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Atomically thin sheets, such as graphene, are widely used in nanotechnology. Recently they
have also been used in applications including kirigami and self-folding origami, where it becomes
important to understand how they respond to external loads. Motivated by this, we investigate
how isotropic sheets respond to uniaxial tension by employing the self-consistent screening analysis
method and molecular dynamics simulations. Previously, it was shown that for freely suspended
sheets thermal fluctuations effectively renormalize elastic constants, which become scale-dependent
beyond a characteristic thermal length scale (a few nanometers for graphene at room tempera-
ture), beyond which the bending rigidity increases, while the in-plane elastic constants reduce with
universal power law exponents. For sheets under uniaxial tension, σ11, we find that beyond a stress-
dependent length scale, the effective in-plane elastic constants become strongly anisotropic and scale
differently along the axis of uni-axial stress and orthogonal to it. The bending rigidities on the other
hand will not exhibit any anomalous behavior beyond this stress-dependent length scale. In addi-
tion, for moderate tensions we find a universal non-linear stress-strain relation. For large uni-axial
tensions, the Young’s modulus of the bare elastic material is recovered.

I. INTRODUCTION

Geometric non-linearities are the mainstay of the study
of the mechanics of slender structures [1]. Though this
field is quite old, only over the last few decades have the
effects of temperature on the mechanics of 2-D materi-
als been studied, as is exemplified by polymerized mem-
branes, graphene and a whole host of other 2D materials
such as BN, WS2 and MoS2 which have been discovered
over the last decade [2–8]. Free-standing layers of these
2D crystals offer an experimentally realizable system for
exploring how mechanical behavior of thermalized elastic
membranes. Further manipulation of these 2D crystals
for the creation of metamaterials generates new opportu-
nities for research on the interface of mechanical and elec-
tronic properties of 2D crystals. One such recent example
shows the experimental realization of kirigami graphene
where large effective strains did not affect its conductiv-
ity [9].

Although, 2-D elastic crystals may be viewed as a
higher dimensional extension of the D = 1 elastic poly-
mer, there are some major differences between these two
physical systems. Analogous to the persistence length of
thermalized polymers (the length scale over which a poly-
mer is approximately straight) [10], 2-D materials have a
temperature-dependent length scale, named the thermal
length scale, `th, beyond which temperature plays a role
in elastic responses to external stresses. However, due to
the coupling between the Goldstone flexural phonons and
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the in-plane phonons, 2D elastic materials of arbitrar-
ily large size avoid being subject to the Mermin-Wagner
theorem when D = 2 [3, 11, 12] and thus remain flat at
sufficiently low temperatures even beyond this thermal
length scale. The result is a mean-field flat phase below
a crumpling temperature that gives rise to elastic moduli
that exhibit anomalous scale dependence. In [3–5] it was
shown that beyond the thermal length scale, the effective
Lamé constants scaled as λR(q), µR(q) ∼ qηu (where q is
the Fourier scale and ηu ≈ .4). On the other hand the ef-
fective bending rigidity divered as κR(q) ∼ q−η (η ≈ .8).
These results for the numerical exponents have been re-
cently verified to 2 and 3-loop order [13–18]. In addi-
tion, the arguments demonstrating that elasticity in D-
dimensions exhibits scale but not conformal invariance
[19] was extended to the case of D-dimensional elastic
membranes embedded in D+ dc dimensions (where dc is
the co-dimension) [20].

Experimental measurements of the scale-dependence
of the elastic moduli of thermalized membranes and the
resulting mechanical properties (such as the non-linear
relation ε ∼ ση/(2−η)) in the absence of quenched dis-
order have not been realized yet. However, many the-
oretical and simulation efforts have been realized to ex-
tend the original results of [3] to a variety of interesting
cases and to understand the mechanical response of 2-D
materials. In particular, for isotropically stressed fluc-
tuating membranes, when stresses are larger than the
linear response but less than one that would flatten out
all thermal wrinkles, a non-linear relation between stress
and strain was obtained ε ∼ ση/(2−η) [21, 22]. Ther-
mal fluctuations also increase critical buckling load with
respect to the Euler buckling load due to the divergent
effective bending rigidity κR(q) ∼ q−η [23, 24]. Exten-
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sion of the theory to inversion-asymmetric tethered mem-
branes (such as graphene coated with a material on one
side) has been recently done in which a double spiral
phase and long range orientational order was predicted
[25]. Realistic considerations of single clamped bound-
ary conditions have also been reported to introduce a
spontaneous symmetry-breaking tilt [26]. A recent ex-
tension of the theory of mono-layer elastic membranes to
bi-layers was also done and found that the effective scal-
ing of the elastic moduli did not change in the infrared
limit (q → 0) [15]. In addition, a new universality class
was obtained with different anomalous elastic exponents
have been done in the presence of an external field that
breaks the rotational symmetry of the embedding space
[27]. Although early theoretical studies focusing on esti-
mating the Poisson ratio of stress-free membranes found a
universal value of −1/3 [28, 29], other more recent studies
[30–32] indicate that this may not be the case. Thus more
investigations will be necessary to further comprehend
the Poisson ratio as a function of exerted stress. Fur-
ther simulations have been done in an effort to consider
the effect of experimental realities such as the quenched
rippling of graphene and defects [33]. These simulations
showed that the Poisson ratio decreased with aspect ra-
tio between the amplitude of the ripples and the system
size, even making it negative.

Other investigations have been conducted for elastic
membranes with an intrinsic anisotropy [34, 35]. For suf-
ficiently high temperatures, due to the anisotropy, the
mean field flat phase becomes un-stable and leads to a
mean-field tubule phase, neglecting self-avoidance. This
was further confirmed via non-perturbative approaches
[36], which also better characterized the critical expo-
nents associated with the phase transition. Anisotropies
can be quite generic and thus the authors chose to focus
on a tubule with effectively straight along one axis and
crumpled along the other D − 1 axes [34]. Within the
tubule phase, assuming no self-avoidance, the effective
elastic moduli become scale-dependent but with a be-
havior that is different from that found in the flat phase.
Simulations done in [37] confirmed the existence of this
flat-to-tubule phase transition by inserting an anisotropy
in the bending rigidities. They further measured the gy-
ration radius as a function of the length of the tubule and
obtained the scaling RG ∼ LνF where the Flory exponent
is νF ≈ .3, and found it to be within close agreement with
the theory, νF = 1/4.

In this paper we focus on extending the theory of ther-
malized 2D elastic membranes to a scenario of physical
interest in which a homogeneous uni-axial tension is ex-
erted. A snapshot from a simulation can be seen in
Fig. 1 and illustrates the physical scenario. Stress will
introduce a new wave-vector, qσ, which will render the
theory dependent on the its relative magnitude with re-
spect to qth = 2π/`th. We will explore the scaling of
these elastic moduli at a variety of length scales and
show an anomalous scaling at high stresses and temper-
atures that becomes identical to that of [34, 35] in the
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FIG. 1. A snapshot of a simulation of a thermally fluctuat-
ing sheet placed under a uni-axial tension. ui indicate the
in-plane displacements whereas f is the flexural/out-of-plane
field. The coloring of the membrane shows the scalar value
of the height field (high frequency colors such as blue show-
ing negative heights and low frequency colors such as yellow
showing positive heights with respect to a zero-mean height).
When a uni-axial stress is significant, transverse flexural fluc-
tuations dominate as can be seen from the height coloration
of the figure taken from a simulation. The dotted line marks
the fact the T = 0 size which shows that elastic sheets shrink
when temperature is present.

tubule phase. In the infrared limit (q → 0) the modulus
CR2222(q) ∼ q whereas CR1111 ∼ constant, thus the system
will exhibit strong anisotropy in the in-plane correlation
functions. In the same limit, the moduli characterizing
bending rigidities will exhibit anomalous behavior. Fur-
thermore, as in the case of isotropic stress, we once again
obtain a regime with a non-linear stress-strain relation,
ε ∼ ση/(2−η), when 2π/L < qσ < qth (where L is the
system size).

We will first begin in Sec. II by introducing the the-
ory in the absence of stress and explore the consequences
of introducing uni-axial stresses for the symmetries of
the free energy as well as the appearance of a new
length scale beyond which stress becomes important. In
Sec. III, we study uni-axially stressed membranes via
an engineering dimension analysis and Self-Consistent-
Screening-Analysis (SCSA) equations to obtain the scal-
ing of effective elastic moduli. Simulations performed in
the NPT ensemble using the LAMMPS package confirm
the scaling of this theory. In Sec. IV, we will study stress-
strain relations using what we will have learned about the
elastic moduli.
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II. STATISTICAL MECHANICS OF ELASTIC
MEMBRANES

We first discuss the free energy function of a general
D-dimensional elastic membrane embedded in (D+1)-
dimensions undergoing small deformations with respect
to the reference flat state. Using Einstein notation in
which repeated indices are implicitly summed over, such
a function has the form [38]:

F =
1

2

∫
dDr[λu2

ii + 2µu2
ij + κK2

ii − 2κGdet(Kij)] (1)

where λ and µ are the elastic Lamé constants and κ and
κG are the bending and Gaussian bending rigidities. Here
we use the strain and curvature tensor equations:

uij =
1

2
[∂iuj + ∂jui + ∂if∂jf ]

Kij = ∂i∂jf
(2)

where the indices i, j run through the D intrinsic dimen-
sions of the elastic membrane. These describe the defor-
mations from a reference flat metric and zero-curvature
state, with ui being the in-plane displacements along
the i-th axis and f being the out-of-plane displacement.
The strain tensor uij expresses stretching and shearing
whereas Kij expresses curvatures. Note that we have
omitted (∂u)2 from the non-harmonic portion of the
strain tensor due to the fact that in-plane stretching costs
more energy than stretching due to the out-of-plane de-
formations represented by (∂f)2. By means of an engi-
neering dimension analysis done in Sec. III, one can show
that (∂u)2 is irrelevant and can thus be ignored.

The effect of thermal fluctuations in a system with free
energy function F can be extracted from the correlation
functions, obtained via functional integrals over all mem-
brane configurations [39]:

GRuiuj (r2 − r1) =
1

Z

∫
D[ui, f ]ui(r2)uj(r1)e−F/kBT

GRff (r2 − r1) =
1

Z

∫
D[ui, f ]f(r2)f(r1)e−F/kBT

(3)

where e−F/kBT is the temperature dependent Boltz-
man weight and Z is the normalizing partition function,
Z =

∫
D[ui, f ]e−F/kBT . Due to the form of the in-plane

strain tensor, the free energy function is not harmonic in
the displacement parameters ui and f . In the absence
of such an-harmonic terms and stress and under periodic
boundary conditions (so we may integrate out the Gaus-
sian bending term via the Gauss-Bonnet theorem), the
correlation function of the flexural phonons and in-plane
phonons of a system of Fourier scale q take the form
[3, 40]:

Guiuj (q) =
kBTP

T
ij (q)

Aµq2
+
kBT (δij − PTij (q))

A(2µ+ λ)q2
(4)

Gff (q) =
kBT

Aκq4
(5)

where A is the membrane area and PTij (q) = δij−qiqj/q2

is the transverse projection operator. We have taken the
form of the Fourier transform to be: G(r) = G(0) +∑

Λ≥|q|≥2π/LG(q)eiq·r = G(0) +
∫ Λ

2π/L
d2q
A G(q)eiq·r. In

this definition of the Fourier transform, Λ is the UV cutoff
introduced by the microscopic scale of the system where
the continuum elastic theory breaks down i.e. Λ = π/a
where a is the lattice spacing of the material. The cor-
respondence between real lengths and Fourier space in-
verse lengths is taken to be: q = 2π/`. Via scaling
analysis, a length scale subtly emerges due to the pres-
ence of temperature. It is well known from plate the-
ory that an-harmonic terms play a role once the magni-
tude of deflection becomes comparable to the thickness
of the plate [38]. Considering specifically D = 2 mate-
rials such as graphene, though it is atomically thin, we
can assign an effective thickness, derivable via the elastic
formula, t ∼

√
κ/Y where Y is the 2D Young’s modu-

lus (Y = 4µ(λ + µ)/(λ + 2µ)) [38]. Assuming we take
a plate thickness t under-going an out-of-plane displace-
ment deformation of amplitude f over a length L, a scal-
ing analysis can be performed to compare the bending
energy and stretching energy cost from Eq. (1) [38]:

Fstretching ∼ Y
(
f2

L2

)2

Fbending ∼ Y t2
(
f

L2

)2
(6)

When the two energy costs are of comparable order, an-
harmonic terms can no longer be ignored. Indeed, one
can notice from the form of Eq. (6) that this occurs when

f ≈ t ∼
√
κ/Y . Inserting this equivalence of length

scales and the Fourier form q ∼ 1/L into Eq. (5) and solv-

ing for L, we obtain a length scale `th ∼
√

κ2

Y kBT
when

D = 2. In general D dimensions `th ∼ ( κ2(λ+2µ)
4µ(λ+µ)kBT

)
1

4−D

[41] which can be derived by using the general effective

thickness t ∼
√
κ(λ+ 2µ)/(4µ(λ+ µ)). This defines the

thermal length scale, beyond which temperature affects
the mechanical properties of the elastic membrane and
an-harmonic terms can no longer be ignored.

The non-linear form of the in-plane strain tensor pro-
duces long-ranged coupling of Gaussian curvatures and
induces a non-trivial scaling of the correlation functions
beyond the thermal length scale, `th [3, 11, 40]. In the
absence of stress, the scaling of the correlation func-
tions is known in the long-wavelength limit and temper-
ature renormalizes the moduli and renders them scale-
dependent [3, 4, 41]:
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GRuiuj (q) =
kBTP

T
ij (q)

AµR(q)q2
+

kBT (δij − PTij (q))

A(2µR(q) + λR(q))q2
∼
(
q

qth

)−2−ηu

GRff (q) =
kBT

AκR(q)q4
∼
(
q

qth

)−4+η
(7)

where qth = 2π/`th. The anomalous exponents take the
approximate values η ≈ .8 and ηu ≈ .4 for D = 2 [21].
These exponents are not distinct but are related due to
the form of the in-plane strain tensor uij , where ∂u and
(∂f)2 must scale together [5]. This leads to the exponent
identity 2η + ηu = 4−D [5, 21]. It is important to note
that Duc = 4 is the upper critical dimension of the theory
and thus no anomalous exponents will be present when
D > Duc. For D < Duc, these exponents imply that
the renormalized bending rigidity diverges as κR(q) ∼
(q/qth)−η whereas the renormalized in-plane moduli con-
verge to zero as µR(q), λR(q), YR(q) ∼ (q/qth)ηu [3].

Naively, in the presence of an arbitrary edge stress, σij ,
applied to an edge with unit normal n̂, one would write
the following free energy function [21]:

F =
1

2

∫
dDr[λu2

ii + 2µu2
ij + κK2

ii − 2κGdet(Kij)]

−
∮
dD−1S n̂iσijuj

(8)

where the boundary term expresses the work done by
an external stress. However, the effective theory at a
given scale `∗ = 2π/q∗ can be extracted by integrating
out faster small-scale fluctuations. This can be done
by splitting the phononic fields into pieces: g<(r) =∑
|q|<q∗ e

iq·rg(q) and g>(r) =
∑

Λ>|q|>q∗ e
iq·rg(q)

where g ∈ {ui, f} and integrating out the latter, g>. By
performing this integration we obtain [39]:

F`∗ [ui<, f<] =

− kBT ln

∫
D[ui>, f>]e−Fa[ui<,f<,ui>,f>]/kBT

(9)

where Fa[ui<, f<, ui>, f>] is the full free energy function
without any phononic modes having been integrated out.
Trivially, homogeneous isotropic stress will not cause
renormalized anisotropies to develop since the stress will
not break any rotational or mirror symmetries in the
free energy. However, in the presence of a homogeneous
anisotropic stress the isotropy of the free energy will be
broken.

Thus it must be considered that these moduli can de-
velop effective anisotropies for a non-isotropic stress and
not only a scale dependence due to temperature. De-
spite the need for a generalization of the free energy,
some symmetries will remain assuming the form of the
stress to be “uni-axial”. We clarify here that in general
D-dimensions we define “uni-axial” stress as the case in
which all axes experience an equal tension σαα = σ with
α ∈ {1, ..., D − 1} and σDD = 0 (we call this the case of

“uni-axial” tension since in D = 2, which is the case of
interest, it is indeed the correct physical scenario). As
a brief aside, note here that we will use Greek letters
to range over indices between {1, ..., D − 1} and Roman
letters as indices that range over {1, ..., D}. We take
this unusual definition of “uni-axial” to mimic the exact
same theoretical formulation of tubules in Radzihovsky
and Toner’s theory [34, 35]. Examining Eq. (8), one can
see that for “uniaxial” stresses the free energy will have
at least orthorhombic symmetry; those being D mirror
symmetries across each of the D axes. These orthorhom-
bic symmetries will remain in renormalized free energies.

Accommodating orthorhombic anisotropy into the free
energy, the generalization takes the form [38]:

F =
1

2

∫
dDr[Cijkluijukl +BijklKijKkl]

−
∮
dD−1Sn̂iσijuj

(10)

where, the bare elastic moduli tensors have the funda-
mental major and minor symmetries: Cijkl = Cklij =
Cjikl = Cijlk and Bijkl = Bklij = Bjikl = Bijlk [42]. In
addition to these, the orthorhombic symmetries will en-
force that Ciiij = Ciijk = Cijkl = 0 where each distinct
index is taken to be a distinct number between 1 and
D. The same will hold true for the Bijkl tensor. In this
notation, an isotropic elastic material will have the fol-
lowing decomposition: Cijkl = λδijδkl + µ[δikδjl + δilδjk]
and Bijkl = (κ− κG)δijδkl + κG/2[δikδjl + δilδjk].

Under stress the effective flexural phonon correlation
function may be defined:

GRff (q) =
kBT

A[BRijkl(q)qiqjqkql + σijqiqj ]
(11)

whereas the correlation function for in-plane phonons
takes the form:

GRuiuj =
kBT

A
[CRikjl(q)qkql]

−1 (12)

These renormalized elastic constants have been defined
based on the analogous correlation functions in the
harmonic approximation similarly as one would define
λR(q), µR(q), κR(q) in Eq. (7) based on Eqs. (5) and (4).
For isotropic systems that aren’t under any stress, the
correlation function of the in-plane phonons reduces to
same form as Eq. (7). However, as previously explained,
in the presence of anisotropic stress the renormalized
moduli may also become anisotropic.

We can now ask ourselves at what scale such a stress
becomes important and thus induces anisotropy. Observ-
ing Eq. (11), it can be seen that under tensile stresses,
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one may note the introduction of a new length scale when
σααq

2
α ∼ BRijkl(q)qiqjqkql [21]. This length scale can be

identified with the scale beyond which stress plays a dom-
inant role along the axes in which it is present. For suf-
ficiently small stresses such that qσ � qth and assuming
that the material is isotropic at T = 0 and thus we can
assume that BRijkl(q) ∼ κR(q) ∼ (q/qth)−η. Thus the

wave vector takes the form [21]:

qσ =

(
σ

κ

)1/(2−η)

q
−η/(2−η)
th (13)

The value of stress for which these two length scales are

equal can be solved for σqth = κq2
th = κ( 4µ(λ+µ)kBT

κ2(λ+2µ) )
1

4−D .

For very large stress, σ � σqth , where qσ � qth, then
anomalous behaviors will not enter into the comparison
between the stress and bending portions of the flexural
correlation function and thus the bare parameters can be
used, σq2 ∼ κq4, resulting in:

qσ =

(
σ

κ

)1/2

(14)

With this pre-amble we may now begin to investigate
the scaling theory of “uni-axial” stresses imposed upon
thermalized elastic membranes.

III. SCALING BEHAVIOR OF ELASTIC
MODULI

In the following text, we aim to derive the scaling of
the correlation functions in different regimes which will
depend on the ordering of q, qσ, qth (note that order of
these Fourier scales can change by tuning the parameters
σ, κ, T, Y as well as trivially changing the inverse length
scale q). In order to develop a convention for naming
these different regimes, we define un-ambiguously that a
system under “low” stress to be such that q > qσ and
“high” stress such that q < qσ. We also define systems
under “low” temperature conditions to be such that q >
qth and high temperature such that q < qth.

To obtain the scaling of correlation function we must
commence with the calculation of the engineering dimen-
sions when stress is “low” and when stress is “high”.
Engineering dimensions will tell us whether terms are
relevant or irrelevant to the theory. Specifically, terms
with negative engineering dimension are called irrelevant
and can be ignored from the scaling theory of the free
energy. On the other hand, terms with positive engi-
neering dimensions are called relevant and cannot be ig-
nored from the scaling of the theory. An-harmonic terms
with positive engineering dimension can induce anoma-
lous scaling of the elastic moduli of the theory that is
different from the linear theory (such as those for the un-
stressed isotropic elastic membranes in Eq. (7)). Thus it
will be necessary to derive the Self-Consistent Screening
Analysis (SCSA) equations, which allow us to describe

q > qσ, σαα = σ, σDD = 0
Term Eng. Dim.
∆q 1
∆f (4−D)/2
∆u 3−D
∆Cijkl 4−D
∆Bijkl 0
∆σαα 2

TABLE I. In the presence of small “uniaxial” stress and high
temperatures, engineering dimensions of the order parameters
and the elastic moduli of the theory.

the effect of an-harmonic terms in the free energy. With
these two tools, we will then derive the scaling of the
correlation functions in each regime.

A. Engineering Dimensions

1. Low Stress q > qσ

Before engineering dimensions are calculated, it is im-
portant to establish what the dominant term of the har-
monic portion of the free energy is in order to proceed
further into our scale-dependent analysis. In the presence
of vanishingly small stresses, one can consider the non-
anomalous correlation functions (also known as harmonic
propagators) to scale as Gff (q) ∼ q−4, Guu(q) ∼ q−2 (as
can be seen from Eqs. (5) and (4)), and see that the flex-
ural modes fluctuate with a larger amplitude for small
enough q and thus produce the dominant modes of the
harmonic portion of the free energy, otherwise known as
the harmonic/Gaussian theory. In other words, the term
Bijkl∂i∂jf∂k∂lf is the dominant term in the Gaussian
theory.

Thus, in the presence of the scale-invariant dominant
term, Bijkl∂i∂jf∂k∂lf , we may calculate how fields f
should be re-scaled f(q) ≡ b−∆f f ′(q′) as a result of the
scale transformation q = bq′ ≡ b∆qq′ where b > 1 is a
rescaling parameter.

Engineering dimensions give the exponent with which
parameters of a theory rescale (in this case Cijkl, σ, Bijkl
though Bijkl will be scale-invariant since we set it to our
dominant term), O ≡ b−∆OO′, under the scale transfor-
mation q = bq′. If an engineering dimension, ∆O, of a
parameter is positive then it cannot be ignored as q → 0
since it grows with scale. If on the other hand it is neg-
ative, then the parameter rescales to zero as q → 0 and
can thus be ignored (unless it is dangerously irrelevant)
[43].

Proceeding to the counting of engineering dimensions,
at low stresses, the dominant term of our theory is
Bijklqiqjqkqlf(q)f(−q). This will automatically imply
that the engineering dimensions ∆Bijkl = 0. This im-
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plies then:

A
∑
|q|<Λ

Bijkl qiqjqkqlf(q)f(−q)

= b−DA′
∑

|q′|<Λ/b

Bijkl b
4q′iq

′
jq
′
kq
′
lf(bq′)f(−bq′)

(15)

where b−DA′ = A due to the fact that the area is
a D-dimensional area in real space. In order for this
term to be scale invariant then we must enforce that
b(4−D)/2f(bq′) = f ′(q′). Thus, we have obtained ∆f =
(4 −D)/2, and we can use this to obtain how the order
parameter u and all other coefficients of terms in the free
energy re-scale.

Due to the rotational symmetry of the free energy, the
strain tensor will be preserved despite renormalization [5,
44]. Thus, the scale-invariance of the theory will enforce
that the u field rescales u(q) ≡ b−∆uu′(q′) in such a
way that the individual terms of the strain tensor qiuj
and qifqjf also re-scale the same way. Thus, equating
qiuj ∼ qifqjf leads to

qiuj(q) = bq′iuj(bq
′) ≡ b−∆u+1q′iu

′
j(q
′) ∼

qiqjf(q)f(−q) = b2q′iq
′
jf(bq′)f(−bq′)

≡ b−2∆f+2q′iq
′
jf
′(q′)f ′(−q′)

(16)

In other words, ∆u−1 = 2∆f−2 which gives ∆u = 3−
D. With this, we can finally calculate how the coefficients
of an-harmonic terms, Cijkl, of the free energy in Eq. (10)
should re-scale. For example, one can obtain:

A
∑
|q|<Λ

Cijkl qiqkuj(q)ul(−q)

= b−DA′
∑

|q′|<Λ/b

Cijkl b
2q′iq

′
kb

2D−6uj(bq
′)ul(−bq′)

(17)

which implies then that C ′ijkl ≡ Cijklb
D−4 and gives us

the engineering dimension ∆C = 4−D. Given these re-
sults then we know that when D < 4, that an-harmonic
terms with coefficients Cijkl will be relevant to physical
behavior in the limit q → 0. If stresses are not vanish-
ingly small, a similar analysis can be done to show that
∆σ = 2 which indicates that it will be strongly relevant
and that once q < qσ, it can no longer be ignored. Thus
the dominant term of the theory would have to be recon-
sidered in the “high” stress case which we will deal with
in the very next section. All engineering dimensions for
the “low” stress case are summarized in Table I.

2. High Stress q < qσ

As previously mentioned, when stress is significant, the
dominant portion of the Gaussian theory has to be re-
considered. A “uni-axial” stress term, σq2

α, will domi-
nate over the bending rigidities in the flexural correlation

q < qσ, σαα > 0, σDD = 0
Term Eng. Dim.
∆qα 2
∆qD 1
∆f (5− 2D)/2
∆uα 3− 2D
∆uD 4− 2D
∆Cααββ 1− 2D
∆Cαβαβ 1− 2D
∆CαDαD 3− 2D
∆CααDD 3− 2D
∆CDDDD 5− 2D
∆Bααββ −4
∆BααDD −2
∆BDDDD 0
∆σαα 0

TABLE II. In the presence of a large “uni-axial” tension, en-
gineering dimensions are shown for spatial dimensions, order
parameters and the elastic moduli of the theory.

function along every axis except for the Dth axis. Thus
the new dominant term of the Gaussian theory becomes:

[BDDDD q4
D + σαα q

2
α]f(q)f(−q) (18)

Rendering these free energy terms scale invariant requires
axes co-linear with the “uni-axial” stress must be re-
scaled such that q1 ∼ ... ∼ qD−1 ∼ q2

D [45–47]. Thus if
the wave vectors rescale as (qD−1, qD) ≡ (b2q′D−1, bq

′
D)

where qD−1 = (q1, ..., qD−1), then keeping the term
A
∑

q[BDDDDq
4
D + σααq

2
α]f2 scale invariant leads to

A
∑
|q|<Λ

[BDDDD q4
D + σαα q

2
α]f(qD−1, qD)f(−qD−1,−qD)

= b1−2DA′
∑

|q′|<Λ/b

[BDDDD b4q′D
4

+ σααb
4q′α

2
] ×

f(b2q′D−1, bq
′
D)f(−b2q′D−1,−bq′D)

(19)

where A = b1−2DA′ since A = LD
∏D−1
α=1 Lα =

b−1L′D
∏D−1
α=1 b

−2L′α (where Li are the system dimen-
sions along axis i and re-scale inverse to how qi re-
scale). This equation thus implies the engineering di-
mension ∆f = (5− 2D)/2. Observing the difference be-
tween the two terms BDDDDq

4
D and BααDDq

2
αq

2
Df(q)2

and since ∆BDDDD = 0 and qα ∼ q2
D, we can conclude

that ∆BααDD = −2. Likewise, ∆Bααββ = −4. As was
done in the previous section we can compare the terms
within the strain tensor qiuj ∼ qifqjf and we get that

qiuj(q) = b∆qi q′iuj(bq
′) ≡ b−∆u+∆qi q′iu

′
j(q
′) ∼

qiqjf(q)f(−q) = b∆qi
+∆qj q′iq

′
jf(bq′)f(−bq′)

≡ b−2∆f+∆qi
+∆qj q′iq

′
jf
′(q′)f ′(−q′)

(20)

and thus ∆ui = 2∆f − ∆qi . Because of the difference
in how qα and qD re-scale, we obtain two different engi-
neering dimensions for the in-plane displacement fields:
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∆uα = 3−2D and ∆uD = 4−2D. Due to the anisotropic
re-scaling of spatial dimensions, this causes Cijkl with dif-
fering indices to be re-scaled differently as well. As an
example, consider Cααββ :

A
∑
|q|<Λ

Cααββ qαqβuα(qD−1, qD)uβ(−qD−1,−qD)

= b1−2DA′
∑

|q′|<Λ/b

Cααββ b
4q′αq

′
β ×

b4D−6uα(b2q′D−1, bq
′
D)uβ(−b2q′D−1,−bq′D)

(21)

thus implying ∆Cααββ = 1− 2D. Similar analysis yields
as well that ∆Cαβαβ = 1 − 2D. On the other hand, for
CαDαD:

A
∑
|q|:q<Λ

CαDαD qαqα uD(qD−1, qD)uD(−qD−1,−qD)

= b1−2DA′
∑

|q′|<Λ/b

CαDαD b4q′αq
′
α ×

b4D−8uD(b2q′D−1, bq
′
D)uD(−b2q′D−1,−bq′D)

(22)

thus implying ∆CαDαD = 3 − 2D. Similar conclusions
can be drawn for ∆CααDD = 3− 2D whereas ∆CDDDD =
5− 2D as summarized in Table II.

Thus, we see that when D > 5/2, all CRijkl become ir-
relevant and thus an-harmonic terms do not contribute to
the theory and can be ignored in the limit q → 0. On the
other hand, in the case of interest D = 2, we can remove
all irrelevant terms (CR1111, C

R
1122, C

R
1212, B

R
1111, B

R
1122) in

the expression of the free energy as they only add techni-
cal complications and do not contribute to the qualitative
scaling behavior. One can then integrate out the in-plane
phonons, ui(r), with only the constant CR2222 present in
the free energy since all other CRijkl are irrelevant. This

can be done by means of the functional integral:

e−βFeff =

∫ ∏
i

D[ui(r)]e−βF (23)

Such an integration will cause all f4 vertices to disap-
pear and thus the effective free energy will take a simpli-
fied form:

Feff
A

=
1

2

∑
|q|<qσ

[BR2222(qσ)q4
2 + σ11q

2
1 ]f(q)f(−q) (24)

Observing this equation, one may note the absence of
an-harmonic terms. This implies that B2222 will no
longer renormalize once the “uni-axial” stress is dom-
inant. Thus the bending rigidity satisfies BR2222(q) =
BR2222(qσ) (and more generally BDDDD) and actually re-
mains a constant when q < qσ.

We will now calculate the SCSA equations correspond-
ing to the theory so that we may later on calculate the
potential anomalous scaling of elastic moduli due to the
presence of relevant an-harmonic terms in the free energy.

B. SCSA And β Equations

In order to derive anomalous exponents of the elastic
moduli and more precise values for the cross-over scales
qσ , qth where scaling of the correlation functions change,
it is important to take a moment to calculate the SCSA
equations that take into account the effect of an-harmonic
terms into the calculation of effective elastic moduli.

Before proceeding to the derivation of the SCSA equa-
tions, we will take a brief aside to mention that one can
integrate out all in-plane phonons to obtain an effective
free energy for the flexural field. This will be necessary
to obtain the SCSA equation for the flexural correlation
function GRff (q). For the purpose of obtaining useful ex-
pressions, we assume the general orthorhombic symme-
try of the elastic tensors. Integrating out the in-plane
phonons for general D gives rise to a complicated coeffi-
cient of the f4 vertex. However, the effective energy for
flexural phonons under periodic boundary conditions in
the presence of a general stress takes the following form
in D = 2 [40]:

Feff
A

=
1

2

∑
|q|<Λ

[Bijkl qiqjqkql + σijqiqj ]f(q)f(−q)

+
1

8

∑
q1+q2=

−q3−q4=q6=0,|qi|i=1,...,4<Λ

q4[q1iP
T
ij (q)q2j ][q3iP

T
ij (q)q4j ]

N

E(q)
f(q1)f(q2)f(q3)f(q4)

(25)

where N and E(q) are:

N =C1212[C1111C2222 − C2
1122]

E(q) =Det[Cijklqiqk] =

E(q) =C1111C1212q
4
1 + C2222C1212q

4
2

+ (C1111C2222 − 2C1122C1212 − C2
1122)q2

1q
2
2

(26)

Returning now to the derivation of the SCSA equa-
tion, one can compute one-loop SCSA equations for the
in-plane moduli. In principle one can do calculations
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to higher order loops to obtain more accurate results,
however one can often gain a qualitative understanding

from a one-loop analysis. From an SCSA shown in Fig. 2
we can derive the following self-consistent equations for
CRijkl.

CRijkl(q) =Cijkl

− kBT

4(2π)D

∫
|p|<Λ

dDp[CRijmn(q)(qm − pm)pn][Cabkl(qa − pa)pb]
AGRff (q− p)

kBT

AGRff (p)

kBT

− kBT

4(2π)D

∫
|p|<Λ

dDp[Cijmn(qm − pm)pn][CRabkl(q)(qa − pa)pb]
AGRff (q− p)

kBT

AGRff (p)

kBT

(27)

The symmetrization of the diagrammatic contributions
seen in Fig. 2 is due to the major symmetry of the ten-
sor Cijkl = Cklij which enforces conservation of energy.
This symmetry should remain even through renormal-
ization. One can also obtain identical SCSA equations

renormalizing the Cijkl∂iuj∂kf∂lf vertex since the form
of Hamiltonian will be preserved via renormalization [5].
Similarly a self-consistent equation can be written down
for the flexural correlation function:

GRff (q) = Gff (q)− A

kBT

∑
p:p<Λ

q4[piP
T
ij (q− p)qj ]

2 N

E(q− p)
GRff (p)GRff (q)Gff (q) (28)

One can also obtain the corresponding momentum
shell Renormalization-Group equations, or β equations,
which will be of use to derive the values of qth and qσ more
precisely [48]. One can apply the operator, −q∂q ≡ ∂s to
the SCSA equation (27), and convert the Fourier sum to
a momentum shell integral [21, 41, 49] in which we have
integrate a momentum shell of Fourier space Λ/b < p < Λ
of the p integral:

∂sC
R
ijkl(s) = 2(2∆f − 1)CRijkl(s)

− kBTΛD−4

2(2π)D

∫
dD−1p̂

[CRijmn(s)p̂mp̂n][CRabkl(s)p̂ap̂b]

[BRijkl(s)p̂ip̂j p̂kp̂l +
σij
Λ2 p̂ip̂j ]2

(29)

where s is the rescaling parameter, with b = es; 0 < s�
1. We have extracted the powers of Λ and this leaves
us with an angular integral over the unit vectors p̂. Fur-
thermore ∆f is the engineering dimension of the order
parameter f , though in renormalization, it is generally
treated as a degree of freedom [21, 39, 41]. Once the mo-
menta in the window Λ/b < p < Λ have been integrated
over, the UV cutoff Λ/b is re-scaled to Λ.

In the limit of vanishing stress one can additionally
write down a general D-dimensional β function for the
isotropic bending rigidity κ [41]:

∂sκ = (2∆f −D − 4)κ+
4[D2 − 1]µ(λ+ µ)SDkBT

(D2 + 2D)(λ+ 2µ)(2π)DκΛ4−D

(30)

where SD is the area of a D-dimensional unit sphere.

With the SCSA equations and β-functions calculated,
we can now proceed to obtaining the scaling of correla-
tion functions in each regime and obtain the scale limits
of each regime. We order the regimes by investigating
regimes with different dominant harmonic terms inde-
pendently: in other words low stress, q > qσ and high
stress q < qσ. Within each of these regimes, we investi-
gate each sub-regime depending on whether temperature
is significant or not: in other words low temperature,
q > qth and high temperature q < qth.

C. Scaling At Low Stress q > qσ

1. Scaling At Low Temperature q > max{qσ, qth}

The positive engineering dimension of Cijkl when D <
4 signifies the importance of the parameter when q → 0,
however this does not mean that an-harmonic effects need
to be considered at smaller finite length scales.

Indeed, when q > max{qσ, qth}, the scaling of the cor-
relation functions is trivial since both temperature and
stress do not contribute significantly, thus the harmonic
low stress correlation functions are sufficient to under-
stand the theory and no anomalous effects should be ob-
served in the theory. Reminding the reader once again
that we are assuming the Roman letter indices such as
i, j, k, l range over {1, ..., D} and Greek letter indices
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FIG. 2. (a) The SCSA equation is shown graphically using the Cijkl∂if∂jf∂kf∂lf vertex. This equation is used to obtain a
scaling of the Cijkl via a self-consistent analysis. The symmetrization is due to the major symmetry of the Hamiltonian. The
the dashed line indicates Cijkl and the doubled dashed line CRijkl. The solid lines indicate Gff whereas the doubled solid lines

indicate GRff . (b) The SCSA equation corresponding to the flexural correlation function is shown using the effective f4 vertex
in Eq. (25). The renormalized structure of the vertex is marked by the doubled dotted line.

range over {1, ..., D − 1} we have:

Gff (q) =
kBT

A[Bijklqiqjqkql + σααq2
α]

≈ kBT

A[Bijklqiqjqkql]
− kBTσααq

2
α

A[Bijklqiqjqkql]2

(31)

where a Taylor expansion was performed if one is curious
of the linear response of the theory and all Bijkl are the
bare parameters of the theory since no thermal anoma-
lous effects are relevant. Assuming the bare material is
isotropic, we then have:

Gff (q) ≈ kBT
Aκq4

(32)

where the stress term is insignificant to the scaling of
the flexural correlation function. And for the in-plane
phonons we have:

Guiuj =
kBT

A
[Cikjlqkql]

−1 (33)

where the Cijkl are also the bare parameters of the the-
ory.

Assuming a vanishing stress such that qσ � qth < q,
one can ask at what qth these harmonic approximations
are no longer appropriate to use and thus an-harmonic
terms play an important role. To do this, it is neces-
sary to resort to the β equations presented in Sec. III B.
Specifically we can examine Eq. (30) and look at what
re-scaled UV cutoff Λth the an-harmonic contribution is
of the order of κ. Assuming isotropy and ignoring in-
finitesimal stresses, we have [41]:

κ ≈
4(D2 − 1)kBTµ(λ+ µ)SDΛD−4

th

(λ+ 2µ)(D2 + 2D)κ(2π)D
(34)

where SD is the area of a unit D-dimensional sphere.
Therefore we obtain:

qth ≡ Λth =

(
4

(D2 − 1)kBTµ(λ+ µ)SD
(λ+ 2µ)(D2 + 2D)(2π)Dκ2

) 1
4−D

(35)

Likewise, assuming very small temperatures such that
qth � qσ < q, one can similarly ask at what qσ the
Gaussian theory breaks down due to stress. The answer
to this is already in our derivation of Eq. (14) for qσ.
When qth < q < qσ, the dominant terms in the harmonic
theory will have to be re-examined, which will be done
in the following Sec. III D.

2. Scaling At High Temperature qth > q > qσ

Having obtained the engineering dimensions we can
make certain inferences of the behavior of these elastic
sheets beyond qth. Indeed when q > qσ, the engineer-
ing dimensions seen in Table I indicate that all the in-
plane elastic moduli have positive engineering dimensions
and must thus be considered in the theory. Indeed these
are the same engineering dimensions as were found in
[5]. One can then perform an SCSA or renormalization
group analysis [3, 5, 28] to obtain the anomalous expo-
nents assuming negligible stress. Thus, the non-trivial
scaling analysis of stress-free thermally fluctuating mem-
branes will hold [21]. Thus, assuming a large separation
of the three Fourier scales and qσ � q � qth and D < 4,
we expect to observe the anomalous thermalized expo-
nents η, ηu since the bending modes are dominant and
the stress term is not significant. Thus we have:

Gff (q) =
kBT

A[BRijkl(q)qiqjqkql + σααq2
α]

≈ kBT

A[BRijkl(q)qiqjqkql]

(36)

where BRijkl(q) can be taken to be the isotropic κR(q)
assuming the material is isotropic at T = 0 and thus
κR(q) ∼ (q/qth)−η. Stress is still not significant in its
contributions to the flexural correlation functions and for
this reason it can be Taylor expanded. Analogously,

Guiuj =
kBT

A
[CRikjl(q)qkql]

−1 (37)
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and CRikjl(q) ∼ (q/qth)ηu . The scaling of the elastic mod-
uli can be observed in Table III.

Assuming, qσ < q < qth we can ask ourselves once
more, up to what qσ will this non-trivial scaling hold. To
do this we merely repeat the steps indicated to derive
Eq. (13). Thus we are aware of what is the range of this
scaling regime in the presence of small stresses and must
always be sure to use the anomalous exponents η, ηu only
when qσ < q < qth.

D. Scaling At High Stress q < qσ

1. Scaling At Low Temperature qth < q < qσ

The stress length scale of this regime, establishing one
of the bounds, is once again given by Eq. (14). Since we
are considering the case of low temperature, the renor-
malizing effect of an-harmonic terms can be ignored.
Since no anomalous behaviors are expected, the flexural
correlation function when stress is “uni-axial” is easily
written down as:

Gff (q) ≈ kBT

A[BDDDDq4
D + σααq2

α]
(38)

where BDDDD is the T = 0 value (which is once again κ
for an isotropic material). Similarly, the in-plane phonon
correlation functions should not show any anomalous be-
havior and we should observe:

Guiuj (q) =
kBT

A
[Cikjlqkql]

−1 (39)

with the T = 0 parameters of the theory being used.
These scaling laws can be observed in Table IV.

In the high stress case, we can once again ask where is
the breakdown of the harmonic theory, in other words the
new value of qth. It need not be the same as the formula
for the low stress case in Eq. (35) due to stress now being
significant. However, for D > 2, there is no breakdown
of the harmonic theory since all an-harmonic terms in
the free energy are irrelevant. A length scale where the
harmonic theory breaks down can be evaluated for D = 2
for which CDDDD = C2222 is a relevant parameter. Thus
we will calculate the value of qth explicitly in the case of
D = 2.

From the engineering dimensions, we understood that
even beyond qth, the flexural phonons should not show
any anomalous behavior since BRDDDD = BR2222 will re-
main a constant. Indeed the only relevant parameter that
can show anomalous behavior is CRDDDD = CR2222. Thus
we repeat our derivation of qth in a similar manner as the
derivation of Eq. (35), except we use the β equation of
CR2222 given in Eq. (29):

∂sC
R
2222 = 2CR2222 −

kBT

2(2πΛth)2

∫ 2π

0

dθ
[CR2222 sin2 θ + CR1122 cos2 θ]2

[BRijkl(s)p̂ip̂j p̂kp̂l + σ11

Λ2
th

cos2 θ]2
(40)

where ∆f = 1. Anomalous effects cannot be ignored
once Λ takes on a value such that the two terms on the
right hand side are of the same order. Here we have
once again named this inverse length scale as Λth. In
other words we are interested to know at what scale the
anomalous contribution becomes significant with respect
to the linear term in the β equation:

2CR2222 ≈
kBT

2(2πΛth)2

∫ 2π

0

dθ
[CR2222 sin2 θ + CR1122 cos2 θ]2

[BRijkl(s)p̂ip̂j p̂kp̂l + σ11

Λ2
th

cos2 θ]2

(41)
We can approximately rewrite the denominator with the
bare parameters as:

BRijklp̂ip̂j p̂kp̂l +
σ11

Λ2
th

cos2 θ −→ κ+
σ11

Λ2
th

cos2 θ (42)

where we set κ = B1111 = B2222 = B1122 as the bare
isotropic bending rigidity. This is justified since an-
harmonic contributions are insignificant and thus the
bare bending rigidities can be used. Replacing CR1122 and
CR2222 by their bare isotropic values λ, λ+2µ respectively,

one can then perform the integral identity holds when q
is less than:

Λth ≡ qth =
kBT (λ+ 2µ)

16π
√
κ3σ

(43)

Thus in the large stress limit we have a different form for
qth which still matches with the low stress limit formula,
Eq. 35, for qth when qth ≈ qσ and D = 2.

2. Scaling At High Temperature q < min{qσ, qth} for D = 2

As was shown in Sec. III A 2, we know that below qσ,
BRDDDD should not be anomalous and should be a con-
stant at some finite value, we can use the SCSA equations
to obtain the scaling behavior of the moduli in the long
wavelength limit when q < min{qσ, qth}. Such an analy-
sis is done in [34] for tubules as well for general D.

However, we again restrict our focus to the scaling
analysis of the elastic moduli in strictly D = 2. This is
not only the physically interesting case but also the least
trivial due to the relevance of C2222 for D = 2 (whereas
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for larger dimensions all Cijkl, including CDDDD, be-
come irrelevant as q → 0). Furthermore, the analysis of
the SCSA equations will be technically clearer in D = 2.

We can now proceed to the SCSA using the same
idea of removing irrelevant an-harmonic coefficients. We
shall further assume that we have integrated all high-
frequency modes with q > min{qσ, qth} and thus all un-
integrated wave-vectors in the following analysis satisfy
q < min{qσ, qth}.

Before beginning the analysis we note once again from
Table II that when q < min{qσ, qth} all bending rigidi-
ties except for B2222 are irrelevant. In addition BR2222 be-
comes a constant so if we define qmin ≡ min{qσ, qth} then
we can approximate the correlation function for q < qmin

as:

GRff (q) =
kBT

A[BRijkl(q)qiqjqkql + σ11q2
1 ]

≈ kBT

A[BR2222(q)q4
2 + σ11q2

1 ]

≈ kBT

A[BR2222(qmin)q4
2 + σ11q2

1 ]

(44)

As a final preliminary step we use a one loop SCSA
analysis to obtain an-harmonic corrections to the elastic
moduli resulting in Eq. (27). We will divide this equation
by CijklC

R
ijkl(q) and use the Eq. 44 as the correlation

functions leading to:

1

Cijkl
=

1

CRijkl(q)

− kBT

4(2π)2

∫
|p|<qmin

dp1dp2

[CRijmn(q)(qm − pm)pn][Cabkl(qa − pa)pb]

CijklCRijkl(q)[BR2222(qmin)(p2 − q2)4 + σ11(p1 − q1)2][BR2222(qmin)p4
2 + σ11p2

1]

− kBT

4(2π)2

∫
|p|<qmin

dp1dp2
[Cijmn(qm − pm)pn][CRabkl(q)(qa − pa)pb]

CijklCRijkl(q)[BR2222(qmin)(p2 − q2)4 + σ11(p1 − q1)2][BR2222(qmin)p4
2 + σ11p2

1]
,

(45)

where p = (p1, p2). In the analysis we will drop the
bounds of the integral and take it as a given that |p| <
qmin. We can now examine the scaling behavior of the
elastic moduli as q → 0. However, before beginning, it
should be stated that though these results are derived

from a one-loop SCSA, that the scalings for the elastic
moduli in the rest of this section will be correct to all
loops [34].
a. Scaling Behavior of C2222. For C2222, the corre-

sponding self-consistent perturbative equation is given by
Eq. (45) as:

1

C2222
=

1

CR2222(q)
− kBT

2(2π)2

∫
dp1dp2

[(p2 − q2)p2 +
CR1122(q)

CR2222(q)
(p1 − q1)p1][(p2 − q2)p2 + C1122

C2222
(p1 − q1)p1]

[BR2222(qmin)p4
2 + σ11p2

1][BR2222(qmin)(p2 − q2)4 + σ11(p1 − q1)2]
(46)

where C2222 and C1122 are the bare un-renormalized mod-
uli. We examine Eq. (46) in the long wavelength limit
when q → 0, where q < min{qσ, qth}. From Table II we

know that q1 ∼ q2
2 and C1111, C1122, C1212, B1111, B1122

are all irrelevant.
We can then extract powers of q2:

1

C2222
=

1

CR2222(q)
− kBT

2(2π)2

∫
dp̃1dp̃2 q

3
2

[ 1
q22

(p̃2 − 1)p̃2 +
CR1122(q)

CR2222(q)
(p̃1 − q̃1)p̃1][ 1

q22
(p̃2 − 1)p̃2 + C1122

C2222
(p̃1 − q̃1)p̃1]

[BR2222(qmin)p̃4
2 + σ11p̃2

1][BR2222(qmin)(p̃2 − 1)4 + σ11(p̃1 − q̃1)2]
(47)

where p̃2 = p2/q2, p̃1 = p1/q
2
2 and q̃1 = q1/q

2
2 . We must collect the most divergent terms as q2 → 0 since the left

hand side of the equation is a constant. Since C1122 is irrelevant we may also remove this term from the numerator
and thus obtain the following equation:

1

C2222
=

1

CR2222(q)
− kBT

2(2π)2

1

q2

∫
dp̃1dp̃2

(p̃2 − 1)2p̃2
2

[BR2222(qmin)p̃4
2 + σ11p̃2

1][BR2222(qmin)(p̃2 − 1)4 + σ11(p̃1 − q̃1)2]
(48)

In the above equation, one can easily see that the in- tegral is a homogeneous function of q̃1, thus the self-
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consistent equation is solved by the ansatz:

CR2222(q) ≈ CR2222(qmin)
q2

qmin
Ω2
C(1/

√
q̃1) (49)

where Ω2
C(1/

√√
q

1
) is a universal scaling function

that is a constant when q̃1 → 0. The pre-factor
CR2222(qmin)q2/qmin is meant to ensure that the corre-
lation functions for q < qmin and q > qmin transition
smoothly at qmin. The full form of Ω2

C can be determined
from the fact that CR2222(q) should be independent of q1

when q1 → 0 and it should be independent of q2 when
q2 → 0. Thus:

Ω2
C(s) ∼

{
constant s→∞
s−1 s→ 0

(50)

Assembling the pieces together we obtain:

CR2222(q) ∼

{
q2 q2 �

√
q1√

q1 q2 �
√
q1

(51)

Therefore, despite the fact that the effective theory in
Eq. 24 does not possess anomalous scaling, the full the-
ory with in-plane phonons does have anomalous expo-
nents due to thermal fluctuations. The significance of
this intuitively is that sinusoidal waves can form trans-
verse to the axis of stress and are not flattened out by
it.

In addition, this result will be correct to all loops since
one can check that at higher orders, the leading contri-
bution to the SCSA equation of CR2222 at every order is
q2Ω2

C(q2/
√
q1) [34].

b. Scaling Behavior of C1122 and C1111. Although
the remaining moduli are irrelevant, we can repeat this
same analysis to obtain how they scale. We can check
for example how CR1122 and CR1111 should scale.

We can use Eq. (45) and keep in mind that if we look at
Table II, we see that CR1111 is more irrelevant with respect
to CR1122 and thus we can omit the C1111 contributions to
the SCSA equation of CR1122. This will result in:

1

C1122
=

1

CR1122(q)
− kBT

4(2π)2

∫
dp1dp2

[ (p2 − q2)p2[(p1 − q1)p1 +
CR2222(q)

CR1122(q)
(p2 − q2)p2]

[BR2222(qmin)p4
2 + σ11p2

1][BR2222(qmin)(p2 − q2)4 + σ11(p1 − q1)2]

+
(p2 − q2)2[p2

1 + C2222

C1122
p2

2]

[BR2222(qmin)p4
2 + σ11p2

1][BR2222(p2 − q2)4 + σ11(p1 − q1)2]

] (52)

and

1

C1111
=

1

CR1111(q)
− kBT

2(2π)2

∫
dp1dp2

[
CR1122(q)

CR1111(q)
(p2 − q2)p2 + (p1 − q1)p1][C1122

C1111
(p2 − q2)p2 + (p1 − q1)p1]

[BR2222(qmin)(p2 − q2)4 + σ11(p1 − q1)2][BR2222(qmin)p4
2 + σ11p2

1]
(53)

Similarly as before we can extract powers of q2, keeping in mind also that CR2222(q) ∼ q2. Thus giving:

1

C1122
=

1

CR1122(q)
− kBT

4(2π)2

∫
dp̃1dp̃2

q5
2

[ (p̃2 − 1)p̃2q
2
2 [p̃1(p̃1 − q̃1)q4

2 +
CR2222(qmin)Ω2

C( 1√
q̃1

)

qminCR1122(q)
(p̃2 − 1)p̃2q

3
2 ]

[BR2222(qmin)p̃4
2 + σ11p̃2

1][BR2222(qmin)(p̃2 − 1)4 + σ11(p̃1 − q̃1)2]

+
(p̃2 − 1)p̃2q

2
2 [(p̃1 − q̃1)p̃1q

4
2 + C2222

C1122
(p̃2 − 1)p̃2q

2
2 ]

[BR2222(qmin)p̃4
2 + σ11p̃2

1][BR2222(qmin)(p̃2 − 1)4 + σ11(p̃1 − q̃1)2]

] (54)

and

1

C1111
=

1

CR1111(q)
− kBT

2(2π)2

∫
dp̃1dp̃2

q5
2

[
CR1122(q)

CR1111(q)
(p̃2 − 1)p̃2q

2
2 + (p̃1 − q̃1)p̃1q

4
2 ][C1122

C1111
(p̃2 − 1)p̃2q

2
2 + (p̃1 − q̃1)p̃1q

4
2 ]

[BR2222(qmin)(p̃2 − 1)4 + σ11(p̃1 − q̃1)2][BR2222(qmin)p̃4
2 + σ11p̃2

1]
(55)

By only paying attention to powers of q2 and replacing finite integrals with the symbols I(i) we may write that:

1

C1122
=

1

CR1122(q)
+ q2I

(1)
1122 +

1

CR1122(q)
I

(2)
1122 +

1

q2
I

(3)
1122

(56)
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and

1

C1111
=

1

CR1111(q)
+
CR1122(q)

CR1111(q)

1

q2
I

(1)
1111 +

CR1122(q)

CR1111(q)
q2I

(2)
1111

+ q2I
(3)
1111 + q3

2I
(4)
1111

(57)

where the integrals I
(i)
1122 and I

(i)
1111 can be found in the

appendix in Sec. A 3. Collecting the most divergent pow-
ers (divergent as q2 → 0) in each equation gives:

1

C1122
≈ 1

CR1122(q)
(1 + I

(2)
1122) +

1

q2
I

(4)
1122 (58)

1

C1111
≈ 1

CR1111(q)
+
CR1122(q)

CR1111(q)

1

q2
I

(1)
1111 (59)

Eq. (58) directly shows that it can be solved by the
ansatz:

CR1122(q) ≈ CR1122(qmin)
q2

qmin
Ω1
C(q2/

√
q1) (60)

where we have once again a pre-factor that ensures the
the correlation functions for q < qmin and q > qmin

match. And the homogeneous function has the follow-
ing scaling:

Ω1
C(s) ∼

{
constant s→∞
s−1 s→ 0

(61)

and hence, C1122(q) ∼ q2 and thus that:

CR1122(q) ∼

{
q2 q2 �

√
q1√

q1 q2 �
√
q1

(62)

When we insert this ansatz into Eq. (59) we obtain also
that CR1111 becomes a constant and thus must be approx-
imately CR1111(qmin). These can be found in Tables III
and IV.

c. Scaling Behavior of C1212. Lastly, we can check
how the shear modulus should scale via its corresponding
self-consistent equation:

1

C1212
=

1

CR1212(q)

− 2kBT

(2π)2

∫
dp1dp2

p1p2

[BR2222(qmin)p4
2 + σ11p2

1]

× (p1 − q1)(p2 − q2)

[BR2222(qmin)(p2 − q2)4 + σ11(p1 − q1)2]
.

(63)

Repeating a similar analysis as above gives that all con-
tributions of the integral are irrelevant in the limit that
q2 → 0. Hence CR1212(q) becomes a constant below
min{qσ, qth}.

Scaling Exponents qth > qσ, σ11 > 0, σ22 = 0
Scale q > qth qth > q > qσ qσ > q

CR1111/C1111 1

(
q
qth

)ηu (
qσ
qth

)ηu
CR1212/C1212 1

(
q
qth

)ηu (
qσ
qth

)ηu
CR1122/C1122 1

(
q
qth

)ηu (
qσ
qth

)ηu
q2
qσ

Ω1
C(1/

√
q̃1)

CR2222/C2222 1

(
q
qth

)ηu (
qσ
qth

)ηu
1
q̃σ

Ω2
C(1/

√
q̃1)

BR1111/B1111 1

(
q
qth

)−η
Masked

BR1122/B1122 1

(
q
qth

)−η
Masked

BR2222/B2222 1

(
q
qth

)−η (
qσ
qth

)−η
TABLE III. The scaling of the elastic moduli is shown when
stress is small enough such that qth > qσ. When qσ > q, the
bending rigidities BR1111q

4
1 and BR1122q

2
1q

2
2 are dominated by

the stress term σ11q
2
1 in Eq. 11 and we term them as masked.

Scaling Exponents qσ > qth, σ11 > 0, σ22 = 0
Scale q > qσ qσ > q > qth qth > q

CR1111/C1111 1 1 1
CR1212/C1212 1 1 1
CR1122/C1122 1 1 q2

qth
Ω1
C(1/

√
q̃1)

CR2222/C2222 1 1 q2
qth

Ω2
C(1/

√
q̃1)

BR1111/B1111 1 Masked Masked
BR1122/B1122 1 Masked Masked
BR2222/B2222 1 1 1

TABLE IV. The scaling of the elastic moduli is shown when
stress is large enough such that qth < qσ. When qσ > q, the
bending rigidities BR1111q

4
1 and BR1122q

2
1q

2
2 are dominated by

the stress term σ11q
2
1 in Eq. 11 and we term them as masked.

d. Scaling Behavior of B1122 and B1111. Whereas
for CRijkl, we could conduct a scaling analysis correspond-

ing to SCSA equations for the anharmonic f4 interaction,
BR1111 and BR1122 are coefficients of harmonic terms and
will be masked by the stress in the correlation function,
Gff , when q < qσ.

With our theoretical results we now move on to verify
the scaling of this theory via simulations that measure
the in-plane and flexural correlation functions in these
regimes.

E. Discussion of Correlation functions from
Simulations

The scaling of these moduli should be reflected in the
correlation functions in Eqs. (11) and (12). Molecular dy-
namics simulations of square-shape systems with spring-
mass system arranged in a triangular lattice. Two sys-
tem sizes were used, one with 2900 masses (amounting
to a square sheet of size 50a× 50a where a is the lattice
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FIG. 3. Displayed are some simulation results for the (a) flexural correlation functions (b) orthogonal in-plane correlation
functions and (c) transverse in-plane correlation function along orthogonal axes. Plots show the changes in these correlation
function at the thermal transition, q = qth, and when stress becomes dominant, q = qσ. Blue dashed lines show the continuation
of the harmonic scaling to aid seeing the change in slope when q = qth. In (a) and (b), the anisotropy of the correlation functions
can be observed when q < qσ. The magenta lines show the anomalous thermal exponents η, ηu when qth > q > qσ. As one can
see in (c), the shear modes always remain isotropic.

spacing) and 11600 masses (100a × 100a) to show that
finite size effects in the correlation functions are negligi-
ble. Further details of the simulations can be found in
the appendix in Sec. A 1. What gives the dimensional
sense of system size are the parameters such as bending
rigidity, Young’s modulus and temperature, all of which
enter into the formula for qth. To make this clearer, in
the low-stress limit:

qth ∼
√
kBTY

κ2
(64)

where kBT, κ have units of energy but Y has units of
energy/m2. Understanding this, the temperature, bend-
ing rigidity and Young’s modulus were varied in order
to piece together data from simulations across a large
scale change, which allowed us to be more computation-
ally effective. Specific parameters can be obtained in the
appendix. Simulations were only done in the low stress
limit. This is because replication of similar results in the
large stress case were rendered difficult to obtain due to
the non-linear responses of the lattice of springs as well.

Looking at Fig. 3, all simulations had a stress value
such that qσ/qth = 10−2 (using Eq. (13)) while κ, Y, T
were varied independently. The Fig. 3(a) shows the tran-
sition from the harmonic regime to an anomalous ther-
mally renormalized regime where the bending rigidities
diverge isotropically with exponent η ≈ .8. At qσ a sec-
ond transition can be observed from the isotropic anoma-
lous exponents η, ηu to a regime where anisotropies de-
velop and the scaling takes the form in Table III. In-
plane phonon correlation functions associated with nor-
mal strains are plotted in Fig. 3(b), using the same sim-
ulations. Similarly, they show the scaling expected from
the theory with a strong anisotropy that develops below
qσ. Finally, we also observed the isotropy of the shear
modulus in Fig. 3(c) which also matched the scaling we
found via our SCSA equations. The shear modulus ceases

to renormalize once stress becomes relevant.
Having confirmed our theoretical results with simula-

tions we can now move on to measuring the stress-strain
theory that follow from this scaling theory.

IV. SIMULATIONS OF STRESS-STRAIN AND
POISSON’S RATIO

The stress-strain relationship of thermalized 2D sheets
of dimensions L × L under uni-axial stress along axis 1
can be theoretically calculated:〈

δL1

L

〉
σ

≈ σ11

Y
− 1

2

∑
2π
L <|q|<Λ

q2
1GRff (q) (65)

where L is the system size, Λ is again the UV cutoff
and δL1 is the change in length along axis 1 [21]. The
first term in the equation reflects the bare response of
the material whereas the second term involves the effect
of temperature. It is this latter term that gives rise to
the tendency of elastic membranes to shrink [21, 40, 50].
Similarly, strains along the axis orthogonal to the stress
can be calculated as:〈

δL2

L

〉
σ

≈ −νσ11

Y
− 1

2

∑
2π
L <|q|<Λ

q2
2GRff (q) (66)

where ν is the bare Poisson ratio, in our case +1/3 for
a triangular lattice. δL2 is the change of system length
along axis 2. The strains are then defined as:

ε11 =

〈
δL1

L

〉
σ

−
〈
δL1

L

〉
0

ε22 =

〈
δL2

L

〉
σ

−
〈
δL2

L

〉
0

(67)
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where the subtracted terms express the reference system
size in the absence of stress. These terms are neces-
sary to subtract in order to obtain a strain from the
un-stressed state where thermal fluctuations naturally
induce a shrinking of the membrane. By plugging in
our theoretical scaling ansatz for the correlation func-
tions, found in Table V, we can analytically calculate the
stress-strain relation. Typically, for real materials such as
graphene at room temperature, a < `th < L (`th ≈ 2nm
at 300K). However, since we can only effectively simulate

system sizes of the order of 50a× 50a, we tuned parame-
ters to generally obtain a large separation of length scales
L/`th. We therefore examine the scaling of the stress-
strain relation when `th < a < L (2π/L < Λ < qth) with
the stress length scale being variable. The scaling ansatz
of the correlation function for the length scales that fall
between a and L depends on the magnitude of stress and
is shown in Table V. We may show an example of how to
obtain one of the scaling functions of ε11, ε22 observed in
Table V.

Expressions of GRff for 2π/L < Λ < qth
Scale qσ < 2π/L 2π/L < qσ < Λ Λ < qσ < qth qth < qσ
qσ < q kBT

A[κq
η
th
q4−η+σ11q21 ]

kBT

A[κq
η
th
q4−η+σ11q21 ]

NA NA

q < qσ NA kBT

A[κq
−η
σ q

η
th
q42+σ11q

2
1 ]

kBT

A[κq
−η
σ q

η
th
q42+σ11q

2
1 ]

kBT

A[κq42+σ11q
2
1 ]

Scaling of Strains
Strain qσ < 2π/L 2π/L < qσ < Λ Λ < qσ < qth qth < qσ

ε11 σ11/(4(1− η)YR(L)) ∼ ση/(2−η)11 transition to σ11/Y σ11/Y

ε22 −σ11/(12(1−η)YR(L)) ∼ ση/(2−η)11 transition to −νσ11/Y −νσ11/Y

TABLE V. In this table we show the scaling of the flexural correlation functions derived from Sec.III. We then write down the
corresponding stress-strain behaviors of the strains ε11 and ε22. In the table YR(L) = Y (2π/qthL)ηu .

For example, in the case `th < a < `σ < L(2π/L < qσ < Λ < qth). Beginning with Eq. (67):

ε11(σ11, T |2π/L < qσ < Λ < qth)

=
σ11

Y
− 1

2

∑
qσ<|q|<Λ

q2
1

[
kBT

A[κqηthq
4−η + σ11q2

1 ]
− kBT

Aκqηthq
4−η

]
− 1

2

∑
2π
L <|q|<qσ

q2
1

[
kBT

A[κq−ησ qηthq
4
2 + σ11q2

1 ]
− kBT

Aκqηthq
4−η

]

=
σ11

Y
− 1

2

∑
qσ<|q|<Λ

q2
1

[
− kBTσ11q

2
1

Aκ2q2η
th q

8−2η

]
− 1

2

∑
2π
L <|q|<qσ

q2
1

[
kBT

A[κq−ησ qηthq
4
2 + σ11q2

1 ]
− kBT

Aκqηthq
4−η

]
(68)

and in the first summation we may Taylor expand the correlation function to first order (since for those wave vectors
the stress term is not dominant in the denominator of the flexural correlation function). We can then convert these
terms to integrals:

ε11(σ11, T |2π/L < qσ < Λ < qth) ≈ σ
Y
− 1

2(2π)2

∫ 2π

0

dθ

∫ Λ

qσ

dqq3 cos2 θ

[
− kBTσ11q

2 cos2 θ

κ2q2η
th q

8−2η

]
− 1

2(2π)2

∫ 2π

0

dθ

∫ qσ

2π/L

dqq3 cos2 θ

[
kBT

[κq−ησ qηthq
4 sin4 θ + σ11q2 cos2 θ]

− kBT

κqηthq
4−η

]
(69)

To make the latter integral tractable we approximate the denominator in the following manner:

kBT

A[κq−ησ qηthq
4 sin4 θ + σ11q2 cos2 θ]

≈ kBT

A[κq−ησ qηthq
4 + σ11q2 cos2 θ]

(70)

This approximation is justified since the stress is dom-
inant when θ 6= π/2 in the domain of the integral,

q ∈ [2π/L, qσ]. These integrals can now be analytically
integrated giving rise to:
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ε11

(
σ11, T

∣∣∣∣2πL < qσ < Λ < qth

)
=
σ11

Y
−
[

3kBTσ11

64π(1− η)κ2q2η
th

q2η−2

]∣∣∣∣Λ
qσ

− kBT

8πσ11

[
q2 − q

√
q2 +

(
qσ
qth

)η
σ11

κ
+

(
qσ
qth

)η
σ11

κ
sinh−1

[
q

(
qσ
qth

)−η/2√
κ

σ11

]]∣∣∣∣qσ
2π
L

+
kBT

8πηκ

(
q

qth

)η∣∣∣∣qσ
2π
L

(71)

By taking the infinite system size limit (which is ap-
propriate since we are also assuming large separation of

length scales that 2π
L

(
qσ
qth

)−η/2√
κ
σ � 1 when 2π/L <

qσ < Λ < qth), we can obtain a simpler expression:

lim
L→∞

ε11

(
σ11, T

∣∣∣∣2πL < qσ < Λ < qth

)
=
σ11

Y

[
1− 1

2(1− η)

(
Λ

qth

)2η−2]
− kBT

8πκ

(
qσ
qth

)η[
(1−

√
2) + sinh−1(1)− η−1 − 3

8(1− η)

]
=
σ11

Y

[
1− 1

2(1− η)

(
Λ

qth

)2η−2]
− kBT

8πκ

(
16πσ11κ

3kBTY

) η
2−η
[
(1−

√
2) + sinh−1(1)− η−1 − 3

8(1− η)

]
(72)

A similar calculation gives:

lim
L→∞

ε22

(
σ11, T

∣∣∣∣2πL < qσ < Λ < qth

)
=
σ11

Y

[
− ν − 1

6(1− η)

(
Λ

qth

)2η−2]
− kBT

8πκ

(
16πσ11κ

3kBTY

) η
2−η
[
(−1 +

√
2) + sinh−1(1)− η−1 − 1

8(1− η)

]
(73)

The rest of the strains for other regimes can be ob-
tained in a similar manner and are shown in Table V with
explicit solutions in Sec. A 4, and these scalings become
more accurate with a large separation of length scales (in
other words if 2π/L, qth and qσ being all different orders
of magnitude) [30].

Within Eqs. (72) and (73), pre-factors of each of the
power laws can be compared using the fact that σqth � σ
(where σqth is defined as the stress such that qσ = qth).
The comparison shows that the last terms in each equa-
tion, which exhibit the scaling ση/(2−η), is the dominant
power law. Thus, when 2π/L < qσ < Λ with L → ∞
and holding stress fixed, a non-linear stress-strain regime
appears for both ε11 and ε22. This scaling for the strains
was already known in Ref. [5, 21]. Therefore in the
same stress regime, we expect to have a universal abso-

lute Poisson ratio value since:

νR = −ε22

ε11
≈ −
−1 +

√
2 + arcsinh−1(1)− η−1 − 1

8(1−η)

1−
√

2 + arcsinh−1(1)− η−1 − 3
8(1−η)

(74)
Theoretically this is expected when the separation of
length scales is sufficiently large [30]. Like [30, 31], our
value, plugging in η ≈ .8, would not match with the lin-
ear response value of −1/3. Previous theoretical investi-
gations that have obtained this linear response of −1/3,
have calculated it via the elastic moduli λR/(λR + 2µR)
which is governed by the Aronovitz-Lubensky fixed point
[28, 51, 52]. [30, 31, 53] find that the differential Poission
ratio is −1/3 in the non-linear regime only when dc →∞
whereas the absolute Poisson ratio is never −1/3. In ad-
dition, the Poisson ratio is sensitive to the type of bound-
ary condition that is used [30].

With simulations we first sought to confirm the non-
linear stress strain relation, which can be observed in
Fig. 4 (a). Between σL and σqth we observed this
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non-linear relation. For large stresses, the classical re-
sponse absent of any effects of thermal fluctuations (when
σ > σqth in other words when qth < qσ) is obtained.
For very small stresses, and with a large separation of
length scales, one should observe a linear response that
follows from ε11 ≈ σ/4(1 − η)YR(L), where YR(L) =
Y (2π/qthL)ηu (explained in Sec. A 4). We were not able
to numerically verify this slope, however we do observe a
linear theory where the Young’s modulus is softened by
thermal fluctuations.

From the same simulations, we can obtain the Pois-
son ratio by taking the negative ratio of strains ε11 and
ε22. In Fig. 4(b), the Poisson ratio is plotted against the
stress. The Poisson ratio shows potentially a universal
flat regime for stress values such that 2π/L < qσ < qth

[30]. For very small stresses, errors became very diffi-
cult to control. Stress free Monte-Carlo simulations in
the past, [29], did measure a Poisson ratio via correla-
tions functions and found a linear response of −1/3 pre-
dicted by [28]. Evidence from other simulations is much
more scattered however. In [54], the Poisson ratio was
measured to be −.15. More recent simulations in [55]
may show that the linear response Poisson ratio may be
positive. Further simulations done by [32] also found a
disagreement with the value of the −1/3 in the thermo-
dynamic limit. Thus it is unclear as to what should be
the precise value of both the linear response of the Pois-
son ratio as well as its behavior in the non-linear regime.

Returning to our own data, for large stresses such that
σ > σqth , the bare Poisson ratio of the triangular lattice of
masses connected by springs, 1/3, could not be achieved
due to the immediate cross-over to the non-linear elas-
tic regime (in the simulations the data showing the box
length along the axis of stress begins to become very large
at these stresses leading to a decrease in the Poisson ratio
with further application of stress).

V. CONCLUSIONS

We examined the effects of uni-axial stress on ther-
mally fluctuating sheets. In particular, we see that
anomalous scaling due to thermal fluctuations at scales
where the uni-axial stress is dominant still appears in the
in-plane moduli orthogonal to the stress, such as CR2222.
Furthermore the presence of the two length scales qσ and
qth provides an interesting foreground for various regimes
of the scaling of moduli. We verified these scalings via
simulations, in particular the anomalous scaling of CR2222

as well as the transition at qσ, beyond which the correla-
tion functions becomes anisotropic. These results match
with previous investigations of tubules [34].

We furthermore verified the existence of a non-linear
stress-strain regime ε ∼ ση/(2−η) in our simulations with
a numerically accurate exponent. However our results
measuring the Poisson ratio were less conclusive and re-
quire further investigation.

FIG. 4. The stress strain curve (a) and Poisson strain curve
(b) are plotted for simulations with system size 50a × 50a,
only changing the value of stress. σqth is defined as the stress
at which qσ = qth. The red dashed vertical line marks when
σ = σL (which is when qσ = 2π/L, a non-linear regime where
ε11 ∼ σ.72 appears. The angled dashed line marks the y = x
line and shows that for large stresses, a classical response is
regained.

Appendix A: Supplementary Information

1. Methods of Simulation

Simulations were performed on a cluster using 2.4
GHz Broadwell CPUs using molecular dynamics pack-
age LAMMPS in the NPT ensemble using a Nosé-Hoover
thermostat. The simulations were of a 2D isotropic
spring-mass triangular lattice embedded in 3 dimensions
and under periodic boundary conditions. The elastic
bending energy of such a spring mass system can be for-
mulated as:

Ebend =
κ̂

2

∑
〈IJ〉

[1 + cosθIJ ] (A1)



18

where κ̂ is the microscopic dihedral spring stiffness and
θIJ is the dihedral angle between two triangular faces
(which can also be seen as the angle differences between
normals of faces). The stretching energy is instead:

Estretch =
Ŷ

2

∑
〈ij〉

(rij − a)2 (A2)

where rij = |ri − rj | is the Euclidean distance between
two neighbors i and j and a is the lattice spacing. The
bare continuum moduli of such a system can be derived
from the discrete spring stiffnesses [56]:

κ =

√
3

2
κ̂, λ = µ =

√
3

4
Ŷ (A3)

The parameters were generally varied and hence the time
step had to be chosen carefully to be less or equal to the
following reduced times and periods:

τT = a

√
m

kBT
, τŶ =

√
m

Ŷ
, τκ̂ = a

√
m

κ̂
(A4)

The simulations were done non-dimensionally so kB , the
Boltzman constant, and mass and lattice spacing were
set to 1. A simulation generally ran for approximately
1.6×108−109 time steps each of length Min{τT , τŶ , τκ̂}.
In computation time this equates to 6-60 hours on the

cluster. The system size was mostly kept constant around
50× 50 and 100× 100 for the molecular dynamics corre-
lations.

2. Data Sets

TABLE VI.
Data Sets for Fig. 3,qσ/qth = 10−2

L/a κ̂/kBT Ŷ /(kBT/a
2) σ̂/(kBT/a

2)
50 103 220 1.4× 10−4

50 102 220 1.4× 10−3

50 102 2.2× 104 .14
50 1 220 .14
50 1 2.2× 104 14
50 1 2.2× 105 140
100 103 2.2× 103 5.6× 10−3

100 102 2.2× 103 5.6× 10−2

100 102 2.2× 105 5.6
100 1 2.2× 103 5.6
100 1 2.2× 105 560

3. Homogeneous Integrals For SCSA Analysis of
CR1111, C

R
1122

I
(1)
1122 = − kBT

4(2π)2

∫
dp̃1dp̃2

(p̃2 − 1)p̃2(p̃1 − q̃1)p̃1

[BR2222(qmin)(p̃2 − 1)4 + σ11(p̃1 − q̃1)2][BR2222(qmin)p̃4
2 + σ11p̃2

1]

I
(2)
1122 = − 2kBT

4(2π)2

∫
dp̃1dp̃2

C2222(qmin)Ω2
C( 1√

q̃1
)

qmin

(p̃2 − 1)2p̃2
2

[BR2222(qmin)(p̃2 − 1)4 + σ11(p̃1 − q̃1)2][BR2222(qmin)p̃4
2 + σ11p̃2

1]

I
(3)
1122 = − kBT

4(2π)2

∫
dp̃1dp̃2

C2222

C1122

(p̃2 − 1)2p̃2
2

[BR2222(qmin)(p̃2 − 1)4 + σ11(p̃1 − q̃1)2][BR2222(qmin)p̃4
2 + σ11p̃2

1]

I
(1)
1111 = − kBT

4(2π)2

∫
dp̃1dp̃2

C1122

C1111

(p̃2 − 1)2p̃2
2

[BR2222(qmin)(p̃2 − 1)4 + σ11(p̃1 − q̃1)2][BR2222(qmin)p̃4
2 + σ11p̃2

1]

I
(2)
1111 = − kBT

4(2π)2

∫
dp̃1dp̃2

(p̃2 − 1)p̃2(p̃1 − q̃1)p̃1

[BR2222(qmin)(p̃2 − 1)4 + σ11(p̃1 − q̃1)2][BR2222(qmin)p̃4
2 + σ11p̃2

1]

I
(3)
1111 = − kBT

4(2π)2

∫
dp̃1dp̃2

C1122

C1111

(p̃2 − 1)p̃2(p̃1 − q̃1)p̃1

[BR2222(qmin)(p̃2 − 1)4 + σ11(p̃1 − q̃1)2][BR2222(qmin)p̃4
2 + σ11p̃2

1]

I
(4)
1111 = − kBT

4(2π)2

∫
dp̃1dp̃2

C1122

C1111

(p̃1 − q̃1)2p̃2
1

[BR2222(qmin)(p̃2 − 1)4 + σ11(p̃1 − q̃1)2][BR2222(qmin)p̃4
2 + σ11p̃2

1]

(A5)

4. Stress Strain Relations

In this section we summarize the results of how the
strains scale with respect to an applied stress for the

other two relevant regimes of stress. For small stresses,
when qσ <

2π
L < Λ < qth we obtain:
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ε11(σ11, T |qσ < 2π/L < Λ < qth) ≈ σ11

Y
− 1

2

∑
2π/L<|q|<Λ

q2
1

[
kBT

A[κqηthq
4−η + σ11q2

1 ]
− kBT

A[κqηthq
4−η]

]

≈ σ11

Y
− 1

2(2π)2

∫ 2π

0

dθ

∫ Λ

2π/L

dqq3 cos2 θ

[
− kBTσ11q

2 cos2 θ

κ2q2η
th q

8−2η

]
=
σ11

Y
−
[

3kBTσ11

64π(1− η)κ2q2η
th

q2η−2

]∣∣∣∣Λ
2π/L

≈ 3kBTσ11

64π(1− η)κ2q2η
th

(
2π

L

)2η−2

≈ σ11

4(1− η)YR(L)

ε22

(
σ11, T

∣∣∣∣qσ < 2π

L
< Λ < qth

)
≈ −νσ11

Y
−
[

kBTσ11

64π(1− η)κ2q2η
th

q2η−2

]∣∣∣∣Λ
2π/L

≈ kBTσ11

64π(1− η)κ2q2η
th

(
2π

L

)2η−2

≈ σ11

12(1− η)YR(L)

(A6)

At low stresses we can ignore the bare response term σ/Y for ε11 or −νσ/Y for ε22 and since we are not interested
in the effects of microscopic physics, the dominant term in the above expressions is the one that involves the system
size. This term can then be reformulated in terms of the renormalized Young’s modulus, YR(L) = Y (2π/qthL)ηu . In
addition, one can immediately see from the definition of the Poisson ratio, νR = −1/3 in the linear response. We
do not see this linear response value in our simulations however and there is theory that supports other values [30].
Instead, at large stresses when 2π

L < Λ < qth < qσ we obtain:

ε11(σ11, T |2π/L < Λ < qth < qσ) ≈ σ11

Y
− 1

2

∑
2π/L<|q|<Λ

q2
1

[
kBT

A[κq4 + σ11q2
1 ]
− kBT

A[κqηthq
4−η]

]

=
σ11

Y
− 1

2(2π)2

∫ 2π

0

dθ

∫ Λ

2π/L

dqq3 cos2 θ

[
kBT

κq4 + σ11q2 cos2 θ
− kBT

κqηthq
4−η

]
=
σ11

Y
− kBT

8πσ11

[
q2 − q

√
q2 +

σ11

κ
+
σ11

κ
sinh−1

[
q

√
κ

σ11

]]∣∣∣∣Λ
2π
L

+
kBT

8πηκ

(
q

qth

)η∣∣∣∣Λ
2π
L

≈ σ11

Y

ε22

(
σ11, T

∣∣∣∣2πL < Λ < qth < qσ

)
≈ −νσ11

Y
− kBT

8πσ11

[
− q2 + q

√
q2 +

σ11

κ
+
σ11

κ
sinh−1

[
q

√
κ

σ11

]]∣∣∣∣Λ
2π
L

+
kBT

8πηκ

(
q

qth

)η∣∣∣∣Λ
2π
L

≈ −νσ11

Y
(A7)

where we have approximated that when stress is quite
high, the terms from the integrals can be ignored and
the bare material properties can be used to obtain the

effective mechanical response. Thus the Poisson ratio we
should observe should also be that of the bare material.
For our simulations with triangular lattices, ν = 1/3.
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