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Abstract

Epithelial tissues act as barriers and, therefore, must repair themselves, respond to environ-

mental changes and grow without compromising their integrity. Consequently, they exhibit

complex viscoelastic rheological behavior where constituent cells actively tune their

mechanical properties to change the overall response of the tissue, e.g., from solid-like to

fluid-like. Mesoscopic mechanical properties of epithelia are commonly modeled with the

vertex model. While previous studies have predominantly focused on the rheological proper-

ties of the vertex model at long time scales, we systematically studied the full dynamic range

by applying small oscillatory shear and bulk deformations in both solid-like and fluid-like

phases for regular hexagonal and disordered cell configurations. We found that the shear

and bulk responses in the fluid and solid phases can be described by standard spring-dash-

pot viscoelastic models. Furthermore, the solid-fluid transition can be tuned by applying pre-

deformation to the system. Our study provides insights into the mechanisms by which epi-

thelia can regulate their rich rheological behavior.

Author summary

Epithelial tissues line organs and cavities in the body, and serve as barriers that separate

organisms from their environment. Epithelia are robust yet adaptable; they have the abil-

ity to change their own viscoelastic behavior in response to internal or external stimuli by

actively tuning the mechanical properties of the constituent cells and interactions between

them. The mesoscopic mechanics of epithelia are commonly described with the vertex

model. Here we present a detailed study of the linear rheological properties of the vertex

model for both regular hexagonal and disordered cell configurations over a wide range of

driving frequencies. The linear viscoelastic responses of the vertex model are mapped to

standard spring-dashpot models. Our work, therefore, shows that the vertex model is a

suitable base model to study the rich rheological behavior of epithelial tissues.
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Introduction

The development and maintenance of tissues requires close coordination of mechanical and

biochemical signaling [1–3]. There is, for instance, mounting evidence for the key role played

by tissue material properties and their regulation during embryonic development [4]. Tissues

must be able to adjust their mechanical properties in response to internal and external stimuli.

In particular, epithelial tissues, which line all cavities in the body and demarcate organs, must

sustain substantial mechanical stresses while also supporting numerous biological processes

such as selective diffusion and absorption/secretion of molecules [5]. In homeostasis, epithelia

must maintain their shape and resist deformation while remaining flexible. The tissue must

also be able to regenerate and repair itself, often with fast turnover, e.g., in gut epithelia [6].

Furthermore, in morphogenesis, the epithelial tissue must take up a specific shape and func-

tion [7], but this shape is lost during metastasis when cancer cells invade surrounding healthy

tissues [8]. All of these processes require that cells be able to move, often over distances much

larger than the cell size. During cell migration, however, the epithelial tissue must maintain its

integrity. It is, therefore, not surprising that epithelia exhibit rich viscoelastic behavior [9].

Unlike passive viscoelastic materials, an epithelial tissue can actively tune its rheological

response, making the study of its rheology not only important for understanding biological

functions but also an interesting problem from the perspective of the physics of active matter

systems [10].

Collective cell migration has been extensively studied in biology [11] and biophysics [12].

In vitro studies of confluent cell monolayers [13–17] focused on the physical aspects of force

generation and transmission and showed that cell migration is an inherently collective phe-

nomenon. Some aspects of collective cell migration are remarkably similar to the slow dynam-

ics of structural glasses [18–24]. This suggests that many of the observed behaviors share

common underlying mechanisms and can be understood, at least at mesoscales (i.e., distances

beyond several cell diameters), using physics of dense active systems [25]. A particularly

intriguing observation is that tuning cell density [18, 26, 27], strength of cell-cell and cell-sub-

strate interactions [28], or cell shape parameters [21, 29] can stop collective migration. In

other words, the epithelium undergoes a fluid to solid transition. Signatures of such behavior

have been reported in several in vitro [19, 30] and developmental systems [31–33]. This sug-

gests that important aspects of morphogenetic development may rely on epithelial tissue’s abil-

ity to undergo phase transitions [4].

How an epithelial tissue responds to external and internal mechanical stresses depends on

its rheological (i.e., material) properties. While there have been numerous studies focusing on

the rheology of a single cell [34–36], much less is known about tissue rheology, particularly

during development. In order to develop a comprehensive understanding of epithelial tissue

mechanics, such insight is key. Though single cell measurements are valuable, the mechanics

of an epithelial tissue can be drastically different from that of its constituent cells. The stiffness

of cell monolayers, for example, is orders of magnitude higher than the stiffness of constituent

cells, while the time dependent mechanical behaviors of monolayers in response to deforma-

tion vary depending on the magnitude of loading [37]. Embryonic cell aggregates have been

shown to behave elastically (i.e., solid-like) at short timescales, but they flow like fluids at long

timescales, which facilitates both the robustness needed to maintain integrity and the flexibility

to morph during development [9]. Experiments have characterized the mechanical behaviors

of epithelial tissues at various loading conditions, which led to a phenomenological description

that models the relaxation properties of epithelial monolayers based on fractional calculus

[38]. Notably, a recent particle-based model that includes cell division and apoptosis provided

a plausible microscopic model for nonlinear rheological response [39]. Particle-based models
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are, however, unable to capture geometric aspects such as cell shape. It is, therefore, necessary

to investigate rheological response in geometric models.

The vertex model [40–42] and more recent, closely related Voronoi models [21, 43, 44] have

played an important role in modeling mechanics of epithelial tissues since they account for the

shapes of individual cells and provide a link to cellular processes, such as cell-cell adhesion, cell

motility, and mitosis [42]. These geometric models are also able to capture the solid to fluid tran-

sition and demonstrate rich and unusual nonlinear mechanical behavior [45, 46]. While the

mechanical properties of the vertex and Voronoi models have been extensively studied, most

works to date focused on the long-time behavior. These include studies of the quasistatic shear

modulus [20], effective diffusion constant of cells related to the tissue viscosity [21], correlations

between a structural property called “softness” and the likelihood of topological rearrangements

of cells [47], and steady state flow profiles around a sphere dragged through the tissue [48]. The

rheological properties of the vertex model that cover a broad range of timescales, however, have

not yet been systematically explored. In this paper, we model the response of a model epithelial

tissue adhered to a substrate by studying the response of the regular hexagonal and disordered

cell configurations in the vertex model (see Fig 1) to applied oscillatory shear and bulk deforma-

tions of small amplitude, i.e., in the linear response regime. We measured the response stresses

and used them to compute the storage and loss moduli in both the solid and fluid phases. We

show that the dynamical response of the vertex model can be fitted to standard spring-dashpot

viscoelastic models over seven decades in the driving frequency and that the solid-fluid transition

can be tuned by applying pre-deformation to the system. Thus we argue that the vertex model

makes a suitable basis for studies of dynamics of epithelial tissues beyond the quasistatic limit.

Model and methods

Vertex model

In the vertex model, the state of an epithelial tissue is approximated as a polygonal tiling of the

plane (Fig 1). The degrees of freedom are vertices, i.e., meeting points of three or more cell-cell

Fig 1. Epithelial tissue is represented as a polygon tiling of the plane subject to periodic boundary conditions. We studied the rheology of the vertex model for

both (a) regular hexagonal and (b) disordered tilings. Colors represent the number of neighbors of each cell; 4-white, 5-red, 6-gray, 7-blue, 8-yellow.

https://doi.org/10.1371/journal.pcbi.1010135.g001

PLOS COMPUTATIONAL BIOLOGY Linear viscoelastic properties of the vertex model for epithelial tissues

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010135 May 19, 2022 3 / 24

https://doi.org/10.1371/journal.pcbi.1010135.g001
https://doi.org/10.1371/journal.pcbi.1010135


junctions. In the simplest formulation, junctions are assumed to be straight lines. The energy

of the vertex model is a quadratic function of cell areas and perimeters [41], i.e.,

E ¼
X

C

KC

2
ðAC � AC0Þ

2
þ
GC

2
ðPC � PC0Þ

2

� �

; ð1Þ

where KC and ΓC are the area and perimeter elastic moduli, and AC and AC0 are the actual and

preferred areas of cell C, respectively. Similarly, PC and PC0 are the actual and preferred perim-

eters of the same cell. In this work, we assumed KC, ΓC, AC0, and PC0 to be identical for all cells

(i.e., KC� K, ΓC� Γ, AC0� A0, PC0� P0). Further, we fixed the values of K and A0, and mea-

sured the energy in units of KA2
0
, stresses in units of KA0, and lengths in units of A1=2

0 . Since the

ratio between the perimeter and area elastic moduli does not qualitatively change the behavior

of the vertex model [20, 41], we fixed that ratio to Γ/(KA0)� 0.289 for all simulations. The

only variable parameter in simulations was the preferred cell perimeter P0, which sets the

dimensionless cell-shape parameter, defined as the ratio p0 ¼ P0=
ffiffiffiffiffi
A0

p
.

The cell-shape parameter, p0, plays a central role in determining whether the system

behaves as a fluid or solid [20]. Bi, et al. [20] argued that the rigidity transition occurs at

p0 = pc� 3.812 for a disordered polygonal tiling, while Merkel, et al. [49] reported

p0 = pc� 3.92. For a regular hexagonal tiling, the transition point is at pc ¼
ffiffiffiffiffiffiffiffiffi
8
ffiffiffi
3
pp
� 3:722

[50]. In the fluid phase, the energy barrier for neighbor exchanges vanishes and cells can flow

past each other [51]. As p0 is reduced below pc, the energy barrier becomes finite, neighbor

exchanges cease and the system becomes solid. While the transition point for regular hexago-

nal tilings can be understood in terms of the mechanical stability and the excess perimeter [45,

52], the mechanism that leads to a larger value for random tilings is more subtle and only

partly understood [53]. For example, recent studies [49, 54] have shown that the rigidity transi-

tion of random tilings depends on the procedure used to generate the tilings. The presence of

vertices with coordination greater or equal to four, as well as the presence of cells with five or

less neighbors, increases the critical value of the cell-shape parameter p0 [54].

Simulation setup

We first studied the rheology of regular hexagonal tilings (Fig 1a) subject to periodic boundary

conditions. The shape of the simulation box was chosen to be as close to a square as allowed by

the geometry of a hexagon, and the area of the box was such that it accommodated N cells of

area AC that matched the preferred areas A0. Most simulations started with hexagonal tiling

with Nx = 15 cells in the horizontal direction (i.e., N = 240 cells in total, Fig 1a). Simulations of

larger system sizes (Nx = 37, 51, i.e., N = 1406, 2652 total cells, respectively) were performed

for a subset of values of p0 to explore the finite size effects. No quantitative differences between

the system with N = 240 cells and larger systems were observed. All simulations were per-

formed with an in-house code [55] and snapshots of cell configurations were visualized with

ParaView [56].

For the solid phase with p0 ≲ 3.722, the ground state of the energy in Eq (1) is the honey-

comb lattice [50], and it was directly used to investigate rheological properties. Note that there

was some residual hydrostatic stress due to the mismatch of actual cell perimeters PC from

their preferred values P0, which could be eliminated by appropriate rescaling of the simulation

box. This hydrostatic stress, however, does not qualitatively affect the rheological behavior of

the system (see Sec D in S1 File for further discussion). For the fluid phase with p0 ≳ 3.722, the

hexagonal tiling corresponds to a saddle point of the energy in Eq (1) [50]. A small random

perturbation was applied to each vertex, i.e., each vertex was displaced from its original
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position in the hexagonal tiling by a vector δri = δxiex + δyiey, where δxi and δyi were Gaussian

random variables with zero mean and standard deviation 1:5� 10� 4
ffiffiffiffiffi
A0

p
; the system was

then relaxed using the FIRE algorithm [57] to reach a local energy minimum with the relative

accuracy of 10−12. Note that the energy landscape in the fluid phase has many local minima

and a large number of soft modes (see Sec H in S1 File). We repeated simulations to investigate

rheological properties for multiple configurations corresponding to different local energy

minima.

The study of the rheological properties of the vertex model for a regular hexagonal tiling is

appealing since one can make comparisons to analytical treatments. The regular hexagonal til-

ing is, however, a rather crude approximation of real epithelial tissues, which are typically

irregular [58]. Therefore, we also investigated the rheology of the vertex model of disordered

tilings (Fig 1b). The disordered tilings were created as follows (see Fig A in the Sec A in S1 File

for a schematic illustration). We used the random sequential addition algorithm [59] to place

N = 200 seed points inside a square box of size L = 15 without overlaps. We then created peri-

odic images of the seed points and used SciPy to build the periodic Voronoi tessellation [60].

The preferred area of each cell was set to A0 = L2/N. The energy of the system given in Eq (1)

was then relaxed using the FIRE algorithm to reach a local minimum. During the energy mini-

mization, T1 transitions (exchanges of cell neighbors) were allowed but were not common.

We generated an ensemble of 10 different random initial configurations using different values

of the random number generator seed and repeated rheology simulations for each of those

configurations to probe the rheology for a range of values of p0.

Dynamics and probing the rheology

In order to probe the dynamic response of the vertex model, we need to specify the micro-

scopic equations of motion for vertices. Assuming the low Reynolds number limit, which is

applicable to most cellular systems due to their slow speed, inertial effects can be neglected

[61]. The equations of motion are then a force balance between friction with the substrate and

elastic forces Fi due to deformations of cell shapes, i.e.,

g _r i ¼ Fi: ð2Þ

Here, we assume that friction between the tissue and the substrate arises from binding and

unbinding of adhesion molecules. In particular, on time scales much longer than the charac-

teristic unbinding time, the tissue–substrate adhesive bonds undergo stick-and-slip processes

leading to a form of viscous friction [62–64]. In the above Eq (2), ri is the position vector of

vertex i in a laboratory frame of reference, Fi ¼ � rri
E is the mechanical force on vertex i due

to deformation of cells surrounding it, γ is the friction coefficient, and dot denotes the time

derivative. Therefore, each vertex experiences dissipative drag proportional to its instanta-

neous velocity. We fixed the value of γ in simulations, which sets the unit of time as γ/(KA0).

Furthermore, we neglected thermal fluctuations and hence omit the stochastic term in Eq (2).

This is a reasonable assumption since typical energy scales in tissues significantly exceed the

thermal energy, kBT, at room temperature T, where kB is the Boltzmann constant. It is, how-

ever, worth noting that there are other sources of stochasticity in epithelia (e.g., fluctuations of

the number of force-generating molecular motors) which are important for tissue scale behav-

iors [65]. Here, we did not consider such effects but note that they could be directly included

in the model as additional forces in Eq (2).

We applied an oscillatory affine deformation to investigate the rheological behavior of the

vertex model. The affine deformation can be described by a deformation gradient tensor

defined as F̂ ¼ @x=@X0, where the mapping x = x(X0, t) maps the reference configuration X0
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to a spatial configuration x at time t. Note that the affine deformation was applied to all vertices

inside the bounding box as well as to the periodic images of vertices, which ensured deforma-

tion of cells across periodic boundaries. Specifically, for a vertex i with a position vector ri(t) in

a deformed configuration, we also consider its periodic images at positions ri(t) + m1a1(t) +

m2a2(t), where a1,2(t) are the unit cell vectors of the periodic box and m1,2 are integers. For

cells that cross the periodic boundary, junction lengths are computed using the minimum

image convention. Note that the unit cell vectors of the periodic box transform as

a1;2ðtÞ ¼ F̂ðtÞa1;2ð0Þ due to the affine deformation.

The deformation gradient of simple shear is F̂ðtÞ ¼ ð 1 �ðtÞ
0 1
Þ and of biaxial deformation is

F̂ðtÞ ¼ ð 1þ �ðtÞ 0

0 1þ �ðtÞ Þ, where �(t) = �0 sin(ω0t) and ω0 is the frequency of the oscillatory defor-

mation. In all simulations, we used a small magnitude of deformation, i.e., �0 = 10−7, so that we

probed the linear response and the measured moduli were independent of the magnitude of

the deformation. In every time step after the affine deformation was applied, the system

evolved according to the overdamped dynamics in Eq (2). During the oscillatory deformations,

T1 transitions were allowed but were not common. Equations of motion were integrated using

the first-order Euler method [66] with the time step Δt� 0.00866γ/(KA0) when the frequency

of oscillatory deformation ω0γ/(KA0)< 29.02, but with a smaller time step Δt� 0.000866γ/

(KA0) when ω0γ/(KA0)> 29.02 so that there were enough sampling points (at least 25) over

one period of oscillatory deformation.

The response stress tensor, σ̂CðtÞ, for each cell C was computed using the formalism intro-

duced in Refs. [67–69] as

σ̂C ¼ � PC Î þ
1

2AC

X

e2C

Te � le; ð3Þ

where the summation is over all junctions e belonging to cell C. Here, PC ¼ �
@E
@AC
¼

� K AC � A0ð Þ is the hydrostatic pressure inside a cell, Î is the unit tensor, and Te ¼
@E
@le
¼

G PC � P0ð Þle=jlej is the tension along the junction e with le being a vector joining the two verti-

ces on it [67–69]. The average stress tensor σ̂ðtÞ ¼
P

CwCσ̂CðtÞ, with wC = AC/∑C AC, was used

as a measure for the response of the system. Measurements of the response stresses for each

cell [see Eq (3)] and the entire system were taken 25 times within each cycle of oscillatory

deformation.

To ensure that we were probing the steady state, we performed the following analysis. For

example, in the case of shear deformation, the shear stress signal tðtÞ ¼ ŝxyðtÞ was divided

into blocks of length T = 3T0, each containing 3 cycles of the time period T0 = 2π/ω0 of the

driving shear deformation. Within each block n, we performed the Fourier transform of τ(t)
and obtained ~tnðoÞ as

~tnðoÞ ¼
1

T

Z nT

ðn� 1ÞT
tðtÞeiotdt; ð4Þ

where n is a positive integer. Similar Fourier transform analysis was performed for the strain,

�(t), of which the Fourier transform is denoted as ~�ðoÞ. The length of the simulation was cho-

sen such that it contained a sufficient number of blocks in order for the ~tnðo0Þ to reach a

steady state value ~tðo0Þ. The obtained steady state value of ~tðo0Þ was used to calculate the

dynamic shear modulus G�ðo0Þ ¼ ~tðo0Þ=~�ðo0Þ at a given frequency ω0 of applied shear strain.

We ensured that simulations ran long enough to reach a steady state. An analogous procedure
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was applied to the hydrostatic stress, sðtÞ ¼ 1

2
½ŝxxðtÞ þ ŝyyðtÞ�, in the case of the bulk deforma-

tion. Please refer to Sec C in S1 File for a representative example of the steady state analysis.

Results

Response to a shear deformation

The hexagonal ground state in the solid phase and states corresponding to local energy minima

in the fluid phase were used to investigate the rheological behavior by applying an oscillatory

affine shear deformation to the substrate (Fig 2a and 2b). Due to the binding and unbinding of

adhesive molecules, deformation of the tissue follows the deformation of the substrate on short

timescales, and then tissue can relax on longer timescales. Thus, at each time step, we first

applied the affine shear deformation to the simulation box and all vertices, which was followed

by internal relaxation of the vertices according to Eq (2). The affine simple shear deformation

can be described by a deformation gradient tensor, F̂ ¼ ð 1 �ðtÞ
0 1
Þ, where �(t) = �0 sin(ω0 t). Suffi-

ciently small amplitude �0 = 10−7� 1 was used to probe the linear response properties.

Fig 2. Storage and loss shear moduli in the solid (top row) and fluid phase (bottom row) for hexagonal tilings. (a-b) An overlay of the representative reference

(grey) and sheared (yellow) configurations in (a) the solid and (b) the fluid phase. The magnitude of the shear is highly exaggerated for demonstration purposes.

(c-d) Representative storage (G0) and loss (G0 0) shear moduli as functions of the shearing frequency, ω0, for different values of the cell-shape parameter, p0. Dashed

curves are the fits based on (c) the Standard Linear Solid (SLS) model in the solid phase [see Eq (5)] and (d) the Burgers model in the fluid phase [see Eq (8)]. (e-f)

The collapse of the moduli curves for different values of p0 for (e) the solid phase and (f) the fluid phase. The insets show the representation of (e) the SLS model

and (f) the Burgers model in terms of the springs and dashpots. The majority of the data corresponds to the system of nearly square shape with Nx = 15 cells in the

horizontal direction, and we also show examples of larger systems with Nx = 37 and Nx = 51 cells in the horizontal direction.

https://doi.org/10.1371/journal.pcbi.1010135.g002
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We measured the response stresses as described in the Model and methods section above.

The dynamic shear modulus G�ðo0Þ ¼ ~tðo0Þ=~�ðo0Þ was then calculated at a given frequency

ω0 of applied shear strain, where ~tðoÞ and ~�ðoÞ are the Fourier transforms of the response

shear stress tðtÞ ¼ ŝxyðtÞ and the applied strain �(t), respectively (see Model and methods).

We ensured that simulations ran long enough to reach a steady state (see Model and methods

and Sec C in S1 File). The real part of the dynamic shear modulus, G0 = Re(G�), is the storage

shear modulus and the imaginary part, G00 = Im(G�), is the loss shear modulus. The storage

shear modulus corresponds to the in-phase response and measures the elastic (i.e., reversible)

response of the system, while the loss shear modulus corresponds to the out-of-phase response

and measures the system’s irreversible dissipation [70] (see also Sec B in S1 File). For systems

under an oscillatory simple shear, storage and loss shear moduli were obtained for different

values of p0 and different system sizes in the solid and the fluid phases for a broad range of

driving frequencies ω0 spanning over seven orders of magnitude, as shown in Fig 2c and 2d.

Most simulations were performed for systems with nearly square shapes with Nx = 15 cells

in the horizontal direction. We repeated several simulations for systems with Nx = 37 and

Nx = 51, which showed that the finite size effects are negligible (Fig 2c–2f).

In the solid phase there are two different regimes (see Fig 2c). At low frequencies, ω0, the

storage shear modulus G0 has a constant value, while the loss shear modulus scales as G00 / ω0.

At high frequencies, the storage shear modulus G0 has a higher constant value, while the loss

shear modulus scales as G00 / o� 1
0

. Such rheological behavior is characteristic of the Standard

Linear Solid (SLS) model [70]. Storage and loss shear moduli for the SLS model are [70],

respectively,

G0SLSðo0Þ ¼

E2 þ
Z2

1

E2
1

o2

0
E1 þ E2ð Þ

1þ
Z2

1

E2
1

o2

0

; ð5aÞ

G00SLSðo0Þ ¼
o0Z1

1þ
Z2

1

E2
1

o2

0

; ð5bÞ

where we used the representation of the SLS model (Fig 2e, inset) that consists of a spring with

elastic constant E2 connected in parallel with a Maxwell element, which comprises a spring

with elastic constant E1 and a dashpot with viscosity η1 connected in series. The above expres-

sions in Eq (5) were used to fit the storage and loss shear moduli obtained from simulations.

The fitted curves, represented with dashed lines in Fig 2c, show an excellent match with the

simulation data, indicating that the SLS model is indeed appropriate to describe the shear rhe-

ology in the solid phase. This was also confirmed in Fig 2e, where we collapsed the storage and

loss shear moduli for different values of the shape parameter, p0, by rescaling the moduli and

frequencies with the fitted values of spring and dashpot constants. Note that the SLS response

in the solid phase is consistent with recent experiments on suspended MDCK monolayers

[71].

As the value of the p0 increases, we observe that the storage shear modulus reduces at all fre-

quencies and that the loss shear modulus reduces at high frequencies. Furthermore the cross-

over between the two regimes shifts towards lower frequencies (Fig 2c). This is because the

elastic constants E1 and E2 decrease linearly with increasing p0 and they become zero exactly at

the solid-fluid transition with p0 = pc� 3.722 (Fig 3a). The dashpot constant η1 is nearly inde-

pendent of p0 (Fig 3b) and scales with the friction parameter γ, which is the only source of dis-

sipation in the vertex model. The crossover between the two regimes for both the storage and
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loss shear moduli corresponds to a characteristic timescale, η1/E1, which diverges as

* γ(KA0)−1(pc − p0)−1 as p0 approaches the solid-fluid transition (Fig 3c) due to the vanishing

elastic constant (Fig 3a). Note that the values of the elastic constants E1 and E2 can be estimated

analytically. In the quasistatic limit (ω0! 0), the external driving is sufficiently slow that the

system can relax internally. In this limit, Murisic, et al. [72] showed that the storage shear mod-

ulus is

G0ðo0 ! 0Þ ¼ E2 ¼
1

2
KA0 1 � ½aðp0;G=KA0Þ�

2
� �

; ð6Þ

where α(p0, Γ/KA0) is a scaling factor chosen such that the hydrostatic stress vanishes once

the system box size is rescaled from L to αL (see Sec D in S1 File). In the high frequency limit

Fig 3. (a-b) Fitted values of spring-dashpot models for hexagonal tilings under simple shear. (a) Elastic constants as a function of target cell-shape parameter, p0. In the

solid phase (i.e., for p0 < pc� 3.722), fitted values of the spring constants show excellent match with the analytical predictions obtained from Eqs (6) and (7) (dashed

lines). Inset shows the spring constants near the critical point. (b) Dashpot viscosity constants as a function of the target cell-shape parameter, p0. (c-d) Characteristic

timescales in (c) the solid and (d) fluid phase for hexagonal tilings obtained from the fitted values of the elastic constant and the dashpot viscosity. The normalization

factor t� = γ/(KA0) sets the unit of time. For the fluid phase (i.e., for p0 > pc� 3.722), errorbars correspond to the standard deviation for simulations that were repeated

for configurations that correspond to different local energy minima.

https://doi.org/10.1371/journal.pcbi.1010135.g003

PLOS COMPUTATIONAL BIOLOGY Linear viscoelastic properties of the vertex model for epithelial tissues

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010135 May 19, 2022 9 / 24

https://doi.org/10.1371/journal.pcbi.1010135.g003
https://doi.org/10.1371/journal.pcbi.1010135


(ω0!1), on the other hand, the system follows the externally imposed affine deformation

and has no time for internal relaxation. Thus, by considering the energy cost for a hexagonal

tiling under affine deformation, we obtained the storage shear modulus (see Sec G in S1 File)

G0ðo0 !1Þ ¼ E1 þ E2 ¼ 3
ffiffiffi
3
p

G 1 �
p0

pc

� �

: ð7Þ

The above Eqs (6) and (7) were used to extract the values of elastic constants E1 and E2, which

showed excellent agreement with the fitted values from simulations (Fig 3a).

In the fluid phase, the storage and loss shear moduli show a markedly different behavior

(Fig 2d). There are three different regimes with two crossover frequencies, which correspond

to two characteristic timescales. At low frequencies, ω0, the storage shear modulus G0 / o2
0

and the loss shear modulus G0 0(ω0)/ ω0. The storage modulus approaches 0 for ω0! 0, which

indicates that the system is indeed a fluid. At high frequencies the storage shear modulus has a

constant value, while the loss shear modulus scales as G00ðo0Þ / o
� 1
0

. To capture this behavior

we used the Burgers model, which consists of two Maxwell models connected in parallel (Fig

2f, inset), to fit the shear moduli measured in the simulations. The storage and loss shear mod-

uli for a Burgers model are [70], respectively,

G0Burgðo0Þ ¼
p1q1o

2
0
� q2o

2
0
ð1 � p2o

2
0
Þ

p2
1
o2

0
þ ð1 � p2o

2
0
Þ

2
; ð8aÞ

G00Burgðo0Þ ¼
p1q2o

3
0
þ q1o0ð1 � p2o

2
0
Þ

p2
1
o2

0
þ ð1 � p2o

2
0
Þ

2
; ð8bÞ

where p1 = η1/E1 + η2/E2, p2 = η1η2/(E1 E2), q1 = η1 + η2, q2 = η1η2(E1 + E2)/(E1E2). The

dashed curves in Fig 2d show fits of the storage and loss shear moduli for a range of values of

p0, which show good agreement with simulations. Unlike for the solid phase, it is not possible

to collapse the data for storage and loss shear moduli onto single universal curves because the

fluid phase is characterized by two independent timescales η1/E1 and η2/E2. Thus we show two

different collapses for the storage and loss shear moduli in the low frequency range (Fig 2f)

and in the high frequency range (Fig E in the Sec E in S1 File).

As the value of the p0 decreases, we observe that both the storage and loss shear moduli

reduce at intermediate and high frequencies, but they increase at low frequencies (Fig 2d). We

also observe that the first crossover shifts towards lower frequencies, while the second cross-

over remains at approximately the same frequency. This is because the elastic constants E1 and

E2 decrease linearly toward zero as p0 approaches the solid-fluid transition at pc� 3.722 (Fig

3a). The dashpot constant η2 also decreases linearly toward zero, while the dashpot constant η1

increases but remains finite as p0 approaches the solid-fluid transition (Fig 3b). As a conse-

quence, one of the characteristic timescales η1/E1 * γ(KA0)−1(p0 − pc)−1 diverges, while the

second timescale η2/E2 * γ(KA0)−1 remains finite as p0 approaches the solid-fluid transition

(Fig 3d). The diverging characteristic timescale captures the macroscopic behavior of the sys-

tem, while the second timescale captures the microscopic details of the vertex model. Note that

at the solid-fluid transition there is a discontinuous jump in the values of the dashpot constant

η1 (see Fig 3b). This is because at p0 = pc the storage and loss shear moduli are identically equal

to zero (G0(ω0) = G00(ω0)� 0) due to the vanishing elastic constants (E1 = E2 = 0), while the

dashpot constants can have arbitrary values [see Eqs (5) and (8)]. Finally, we note that the val-

ues of the spring and dashpot constants are somewhat sensitive to the local energy minimum

configuration used to probe the response in the fluid phase. The errorbars in Fig 3 show stan-

dard deviation for different configurations that were obtained by using the same magnitude of

the initial perturbation (see Model and methods). In Fig F in the Sec F in S1 File, we show how
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the values of the spring and dashpot constants are affected when configurations were obtained

by using different magnitudes of the initial perturbation.

Cells in real epithelial tissues are, however, unlikely to have a perfect hexagonal shape and

form a honeycomb tiling. The observed tilings are disordered, often with a rather specific dis-

tribution of the number of neighbor cells conserved across several species [73]. To mimic the

geometry of real tissues, we constructed an ensemble of uncorrelated disordered tilings of

polygons corresponding to local energy minima at different values of p0 (see Fig 1b and Model

and methods). We then probed the shear rheology of each such configuration following the

same procedure as for the hexagonal tilings. Fig 4 shows the average storage and shear moduli.

We found that the critical value of p0 for the solid-fluid transition was at pc� 3.93, which is

consistent with refs. [49, 54], but somewhat higher than what was reported in [20].

For p0 < pc values corresponding to the system being deep in the solid phase (Fig 4a), the

storage and loss moduli are described accurately by the Standard Linear Solid (SLS) model, the

same as for the hexagonal tiling in the solid phase (Fig 2c). As p0 increases, however, a second

shoulder develops in the loss moduli (see p0 = 3.71 and p0 = 3.77 curves in Fig 4a), which indi-

cates the presence of multiple time scales. The fits to the SLS model shown with the dashed

lines also begin to deviate from the measured moduli. The scaling collapse is only possible for

values of p0 deep in the solid phase (Fig 4b). This supports the observation that SLS is no longer

able to capture the rheology in the solid phase as p0 approaches the critical point.

In the opposite limit, i.e., when the value of p0 > pc is deep in the fluid phase (Fig 4c), the

storage and loss moduli can be modeled with the Burgers model, the same as for the local

energy minima states relaxed from the hexagonal tiling in the fluid phase (Fig 2d). The fits rep-

resented by the dashed lines, however, deviate from the measured moduli as p0 decreases (see

p0 = 3.97 and p0 = 3.99 curves in Fig 4c). Fig 4d shows the rescaling of the moduli and frequen-

cies by the fitted spring and dashpot constants.

Near the critical value (i.e., for p0 = 3.93 and p0 = 3.95), the ensemble of random tilings con-

tains the solid and the fluid configurations (see Fig I in the Sec I in S1 File), which was deter-

mined based on the presence or absence of non-trivial zero modes. We separated the solid and

the fluid configurations and calculated average storage and loss shear moduli on each set. Fig

4e and 4f show the average storage and loss moduli for values of p0 close to the critical value in

the solid phase (Fig 4e) and the fluid phase (Fig 4f). The dashed curves are the fits based on the

SLS model in the solid phase and the Burgers model in the fluid phase, which do not fully cap-

ture the behavior of the measured moduli curves due to the presence of multiple time scales.

As the value of p0 approaches the critical value, the spread of the moduli increases, especially

for low frequencies, which is captured by the size of error bars. This can also be seen in Fig I in

the Sec I in S1 File, which presents the raw data of storage and loss shear moduli at different

values of p0.

In Fig 5, we summarize the fitted values of spring-dashpot models. The values of spring

constants decrease as the system approaches the solid-fluid transition, while the values of dash-

pot constants diverge near the transition. In the intermediate regime (shaded regions in Fig 5),

the SLS model (in the solid phase) and the Burgers model (in the fluid phase) cannot accurately

fit the measured moduli due to the presence of additional timescales.

Response to bulk deformations

We further studied the bulk rheological properties of the hexagonal tilings by applying an

oscillatory biaxial deformation to the substrate (Fig 6a and 6b) described by the deformation

gradient F̂ ¼ ð 1þ �ðtÞ 0

0 1þ �ðtÞ Þ, where �(t) = �0 sin(ω0t). We applied a sufficiently small amplitude

�0 = 10−7� 1 to probe the linear response properties characterized by the average normal
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Fig 4. Average storage and loss shear moduli in the solid and fluid phase for disordered tilings. (a,c) Average storage (G0) and loss (G0 0)
shear moduli as functions of the shearing frequency, ω0, for different values of the cell-shape parameter, p0, (a) deep in the solid phase and (c)

deep in the fluid phase. The error bars represent the standard error of the mean. (b,d) The collapse of the moduli curves for different values of

p0 for (b) the solid phase and (d) the fluid phase. The insets show the representation of (b) the Standard Linear Solid (SLS) model and (d) the

Burgers model in terms of the springs and dashpots. (e,f) Average storage (G0) and loss (G0 0) shear moduli as functions of the shearing
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stress sðtÞ ¼ 1

2
½ŝxxðtÞ þ ŝyyðtÞ�. As in the simple shear test, we then computed the dynamic

bulk modulus as B�ðo0Þ ¼ ~sðo0Þ=~�ðo0Þ from which we obtained the storage bulk modulus

B0 = Re(B�) and the loss bulk modulus B0 0 = Im(B�) (see Fig 6c and 6d).

In the solid phase, the storage bulk modulus is independent of the driving frequency and

the loss bulk modulus is zero. This is because in the solid phase, the hexagonal tiling is stable

to biaxial deformation and there is no relative motion of vertices with respect to the substrate,

which is the sole source of dissipation. Thus the response of the system can be captured by a

single spring Esolid (Fig 6e, inset). The measured value of the storage bulk modulus matches the

analytical prediction,

Btheory ¼ 2KA0 þ
ffiffiffiffiffi
12

4
p

Gp0 ð9Þ

by Staple, et al. [50], where the hexagonal tiling is assumed to undergo affine deformation

under biaxial deformation. Storage bulk moduli, normalized by Btheory, for different values of

p0 all collapse to 1 (Fig 6e).

In the fluid phase, the bulk response behavior of the system can be described by the SLS

model (Fig 6f, inset). While it might appear counter-intuitive to model a fluid with the SLS

model, this is a direct consequence of the fact that in the fluid state, the bulk modulus is finite

but the shear modulus vanishes, i.e., the fluid flows in response to shear but resists bulk defor-

mation. The fitted storage and loss bulk moduli for the SLS model [see Eq (5)] show an excel-

lent match with the simulation data (Fig 6d). This was also confirmed in Fig 6f, where we

collapsed the storage and loss bulk moduli for different values of p0.

The fitted values of elastic spring and dashpot viscosity constants for different values of p0

are plotted in Fig 7. In the fluid phase, the storage bulk modulus in the high frequency limit B0

(ω0!1) = E1 + E2 [see Eq (5)] continuously increases from the value for the solid phase

frequency, ω0, for intermediate values of the cell-shape parameter, p0, in (e) the solid phase and (f) the fluid phase. Dashed curves are the fits

based on (a,e) the SLS model in the solid phase [see Eq (5)] and (c,f) the Burgers model in the fluid phase [see Eq (8)]. A representative

example of random cell configurations used to produce these plots is shown in Fig 1b.

https://doi.org/10.1371/journal.pcbi.1010135.g004

Fig 5. Fitted values of spring-dashpot models for disordered tilings under simple shear. (a) Elastic constants as a function of the target cell-shape parameter, p0.

(b) Dashpot viscosity constants as a function of the target cell-shape parameter, p0. The shaded regions indicate the intermediate regime between the solid and fluid

phases.

https://doi.org/10.1371/journal.pcbi.1010135.g005
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Btheory [see Eq (9)] as the system transitions from solid to fluid (Fig 7a). The storage bulk mod-

ulus in the quasistatic limit B0(ω0! 0) = E2 [see Eq (5)] emerges at the transition point with a

finite value and increases as p0 increases from pc (Fig 7a). Fig 7b shows that the dashpot con-

stant η1 diverges as the p0 decreases toward pc. Thus, the characteristic timescale η1/E1 also

diverges (Fig 7c), but for a different reason than for the shear deformation, where the spring

constant E1 is vanishing (see Fig 3). Finally, we note that, unlike for the response to shear, the

values of the spring and dashpot constants for bulk deformation are not sensitive to the local

energy minimum configuration used to probe the response in the fluid phase, which is

reflected by the very small errorbars in Fig 7. This is because the bulk moduli are dominated

by the changes in cell areas.

The same procedures were applied to the ensemble of disordered tilings to probe the bulk

rheology. Fig 8 shows the average storage and loss bulk moduli for different values of p0. When

the system is deep in the solid phase (Fig 8a) or deep in the fluid phase (Fig 8c), the bulk rheol-

ogy can be described by the SLS model, which is confirmed by the fits (dashed curves) and the

collapse in Fig 8b and 8d. The fitted values of spring and dashpot constants for different values

of p0 are shown in Fig 9. As p0 approaches the value of solid-fluid transition, the fits based on

Fig 6. Loss and storage bulk moduli in the solid (top row) and fluid phase (bottom row) for hexagonal tilings. (a-b) An overlay of the representative reference

(grey) and biaxially deformed (yellow) configurations in (a) the solid and (b) the fluid phase. The magnitude of the bulk deformation is highly exaggerated for

demonstration purposes. (c-d) Representative storage (B0) and loss (B0 0) bulk moduli as functions of the deformation frequency, ω0, for different values of the cell-

shape parameter, p0. For the solid phase in (c), the loss bulk modulus B0 0 � 0. For the fluid phase in (d), dashed curves are the fits based on the Standard Linear

Solid (SLS) model [see Eq (5)]. (e-f) The collapse of the moduli curves for different values of p0 for (e) the solid phase and (f) the fluid phase. The insets show the

representation of (e) the spring model and (f) the SLS model in terms of the springs and dashpots. In panel (e), Btheory corresponds to the analytical prediction in

Eq (9) for the storage bulk modulus in the solid phase.

https://doi.org/10.1371/journal.pcbi.1010135.g006
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the SLS model deviate from the measured moduli curves (Fig 8a and 8c). At intermediate fre-

quencies the storage moduli have a lower slope than predicted by the SLS model and the peak

in the loss moduli is flattened and a second peaks starts to develop (p0 = 3.71, 3.77, and 3.80 in

Fig 8a and p0 = 3.99 in Fig 8c). Fig 8e shows the storage and loss moduli for values of p0 near

the solid-fluid transition, and the collapsed data is shown in Fig 8f. As the value of p0

approaches the critical value, the spread of the moduli increases, especially for low frequencies,

which is seen in Fig J in the Sec J in S1 File, that presents the raw data of storage and loss bulk

moduli at different values of p0.

Response to a shear deformation of a uniaxially pre-deformed system

The solid-fluid transition for the regular hexagonal tiling occurs when p0� 3.722, above which

the hexagonal tiling is unstable. This is consistent with the vanishing of the affine shear modu-

lus in Eq (7) at the transition point. If the regular hexagonal tiling is pre-compressed or pre-

stretched uniaxially by a factor a, which is described by the deformation gradient F̂ ¼ ð a 0

0 1
Þ,

then the high frequency limit of the linear storage shear modulus that is dominated by affine

deformation becomes (see Sec G in S1 File),

G0affine að Þ ¼
2
ffiffiffi
2
p

G

37=4a
1þ

1

ð1þ 3a2Þ
3
2

 !

� 3p0 þ
4 ffiffiffiffiffiffiffiffi

192
p

ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3a2
p

Þ
� �

: ð10Þ

By setting the affine shear modulus to 0, we obtained the solid-fluid transition boundary in the

a − p0 plane as

pcðaÞ ¼
ffiffiffiffiffiffiffiffiffi
8
ffiffiffi
3
pp ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3a2
p

Þ

3
: ð11Þ

The above analytical prediction for the phase boundary (Fig 10a, blue line) shows an excellent

agreement with the stability analysis in terms of the eigenvalues of the Hessian matrix @2E
@ri@rj

of

the energy function [74] (Fig 10a, red dots). A given configuration is stable if all eigenvalues of

the Hessian matrix are positive and the loss of mechanical stability occurs when the lowest

Fig 7. Fitted values of spring-dashpot models for the system under bulk deformation as a function of the target cell-shape parameter, p0. (a) Elastic constants as a

function of the target cell-shape parameter, p0. In the solid phase (p0 < pc� 3.722), the bulk storage modulus Esolid agrees with the analytical prediction Btheory in Eq (9)

(dashed line). At the solid-fluid transition point (p0 = pc� 3.722), it continuously changes to the high frequency limit of the bulk storage modulus, i.e., B0(ω0!1) = E1

+ E2, of the fluid phase. The low frequency limit of the bulk storage modulus is B0(ω0! 0) = E2 in the fluid phase. (b) Dashpot viscosity constant as a function of the

target cell-shape parameter, p0. (c) Characteristic timescales in the fluid phase obtained from the fitted values of the elastic constant and the dashpot viscosity. The

normalization factor t� = γ/(KA0) sets the unit of time. For the fluid phase (p0 > pc� 3.722), errorbars correspond to the standard deviation for simulations that were

repeated for configurations that correspond to different local energy minima.

https://doi.org/10.1371/journal.pcbi.1010135.g007
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Fig 8. Average storage and loss bulk moduli in the solid and fluid phase for disordered tilings. (a,c) Average storage (B0) and loss (B0 0)
bulk moduli as functions of the deformation frequency, ω0, for different values of the cell-shape parameter, p0, (a) deep in the solid phase

and (c) deep in the fluid phase. The error bars represent the standard error of the mean. (b,d) The collapse of the moduli curves for

different values of p0 for (b) the solid phase and (d) the fluid phase. The insets show the representation of the Standard Linear Solid (SLS)

model in terms of the springs and dashpots. (e) Average storage (B0) and loss (B0 0) bulk moduli as functions of the deformation

frequency, ω0, for intermediate values of the cell-shape parameter, p0. (f) The collapse of the moduli curves for for intermediate values of

the cell-shape parameter, p0. Dashed curves in (a,c,e) are the fits based on the SLS model [see Eq (5)].

https://doi.org/10.1371/journal.pcbi.1010135.g008
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eigenvalue becomes 0. For a given p0, the value of the lowest eigenvalue reduces with decreas-

ing a, i.e., as the magnitude of compression is increased. Thus, the compression (stretching)

shifts the solid-fluid transition towards the lower (higher) values of p0 (see Fig 10a).

We also probed the response to oscillatory shear applied to uniaxially pre-compressed and

pre-stretched systems. This analysis was done on the uniaxially deformed hexagonal tiling in

the solid phase as well as a system in the fluid phase obtained by relaxing the unstable, uniaxi-

ally deformed hexagonal tiling after an initial random perturbation (see Model and methods).

The response to the shear deformation is qualitatively similar and can still be described by the

SLS model in the solid phase and the Burgers model in the fluid phase. Fig 10b and 10c shows

fitted values of the parameters for spring-dashpot models when the system is under uniaxial

compression (a = 0.95), no pre-deformation (a = 1.00, i.e., same as Fig 3a and 3b), and uniaxial

Fig 9. Fitted values of spring-dashpot models for disordered tilings under bulk deformation. (a) Elastic constants as a function of the target cell-shape

parameter, p0. (b) Dashpot viscosity constant as a function of the target cell-shape parameter, p0. The shaded regions indicate the intermediate regime between the

solid and fluid phases.

https://doi.org/10.1371/journal.pcbi.1010135.g009

Fig 10. Tuning the solid to fluid transition by applying uniaxial pre-deformation. (a) The solid-fluid transition boundary in the a − p0 plane, where a measures the

amount of uniaxial pre-deformation described by the deformation gradient F̂ ¼ a 0

0 1

� �
. Blue line shows the analytical prediction from Eq (11), which matches the

stability analysis with the Hessian matrix (red dots). (b,c) The fitted values of the (b) spring and (c) dashpot constants for the SLS model in the solid phase [see Eq (5)] and

the Burgers model in the fluid phase [see Eq (8)] when the system is under uniaxial compression (a = 0.95), no pre-deformation (a = 1.00), and under uniaxial tension

(a = 1.05).

https://doi.org/10.1371/journal.pcbi.1010135.g010
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tension (a = 1.05). In both the solid and fluid phases, all spring elastic constants decrease to 0

as p0 approaches the critical value predicted by Eq (11). The dashpot constant η1 remains con-

stant in the solid phase. Once the system enters the fluid phase as p0 increases, a new dashpot

constant η2 emerges and increases from 0, while the value of the dashpot constant η1 decreases.

As in the simple shear case, we note that the dashpot constant η1 has a discontinuous jump at

the solid-fluid transition (see Fig 3c) and that the values of the spring and dashpot constants

are somewhat sensitive to the local energy minimum configuration used to probe the response

in the fluid phase. The errorbars in Fig 3 show standard deviation for configurations that were

obtained by using different random initial perturbation (see Model and methods). Finally, we

note that besides the uniaxial pre-deformation, the solid-fluid transition point can be tuned by

other modes of pre-deformation (see Fig G and Sec G in S1 File).

Discussion and conclusions

We have performed a detailed analysis of the rheological properties of the vertex model subject

to small-amplitude oscillatory deformations over seven orders of magnitude in the driving fre-

quency. Our analysis shows that the vertex model exhibits non-trivial viscoelastic behavior

that can be tuned by a single dimensionless geometric parameter—the shape parameter, p0. In

order to characterize the response, we constructed constitutive rheological models that use

combinations of linear springs and dashpots connected in series and in parallel. These models

allowed us to match the shear response of the vertex model to that of the Standard Linear Solid

model in the solid phase and the Burgers model in the fluid phase. In the low-frequency, i.e.,

quasistatic regime, our results are fully consistent with many previous studies [20, 21, 50, 72].

Our work, however, provides insights into the time-dependent response of the vertex model

over a broad range of driving frequencies, which is important if one is to develop full under-

standing of the rheological properties of the vertex model and how they inform our under-

standing of epithelial tissue rheology.

While the SLS and the Burgers model accurately describe rheology of the vertex model of

disordered tilings deep in the solid and liquid phases, respectively, these models deviate from

the data for p0 values in the vicinity of the solid-fluid transition. This is because close to the

transition points additional relevant time scales start to emerge. As shown in Fig K in the Sec

K in S1 File, adding additional Maxwell elements in parallel to the spring-dashpot models

increases accuracy of the fits. This is to be expected since each Maxwell element introduces a

new time scale. The physical interpretation of these additional time scales has clearly to do

with the local arrangements of the cells for a particular disordered configuration but tying it to

a specific cell pattern is, however, not easy. In addition, we also found that for disordered til-

ings the loss shear modulus crosses over from the linear scaling in frequency at low ω0 to the

* ωα with α� 0.73 at intermediate frequencies (Fig L in the Sec L in S1 File). The crossover

moves to lower frequencies as the system size increases. This behavior suggests a large (poten-

tially infinite) number of relevant timescales.

It is important to note that we considered only friction between cells and the substrate and

neglected any internal dissipation within the tissue. Therefore, the dissipation is solely due to

relative motion of the cells with respect to the substrate as a result of non-affine relaxation of

the tissue. The approach used in this study, therefore, would not be suitable for modeling the

rheological response of epithelia not supported by a solid substrate, e.g., for early stage

embryos or suspended epithelia in the experiments of Harris, et al. [37]. Furthermore, dissipa-

tive processes in epithelia are far more complex than simple viscous friction and are not fully

understood. It has, for example, recently been argued that internal viscoelastic remodelling of

the cortex can lead to interesting collective tissue behaviors [75]. We have addressed some of
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these questions in a separate recent work [76] using a semi-analytic approach based on the

normal-mode expansion.

In this work we kept the ratio Γ/(KA0) fixed, since this ratio does not qualitatively change

the behavior of the vertex model [20, 41]. In Ref. [76], however, we further explored the effect

of parameter Γ/(KA0), where we showed that the perimeter stiffness Γ and the area stiffness K
affect the low-frequency and high-frequency rheological behavior, respectively.

We also showed that the critical value for the solid-fluid transition can be tuned by applying

pre-deformation. Interestingly, under uniaxial and biaxial (i.e., isotropic) pre-compression the

solid to fluid transition shifts to lower values of p0, leading to the non-intuitive prediction that

one can fluidize the system by compressing it. This is, however, unsurprising, since the transi-

tion is driven by a geometric parameter that is inversely proportional to the square root of the

cell’s native area. Compressing the system reduces its area and, hence, effectively increases p0.

It is, however, important to note that this is just a property of the vertex model and it does not

necessarily imply that actual epithelial tissue would behave in the same way. Cells are able to

adjust their mechanical properties in response to applied stresses, and it would be overly sim-

plistic to assume that compression would directly lead to changes in the preferred area. In fact,

experiments on human bronchial epithelial cells show that applying apical-to-basal compres-

sion, which effectively expands the tissue laterally (i.e., corresponds to stretching in our

model), fluidizes the tissue [19].

Furthermore, the transition from solid phase to fluid phase is accompanied by the emer-

gence of a large number of soft modes. As we have noted, it has recently been argued that these

soft modes lead to a nonlinear response distinct from that obtained in classical models of elas-

ticity [45]. Approximately half of the eigenmodes are zero modes (see Fig H in the Sec H in S1

File). While the analysis of soft modes in the vertex model is an interesting problem [53], it is

beyond the scope of this work. Other models in this class have intriguing non-trivial mechani-

cal properties, such as the existence of topologically protected modes [77–81].

We briefly comment on the values of vertex model parameters and timescales that are

relevant for experimental systems. While obtaining accurate in vivo measurements of elastic

coefficients of epithelial tissues is notoriously difficult, it is possible to make order of magni-

tude estimates. For example, recent experiments on human corneal epithelial cells estimated

K/γ� 0.5 μm−2h−1 and A0� 500 μm2 [25]. This would correspond to the timescale γ/(KA0)�

15 s, or the relevant frequencies in the * 100−102 Hz range. Characteristic values of stress

have been estimated to be KA0 * 10nN/μm for a number of different epithelia [71, 82].

It is also important to note that our work focuses on the rheological behavior in the tangent

moduli approximation to a general stress-strain curves, where applied shear and bulk defor-

mations are infinitesimal with respect to a potentially significantly predeformed state (e.g., see

Fig 10). This is clearly an idealized case and, in reality, one would be interested in the response

to higher values of the applied deformation (≳ 1 − 10%). It would be possible to study such

finite deformations using our simulation protocol. Interpreting the results would, however, be

more challenging, e.g., due to shear-driven rigidity transition in model tissues and the presence

of plastic events [44, 46].

The vertex model provides a rather coarse description of real epithelial tissues and omits

many important aspects such as cell polarization, chemical signalling, cells’ ability to actively

adjust their properties in response to their environment, etc. The framework presented in this

study would, however, be able to address the linear response in the presence of such effects,

provided that the vertex model is suitably augmented [83–85].

Regardless of whether cells in an epithelial tissue are arrested or able to move, the rheologi-

cal response of the tissue is viscoelastic with multiple timescales [38]. This response arises as a

result of the complex material properties of individual cells combined with four basic cellular
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behaviors: movement, shape change, division, and differentiation. The tissue not only has a

non-trivial rheological response but is also able to tune it. There is growing evidence that this

ability of biological systems to tune their rheology, and in particular, transition between solid-

like and fluid-like behaviors, plays a key role during morphogenesis [4]. How such cellular

processes are regulated and coordinated to form complex morphological structures is only

partly understood. It is, however, clear that the process involves mechano-chemical feedback

between mechanical stresses and the expression of genes that control the force-generating

molecular machinery in the cell. Any models that aim to describe morphological processes,

therefore, need to include coupling between biochemical processes and mechanical responses.

The base mechanical model, however, must be able to capture the underlying viscoelastic

nature of tissues. Our work provides evidence that the vertex model, a model commonly used

to study the mechanics of epithelial tissues, has interesting non-trivial rheological behavior.

This, combined with its ability to capture both fluid- and solid-like behavior by tuning a single

geometric parameter shows it to be an excellent base model to build more complex descrip-

tions of real tissues.
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A The procedure for creating disordered tiling configurations

Fig. A shows the procedure to create disordered tiling configurations used to perform rheological simulations.a b c
Voronoitessellation relaxation

Fig A. The procedure of creating disordered tilings of polygons. (a) We first created a random point pattern
of N non-overlapping points within a square box. (b) These points are used as seeds for Voronoi tessellation
subject to periodic boundary condition. (c) The energy of the system was relaxed to a local energy minimum
using the FIRE algorithm.
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B Connection between stress response and rheology

Fig. B shows a typical average shear stress τ(t) in response to an applied oscillatory simple shear with the
strain ε = ε0 sin(ω0t). The shear stress response can be represented as

τ(t) = τ0 sin(ω0t+ δ) = τ0 cos(δ) sin(ω0t) + τ0 sin(δ) cos(ω0t).

The storage shear modulus is related to the in-phase response and is defined as G′ = (τ0/ε0) cos δ. The loss
shear modulus is related to the out-of-phase response and is defined as G′′ = (τ0/ε0) sin δ [1].

Fig B. Typical shear stress (red curve) as a function of time in response to a periodic shear strain (blue
curve) in (a) the solid phase and (b) the fluid phase. The shear stress is averaged over all cells.

May 11, 2022 2/13



C Approach of the response stress towards the steady state

Here, we show an example of how the steady state shear stress τ̃(ω0) is measured in response to the applied
oscillatory simple shear with a time period T0 = 27.7γ/ (KA0) = 2π/ω0 for the shape parameter p0 = 3.723
in hexagonal tiling, which is very close to the critical point pc ≈ 3.722 for the solid-fluid transition. The
shear stress signal τ(t) was divided into blocks of length T = 3T0, each containing 3 cycles of the time period
of the driving shear deformation (see Fig. C). Within each block n, we performed the Fourier transform of
τ(t) and obtained τ̃n(ω) as

τ̃n(ω) =
1

T

∫ nT

(n−1)T

τ(t)eiωtdt, (S1)

where n is a positive integer. The value of τ̃n(ω0) converges exponentially to the steady state value (see
Fig. C), where the relaxation time is related to the characteristic timescales of the viscoelastic models (see
Fig. 3c,d in the main text). For values of p0 far away from pc, the system quickly reaches a steady state
(within 3–6 cycles). As p0 approaches pc the relaxation times become much longer, which is reflecting the
diverging characteristic timescales of the viscoelastic models (see Fig. 3c,d in the main text).

Fig C. Approach of the response shear stress towards the steady state. (a) The shear stress signal τ(t) was
divided into blocks indicated by the vertical dashed lines. (b) Fourier transform of the response shear stress
τ̃n(ω0) at the driving frequency, ω0, as a function of the block number, n.
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D Effect of residual hydrostatic stress on the spring constants in
the solid phase for hexagonal tilings

In the solid phase, we studied the rheology of the hexagonal tiling with each cell of area AC = A0 but with
the perimeter PC unequal to the preferred perimeter P0, which induces residual hydrostatic stress in
equilibrium. This residual stress can be eliminated if the lattice is uniformly rescaled by a factor α, which
minimizes the following dimensionless energy per cell,

eC(α) =
1

2

(
α2 − 1

)2
+

Γ̃

2
(αpC − p0)

2
, (S2)

where eC = EC

KA2
0
, Γ̃ = Γ

KA0
, pC = PC√

A0
= 4
√

192 ≈ 3.722, i.e., α is the root of equation e′C(α) = 0. In the

solid phase, α < 1, and the system shrinks to relax the residual stress. At the solid-fluid transition point,
α = 1 since the area and perimeter of each cell match their preferred values simultaneously. If the residual
stress is eliminated by rescaling the box, the rheology of the system subject to a simple shear can still be
described by the SLS model, although the fitted values of spring constants are different, as shown in Fig. D.

Fig D. The fitted spring constants in the solid phase for hexagonal tiling when the simulation box is not
rescaled (closed symbols) and rescaled (open symbols) to eliminate residual stresses.
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E Collapse of storage and loss shear moduli in the fluid phase
for hexagonal tilings

In Fig. 2f in the main text, we showed the collapse of storage and loss shear moduli for the fluid phase for
hexagonal tilings in the low frequency regime. Here we show the collapse in the high frequency range (see
Fig. E), where we took into account that the relevant characteristic timescale scales as η2/E2 ∼ γ/(KA0).

Fig E. The collapse of the storage (G′) and loss (G′′) shear moduli curves in the high frequency regime for
different values of p0 for the fluid phase.
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F Effects of the initial perturbation of hexagonal tilings on the
spring and dashpot constants in the fluid phase

We note that the rheological behavior in the fluid phase for hexagonal tilings is sensitive to the magnitude
σD of the initial perturbation that was used to obtain different local energy minima configurations. In the
main text, we showed the fitted values of spring and dashpot constants (Fig. 3) for the local energy minima
configurations that were obtained by displacing each vertex coordinate of the hexagonal tiling by a Gaussian
random variable with zero mean and standard deviation σD = 1.5× 10−4

√
A0. Here, we show that the fitted

values of the spring and dashpot constants are somewhat sensitive to the magnitude σD of the random
perturbation (see Fig. F).

Fig F. Fitted values of (a) spring and (b) dashpot constants for hexagonal tilings under simple shear
deformation as a function of the target cell-shape parameter, p0, and the magnitude σD of the random
perturbation that was used to obtain different local energy minima configurations in the fluid phase.
Errorbars correspond to the standard deviation for simulations with σD = 1.5× 10−4

√
A0 that were repeated

for configurations that correspond to different local energy minima.
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G Tuning phase transition with different modes of
pre-deformation.

In the main text, we showed that the solid-fluid transition point for hexagonal tilings can be tuned by
uniaxially pre-compressing/stretching the system. Here, we discuss other pre-deformation modes that can
also tune the transition.

We first derive the shear modulus due to affine deformation following a similar formalism as in Ref. [2].
There are two equivalent ways of derivation. The first one is to calculate the energy density of the system
perturbed by an additional simple shear F̂ =

(
1 ε
0 1

)
where ε� 1. For example, for the hexagonal tiling

without any pre-deformation (i.e., regular hexagons), one can first calculate the vertex positions of a regular

hexagon after being deformed by the affine transformation F̂ . Then the perimeter of the deformed hexagon
can be derived as

P

6L0
= 1 +

3

16
ε2 + o

(
ε4
)

(S3)

where L0 =
√

2A0/
√

3
√

3 is the edge length of a regular hexagon before deformation. The area of the
hexagon does not change after the simple shear deformation. With the knowledge of the perimeter and area
of the deformed hexagon, one can calculate and expand the energy density from Eq. (1) in a power series in ε
as

E

NA0
=

1

2
3
√

3Γ

(
1− p0√

8
√

3

)
ε2 + o

(
ε4
)
≡ 1

2
Gaffineε

2 + o
(
ε4
)
, (S4)

where we omitted the constant term. The quadratic term characterizes the linear response of the system,
which gives the shear modulus as in Eq. (7) in the main text. The second approach is to directly use the
expression for the stress tensor Eq. (3). After obtaining the vertex positions of a hexagon perturbed by a

simple shear F̂ , one can calculate the shear stress and expand in a power series as τ = σ̂xy = Gaffineε+ o
(
ε2
)
.

The coefficient of the leading order term in ε is the shear modulus, which coincides with the modulus from
the energy calculation. Similar derivation of the shear modulus can be carried out for the pre-deformed
hexagonal tilings.

If the hexagonal tiling is pre-deformed biaxially according to the deformation gradient F̂ =
(
a 0
0 a

)
, then

the shear modulus due to the affine deformation becomes

Gaffine = 3
√

3Γ

(
1− p0

a
√

8
√

3

)
. (S5)

By setting Gaffine to 0, the phase boundary in the a− p0 plane is

pc(a) = a

√
8
√

3. (S6)

Similarly, consider a pure shear pre-deformation described by the deformation gradient F̂ =
(
a 0
0 1/a

)
. The

shear modulus due to the affine deformation then becomes

Gaffine =
2
√

2
(
1 +
√

1 + 3a4 + 3a4
√

1 + 3a4
) (

2
√

2 31/4(1 +
√

1 + 3a4)− 3ap0

)
Γ

37/4a(1 + 3a4)3/2
, (S7)

and the phase boundary is

pc(a) =

√
8
√

3
(1 +

√
1 + 3a4)

3a
. (S8)
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The phase diagrams for a hexagonal tiling that is under biaxial or pure shear pre-deformation are shown in
Fig. G. The phase boundary in the a− p0 plane follows Eq. (S6) for biaxial pre-deformation and Eq. (S8) for
pure shear pre-deformation. The system can be rigidified by stretching or shearing.

Fig G. Phase diagrams when the system is under (a) biaxial deformation and (b) pure shear.
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H Spectrum of the normal modes for hexagonal tilings

We calculated the eigenvalues λ of the Hessian matrix ∂2E
∂ri∂rj

associated with the energy functional of the

vertex model for hexagonal tiling. We associate each positive eigenvalue λ with a corresponding
eigenfrequency ω =

√
λ, which describes the oscillations of that mode as the system is perturbed about its

stable point. Fig. H shows the cumulative density of states, which is defined as [3]

N(ω) =

∫ ∞
0+

D(ω′)dω′ +N(λ = 0)θ(ω), (S9)

where D(ω) is density of states, N(λ = 0) is the fraction of zero eigenvalues and θ(ω) is the Heaviside step
function. In the solid phase, there are no zero modes other than the two translational rigid body motions. In
the fluid phase, however, approximately half of the eigenmodes are zero modes. As p0 approaches the critical
value pc in both solid and fluid phase, N(ω) curves move to the left so the system becomes softer, which is
consistent with the dependence of the spring constants on p0 shown in Fig. 3a in the main text.

Fig H. Cumulative density of states in the solid phase (solid lines) and in the fluid phase (dashed lines) for
hexagonal tilings.

I Raw data of storage and loss shear moduli for disordered
tilings

Fig. I shows the raw data of storage and loss shear moduli for disordered tilings for a range of values of p0.
Each color represents the storage and loss shear moduli for one disordered tiling configuration. These data
are used to calculate the average storage and loss shear moduli for each value of p0. From the raw data one
can see large variability in storage and loss moduli when p0 is close to the critical value of the solid-fluid
transition. When p0 = 3.93 and p0 = 3.95, there is a mixture of solid and fluid configurations since some
storage moduli plateau at a nonzero constant value and some vanish in the low frequency limit.
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a b c

d e f

g h

j k l

Fig I. Raw data of storage (G′) and loss (G′′) shear moduli for disordered tilings. The variability in storage
and loss moduli increases as p0 approaches the critical value of the solid-fluid transition.
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J Raw data of storage and loss bulk moduli for disordered tilings

Fig. J shows the raw data of storage and loss bulk moduli for disordered tilings at a few representative values
of p0. The storage and loss moduli have high variability when p0 is close to the critical value of solid-fluid
transition (p0 = 3.93).a b c

Fig J. Raw data of storage (B′) and loss (B′′) bulk moduli for disordered tilings.
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K Comparison of fits of shear moduli based on different
spring-dashpot models for disordered tilings

Fig. K shows the fits of average storage and loss shear moduli based on different spring-dashpot models for
disordered tilings at p0 = 3.71. Adding more Maxwell elements in parallel to the Standard Linear Solid
model increases the accuracy of fits. In Fig. Kc with the most accurate fit presented here, however, the fitted
curve of loss modulus goes up and down through the simulation curve. This manifests the characteristic of fit
with high order polynomials and indicates that addition of more Maxwell elements does not fully capture the
behavior of the shear moduli obtained from the simulations.

Fig K. Fits of average shear moduli based on different spring-dashpot models for disordered tilings at
p0 = 3.71. Red dashed lines are the fits. Blue dots represent the moduli data obtained from the simulations.
(a) shows the fits based on the Standard Linear Solid (SLS) model. The fits in (b) and (c) are based on
spring-dashpot models with additional Maxwell elements in parallel to the SLS model. The insets of each
plot show the representation of the corresponding spring-dashpot models.
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L System size effect for disordered tilings

Fig. L shows the storage and loss shear moduli for disordered tilings of different sizes at p0 = 3.71. The
system sizes have no effect at high frequency of shearing. At intermediate frequency, the loss modulus has an
anomalous scaling exponent, i.e., ∼ ωα0 with α ≈ 0.73, which changes from being linear in low frequency.
This crossover moves to lower frequencies as the system size increases.

200 cells800 cells3200 cells 200 cells800 cells3200 cells
Fig L. Storage and loss shear moduli for disordered tilings of different system sizes at p0 = 3.71.
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