁⟩ ∼ −(𝑘𝐵𝑇 ∕𝜅)𝓁0 (Košmrlj and Nelson, 2016),
which could also affect the critical buckling load. However, for typical 2D crystalline materials 𝑘𝐵𝑇 ∕𝜅 ≪ 1 at room temperature
and this effect is negligible compared to the significantly enhanced renormalized bending rigidity for 𝓁0 ≫ 𝓁th. Note also that the
enhanced critical buckling load for flat sheets is qualitatively different from spherical shells, where thermal fluctuations effectively
reduce the critical buckling pressure (Paulose et al., 2012; Košmrlj and Nelson, 2017; Baumgarten and Kierfeld, 2018; Singh et al.,
2020). Spherical shells under pressure are metastable and thermal fluctuations can make them cross the energy barrier even below
the classical buckling pressure, which corresponds to the limit of metastability (Baumgarten and Kierfeld, 2018). In contrast, the
flat state of compressed sheets is globally stable up to the critical buckling load.

3.1. Molecular dynamics simulations

To test the prediction for the critical buckling load in Eq. (9) we performed coarse-grained Molecular Dynamics simulations,
where the elastic sheet is discretized as a triangulation of a nearly square sheet of size 𝓁0𝑥 × 𝓁0𝑦 with 𝓁0𝑥 ≈ 𝓁0𝑦 (see Fig. 3). Such
simulations were previously used to test the renormalization of elastic constants (Zhang et al., 1993; Bowick et al., 1996, 1997,
2017) and they agreed very well with both the continuum theory and the atomistic Monte Carlo simulations (Los et al., 2009;
Roldan et al., 2011; Los et al., 2016) on scales that are much larger than the lattice constant and interatomic spacing.

In the undeformed flat configuration, all triangles are equilateral with the edge length 𝑎0. The bending and stretching energies
are described using a common discretization (Seung and Nelson, 1988) of the continuum energy in Eq. (1) as

𝐸bend =
∑

⟨𝐼,𝐽⟩
𝑘bend(1 + cos 𝜃𝐼𝐽 ),

𝐸stretch =
∑

⟨𝑖,𝑗⟩

1
2
𝑘stretch(𝑎𝑖𝑗 − 𝑎0)

2,
(11)

where 𝜃𝐼𝐽 is the dihedral angle between the neighbor triangles 𝐼 and 𝐽 that are sharing an edge, and 𝑎𝑖𝑗 = |𝐫𝑖 − 𝐫𝑗 | is the Euclidean
distance between the nearest-neighbor particles 𝑖 and 𝑗. Note that the discretization parameters 𝑘bend and 𝑘stretch are directly related
to the continuum bending rigidity 𝜅0 =

√

3
2 𝑘bend, the continuum Young’s modulus 𝑌0 = 2

√

3
𝑘stretch, and the continuum Poisson’s

ratio 𝜈0 = 1∕3 (Seung and Nelson, 1988; Schmidt and Fraternali, 2012). In the Appendix A we show that this discretized model
recapitulates the zero temperature stress–strain curves for the buckling of sheets under biaxial compression and pure shear obtained
with standard finite element methods (see Fig. A.6).

Molecular Dynamics simulations at finite temperatures were performed using the LAMMPS package (Plimpton (1995), see
Appendix B for details). Unless otherwise noted the undeformed size of the sheet was 𝓁0 = 100 𝑎0 (𝓁0𝑥 = 116 𝑎0

√

3∕2 ≈ 100.5 𝑎0
and 𝓁0𝑦 = 100 𝑎0). To adjust the thermal length scale 𝓁th ∼ 𝜅0∕

√

𝑘𝐵𝑇𝑌0 we varied the temperature 𝑇 , and the bending and
stretching spring constants 𝑘 and 𝑘 , respectively, which enabled us to explore a wide range of thermal length scales
5

bend stretch



Journal of the Mechanics and Physics of Solids 149 (2021) 104296A. Morshedifard et al.
Fig. 4. Representative simulation results for (a) biaxially compressed sheet with periodic boundary conditions, (b) uniaxially compressed sheet with periodic
boundary conditions, (c) uniaxially compressed sheet with clamped-free boundary conditions, and (d) sheet under pure shear with periodic boundary conditions.
Snapshots on the left show typical sheet configurations pre- and post-buckling. For clarity, the height profiles of sheets (𝑧 coordinates) are also indicated by
a heat map, where yellow indicates the largest heights and dark blue indicates the lowest heights. Plots in the middle and right columns show characteristic
stress–strain curves at low temperature (𝓁0∕𝓁th = 0.04) and at high temperature (𝓁0∕𝓁th = 1250), respectively, where stresses are averaged over 30 simulation
runs. Red dashed lines show linear fits to the first 600 (pre-buckling) and to the last 900 points (post-buckling) out of total 3000 points. For compressed sheets
with periodic boundary conditions we plot relative strains 𝜖 = (⟨𝓁𝑥(𝜎 = 0)⟩ − 𝓁𝑥)∕𝓁0𝑥, where 𝓁0𝑥 and 𝓁𝑥 are the undeformed and the deformed lengths of the
sheet, respectively, and ⟨𝓁𝑥(𝜎 = 0)⟩ corresponds to the equilibrium length of the sheet at zero load. For clamped boundary conditions we plot absolute strains
𝜖 = (𝓁0𝑥 − 𝓁𝑥)∕𝓁0𝑥. For sheets under pure shear we plot shear strain 𝜖 = 𝛾∕2, where 𝛾 is the shear angle. Stresses 𝜎 are normalized with the zero temperature
critical buckling load 𝜎𝑏

0 = 4𝜋𝐶𝜅0∕𝓁2
0 . Strains 𝜖 are normalized with the zero temperature critical buckling strains 𝜖𝑏0 , which are 𝜖𝑏0 = 𝜎𝑏

0∕𝑌0 for the uniaxial
compression, 𝜖𝑏0 = 𝜎𝑏

0∕(2𝐵0) for the biaxial compression, and 𝜖𝑏0 = 𝜎𝑏
0∕(2𝜇0) for pure shear, where 𝐵0 = 𝑌0∕[2(1 − 𝜈0)] is the 2D bulk modulus and 𝜈0 = 1∕3 is the

Poisson’s ratio.

(𝓁0∕𝓁th ∈ (10−2, 105), see Table B.1 in Appendix). Simulations in the absence of external loads were used to verify the scaling
of correlation functions and renormalized elastic constants in Eqs. (4) and (5) (see Fig. 1).

Fig. 4 shows typical stress–strain curves at low temperature (𝓁0∕𝓁th = 0.04) and at high temperature (𝓁0∕𝓁th = 1250) for 4
different loading and boundary conditions, where compressive and shear strains were prescribed and were gradually increased in
3000 increments, while allowing the sheet to equilibrate for 5000 time steps between each increment. Stresses were calculated using
6
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the virial stress equation as described in the Appendix B and averaged over 30 independent simulation runs. We checked that the
results were insensitive to the effective strain rate (see Fig. B.7 in Appendix). Note that for the biaxially and uniaxially compressed
sheets with periodic boundary conditions we plotted relative strains that are calculated relative to the projected equilibrium sheet
length ⟨𝓁𝑥(𝜎 = 0)⟩ at zero load, which was obtained with an initial NPT simulation. The projected equilibrium sheet length
⟨𝓁𝑥(𝜎 = 0)⟩ is smaller than the undeformed sheet length 𝓁0𝑥 due to the out-of-plane fluctuations (De Andres et al., 2012; Košmrlj
and Nelson, 2016; Amorim et al., 2016; Liang and Purohit, 2016). For the clamped boundary condition we were unable to perform
NPT-like simulations. Thus we plotted absolute strains that are calculated relative to the undeformed sheet length 𝓁0𝑥. Note that
the sheet is under tension at zero absolute strain (negative stress values in Fig. 4c) because thermal fluctuations cause shrinking of
the sheet, which has to be then pulled back to the initial length.

At low temperatures (𝓁0∕𝓁th = 0.04 in Fig. 4) we recover classical results (Timoshenko and Woinowsky-Krieger, 1959; van der
Heijden, 2009). In the pre-buckling regime, the slopes for the uniaxially and biaxially compressed sheets are equal to 𝑌0 and 2𝐵0,
respectively, where 𝐵0 = 𝑌0∕[2(1 − 𝜈0)] is the 2D bulk modulus and 𝜈0 = 1∕3 is the Poisson’s ratio. In the post-buckling regime,
the slope is zero for the uniaxially compressed sheets, but non-zero for the biaxially compressed sheets. This is because at the
critical buckling load 𝜎𝑏0 = 4𝜋𝜅0∕𝓁2

0 only one mode (𝐪1 = (2𝜋∕𝓁0𝑥, 0)) becomes unstable for the uniaxial compression (see Fig. 4b,c),
while two modes (𝐪1 = (2𝜋∕𝓁0𝑥, 0) and 𝐪2 = (0, 2𝜋∕𝓁0𝑦)) become unstable for the biaxial compression (see Fig. 4a). The linear
combination of the two unstable modes produces Gaussian curvature, which forces the sheet to stretch and the resulting slope is
reduced to 𝐵0∕2 (Timoshenko and Woinowsky-Krieger, 1959; van der Heijden, 2009). For sheets under pure shear, the slope in the
pre-buckling regime is 2𝜇0 and reduces to (4∕3)𝜇0 in the post-buckling regime (see Fig. 4d), where 𝜇0 = 𝑌0∕[2(1+𝜈0)] is the 2D shear
modulus. Note that at low temperatures we observe periodic oscillations in the stress–strain curves (see 𝓁0∕𝓁th = 0.04 in Fig. 4).
This is because the auto-correlation times for the soft long wavelength modes are very long and we were unable to fully equilibrate
the sheet (see Fig. B.8 in Appendix).

At high temperatures (𝓁0∕𝓁th = 1250 in Fig. 4) the stress–strain curves exhibit larger fluctuations because the amplitude of thermal
fluctuations is increased, but we can still identify two different regimes (fitted red dashed lines in Fig. 4) at low strains and large
strains, which correspond to the pre-buckling and post-buckling regimes. The slopes in the pre-buckling regime for the uniaxially
and biaxially compressed sheets correspond to the renormalized Young’s modulus and bulk modulus, respectively, while for sheets
under pure shear they correspond to the renormalized shear modulus (see Fig. B.9 in Appendix). Note that the renormalized Young’s
modulus, bulk, and shear moduli are reduced compared to the zero temperature values (see Fig. 1), which is reflected in the fact
that slopes are less than 1 in the normalized stress–strain curves in Fig. 4. Furthermore, the critical buckling load (intersection of
two fitted red dashed lines) is significantly increased compared to the zero temperature value as we predicted in Eq. (10).

Finally, in Fig. 5 we compare the critical buckling load 𝜎𝑏𝑅 obtained from the stress–strain curves (see Fig. 4) with the theoretical
predictions in Eq. (10). For the biaxially compressed sheets and sheets under shear the critical buckling loads and the confidence
intervals were obtained by the intersections of two lines that correspond to the fits for the pre- and post-buckling regime (see
Fig. 4a,d). For the uniaxially compressed samples, the value of stress levels off in the post-buckling regime (see Fig. 4b,c). Thus we
estimated the critical buckling load and confidence intervals by doing long simulations at the maximum compressive strain in the
post-buckling regime (see Appendix B for details).

By varying the size of the sheet 𝓁0, the ambient temperature 𝑇 , and the spring constants 𝑘bend and 𝑘stretch for the bending and
stretching, respectively, we are able to tune the ratio of 𝓁0∕𝓁th by 7 orders of magnitude (𝓁0∕𝓁th ∈ (10−2, 105)). All the values for
critical buckling loads can be collapsed to a single scaling function (see Fig. 5) as predicted by the theory in Eq. (10).

For sheets with periodic boundary conditions we get a remarkably good agreement with the theoretical predictions, which
confirms that thermal fluctuations increase the critical buckling load due to the enhanced renormalized bending rigidity (see Fig. 5).
Recall that we were unable to fully equilibrate simulations at low temperatures (oscillations for 𝓁0∕𝓁th = 0.04 in Fig. 4), but in this
regime the effects of thermal fluctuations are small and the critical buckling loads 𝜎𝑏𝑅 are well approximated by the classical critical
buckling load 𝜎𝑏0 = 4𝜋𝐶𝜅0∕𝓁2

0 . At very large temperatures (𝓁0∕𝓁th ≳ 104) we observe systematic deviation from the theoretical
prediction. Inspection of the sheet configurations revealed that the local bond strains fluctuate by ±5–10% and that the local dihedral
angles fluctuate by ±20◦. For such large fluctuations the discretized energy in Eq. (11) starts deviating from the linear elastic sheet
that was assumed for theoretical calculation. Furthermore, according to the Lindemann criterion (Lindemann, 1910; Born, 1939),
such large fluctuations would cause the sheet to melt, which was prevented in our simulations, where the connectivity between
particles was fixed. Melting of fluctuating sheets is still an unresolved problem and we leave this for future work.

For the uniaxially compressed sheets with clamped boundary condition, we also observe a scaling collapse of the critical buckling
load (Fig. 5c). However, we notice a systematic deviation from the theoretical prediction in Eq. (10). In previous studies of
thermalized ribbons it was noted that the effect of clamped boundaries decays in the bulk with the scale that is of the order of
the width of the ribbon (Bowick et al., 2017; Wan et al., 2017; Russell et al., 2017). Thus the effect of clamped boundaries is felt
throughout the square sheets, which affects the renormalization of the bending rigidity in the bulk. Nonetheless, in this case we still
see that thermal fluctuations can significantly increase the critical buckling load for large values of 𝓁0∕𝓁th.

4. Conclusions

The results presented above are universal and they hold for any free-standing elastic sheet, where the continuum theory applies,
i.e. when the sheet is much larger than the microscopic cutoff, e.g. the interatomic spacing in 2D crystalline sheets. For sheets that
are much smaller than the thermal length scale 𝓁th ∼ 𝜅0∕

√

𝑘𝐵𝑇𝑌0 thermal fluctuations are negligible and classical mechanics applies.
This is the case for all macroscopic sheets and plates because the thermal length scale rapidly increases with the sheet thickness 𝑡 and
7
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Fig. 5. Scaling functions for the critical buckling load 𝜎𝑏
𝑅 for (a) biaxially compressed sheets with periodic boundary conditions, (b) uniaxially compressed sheets

with periodic boundary conditions, (c) uniaxially compressed sheets with clamped-free boundary conditions, and (d) periodic sheet under pure shear. The critical
buckling loads 𝜎𝑏

𝑅 and confidence intervals (errorbars) were obtained from the stress–strain curves in Fig. 4. Simulations were done for two different sheet sizes
𝓁0 (blue dots and red triangles) and thermal length scale 𝓁th defined in Eq. (7) was tuned by varying the temperature 𝑇 , and the spring constants 𝑘bend and
𝑘stretch for the bending and stretching. The critical buckling loads 𝜎𝑏

𝑅 were normalized by the classical zero temperature value 𝜎𝑏
0 = 4𝜋𝐶𝜅0∕𝓁2

0 and plotted as a
function of the normalized sheet size 𝓁0∕𝓁th. Solid black line shows the theoretical prediction from Eq. (10), where we used the renormalized bending rigidity
from Fig. 1d. The orange lines serve as a guide to the eye for different power-law exponents.

scales as 𝓁th ∼ 𝑡5∕2𝐸1∕2(𝑘𝐵𝑇 )−1∕2, where 𝐸 is the 3D Young’s modulus (𝜅0 ∼ 𝐸𝑡3, 𝑌0 ∼ 𝐸𝑡). As the sheet thickness is reduced to the
order of nanometers, as is the case for clay plates and red blood cells, the thermal length scale 𝓁th becomes comparable to the size
𝓁0 of the sheet. In this regime thermal fluctuations become relevant and the renormalized bending rigidity and the critical buckling
load are mildly increased (Fig. 5). Note that in red blood cells the molecular activity produces non-equilibrium fluctuations, which
dominate over the thermal fluctuations on large length scales as was deduced from the breakdown of the fluctuation–dissipation
theorem (Turlier et al., 2016). In the future it would thus be worth exploring how such dynamic non-equilibrium fluctuations affect
the mechanical properties of slender structures.

As the sheet thickness is reduced to the atomistic scale, such as for graphene, boron nitride, transition metal dichalcogenide, and
other 2D materials, the thermal length scale becomes of the order of nanometers at room temperature, which is much smaller than
the characteristic size of these sheets. In this regime thermal fluctuations significantly increase the critical buckling load (𝓁0∕𝓁th ≫ 1
in Fig. 5), which becomes temperature dependent and scales as 𝜎𝑏𝑅 ∼ 𝜅𝑅(𝓁0)𝓁−2

0 ∼ 𝜅0𝓁
−2+𝜂
0 𝓁−𝜂

th ∼ 𝜅1−𝜂
0 𝓁−2+𝜂

0 (𝑘𝐵𝑇𝑌0)𝜂∕2. In this work
we focused on the buckling of thermalized square sheets and in the future it would be interesting to explore the effect of sheet
geometry. For narrow ribbons with the width 𝑊 and length 𝓁0 ≳ 𝑊 it was previously shown that thermal fluctuations renormalize
the bending rigidity up to the scale of the ribbon width (Košmrlj and Nelson, 2016). The critical buckling load for ribbons compressed
uniaxially along the long axis is thus expected to scale as 𝜎𝑏𝑅 ∼ 𝜅𝑅(𝑊 )𝓁−2

0 , which was recently explored by Hanakata et al. (2020).
In this work we focused on pristine elastic sheets, but defects are often unavoidable in 2D materials and they produce static ripples.
It was previously demonstrated that quenched defects also enhance the bending rigidity and they can dominate over the thermal
fluctuations when the amplitudes of static ripples is larger than the amplitude of height fluctuations due to temperature (Nelson
and Radzihovsky, 1991; Radzihovsky and Nelson, 1991; Morse and Lubensky, 1992; Le Doussal and Radzihovsky, 1993; Košmrlj
and Nelson, 2013, 2014; Gornyi et al., 2015; Le Doussal and Radzihovsky, 2018). Since the critical buckling load studied in this
work scales with the effective bending rigidity, we expect that defects and static ripples will also increase the critical buckling load.
Moreover, the static ripples and other mechanical deformations in 2D materials can affect their electronic transport (Mariani and von
Oppen, 2008; Castro et al., 2010; Mariani and von Oppen, 2010; Guinea et al., 2008, 2009; Castro Neto et al., 2009; Amorim et al.,
8
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2016). The coupling between elastic deformations and the electronic degrees of freedom could also affect the effective mechanical
behavior of suspended membranes (Gazit, 2009a,b; San-Jose et al., 2011; Guinea et al., 2014; González, 2014). In particular, they
could produce spontaneous buckling (Bonilla and Ruiz-Garcia, 2016; Ruiz-García et al., 2016; Ruiz-Garcia et al., 2017) and stable
ripples (Cea et al., 2020; Ruiz-García et al., 2015).

We hope this work will stimulate further experimental, numerical, and theoretical investigations of the stability and mechanical
properties of thermalized sheets as well as extensions to more complicated geometries found in microscopic kirigami and origami
structures.
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Appendix A. Comparison of athermal behavior of the coarse-grained model with nonlinear finite elements

To show the equivalence of the coarse-grained model used in this study with the classical plate theory, we compared the pre-
and post-buckling behavior of a periodic sheet under biaxial compression or pure shear at zero temperature with a geometrically
nonlinear finite element (FE) solution via Abaqus. We used the Mindlin–Reissner quadratic shell elements (S8R) combined with a
nonlinear solver that allowed for large displacements, strains and large rotations. Constraints were applied to degrees of freedom
on the edges to simulate periodic boundary conditions. The plate was incrementally strained biaxially in a nonlinear FE solver to
about twice the critical buckling strain to observe the post-buckling behavior. Similarly, we incrementally increased shear strain in a
nonlinear FE solver to observe the post-buckling behavior. The resulting stress–strain curves in Fig. A.6 obtained with geometrically
nonlinear FE showed an excellent agreement with our discretized model in both the pre- and post-buckling regimes.

Fig. A.6. Stress–strain curves for sheets under (a) biaxial compression and (b) pure shear, both with periodic boundary conditions, obtained with nonlinear
finite element (FE) calculations and coarse-grained molecular dynamics (MD) simulations. Stresses 𝜎 are normalized with the zero temperature critical buckling
load 𝜎𝑏

0 = 4𝜋𝐶𝜅0∕𝓁2
0 . Strains 𝜖 are normalized with the zero temperature critical buckling strains 𝜖𝑏0 , which are 𝜖𝑏0 = 𝜎𝑏

0∕(2𝐵0) for the biaxial compression, and
𝜖𝑏0 = 𝜎𝑏

0∕(2𝜇0) for pure shear.
9
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t

Fig. B.7. Stress–strain curves for a periodic sheet with 𝓁0∕𝓁th = 206.3 under uniaxial compression, where the slow and fast rates correspond to 50,000 and 5000
equilibration steps between successive compression increments. Strain rate 𝜖̇ is normalized by the characteristic unit of time 𝜏 and the zero temperature critical
buckling strain 𝜀𝑏0.

Table B.1
Parameters used in simulations (𝑎0 = 2.46Å, 𝑚 = 24.02 g∕mol).

Index 𝑇 𝑘stretch 𝑘bend 𝓁0∕𝓁th

[K] [kcal∕mol Å
2] [kcal∕mol]

1 0.3 20 200 0.00648
2 1 180 171.7 0.04135
3 5 200 143.4 0.1167
4 5 200 41.28 0.4052
5 10 31.02 10 0.9319
6 20 114.6 10 2.533
7 100 113.5 10 5.637
8 100 377 10 10.27
9 200 625.8 10 18.72
10 200 519.4 5 34.10
11 300 1150 5 62.14
12 300 610.7 2 113.2
13 500 1217 2 206.3
14 500 1010 1 375.9
15 600 698.5 0.5 685.0
16 600 2319 0.5 1248
17 1200 962.5 0.25 2274
18 2000 1917 0.25 4144
19 2000 1019 0.1 7551
20 2000 845.4 0.05 13 760
21 2000 2807 0.05 25 070

Appendix B. Coarse-grained molecular dynamics simulations

Coarse-grained molecular dynamics (MD) simulations were performed using the LAMMPS package (Plimpton, 1995). We chose
he lattice constant 𝑎0, the particle mass 𝑚, and 𝑘𝐵𝑇 as the fundamental units for length, mass, and energy, respectively. The

units of time and stress were 𝜏 = 𝑎0
√

𝑚∕𝑘𝐵𝑇 and 𝜎 = 𝑘𝐵𝑇 ∕𝑎20, respectively. The velocity Verlet algorithm was used for the
integration of equations of motion with a timestep of 𝛥𝑡 = 0.005𝜏 and Nosé–Hoover thermostat and barostat (Tuckerman, 2010)
were used to control the ambient temperature and pressure, where needed. For all simulations, we fix the box height in the 𝑧-
direction, where periodic boundary conditions were used. In all simulations, stress components were computed using the virial
stress equation (Tuckerman, 2010)

𝜎𝑖𝑗 =
𝓁𝑧

[ 𝑁
∑

𝑚𝑘𝑣
𝑘
𝑖 𝑣

𝑘
𝑗 +

𝑁
∑

𝑟𝑘𝑖 𝑓
𝑘
𝑗

]

, (B.1)
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Fig. B.8. Autocorrelation of pressure for periodic sheets with high and low value of 𝓁0∕𝓁th under biaxial compression.

Fig. B.9. Rernormalized bulk (𝐵𝑅), Young’s (𝑌𝑅), and shear (𝜇𝑅) moduli obtained from the fitted slopes of the stress–strain curves in MD simulations and from
the perturbative renormalization group procedure (Košmrlj and Nelson, 2016). For large sheets the renormalized elastic constants scale as ∼ (𝓁0∕𝓁th)−𝜂𝑢 , where
he exponent is 𝜂𝑢 ≈ 0.3–0.4. The systematic deviation in simulations for 𝓁0∕𝓁th ≳ 103 is attributed to very high local strains as discussed in the main text.

here 𝑉 and 𝓁𝑧 are the volume and the height of the simulation box, respectively, 𝑁 is the number of particles, and 𝑣𝑘𝑖 , 𝑟𝑘𝑖 , and 𝑓𝑘
𝑖

are the 𝑖th component of the velocity, position, and resultant force for particle 𝑘, respectively. Parameters used in simulations are
provided in Table B.1.

In simulations with periodic boundary conditions, we initially equilibrated the sheet by performing 2 × 106 time steps of NPT
simulations at zero pressure such that ⟨𝜎𝑥𝑥⟩ = ⟨𝜎𝑦𝑦⟩ = 0. Subsequently, we gradually applied small strain increments to the system
in 3000 steps, while allowing the sheet to equilibrate for 5000 time steps between each strain increment. Fig. B.7 shows that the
stress–strain response of the sheet remains unaffected by reducing the strain rate by an order of magnitude.

For the biaxial compression scenario, we strain the system by prescribing the reduced box size in both 𝑥- and 𝑦-directions. For
the uniaxial compression case, we strained the system by prescribing the reduced box size in the 𝑥-direction, while the box size in
the 𝑦-direction was allowed to fluctuate such that ⟨𝜎𝑦𝑦⟩ = 0. For shear, the cubic box was tilted into a parallelepiped to prescribe
the desired shear strain.

For simulations with clamped boundary conditions, we fixed two rows of particles along each of the two opposite edges. These
particles were clamped in the 𝑥- and 𝑧-directions, but they were free to move in the 𝑦-direction. The other two edges were free
to move and they were independent, i.e. they were not connected with periodic boundary condition. For these simulations, we
gradually strained the system by bringing the two clamped edges closer together in 3000 increments, while allowing the sheet to
equilibrate for 5000 time steps between each strain increment.

To ensure uncorrelated sampling from MD trajectories, the autocorrelation of the time series for any observable of interest (stress,
strain, displacement, etc.) is computed as 𝑟𝑚 = 𝑐𝑚∕𝑐0, where 𝑐𝑚 = 1

(𝑁−𝑚) ×
∑𝑁−𝑚

𝑡=1
(

𝑦𝑡 − 𝑦̄
) (

𝑦𝑡+𝑚 − 𝑦̄
)

, 𝑦 is the observable, 𝑦̄ is its average
over a total of 𝑁 time steps. Fig. B.8 shows the computed autocorrelation of pressure as a function of the autocorrelation lag time
for biaxially compressed sheets with low, intermediate, and high values of 𝓁0∕𝓁th. For high 𝓁0∕𝓁th, there is a rapid relaxation of
11

ressure, so that a large set of independent data can be obtained. However, for low 𝓁0∕𝓁th, the relaxation time is several orders
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of magnitude larger, which makes obtaining a proper uncorrelated sampling computationally unfeasible. However, since thermal
fluctuations are negligible in this regime, it does not affect the simulations result in our study.

The critical buckling load for the uniaxially compressed sheets with periodic and clamped boundary conditions were calculated
y performing 2 × 107 time steps at the maximum compressive strain and the average compressive stress was estimated using the

virial stress equation. The errors of the critical loads were calculated as the standard errors of the mean for uncorrelated stress
values taken every 106 time steps.

For sheets under biaxial compression and shear the critical buckling loads and the confidence intervals were obtained by the
ntersections of two lines that correspond to the fits for the pre- and post-buckling regime (see Fig. 4a,d), which were computed
sing the Statistics and Machine Learning Toolbox in MATLAB.

Finally, we also estimated the renormalized bulk, Young’s, and shear moduli (see Fig. B.9) from the slopes of linear fits of the
tress–strain curves in the pre-buckled regime for the periodic sheets under biaxial compression, uniaxial compression, and shear,
espectively. At high temperature (high value of 𝓁0∕𝓁th) the stress–strain curves (see Fig. 4) are highly nonlinear and the fitted

slopes are very sensitive to the number of data points. Thus, we fitted the slopes to either the initial 350 or 600 data points, which
provided the upper and lower bounds for the estimated renormalized elastic constants.
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