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Non-equilibrium and active effects in mesoscopic scale systems have heralded a new era of scien-
tific inquiries, whether concerning meta-materials or biological systems such as bacteria and cellular
components. At mesoscopic scales, experimental and theoretical treatments of membranes, and
other quasi-two-dimensional elastic surfaces cannot generically ignore Brownian motion and other
thermal effects. In this paper we aim to study the behavior of thermally fluctuating 2-D elas-
tic membranes possessing odd elastic moduli embedded in higher dimensions. We implement an
isotropic generalization of the elastic tensor that includes odd elastic moduli, Kodd and Aodd, that
break conservation of energy and angular momentum respectively, due to Scheibner et al. [1]. Nat-
urally this introduces active and non-equilibrium effects. Passive equilibrium thermalized elastic
membranes possess effective (renormalized) Lamé coefficients that reduce with increasing system
size and a diverging effective bending rigidity [2, 3]. Introducing two odd elastic moduli means that
deformations from a reference state can induce chiral forces that cannot be derived from a Hamil-
tonian. Thus, the behavior of odd elastic membranes must instead be investigated with Langevin
equations. If fluctuation-dissipation relations hold, we calculate via the renormalization group that
at long length scales, active effects due to Kodd can be effectively ignored whereas Aodd cannot. To
validate these findings, we developed an advanced force implementation methodology, inspired by
the (T )-scheme prevalent in vertex models. This contributed to a new method for the simulation of
elastic membranes in higher dimensions, as detailed recently in [4]. The novelty of the simulation
method is that microscopic/discrete and continuum in-plane elastic moduli are one-to-one and thus
no coarse-graining is needed.

Introduction. Elasticity has a long history and for
much of it, has been typically studied in the presence
of general laws and symmetries [5, 6]. With the develop-
ment of the Vicsek model and the Toner-Tu equations,
the study of active systems has transformatively shifted
the field of non-equilibrium physics to include active sys-
tems [7, 8]. This shift has flung open the door to the
burgeoning field of active systems, where long-standing
interpretations of laws or symmetries, such as conserva-
tion of energy, are being re-examined and cast in a new
light. For an interesting discussion of the history of active
systems, which does go earlier than the aforementioned
papers, see [9].

Such new considerations have also led to a vast new
set of experimental realizations and applications. One
way to incorporate active effects is via the inclusion of
non-conservative forces. For example, a synthetically
engineered active elastic system was constructed out of
polycrystals of magnetic colloidal spinners [10]. Within
the study, odd elastic forces were found to organize the
colloids into a polycrystalline phase with motile dislo-
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cations whereby each grain has a tunable rotation rate
and size. Odd elastic forces are not conservative but are
only present when the system is deformed from a refer-
ence configuration [1]. Another example includes robotic
metabeams with piezoelectric properties that can result
in odd micropolar elasticity [11]. Such a system can con-
vert mechanical and electrical energy into one another
via bending/shearing cycles as well as produce direction-
dependent bending rigidities. Additionally, work- gener-
ating limit cycles via active forces have been exploited
to produce robotic elements [12]. Within natural phe-
nomena, active elasticity is also relevant for biological
systems. Analysis of already existing data of muscular
hydraulics were found to exhibit odd elastic behavior
[13]. In addition, new phases of active chiral biologi-
cal matter were obtained in the form of spontaneously
formed crystals consisting of starfish embryos [14]. By
examining the local shear-elongation angle in the vicin-
ity of defects, potential signatures of odd elasticity were
also observed. In addition, theoretically, active elastic
surfaces have been generalized via symmetry arguments
and explored [15, 16], with particular emphasis on wave
dynamics. One can also, for example, model the me-
chanics of the actin cortex, a layer of cross-linked actin
that lies beneath the plasma membrane of animal cells
[17, 18]. The activity of this mesh arises from the myosin
motors that exert contractile forces. More specifically
amongst animal cells, the mechanical behavior of hu-
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man red blood cells is a significant topic of interest. At
these length scales thermal effects are relevant to the
fluctuations and mechanics of membranes [19, 20]. Ac-
tive and non-equilibrium effects such as ATP concentra-
tion softening the local shear modulus of the cytoskeleton
have been confirmed, leading to active height correlations
that differ from thermal equilibrium height correlations
[19, 21]. This softening effect, due to metabolic activity,
can induce interesting curvature-mediated active mem-
brane motions [22]. Given the possibility that odd elastic
forces could be present in many biological systems such
as the aggregates of star-fish embryos and the cytoskele-
ton [14, 15, 23], it is worthwhile to consider what the
behavior of thermalized odd elastic membranes may be.
This paper aims to provide a first initial understanding
of this topic.

We use a renormalization-group analysis along with
Langevin-dynamic simulations to investigate the long-
range equal-time correlations of the displacement fields
of 2-D solvent-permeable isotropic odd elastic membranes
(which are necessarily chiral) at some non-zero temper-
ature. These membranes are characterized by Lamé co-
efficients (λ, µ), a bending rigidity (κ) and two odd elas-
tic constants (Aodd,Kodd)[1]. Both odd elastic moduli
break reflection symmetry, and more specifically Kodd

breaks conservation of energy and couples pure and sim-
ple shears whereas Aodd breaks conservation of angular
momentum and couples dilation strains to torques. Fi-
nally, despite the fact that we performed theoretical cal-
culations for permeable membranes (Rouse dynamics),
we expect our scaling results to hold even in the case
of impermeable membranes (Zimm dynamics), where the
membrane is not completely permeable to the solvent and
is modeled with Fourier vector dependent diffusivities.

Model and Theoretical Results We seek to describe a
D = 2 isotropic odd elastic system embedded in D + dc
dimensions (i.e. with dc co-dimensions) at a tempera-
ture T [1]. In the absence of thermal fluctuations and
deformations, the reference configuration is that of a
flat undeformed elastic sheet. A schematic showing the
elastic system under non-zero T conditions is shown in
Fig. 1. Though such an active elastic system cannot be
described by a Hamiltonian, the constitutive equation for
in-plane stresses (σij) and strains (uij) is still applicable
σij = Cijklukl where

Cijkl =λδijδkl + µ[δikδjl + δilδjk]

+KoddEijkl −Aoddϵijδkl,
(1)

where we have assumed an orthonormal coordinate ba-
sis and with Eijkl = 1

2 [ϵikδjl + ϵilδjk + ϵjkδil + ϵjlδik]. ϵ is
the 2-D Levi-Civita tensor (ϵ11 = ϵ22 = 0, ϵ12 = −ϵ21 =
1) and δ is the Kronecker delta. In addition, λ, µ are the
2-D Lamé coefficients. We define ui(r, t) to be the dis-
placement vector along i-th axis (in-plane phonon) and
fα(r, t);α ∈ {1, ..., dc} to be the out-of-plane displace-
ment (flexural phonon). In the Monge gauge the strain

tensor takes the form:

uij(r, t) =
1

2
[∂iuj(r, t) + ∂jui(r, t)

+ ∂if
α(r, t)∂jf

α(r, t)].
(2)

From these, a system of over-damped Langevin equa-
tions can be written down:

∂tuj(r, t) = D∂i{Cijklukl(r, t)}+ ηj(r, t), (3)

where the Langevin noise satisfies ⟨ηj(r, t)⟩ = 0 and
⟨ηj(r, t)ηi(r′, t′)⟩ = 2LijkBTδ(r− r′)δ(t− t′) and we as-
sume Lij = Lδij . D is the in-plane mobility and is equal
to L if fluctuation-dissipation holds. We may also write
a Föppl-von-Kármán equation describing the dynamics
of flexural modes:

∂tf
α(r, t) =Df [−∂i∂j{Bijkl∂k∂lf

α(r, t)}
+ ∂i{σij(r, t)∂jf

α(r, t)}] + ηαf (r, t),
(4)

where Bijkl =
κ
2 δijδkl +

κ
4 [δikδjl + δilδjk] is the bending

rigidity tensor. Df is the out-of-plane mobility and is
equal to Lf if fluctuation-dissipation relations hold. One
may fairly ask why an odd elastic component has not
been incorporated into this bending rigidity tensor but
by noticing the symmetrized contraction in Bijkl∂i∂j∂k∂l,
no anti-symmetric components will remain. Corre-
spondingly the noise term satisfies ⟨ηαf (r, t)⟩ = 0 and
⟨ηαf (r, t)η

β
f (r

′, t′)⟩ = 2LfkBTδ
αβδ(r − r′)δ(t − t′) where

δαβ is the Kronecker delta. We additionally assume that
⟨ηαf (r, t)ηj(r′, t′)⟩ = 0. To comprehend the effect of ther-
mal fluctuations on the effective elastic moduli, we use
the Martin-Siggia-Rose-Janssen-DeDominicis formalism
[24–28]. The formalism adopts the path-integral formu-
lation by taking advantage of the form of the distribution
of the thermal noises. Thus the transition probability
density is of the form:

W(ηj , η
α
f ) ∝e−

1
4

∫
dt

∫
ddr(kBTL)−1ηi(r,t)

2

e−
1
4

∫
dt

∫
ddr(kBTLf )

−1ηα
f (r,t)2 .

(5)

In this form, inserting in the Langevin equations,
Eq. (4)and Eq. (3), renders the expression into a compli-
cated set of terms with high-degree non-linearities. Thus,
via an imaginary Hubbard-Stratonovich transformation
[29] we introduce the following response non-physical
variables and linearize the Langevin noises:

W(ηj , η
α
f ) ∝

∫ ∏
i

D[iΥi]
∏
α

D[iΦα]

e
∫
dt

∫
ddr[kBTLΥi(r,t)

2−Υi(r,t)ηi(r,t)]

e
∫
dt

∫
ddr[kBTLfΦ

α(r,t)2−Φα(r,t)ηα
f (r,t)],

(6)

where the integral represents a functional integration
[30]. Assuming periodic boundary conditions, one may
then take a Fourier transform of the MSRJD action seen
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in Eq. 6. Using the MSRJD action, and keeping terms
only to linear order, we may calculate the equal-time cor-
relations (known as a harmonic/Gaussian average) of our
displacement fields to obtain:

⟨fα(q)fβ(−q)⟩ = kBTLfδαβ
ADfκq4

, (7)

⟨ui(q)uj(−q)⟩ = kBTL
AD[λ+ 3µ][µ(λ+ 2µ) +Kodd(Kodd −Aodd)]q4

{qiqj [µ(λ+ 3µ) +Kodd(2Kodd −Aodd)]

+ [ϵikqjqk + ϵjlqiql][µAodd + (λ+ µ)Kodd]

+ ϵikϵjlqkql[(λ+ 2µ)(λ+ 3µ) + (Kodd −Aodd)(2Kodd −Aodd)]},

(8)

where A is the area of our system. These calculations
are performed in Sec. III of the supplementary mate-
rial. Active effects cannot be observed in the out-of-plane
correlations Eq. 7. One may ask if there is a correla-
tion that is otherwise zero in the absence of odd elas-
tic moduli. The solution is in-plane correlations of the
type: ⟨u1(q1, 0)u2(−q1, 0)⟩ = kBTL[Aoddµ − Kodd(λ +
µ)]/{Dq2(λ + 3µ)(AoddKodd + K2

odd + µ(λ + µ))}. This
will be of use when extracting the scaling of the effective
odd elastic moduli from our simulation data.

Previous equilibrium studies, utilizing Boltzmann
weights, established that due to the geometric non-
linearity of the strain tensor, transverse shear modes gen-
erate a long-range coupling of Gaussian curvatures and
thus the existence of a low-temperature flat phase for
such elastic surfaces was established in [31]. The long-
range coupling is what permits such 2-D systems to evade
the Hohenberg-Mermin-Wagner theorem (which states
that continuous symmetries cannot be spontaneously
broken in two and less dimensions) [32–35]. Furthermore,
via thermal fluctuations, the geometric non-linearity of
the strain tensor renormalizes the moduli of the theory
when fluctuations of the membrane become of the order
of its thickness [31]. Further studies followed and es-
tablished the presence of a globally stable non-Gaussian
fixed point named the Aronovitz-Lubensky fixed point,
as well as refined anomalous exponents for the moduli
via a self-consistent screening analysis (SCSA) [2, 3].
More specifically it was obtained that beyond the ther-
mal length scale (ℓth =

√
16π3κ2/3kBTY , where κ is

the bending rigidity, kB is the Boltzmann constant, T
is the temperature and Y is the 2-D Young’s modulus)
the effective moduli of the material renormalize with sys-
tem size, L, as κR(L) ∼ Lη (η ≈ 0.8) whereas the Lamé
coefficients scale as λR(L), µR(L) ∼ L−ηu (ηu ≈ 0.4).

One theoretical study utilizing our same model sans
odd elastic moduli, has explored the Langevin dynamics
of elastic membranes with the addition of hydrodynamic

coupling when such membranes may or may not be per-
meable to the surrounding solvent (Rouse and Zimm dy-
namics respectively) [28]. While there are dynamical dif-
ferences between the two cases, in the study it was found
that, regardless of whether the membranes are permeable
or not, the static correlations of the displacement fields
are in agreement with the equilibrium theory using the
Boltzmann measure.

Importantly, however, the MSRJD action has one no-
table difference from the analogous Boltzmann weight
associated with an equilibrium elastic membrane Hamil-
tonian such as in [2, 20, 31, 36]. The MSRJD action does
not possess the quasi-rotational symmetry given in [37].
The absence of this symmetry is significant as this means
that the Ward identity, that would be derived from this
symmetry, is also absent. Note that this difference holds
even in the absence of activity and is thus a property
of the Langevin dynamics. Thus, the form of the strain
tensor is not necessarily preserved through the renormal-
ization group. As an example, if one inserts Eq. 2 into
Eq. 3, it may be noted that there are the linear and
non-linear terms both with coefficient DCijkl. Though
we may set these two coefficients to be equal at a mi-
croscopic length scale, there is no symmetry that says
that this necessarily need be the case at larger length
scales. In other words, the lack of this Ward identity
may lead to the breaking of fluctuation-dissipation rela-
tions at larger length scales. Such a scenario, where the
symmetry of the strain tensor is broken, has also been
treated in [38]. To achieve this, the isotropy of the em-
bedding space was broken via an external field to break
the form of the strain tensor explicitly. These pertur-
bations will generically result in a renormalization-group
flow directed away from the Aronovitz-Lubensky fixed
point. More details are expanded upon in Sec. III of the
supplementary material. However, for the purposes of
this study, where we performed a performed 1-loop or-
der 1/dc renormalization group expansion, if microscopic
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fluctuation-dissipation relations hold and the form of the
strain tensor is not violated microscopically, then they
hold via renormalization as well (one may think of this
as an unstable but fixed manifold).

We furthermore mention that by restricting to the
Feynman diagrams we used (via the 1/dc analysis ex-
panded upon in the supplementary material) in our the-
oretical analysis, Aodd and Kodd do not generate each
other. Thus they may be considered as independent pa-
rameters when tuning bare moduli such that either of the
odd moduli is zero.

With these considerations we numerically integrate our
renormalization group equations and performed a stabil-
ity analysis of the Aronovitz-Lubensky fixed point ex-
plained further in the SI. Via our analyses, we find that in
the vicinity of the Aronovitz-Lubensky fixed point, Kodd

is an irrelevant perturbation. Perturbations of non-zero
Kodd, that preserve fluctuation-dissipation relations, con-
verge back to the Aronovitz-Lubensky fixed point with
exponent KR

odd(L) ∼ L−2ηu . Thus λR(L), µR(L) ∼ L−ηu

and κR(L) ∼ Lη still hold. On the other hand, per-
turbations to non-zero Aodd, that preserve fluctuation-
dissipation relations, are marginal and thus expand the
Aronovitz-Lubensky fixed point to a higher-dimensional
manifold. Thus, AR

odd(L) ∼ L−ηu , λR(L), µR(L) ∼ L−ηu

and κR(L) ∼ Lη still hold. In addition, in the supplemen-
tary material, we also derive a new form for the thermal
length scale, ℓth that matches with the classical equilib-
rium form,

√
16π3κ2/3kBTY , in the absence of the odd-

elastic moduli and when fluctuation-dissipation relations
hold. The new form of ℓth can be found in Eq. (S105)
in the supplementary material. Thus, for systems suffi-
ciently larger than the thermal length scale and assuming
fluctuation-dissipation relations, KR

odd can be ignored but
AR

odd cannot, with regard to the effective mechanics of the
sheet. Aside from the renormalization of equal-time cor-
relations, from which we derive the scaling of our elastic
moduli, dynamic renormalization of the noise variance
does not occur [28]. Thus dynamic critical exponents
can be completely determined from our static renormal-
ization results, that is the scaling of our elastic moduli
derived from equal-time correlations.

Finally, as far as fluctuation-dissipation relations hold,
we make a remark that despite the fact that our re-
sults hold for completely permeable membranes, known
as Rouse dynamics, these results should hold even in the
case of Zimm dynamics where diffusivities are given a
power dependence of the Fourier vector magnitude such
as in [28]. This is because inserting a power of the Fourier
vector magnitude into the diffusivities will multiply all
terms in our theoretical calculation (aside from the tem-
poral frequency, which is not relevant to equal-time cor-
relations) and thus relative ratios of these terms remains
the same as in Rouse dynamics. This will just shift the
scaling of all the correlation functions by the same factor
and thus relative scaling between elastic moduli will not
change.

However, the equal-time correlation results change if

fluctuation-dissipation relations do not hold microscop-
ically, then we find the Aronovitz-Lubensky fixed point
unstable. Thus, the Aronovitz-Lubensky fixed point does
not characterize elastic membranes without fluctuation-
dissipation relations. In the absence of odd elastic mod-
uli, the governing fixed point was obtained in [38]. In the
presence of odd elastic moduli, the governing fixed point
is yet to be found. For more on the complete theoreti-
cal results please refer to Sec. III of the supplementary
material.

Simulations Set-Up. To compare and contrast the the-
oretical results, we also conducted Langevin simulations
using following Ref. [4]. We introduced a new force imple-
mentations, explained below, yielding a novel simulation
technique for discrete membranes embedded in higher di-
mensional spaces. Specifically, we simulated a 2-D elas-
tic membrane embedded in 3 dimensions so that dc = 1
under the influence of thermal noise. Simulations were
performed non-dimensionally so kB , the mass of the ver-
tices and the lattice spacing were set to 1. A Gaussian
random noise associated with a variance of the tempera-
ture, T , is produced by a random number generator and
acts as our Langevin noise. The temperature is a partic-
ularly important parameter for our simulations because
rather than simulating a large system size, which can be
computationally costly, we can fix the system size, L,
and instead change the temperature, which will change
the thermal length scale ℓth (thus allowing us to tune
L/ℓth). Measuring equal-time correlation functions of
the displacements, we can then establish anomalous ex-
ponents of the effective moduli. This is expanded upon
further below. The specific physical system we imple-
mented was a triangular lattice with fixed connectivity
under periodic boundary conditions. For the integrator,
we implemented a BAOAB-limit method [39], thus the
simulation noise is not completely memory-less, but the
memory is short ranged in time. We used a Berendsen
barostat to tune the pressure of the system to zero; al-
lowing us to tune the system to its critical point (without
a homogeneous stress). We used dihedral springs to im-
plement a bending rigidity for the elastic membrane [40].
We set the continuum bending rigidity to 1 as well. To
calculate in-plane forces, for each triangular face, the ver-
tices that make up the corners are assigned an ID {1, 2, 3}
with a consistent handedness (counter-clockwise). Thus
the same vertex can have a different ID with regards to
different faces. {r̄i} and {ri} mark the reference and cur-
rent positions of the vertices where i is the ID of the ver-
tex within the triangular face in question. A schematic
of this is shown in Fig. 1, where the reference basis ēi
and current basis ei are defined in terms of the coor-
dinates of the vertices. We used the reference metric
tensor, ḡij(r, t) = ēi(r, t) · ēj(r, t), and current metric
tensor, gij(r, t) = ei(r, t) · ej(r, t), to calculate the strain
tensor uij(r, t) = [gij(r, t) − ḡij(r, t)]/2. We will drop
the (r, t) argument now as it is implicit. As an aside,
we will use notation of differential geometry. For exam-
ple, the dual of a general tensor, tensor Jij is written
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FIG. 1: A triangular lattice, with periodic boundary conditions, is implemented with fixed connectivity for Langevin simulations
performed with a Berendsen barostat. The color field in the schematic indicates the height field with blue indicating lower
portions of the elastic sheet and orange indicating higher portions. The vertices associated with each triangular face are assigned
an ID {1, 2, 3} in a counter-clockwise fashion. Reference coordinates are referred to as {r̄i} where i marks the ID of the vertex
for the triangular face. {ri} marks the current positions of the vertices. These coordinates may be used to calculate the reference
and current metrics and thereby the strain tensor for each triangular face. The dual in-plane stresses for each triangular face
were then calculated via the constitutive relation whereas bending forces were implemented using dihedral springs.

down as J ij and is obtained via the following contrac-
tion: J ij = gikgjlJkl where gij ≡ (g−1)ij (meaning that
the dual of the metric tensor is its inverse; note that this
property does not hold necessarily for other tensors) [41].
Thus, in general, we use the current local metric tensor
to raise and lower indices on a general tensor. Returning
to the stress tensor calculation, we used the constitutive
relation (σij = Cijklukl) via the generalized linear elastic
tensor:

Cijkl =λḡij ḡkl + µ[ḡikḡjl + ḡilḡjk]

+
Kodd√
det[ḡ]

E ijkl − Aodd√
det[ḡ]

ϵij ḡkl,
(9)

with E ijkl = 1
2 [ϵ

ikḡjl+ϵilḡjk+ϵjkḡil+ϵjlḡik], where ϵij is
again the 2-D Levi-Civita permutation symbol satisfying
ϵ11 = ϵ22 = 0, ϵ12 = −ϵ21 = 1.

Once the stress tensor is calculated for a face, we cal-
culated the normal associated with the local basis of the
triangular face: n̂face = e1 × e2/∥e1 × e2∥ and then the
normal to an edge of the triangular face via an additional
cross product ni→j = n̂face×ri→j (note that this normal
is not of length 1; in addition the symbol, ,̂ marks a unit
vector). The normal vector can be decomposed in the
current basis {e1, e2} as follows: (Ni→j)k = ni→j · ek for
k = {1, 2}. We can then calculate the force on the edge
as follows: (Ti→j)

k = (Ni→j)lσ
lk and Fij = (Ti→j)

kek.
To implement the force on the edge, one can halve Fij

and apply each half on each vertex {i, j}. Such an im-
plementation is similar to that done in the field of vertex
models, the flat analogue bears the name (T)-scheme [42–
44]. This method bears particular advantages over the
use of spring-mass systems. Firstly, via a coarse-graining
procedure one obtains that the continuum in-plane mod-
uli, Cijkl, are the exactly the same as those that we use
in our force implementation. Secondly, any stable elas-
tic system, anisotropic or not and odd or not, can be

simulated very easily via this method. With springs, in
order to simulate Aodd and Kodd independently, for ex-
ample, one would require a unit cell that is larger than
the triangular face and may require a complicated micro-
scopic force-displacement relation. Due to the fact that
the continuum description is being directly simulated in
this new method, these complications can be avoided. As
for the time-step, ∆τ , we selected a small enough value
such that all the inverse of the over-damped frequencies
associated with our system (a4/[8π3Dfκ], a

2/[2πDCijkl])
were larger. For our simulation procedure we had an
equilibration/thermalization period of 2 × 107∆τ after
which we began to record realizations of the system for
8 × 108∆τ at an interval of 105∆τ time steps. We de-
termined the thermalization length by performing auto-
correlations of the displacement fields to know over what
period of time the system retains memory of the initial
configuration. In certain instances, particularly for sim-
ulations at lower temperatures, achieving thermal equi-
librium within the system presents a challenge. Detailed
elaboration on this topic can be found in Sec. II of the
supplementary material.

Given from our theoretical analysis that Aodd and
Kodd do not generate each other, we simulate odd
elastic systems that satisfy Aodd = 0 or Kodd = 0
with regards to the bare moduli. In this way, we
may examine the effect of each modulus independently
and further avoid potential non-universal characteris-
tics and instabilities [1]. We then measured the equal-
time correlations of our displacement fields by averag-
ing over our snapshots of data. We utilize the form
of the equal-time correlations, Eq. (7) and Eq. (8),
replacing the microscopic values κ, λ, µ,Aodd,Kodd

with κR(q), λR(q), µR(q), AR
odd(q),K

R
odd(q) and set L =

D,Lf = Df . Since no spatial symmetries are bro-
ken and we do not expect any anisotropies to de-
velop within the system. With these formulas we
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FIG. 2: Plots of the non-dimensionalized (a) flexural correlation function (Cff = kBT/(Aκq4th)), (b) longitudinal in-plane
phonon correlation function (Cu1u1 = kBT (2K

2
odd + µ(λ+ 3µ))/(A[λ+ 3µ][K2

odd + µ(λ+ 2µ)]q2th)) and (c) semi-transverse in-
plane phonon correlation function (Cu1u2 = kBTKodd(λ+µ)/(A[λ+3µ][K2

odd+µ(λ+2µ)]q2th)). The shading indicates the error
bars showing the standard error of the mean. For q > qth, the harmonic correlations are obtained. The Aronovitz-Lubensky
anomalous exponents, η ≈ 0.8, ηu ≈ 0.4 are observed in (a) and (b) for q < qth. Instead in (c), no anomalous exponents are
observed and this is consistent with KR

odd(q) ∼ q2ηu being irrelevant. Corresponding data sets can be found in Tab. S1.

can then extrapolate the scaling of the parameters
κR(q), λR(q), µR(q), AR

odd(q),K
R
odd(q) from the simulation

data.
Results For Kodd. Correlation functions extracted

from simulations with Kodd can be found in Fig. 2. One
can find results consistent with theoretical exponents ex-
tracted via the 1-loop 1/dc expansion. That is, on the
one hand, for q > qth, equal-time harmonic correlations
are obtained, that is, Eq. (7) and Eq. (8). Thus below
the thermal length scale (q > qth), the mechanical re-
sponse is described by the bare moduli. On the other
hand, for q < qth, ⟨f(q)f(−q)⟩ ∼ q−4+η and thus ef-
fectively κR(q)/κ ∼ q−η. The equal-time longitudinal-
phonon correlation scales as ⟨u1(q1, 0)u1(−q1, 0)⟩ ∼
q−2−ηu . On the other hand, the semi-transverse in-
plane phonon correlations never exhibit anomalous be-
havior, ⟨u1(q1, 0)u2(−q1, 0)⟩ ∼ q−2. With the ansatz
that in the vicinity of the Aronovitz-Lubensky fixed
point, λR(q), µR(q) ∼ qηu and positing the correlation
KR

odd(q) ∼ qα, then ⟨u1(q1, 0)u2(−q1, 0)⟩ ∼ q−2+α−2ηu .
Thus these in-plane correlations could only be explained
by the scaling: KR

odd(q) ∼ q2ηu , which is consistent with
our theoretical 1-loop 1/dc expansion calculations. Such
a scaling is indicative that small perturbations in Kodd

to the Aronovitz-Lubensky fixed point are irrelevant and
thus KR

odd(q)/µ
R(q) scales to zero in the thermodynamic

limit. The significance of this is that breaking conser-
vation of energy in the manner in which Kodd does is
irrelevant (though µR(q), λR(q) do scale to zero in the
thermodynamic limit, they are examples of dangerously
irrelevant parameters. Instead KR

odd(q) is truly irrele-
vant). Correlation functions extracted from simulations
with Kodd can be found in Fig. 2. We remind the read-
ers that these results hold when fluctuation-dissipation
relations hold.

Results For Aodd. Correlation functions extracted
from simulations with Aodd can be found in Fig. 3.

One can find results consistent with theoretical expo-
nents extracted via the 1-loop 1/dc expansion. That
is, on the one hand, for q > qth, harmonic correlations
are obtained. Whereas for q < qth, ⟨f(q)f(−q)⟩ ∼
q−4+η and ⟨u1(q1, 0)u1(−q1, 0)⟩ ∼ q−2−ηu which ex-
hibits the exponents associated with the Aronovitz-
Lubensky fixed point once again. The semi-transverse in-
plane phonon correlations exhibit the following scaling,
⟨u1(q1, 0)u2(−q1, 0)⟩ ∼ q−2−ηu , however, some portions
of the correlation functions are missing due to large fluc-
tuations. One can make sense of this by understanding
that the microscopic value we took for Aodd is pertur-
bative to λ and µ and thus ⟨u1(q1, 0)u2(−q1, 0), which
is zero in the absence of odd elastic moduli, experi-
ences a greater amount of noise and error. Returning
to the scaling we have obtained: positing the follow-
ing scaling AR

odd(q) ∼ qα then ⟨u1(q1, 0)u2(−q1, 0)⟩ ∼
q−2+α−2ηu and can thus only be explained by the scaling:
AR

odd(q) ∼ qηu . Such a scaling is indicative that small
perturbations in Aodd to the Aronovitz-Lubensky fixed
point are marginal and thus AR

odd(q)/µ
R
odd(q) ∼ constant

in the thermodynamic limit. Thus breaking conserva-
tion of angular momentum, in the manner that Aodd

does, cannot be ignored at the critical point and ther-
mal fluctuations cannot restore this manner in which
the reflection symmetry is broken. Thus the Aronovitz-
Lubensky is no longer a fixed point but becomes a higher-
dimensional fixed manifold when fluctuation-dissipation
relations hold.

Conclusion. We have extracted the behavior of ther-
mally fluctuating elastic membranes in the presence of
non-equilibrium odd elastic moduli. For perturbative val-
ues of the odd elastic moduli, we observe that KR

odd(q) ∼
q2ηu is an irrelevant parameter which can be ignored
in the thermodynamic limit whereas AR

odd(q) ∼ qηu is
marginal and cannot be ignored at any scale. We em-
phasize once again that this study should be considered
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FIG. 3: Plots of the non-dimensionalized (a) flexural correlation function (Cff = kBT/(Aκq4th)), (b) longitudinal in-plane
phonon correlation function (Cu1u1 = kBT/(A(λ + 2µ)q2th)) and (c) semi-transverse in-plane phonon correlation function
(Cu1u2 = kBTAodd/(A[λ+ 3µ][λ+ 2µ]q2th)). The shading indicates the error bars showing the standard error of the mean. For
q > qth, the harmonic correlations are obtained. The Aronovitz-Lubensky anomalous exponents, η ≈ 0.8, ηu ≈ 0.4 are observed
in (a) and (b) for q < qth. In (c), the ηu anomalous exponent is again observed and this is consistent with AR

odd(q) ∼ qηu being
marginal. Corresponding data sets can be found in Tab. S1.

as an investigation in the case where these odd elastic
moduli are perturbations. Potentially for very large odd
elastic moduli, other behaviors and potential non-linear
instabilities are possible (for which the stress may not be
able to be tuned to zero for given system sizes). In addi-
tion, further exploration is merited on the basis that one
can also microscopically break the fluctuation-dissipation
relations and our eigen-value analysis of the Aronovitz-
Lubensky fixed point yields unstable eigen-vectors. This
analysis, in the absence of odd elastic moduli, has been
obtained in [38], where the same problem with broken
fluctuation-dissipation relations can be mapped to an
equilibrium problem that breaks the isotropy of the em-
bedding space.

Obtaining a globally stable fixed point in the full phase
space where fluctuation-dissipation relations do not hold
and in the presence of odd elastic moduli is unresolved
at the current time. Despite this, an important point
to note is that active components making up an elastic
network, such as actin or myosin in biological systems,
are not to be necessarily associated with the breaking of
fluctuation-dissipation relations. The origin of the non-
equilibrium nature of biological systems, such as the cy-
toskeleton, would not originate from odd active behav-
ior necessarily. Instead, it may come from non-Gaussian
noise distributions as well as chemical reactions. For ex-
ample, in the context of the KPZ equation, multiplicative
noise was even considered to probe non-equilibrium prop-
erties [45]. On the other hand, in the context of chemi-

cal reactions, [21] found that metabolic activity of ATP
can help facilitate non-equilibrium fluctuations of mem-
branes. To model this, one may conduct simulations and
repeat a similar analysis with a concentration parameter
analagous to what is done in [22]. In addition, our results
are valid for permeable membranes, further can be done
to explore membrane-solvent interactions as was done in
[28]. We expect that our equal-time correlation results
should hold even in the case of Zimm dynamics. Purely
hydrodynamic solvent interactions are expected to mod-
ify the dynamical scaling but not the static [28], though
this remains to be verified via simulations. Lastly, many
more open directions can be investigated by incorporat-
ing other forms of non-equilibrium features and activity
such as non-Gaussian noises and odd visco-elastic com-
ponents for example [23, 45]. Thus, various open prob-
lems remain to fully explore the non-equilibrium inducing
aspects of our system to properly model biological and
potential synthetic systems at mesoscopic scales.

Acknowledgements. The authors thanks Uwe Taüber
for a useful discussion in development of the ideas with re-
gards to fluctuation-dissipation relations, and John Toner
for a discussion on mass renormalization. The authors
would also like to acknowledge the following funding
source: NSF Career award DMR-1752100. DMF was
supported by the Comunidad de Madrid and the Com-
plutense University of Madrid (Spain) through the Atrac-
ción de Talento program 2022-T1/TIC-24007.

[1] C. Scheibner, A. Souslov, D. Banerjee, P. Surówka, W. T.
Irvine, and V. Vitelli, Nature Physics 16, 475 (2020).

[2] J. A. Aronovitz and T. C. Lubensky, Physical review
letters 60, 2634 (1988).

[3] P. Le Doussal and L. Radzihovsky, Physical review letters
69, 1209 (1992).

[4] D. Matoz-Fernandez, F. A. Davidson, N. R. Stanley-
Wall, and R. Sknepnek, Physical Review Research 2,



8

013165 (2020).
[5] L. D. Landau, L. P. Pitaevskii, A. M. Kosevich,

and E. M. Lifshitz, Theory of Elasticity, 3rd ed.
(Butterworth-Heinemann, 2012).

[6] S. P. Timoshenko and S. Woinowsky-Krieger, Theory of
plates and shells (McGraw-hill, 1959).

[7] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and
O. Shochet, Physical review letters 75, 1226 (1995).

[8] J. Toner and Y. Tu, Physical review letters 75, 4326
(1995).

[9] M. J. Bowick, N. Fakhri, M. C. Marchetti, and S. Ra-
maswamy, Physical Review X 12, 010501 (2022).

[10] E. S. Bililign, F. Balboa Usabiaga, Y. A. Ganan, A. Pon-
cet, V. Soni, S. Magkiriadou, M. J. Shelley, D. Bartolo,
and W. T. Irvine, Nature Physics 18, 212 (2022).

[11] Y. Chen, X. Li, C. Scheibner, V. Vitelli, and G. Huang,
Nature communications 12, 5935 (2021).

[12] M. Brandenbourger, C. Scheibner, J. Veenstra, V. Vitelli,
and C. Coulais, arXiv preprint arXiv:2108.08837 (2021).

[13] S. Shankar and L. Mahadevan, bioRxiv , 2022 (2022).
[14] T. H. Tan, A. Mietke, J. Li, Y. Chen, H. Higinbotham,

P. J. Foster, S. Gokhale, J. Dunkel, and N. Fakhri, Na-
ture 607, 287 (2022).

[15] G. Salbreux and F. Jülicher, Physical Review E 96,
032404 (2017).

[16] M. Fossati, C. Scheibner, M. Fruchart, and V. Vitelli,
arXiv preprint arXiv:2210.03669 (2022).

[17] H. Berthoumieux, J.-L. Maître, C.-P. Heisenberg, E. K.
Paluch, F. Jülicher, and G. Salbreux, New Journal of
Physics 16, 065005 (2014).

[18] G. Salbreux, G. Charras, and E. Paluch, Trends in cell
biology 22, 536 (2012).

[19] N. S. Gov, Physical Review E 75, 011921 (2007).
[20] D. Nelson, T. Piran, and S. Weinberg, Statistical me-

chanics of membranes and surfaces (World Scientific,
2004).

[21] Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran,
G. Popescu, S. Suresh, and M. S. Feld, Proceedings of
the National Academy of Sciences 107, 1289 (2010).

[22] H. Turlier, D. A. Fedosov, B. Audoly, T. Auth, N. S.
Gov, C. Sykes, J.-F. Joanny, G. Gompper, and T. Betz,
Nature physics 12, 513 (2016).

[23] C. Floyd, A. R. Dinner, and S. Vaikuntanathan, arXiv
preprint arXiv:2210.01159 (2022).

[24] C. De Dominicis, Physical Review B 18, 4913 (1978).
[25] H. Janssen, in Dynamical critical phenomena and related

topics (Springer, 1979) pp. 25–47.
[26] P. C. Martin, E. Siggia, and H. Rose, Physical Review

A 8, 423 (1973).
[27] U. C. Täuber, Critical dynamics: a field theory ap-

proach to equilibrium and non-equilibrium scaling behav-
ior (Cambridge University Press, 2014).

[28] E. Frey and D. R. Nelson, Journal de Physique I 1, 1715
(1991).

[29] A. Altland and B. D. Simons, Condensed matter field
theory (Cambridge university press, 2010).

[30] D. Tong, Department of Applied Mathematics and The-
oretical Physics, Centre for Mathematical Sciences, Uni-
versity of Cambridge .

[31] D. Nelson and L. Peliti, Journal de physique 48, 1085
(1987).

[32] N. D. Mermin and H. Wagner, Physical Review Letters
17, 1133 (1966).

[33] N. D. Mermin, Physical Review 176, 250 (1968).

[34] P. C. Hohenberg, Physical Review 158, 383 (1967).
[35] B. I. Halperin, Journal of Statistical Physics 175, 521

(2019).
[36] E. Guitter, F. David, S. Leibler, and L. Peliti, Physical

review letters 61, 2949 (1988).
[37] E. Guitter, F. David, S. Leibler, and L. Peliti, Journal

de Physique 50, 1787 (1989).
[38] P. Le Doussal and L. Radzihovsky, Physical Review Let-

ters 127, 015702 (2021).
[39] B. Leimkuhler and C. Matthews, Applied Mathematics

Research eXpress 2013, 34 (2013).
[40] H. S. Seung and D. R. Nelson, Physical Review A 38,

1005 (1988).
[41] M. P. Do Carmo, Differential geometry of curves and sur-

faces: revised and updated second edition (Courier Dover
Publications, 2016).

[42] S.-Z. Lin, M. Merkel, and J.-F. Rupprecht, The Euro-
pean Physical Journal E 45, 4 (2022).

[43] S. Tlili, C. Gay, F. Graner, P. Marcq, F. Molino, and
P. Saramito, The European Physical Journal E 38, 1
(2015).

[44] S. Tlili, J. Yin, J.-F. Rupprecht, M. Mendieta-Serrano,
G. Weissbart, N. Verma, X. Teng, Y. Toyama, J. Prost,
and T. Saunders, Proceedings of the National Academy
of Sciences 116, 25430 (2019).

[45] Y. Tu, G. Grinstein, and M. Munoz, Physical review
letters 78, 274 (1997).

[46] G. Falasco, F. Baldovin, K. Kroy, and M. Baiesi, New
Journal of Physics 18, 093043 (2016).

[47] H. Löwen, The Journal of chemical physics 152, 040901
(2020).

[48] A. P. Solon, Y. Fily, A. Baskaran, M. E. Cates, Y. Kafri,
M. Kardar, and J. Tailleur, Nature Physics 11, 673
(2015).

[49] A.-L. Barabási, H. E. Stanley, et al., Fractal concepts in
surface growth (Cambridge university press, 1995).

[50] L. Radzihovsky and J. Toner, Physical review letters 75,
4752 (1995).

[51] M. Kardar, Statistical physics of fields (Cambridge Uni-
versity Press, 2007).

[52] M. E. Peskin, An introduction to quantum field theory
(CRC press, 2018).

[53] A. Košmrlj and D. R. Nelson, Physical Review B 93,
125431 (2016)



9

Supplemental Material

Contents

S-1. Choice Of Over-Damped Equations 10
A. Stability of Fully Inertial System 10

1. J < −µ(B + µ) 11
2. −µ(B + µ) < J < (B/2)2 11
3. J > (B/2)2 12

B. Inertial Term Irrelevance 13
C. Potential Non-Steady State Behaviors 13

S-2. Details of Simulations 14
A. Implementation of Dihedral Forces 14
B. Explicit In-Plane Constitutive Relations 14
C. Barostat, Integrators and Simulation Procedure 17
D. Procedure 17
E. Data Tables 18

S-3. Field Theoretic and Renormalization Group Analysis 19
A. Fourier Transform of MSRJD Action and Propagators 19
B. Reformulating MSRJD Action 20
C. Scaling of Harmonic Theory 20
D. Absence of Ward Identity 21
E. Renormalization of Over-Damped Odd Elastic Membranes 22

1. Feynman Diagrams and Renormalization Group Equations 22
2. Stability Analysis 26
3. Derivation of Thermal Length Scale Assuming Fluctuation-Dissipation Relations 29
4. Numerical Renormalization With Fluctuation-Dissipation Relations 29



10

S-1. CHOICE OF OVER-DAMPED EQUATIONS

We will illustrate why we opt for over-damped Langevin equations for examining our model system, as described
in sub-sections S-1A, S-1B, and S-1C. The choice is driven by three key reasons:

1. The presence of the inertial term does not cause instability that might lead to substantial differences from the
over-damped scenario.

2. At large length scales, the inertial term becomes irrelevant in the context of field theory physics.

3. Adopting the over-damped condition simplifies simulations, as it enables us to circumvent potential non-steady
state behaviors.

Regarding our theoretical analysis, it’s crucial to note that we will conduct all calculations based on an orthonormal
basis, contrary to the non-orthogonal basis employed for the simulations. This approach will streamline the application
of the Fourier transformation, a critical step in our forthcoming analysis.

A. Stability of Fully Inertial System

We first show that inclusion of the intertial term will not provide us with a qualitative difference from the over-
damped version of the equations via some instability. Thus, we begin with the fully inertial athermal (sans thermal
noise) equations, which are the following:

ρ∂2
t uj(r, t) + ∂tuj(r, t) = D∂iσij(r, t) = DCijkl∂iukl(r, t)

ρ∂2
t f

α(r, t) + ∂tf
α(r, t) = Df [−∂i∂jMα

ij(r, t) + ∂i[σij(r, t)∂jf
α(r, t)]]

= Df [−∂i∂j{Bijkl∂k∂lf
α(r, t)}+ ∂i{σij(r, t)∂jf

α(r, t)}]
(S1)

where ρ is the density. Roman indices vary through the number of in-plane dimensions, which in this case D = 2,
whereas Greek indices vary through the co-dimension dc = d−D of the membrane (with d being the total dimension
of the embedding space). D and Df are the in-plane and out-of-plane mobilities of the membrane respectively. The
strain tensor uij , moment tensor Mij , and stress tensor σij are the following:

uij(r, t) =
1

2
[∂iuj(r, t) + ∂jui(r, t) + ∂if

α(r, t)∂jf
α(r, t)]

Mα
ij(r, t) = Bijkl∂k∂lf

α(r, t)

σij(r, t) = Cijklukl(r, t)

(S2)

We shall also use an isotropic bending rigidity Bijkl =
κ
2 δijδkl +

κ
4 [δikδjl + δilδjk] so that Bijkl∂i∂j∂k∂l = κ∆2. Under

periodic boundary conditions, the Gaussian bending rigidity may be ignored by means of the Gauss-Bonnet theorem.
To perform a stability analysis we neglect non-linear terms and arrive at the linearized form in Fourier space (via the
defined Fourier transform g(r, t) = 1

Aτ

∑
q,ω g(q, ω)ei(q·r−ωt) with A being the area of the system and τ the length of

time):

− ρω2uj(q, ω)− iωuj(q, ω) = −DCijklqiqkul(q, ω)

− ρω2fα(q, ω)− iωfα(q, ω) = Df [−κq4fα(q, ω)− Cijkluo
klqiqjf

α(q, ω)]
(S3)

where uo
kl is the homogeneous strain tensor defined via the Fourier transform of the strain tensor:

uij(r, t) =uo
ij +

i

2

∑
q,ω

[qiuj(q, ω) + qjui(q, ω)]e
i(q·r−ωt)

− 1

2

∑
q1,q2,ω1,ω2

q1,iq2,jf
α(q1, ω1)f

α(q2, ω2)e
i({q1+q2}·r−{ω1+ω2}t)

(S4)

Note that in addition via the constitutive relation: σo
ij = Cijkluo

kl can be reformulated as the homogeneous stress
tensor. Thus we may rewritten Eq. S3 we may rewrite the equations as:

− ρω2uj(q, ω)− iωuj(q, ω) = −DCijklqiqkul(q, ω)

− ρω2fα(q, ω)− iωfα(q, ω) = Df [−κq4 − σo
ijq

iqj ]fα(q, ω)
(S5)
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In addition, assuming isotropy we can further rewrite σo
ijqiqj = σoq2 and so one obtains:

− ρω2uj(q, ω)− iωuj(q, ω) = −DCijklqiqkul(q, ω)

− ρω2fα(q, ω)− iωfα(q, ω) = Df [−κq4 − σoq2]fα(q, ω)
(S6)

From here the stability condition for the flexural field, fα, is clear. We require simply that the system have a positive
bending rigidity (κ > 0) and that the elastic sheet not be buckled, i.e. κq4+σoq2 > 0. This leaves us with the stability
analysis of the linearized in-plane phonon equation. To do this we can follow an analysis similar to that given by [1].
The strain tensor is taken to be the same as Eq. (1) in the main text:

Cijkl = λδijδkl + µ[δikδjl + δilδjk] +KoddEijkl −Aoddϵijδkl (S7)

with with Eijkl = 1
2 [ϵikδjl + ϵilδjk + ϵjkδil + ϵjlδik]. The symbol ϵil is the permutation Levi-Civita tensor (ϵ11 = ϵ22 =

0, ϵ12 = −ϵ21 = 1). We begin by reformulating the equations:

(−ρω2 − iω)

[
u1

u2

]
= Dq2

[
B + µ Kodd

−Kodd −Aodd µ

] [
u∥
u⊥

]
(S8)

where B = λ+ µ and u∥ = q̂iui and u⊥ = ϵij q̂iuj (where the symbolˆmarks a unit vector). By doing the eigenvalue
analysis of the matrix we obtain:

(−ρω2 − iω) = −D
[
B

2
+ µ±

√(
B

2

)2

−AoddKodd −K2
odd

]
q2 (S9)

For simplicity let us redefine J = AoddKodd +K2
odd. We can then solve this quadratic equation to obtain:

ω = − i

2ρ
± 1

2ρ

√√√√−1 + ρD
[
B

2
+ µ±

√(
B

2

)2

− J

]
q2 (S10)

We do not want ω to have a positive imaginary branch, otherwise this leads to a real positive exponential solution
which leads to a blow-up of the equations. Thus when the second term in the above equation becomes more "positive"
than the first, then we have obtained an instability. We find 3 regimes which are as follows:

1. J < −µ(B + µ)

If this condition is satisfied then the following inequality is implied:√(
B

2

)2

− J >
B

2
+ µ (S11)

and thus the following eigen-value:

iω =
1

2ρ
± i

2ρ

√√√√−1 + ρD
[
B

2
+ µ−

√(
B

2

)2

− J

]
q2 (S12)

will induce a solution that blows up for all q. Hence, one must require that J > −µ(B + µ) in order to have a stable
odd elastic system.

2. −µ(B + µ) < J < (B/2)2

In this case a careful analysis of all 4 eigenvalues shows that there is no possibility for ω to have a positive imaginary
branch since:

|Im
(√√√√−1 + ρD

[
B

2
+ µ±

√(
B

2

)2

− J

]
q2
)
| < 1 (S13)

Thus we have a stable system for all q.
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3. J > (B/2)2

In this case we can rewrite the eigenvalues as:

ω = − i

2ρ
± 1

2ρ

√√√√−1 + ρD
[
B

2
+ µ± i

√
J −

(
B

2

)2]
q2 (S14)

By rewriting:

Re−iθ± ≡ 1− ρD
[
B

2
+ µ± i

√
J −

(
B

2

)2]
q2 (S15)

And taking the principal branch cut in the complex plane to be the non-positive x-axis (so that −π < θ± < π), we
can take the square root and write:

ω = − i

2ρ
± i

2ρ

√
Re−iθ±/2 (S16)

And thus:

Im(ω) = − 1

2ρ
± 1

2ρ

√
R cos θ±/2 (S17)

Since −π < θ± < π, then cos θ±
2 > 0. Therefore we need only examine:

Im(ω) = − 1

2ρ
+

1

2ρ

√
R cos θ±/2 (S18)

Once
√
R cos (θ±/2) > 1 we have an instability. This is equivalent to checking when R(cos (θ±/2))

2 > 1. Via the
half-angle formula this becomes:

R(1 + cos θ±) > 2 (S19)

Thus we obtain: √
(1− ρq2D

[
B

2
+ µ

]
)2 + ρ2Dq4

[
J −

(
B

2

)2]
+ 1− ρDq2

[
B

2
+ µ

]
> 2 (S20)

which leads us to: √
(1− ρDq2

[
B

2
+ µ

]
)2 + ρ2D2q4

[
J −

(
B

2

)2]
> 1 + ρDq2

[
B

2
+ µ

]
> 0 (S21)

By squaring the inequality once more and solving we see that we obtain instabilities when:

ρ2D2q4
[
J −

(
B

2

)2]
> 4ρDq2

[
B

2
+ µ

]
(S22)

resulting in:

q >

√√√√√√√√ 4

ρD

[
B
2 + µ

]
[
J −

(
B
2

)2] ≡ qc (S23)

Note the difference in the direction of this inequality is different from that obtained in the stability analysis of the
visco-elastic equations in [1], where the dissipative term has two extra spatial derivatives, ηijkl∂t∂i∂kul. Hence we see
that in this regime, if a system has a small enough physical length scale (i.e. the lattice spacing of discrete model is
small enough) then we have instabilities. If we were to explore over-damping via the zero-inertia Brownian method
(ρ = 0), we see that qc = ∞ and thus we should not be able to observe this instability. In the Langevin method where
we have under-damping, if qc < 2π/a where a is the lattice spacing of our discrete system, then we should once again
not see this instability. Otherwise, the under-damped Langevin case should show this instability.
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B. Inertial Term Irrelevance

Further justifying the over-damped case, we show the irrelevance of the inertial term near the Gaussian fixed point
of the corresponding MSRJD action. To do this a power-counting analysis [30] is done in Section S-3C. From this
one can see that ∂2

t f, ∂
2
t uj scale to zero in the low frequency limit (since ζt = 4). Thus high-frequency phenomena

will be unimportant to the long-wavelength limiting behavior of the theory.

C. Potential Non-Steady State Behaviors

As a final note, in the case where over-damping is not assumed, it is well known that one must consider an active
heat flow [46, 47]. This active heat flow is a form of work done by non-equilibrium or active forces that are not derived
from a free energy. However, in the over-damped limit, one may disregard such terms. This will help us to simplify
simulations that we performed where we use barostats and thermostats which in general should contain an active heat
flow term.

In addition, other variables such as the pressure may also not be treated as state functions [48]. Thus we also
consider Rouse dynamics so that we do not couple hydrodynamics to the membrane fluctuations [28].
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S-2. DETAILS OF SIMULATIONS

A. Implementation of Dihedral Forces

The bending forces were determined directly from a set of dihedral springs between the faces of the triangles. The
elastic bending energy of such a system can be formulated as:

Ebend = κ̂
∑
⟨IJ⟩

[1− n̂I · n̂J ] (S24)

where κ̂ is the discrete dihedral spring stiffness and n̂I is the normal to face I. We can relate the microscopic spring
stiffness, κ̂, to the coarse-grained bending rigidity, κ [40]:

κ =

√
3

2
κ̂ (S25)

B. Explicit In-Plane Constitutive Relations

For our simulations we used the implementation of the constitutive relation to enact forces explained in the main
body of the text. We also added in a non-linear area potential (which we call a bulk strain term) which helped
to prevent the areas of faces of the triangles from becoming too small and thus aids with the stabilization of our
numerical simulations. We show here the derivation of explicit constitutive relations with respect to each of these
contributions to the in-plane stresses:

We begin by defining the strain tensor for the each triangular face as follows:

uij =
1

2
[gij − ḡij ] (S26)

where {g, ḡ} are the current and reference metric tensors respectively. We use the following elastic modulus tensor in
our constitutive relation:

Cijkl =λḡij ḡkl + µ[ḡikḡjl + ḡilḡjk] +
Kodd√
det[ḡ]

E ijkl − Aodd√
det[ḡ]

ϵij ḡkl (S27)

with E ijkl = 1
2 [ϵ

ikḡjl + ϵilḡjk + ϵjkḡil + ϵjlḡik], where ϵij is again the 2-D Levi-Civita permutation symbol satisfying
ϵ11 = ϵ22 = 0, ϵ12 = −ϵ21 = 1.

Then, in the linear elastic limit where deformations are small, one can write down the contribution of Aodd to the
constitutive relation:

σij
A = −Aodd√

|ḡ|
ϵijTr(u) (S28)

where Tr is the trace and ϵ is again the 2-D Levi-Civita tensor (ϵ11 = ϵ22 = 0, ϵ12 = −ϵ21 = 1). So now:

σ11
A = 0

σ12
A = −Aodd√

|ḡ|
Tr(u)

σ22
A = 0

σ21
A = −σ12

A

(S29)

Next, we move the contribution to K,

σij
K =

Kodd

2
√
|ḡ|

(
2ϵikuj

k + 2ϵjkui
k

)
(S30)
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Thus we obtain:

σ11
K =

Kodd√
|ḡ|

(
2u1

2

)
σ12
K =

Kodd√
|ḡ|

(
u2
2 − u1

1

)
σ21
K = σ12

K

σ22
K = −Kodd√

|ḡ|
(
2u2

1

)
(S31)

We can write the same for the normal elastic parameters λ, µ:

σij
λ,µ = λḡijTr(u) + 2µḡikuj

k (S32)

σ11
λ,µ = λḡ11Tr(u) + 2µ(ḡ11u1

1 + ḡ12u1
2)

σ12
λ,µ = λḡ12Tr(u) + 2µ(ḡ11u2

1 + ḡ12u2
2)

σ21
λ,µ = λḡ21Tr(u) + 2µ(ḡ21u2

1 + ḡ22u1
2)

σ22
λ,µ = λḡ22Tr(u) + 2µ(ḡ21u2

1 + ḡ22u2
2)

(S33)

Thus we have established stress-strain relations in terms of the metric tensor with respect to Aodd,Kodd, λ, µ. We now
move on, to showing the implementation of the area potential.

a. Area Potential For reasons concerned with the stability of the triangular lattice under large deformations in
the presence of odd elastic parameters, we also added in an area potential (to prevent small areas of the triangular
faces and ultimately two edges crossing each other; which can cause numerical divergences by means of the calculation
of our normal to the face: n̂face = e1 × e2/∥e1 × e2∥ where {ei} is the current basis derived from the edges of a
triangular face as was discussed in the main text). To add such a term we have to potentially implement the following
energy term:

F = C1 log
det g

det ḡ
+ C2

(
log

det g

det ḡ

)2

(S34)

where g and ḡ are the current and reference metrics respectively. det g and det ḡ are intuitively allowing us to compare
the local change in area. Thus the idea of this potential is to create a restoring force that does not allow det g to
become too small. Of course we want to avoid using the energy term as we don’t have any conservation of energy in
our system. Thus we are instead interested in deriving a stress strain relation:

σij =
δF
δuij

(S35)

In order to do this we must express the current metric tensor in terms of the reference basis and the strains. The
strain tensor takes the following form:

uij =
1

2
[gij − ḡij ] (S36)

We use the same notation as in the main text: {ei} is our current basis and {ēi} is our reference basis. Meanwhile
the current and reference metric tensors are expressed respectively as gij = ei · ej and ḡij = ēi · ēj . With this, we can
write:

det g =(e1 · e1)(e2 · e2)− (e1 · e2)2

=[2u11 + ē1 · ē1][2u22 + ē2 · ē2]− [2u12 + ē1 · ē2]2
(S37)

Using this we can rewrite and define:

G = log
det g

det ḡ
= log

[2u11 + ē1 · ē1][2u22 + ē2 · ē2]− [2u12 + ē1 · ē2]2

(ē1 · ē1)(ē2 · ē2)− (ē1 · ē2)2
(S38)
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Differentiating with respect to the strain we obtain:

δG
δu11

=
2[2u22 + ē2 · ē2]

det g
(S39)

δG
δu22

=
2[2u11 + ē1 · ē1]

det g
(S40)

δG
δu12

= −2[2u12 + ē1 · ē2]
det g

(S41)

This gives us:

σij =
δF
δuij

= C1
δG
δuij

+ 2C2G
δG
δuij

(S42)

And thus, having obtained the stress tensor we can use the rest of the implementation in the main text to determine
the necessary forces to apply on the vertices. By evaluating these expressions at uij = 0, we immediately obtain that
C1 = 0 so that the stress tensor is zero in the absence of strain. Thus we are left with:

σij =
δF
δuij

= 2C2G
δG
δuij

(S43)

To obtain the linear elastic response from the area potential in terms of C2, we can differentiate again with respect
to ukl and then set uij = 0. This in turn gives us the respective contribution, Cijkl

C2
, to the elastic modulus tensor:

Cijkl
C2

=
δσij

δukl
= 2C2

[
G δ2G
δuijδukl

+
δG
δuij

δG
δukl

]
|u=0 = 2C2

δG
δuij

δG
δukl

|u=0 (S44)

We thus obtain that:

C1111
C2

= 2C2

[
2ē2 · ē2
det ḡ

]2
(S45)

C2222
C2

= 2C2

[
2ē1 · ē1
det ḡ

]2
(S46)

C1122
C2

= C2211
C2

= 2C2

[
2ē2 · ē2
det ḡ

][
2ē1 · ē1
det ḡ

]
(S47)

C1212
C2

= C2112
C2

= C2121
C2

= C1221
C2

= 2C2

[
2ē1 · ē2
det ḡ

]2
(S48)

C1112
C2

= C1121
C2

= C1211
C2

= C2111
C2

= 2C2

[
2ē1 · ē2
det ḡ

][
2ē2 · ē2
det ḡ

]
(S49)

C2221
C2

= C2212
C2

= C2122
C2

= C1222
C2

= 2C2

[
2ē1 · ē2
det ḡ

][
2ē1 · ē1
det ḡ

]
(S50)
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C. Barostat, Integrators and Simulation Procedure

It is known that there are certain cases, such as active brownian fluids with alignment interactions, for which
pressure is not an equation of state [46, 48]. Thus, we begin by remarking on the fact that active systems have to
be simulated differently from equilibrium systems due to active heat flow as seen in [46]. For a generic active matter
system with N particles in d dimensions experiencing a damping γ, the equation of state takes the form:

1

γ

Nd∑
i=1

⟨Fnc
i

dri
dt

⟩+ dNkBT =

∫
V

drTr(σ)−
Nd∑
i=1

⟨F c
i ri⟩ −

Nd∑
i=1

⟨Fnc
i ri⟩ (S51)

where Fnc are the non-conservative forces, F c are conservative forces and ri is the position of the i-th degree of
freedom. The brackets ⟨·⟩ represent ensemble averages. The first term on the right-hand side of the equation is the
pressure (this formula is how we calculate the pressure in our simulations as well). The second and third terms on
the right-hand side represent the work being done by conservative and non-conservative forces respectively. In the
absence of non-conservative forces, this equation simplifies to the usual equilibrium equation of state. The left most
term is the active heat flow and represents the energy change by means of non-conservative forces [46]. However,
with over-damped systems (γ → ∞), this term can be ignored and velocity distributions take the values in thermal
equilibrium (i.e. p2i /2m = kBT as by the virial theorem). This enables simpler equations of motion and allows us to
treat the pressure as a steady-state variable.

Thus, for the simulations we used a Berendsen barostat to tune the box pressure,
∫
V
drTr(σ)/[dV ], to zero and

to tune the temperature of the system, we utilized a Gaussian distributed noise-force whose variance dictated the
magnitude of the temperature. For the integrator, we implemented a BAOAB-limit method [39], thus the noise is
not completely memory-less, but the memory is short ranged in time. We selected the BAOAB-limit method as it
reduces error while being very efficient in terms of the descriptive equations of motion. Specifically the BAOAB-limit
differential equation is of the form:

ri([n+ 1]∆τ ) = ri(n∆τ ) +
∆τΓ

2
[Fface + Fdih] +

√
kBT∆τΓ

4
(Rn,i +Rn+1,i) (S52)

where Γ is the a diagonal diffusivity matrix with components (D,D,Df ), ∆τ is the time step, ri(n∆τ ) is the position
of the i-th atom at time-step n, kBT sets the temperature (we take kB = 1), Rn,i is a random number generator of
variance 1 and mean 0 for time step n operating on vertex i. Fdih is the force originating from dihedral degrees of
freedom whereas Fface are the forces from the in-plane degrees of freedom of the faces. These results are merely an
implementation of forces discussed in the main text. As one can see from this equation, the noise that is used is not
independent between adjacent time steps but the correlation is short-ranged nonetheless.

In our simulations we took the matricial diffusivity matrix, Γ in Eq. (S52) to be the identity matrix and thus the
fluctuation-dissipation is assumed at the microscopic scale.

D. Procedure

We simulated Aodd and Kodd separately in an otherwise normal elastic system. We took a variety of values of
each of the parameters while varying the temperature. Varying the temperature allows us to access different effective
length scales (by effectively changing L/ℓth without changing the linear dimension of the system L; look further below
for our derivation of the new form of ℓth), rather than doing a computationally costly simulation with a large system
size. We allowed each elastic system to “thermally equilibrate” for around 2 · 107 time steps, after which we would
begin recording instantaneous snapshots of the configurations of the system. The time step was determined by the
limiting factors given by the over-damped frequencies of the system:

∆τ,κ = a4/[8π3Dfκ],∆τ,Cijkl
= a2/[2πDCijkl] (S53)

where a is the lattice spacing. Thus ∆τ ≤ Min{∆τ,κ,∆τ,Cijkl
}.

Each simulation was thermally equilibrated with 2×107 time steps. This length of simulation steps was determined
by performing auto-correlations of the displacement fields to know the amount of time it takes for the system to
lose memor of the initial configuration. For low temperatures, however, thermal equilibration is very difficult as the
auto-correlation times grow. After thermal equilibration steps were taken, the simulation ran through 8 × 108 time
steps, recording snapshots every 105 time steps. This gave us a total of 8×103 snapshots of data. For each simulation
we measured the auto-correlation time for the amplitude peak to decay by an order of magnitude and used this
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time-interval to sample fully independent realizations of membrane configurations out of the total data set. With this
reduced independent data set, we calculated averaged equal-time correlations. In computation time, this amounted
to about 80 hours.

E. Data Tables

Here we show the data tables for the plots we generated in Fig. 2 and Fig. 3 of the main text.

TABLE S1:
Data Sets for Fig. 2

L/a κ/kBT Kodd/(λ+ 2µ) C2/(λ+ 2µ)
35 1 4.76 .048
35 10 4.76 .048
35 1e3 4.76 .048
35 1e5 4.76 .048
35 1 .73 .007
35 10 .73 .007
35 1e3 .73 .007
35 1e5 .73 .007
35 1 .076 8e− 4
35 10 .076 8e− 4
35 1e3 .076 8e− 4
35 1e5 .076 8e− 4

TABLE S2:
Data Sets for Fig. 3

L/a κ/kBT Aodd/(λ+ 2µ) C2/(λ+ 2µ)
35 1 .1 .048
35 10 .1 .048
35 100 .1 .048
35 1e3 .1 .048
35 1e4 .1 .048
35 1e5 .1 .048
35 1e6 .1 .048
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S-3. FIELD THEORETIC AND RENORMALIZATION GROUP ANALYSIS

A. Fourier Transform of MSRJD Action and Propagators

We can take Eq. (6) of the main text and begin by taking the Fourier transform of the MSRJD action (assuming
once again that we are operating in an orthonormal basis), AMSRJD:

W(ηj , η
α
f ,Υi,Φ

α) ∝ e−AMSRJD ≡ e
∫
dωA·τ

∑
q[kBTL|Υi(q,ω)|2−Υi(q,ω)ηi(−q,−ω)+kBTLf |Φα(q,ω)|2−Φα(q,ω)ηα

f (−q,−ω)]

(S54)

where A is the area of the system and τ is the length of time. For completeness, the corresponding Fourier equations
of the noises are the following:

ηj(q, ω) = DCijklqi[qkul(q, ω)−
i

2

∑
p,γ

pk(pl − ql)f
α(p, γ)fα(q− p, ω − γ)]− iωuj(q, ω) (S55)

ηαf (q, ω) = (Df [κq
4 + Cijkluo

klqiqj ]− iω)fα(q, ω)

+DfCijklqi
[ ∑
(p,γ) ̸=0

(
ipkul(p, γ)−

1

2

∑
z,ξ

(pk − zk)zlf
β(p− z, γ − ξ)fβ(z, ξ)

)
(qj − pj)f

α(q− p, ω − γ)

]
(S56)

where we have used the isotropic bending rigidity, κ in place of the bending rigidity tensor and we can further assume
isotropy of the homogeneous strain term: Cijkluo

klqiqj = σoq2. The MSRJD action, AMSRJD, possesses the following
harmonic terms in matrix form:

Aharm.
MSRJD =

1

2

[
Υj(q, ω)
uj(q, ω)

]T [
−2kBTLδjl iωδjl +DCijklqiqk

−iωδjl +DCilkjqiqk 0

] [
Υl(−q,−ω)
ul(−q,−ω)

]
+

δαβ
2

[
Φα(q, ω)
fα(q, ω)

]T [
−2kBTLf iω +Dfκq

4 +Dfσ
oq2

−iω +Dfκq
4 +Dfσ

oq2 0

] [
Φβ(−q,−ω)
fβ(−q,−ω)

] (S57)

From here we can obtain the propagators of the linear theory:

⟨fα(q, ω)fβ(−q,−ω)⟩ = 2kBTLfδαβ
Aτ{D2

f [κq
4 + σoq2]2 + ω2}

(S58)

This corresponds to a static propagator, which is obtained by integrating over all ω, thus applying the Cauchy residue
theorem [27, 49]:

⟨fα(q)fβ(−q)⟩ = kBTLfδαβ
ADf [κq4 + σoq2]

(S59)

Analogously we can write the in-plane propagator explicitly as:

⟨uh(q, ω)uv(−q,−ω)⟩ = 2kBTLϵhlϵvp
AτDet

[−iωδjl + q2DCijklPL
ik(q)][iωδjp + q2DCmjrpP

L
rp(q)] (S60)

where Det is the determinant of the matrix that couples the harmonic terms uj of the action (the determinant of
[−iωδjl + q2DCijklPL

ik(q)][iωδjp + q2DCmjrpP
L
rp(q)]). In addition PL

ij (q) = qiqj/q
2 is the linear projection operator

and ϵ is the 2-D Levi-Civita tensor. To obtain the static propagators one must apply the Cauchy residue formula
once again. The lower-half-plane residues of the determinant denominator can be found as well in [1] and are:

ωres = −i
Dq2

2
[λ+ 3µ±

√
(λ+ µ)2 − 4Kodd(Aodd +Kodd)] (S61)

Applying the residue formula results in the following static propagator:

⟨uh(q)uv(−q)⟩ = kBTL
AD[λ+ 3µ][µ(λ+ 2µ) +Kodd(Kodd −Aodd)]q4

{[µ(λ+ 3µ) +Kodd(2Kodd −Aodd)]qhqv

+ [ϵhkqvqk + ϵvlqhql][Aoddµ+Kodd(λ+ µ)]

+ ϵhkϵvlqkql[(Kodd −Aodd)(2Kodd −Aodd) + (λ+ 2µ)(λ+ 3µ)]}

(S62)
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B. Reformulating MSRJD Action

We can further simplify these equations via two observations. Firstly, we can scale out κ via the following trans-
formation:

{Φα, fα, Cijkl, uj ,Υj ,D,L,Df ,Lf , σ
o} → {

√
κΦα,

1√
κ
fα, Cijklκ2, uj/κ, κΥj ,

1

κ2
D,

1

κ2
L,Df/κ,Lf/κ, σ

oκ} (S63)

The second simplifying step can be taken by recognizing that the absolute value of the critical temperature of the
theory, Lf/Df , is not important [27]. Thus one can rescale all the order parameters and diffusivities such that Lf

disappears from the equations:

{Φα, fα, Cijkl, uj ,Υj ,D,L} = {

√
Df

Lf
Φ̃α,

√
Lf

Df
f̃α,

Df

Lf
C̃ijkl,

Lf

Df
ũj ,

Df

Lf
Υ̃j ,

Lf

Df
D̃,

(
Lf

Df

)2

L̃} (S64)

Hence, the harmonic theory adjusts as follows:

Aharm.
MSRJD =

1

2

[
Υ̃j(q, ω)
ũj(q, ω)

]T [
−2kBT L̃δjl iωδjl + D̃C̃ijklqiqk

−iωδjl + D̃C̃ilkjqiqk 0

] [
Υ̃l(−q,−ω)
ũl(−q,−ω)

]
+

δαβ
2

[
Φ̃α(q, ω)

f̃α(q, ω)

]T [
−2kBTDf iω +Dfq

4 +Dfσ
oq2

−iω +Dfq
4 +Dfσ

oq2 0

] [
Φ̃β(−q,−ω)

f̃β(−q,−ω)

] (S65)

Despite having introduced these extra Hubbard-Stratonovich variables, a key simplifying feature of the MSRJD
approach can be seen from the form of these matrices: Feynman diagrams which contain the contraction of two
response variables together will be null [27, 29]. Thus, such Feynman diagrams need not be considered. But before
obtaining information about the renormalization factors and the Feynman diagrams, we first review the scaling of the
harmonic theory.

C. Scaling of Harmonic Theory

We briefly discuss the scaling of the harmonic theory. Since we have two order parameters with different dispersion
relations, we are first confronted with how to rescale frequencies. To resolve this we must go to the propagators in
the linear theory:

⟨Φ̃α(q, ω)f̃α(−q,−ω)⟩ ∼ kBTDf

Aτ [−iω +Df (q4 + σoq2)]
(S66)

where we will make the assumptions of vanishing stress, σoq2 << κq4, and

⟨Υ̃j(q, ω)ũl(−q,−ω)⟩ ∼ kBT L̃
Aτ [−iωδjl + D̃C̃ijklqiqk]

(S67)

From this we see that in the small stress limit, the residues scale as ω ∼ q4 in the flexural response propagator and
ω ∼ q2 for the in-plane phonon response propagator [27, 28, 50]. Thus in the small frequency limit, the flexural modes
are much slower and thus in-plane phonons should be considered as “fast” variables in the field theoretic sense. Thus,
the terms that establish the harmonic theory in AMSRJD are:

Φ̃α∂tf̃
α, Φ̃α∇4f̃α, Φ̃α2 (S68)

This makes the coefficients of these terms automatically scale-invariant. We now perform a power counting procedure
to obtain the scaling of the theory and render the action, AMSRJD, massless [51]. Thus if we assign scale powers in
a momentum-shell sense [51]:

{r → br}, {t → bζtt}, {f̃α → bζf f̃α}, {Φ̃α → bζΦΦ̃α} (S69)

then we obtain that:

ζt = 4, ζf =
−D + ζt

2
, ζΦ =

−D − ζt
2

(S70)
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Though we are taking D = 2 (the number of in-plane dimensions), we leave D un-inserted to show the general scaling.
If we also assign the following rescaling factors:

{ũi → bζu ũi}, {Υ̃i → bζΥΥ̃i} (S71)

then via the form of the strain tensor we also obtain:

ζu = 2ζf − 1 = −D + ζt − 1 (S72)

and thus via observing that Υ̃i∂tũi must also be scale invariant we obtain:

ζΥ = D + 1 (S73)

The linear scaling of the theory thus results in the following mass dimensions:

{C̃ijkl → b4−DC̃ijkl}, {L̃, D̃ → bD−2L̃, D̃}, {σo → b2σo} (S74)

This establishes that the upper critical dimension for C̃ijkl is 4. With this scaling, one can see that the terms Υ̃i∂
2
t ũi

and Φ̃α∂2
t f̃

α would be irrelevant, which both scale with exponent −4.

D. Absence of Ward Identity

An important tool in the renormalization group are the use of symmetries of the action. In the case of the free
energy associated with equilibrium fluctuating elastic membranes, Guitter et al. [37] established a symmetry of both
the strain tensor:

fα(r) → fα(r) +Aα
i ri

ui(r) → ui(r)−Aα
i f

α(r)− 1

2
Aα

i A
α
j rj

(S75)

which helps to establish the Ward identity associated with the effective action, Γ [52]:∫
dDr

[
ri

δΓ

δfα
− fα δΓ

δui

]
= 0 (S76)

This Ward identity spares extra calculations as it enforces that the coefficient of the ∂iuj∂kul vertex will renormalize
exactly as ∂iuj∂kf

β∂lf
β and ∂if

α∂jf
α∂kf

β∂lf
β . Thus one need only renormalize one of these vertices to obtain the

renormalization of the in-plane elastic constants, Cijkl.
Because the symmetry [37] obtained is a symmetry of the strain tensor, as soon as one incorporates components

that prevent an elastic action from being entirely formulated in terms of uij and ∇2f , the symmetry and its associated
Ward identity no longer hold. Indeed the only dynamic term that could be added to a free energy should be of the
form (∂tuij)

2, which would lead to non-physical forces and equations that we wouldn’t derive kinematically. One
need not the formalism of the Ward identity to observe this either. From Eq. (3) and Eq. (4) of the main text,
since the kinematic condition is not necessarily satisfied, ∂iσij = Cijkl∂iukl ̸= 0, Eq. S75 is no longer a symmetry of
the dynamic equations. This holds whether we are working with the odd elastic equations or not. Thus [28] is also
missing the Ward identity. In the case of equilibrium Langevin elastic membranes, Feynman diagrams will retain the
same effective structure as in the case of [37] and thus they derive the matching results. However, for odd elastic
systems where there is no analogue and the structure of elastic tensors has been generalized, this is no longer a
guarantee. Thus, without a Ward identity, further care will be required because many more Feynman diagrams must
be calculated.

One immediate consequence of the lack of the Ward identity means that renormalization may not preserve equality
between the coefficients of vertices in Eq. (3) and Eq. (4) of the main text, potentially resulting in breaking any
microscopic fluctuation-dissipation. Thus these equations must be generalized into the following form:

∂tũj(r, t) = C̃u,D
ijkl∂i∂kũl(r, t) +

1

2
C̃f,D
ijkl∂i(∂kf̃

α(r, t)∂lf̃
α(r, t)) + ηj(r, t) (S77)

∂tf̃
α(r, t) = [−Df∆

2 + σ̃o∆]f̃α(r, t) + C̃u,Df

ijkl ∂i[∂kũl(r, t)∂j f̃
α(r, t)] + C̃f,Df

ijkl ∂i[
1

2
∂kf̃

β(r, t)∂lf̃
β(r, t)∂j f̃

α(r, t)] + ηαf (r, t)

(S78)
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where one can observe that the diffusivities and elastic tensor have been combined and σ̃o = Dfσ
o. Consequently

the MSRJD action must also be generalized accordingly. We re-state them in their final form before commencing the
renormalization scheme:

ηj(q, ω) =qi[C̃u,D
ijklqkũl(q, ω)−

i

2
C̃f,D
ijkl

∑
p,γ

pk(pl − ql)f̃
α(p, γ)f̃α(q− p, ω − γ)]− iωũj(q, ω) (S79)

ηαf (q, ω) = ([Dfq
4 + σ̃oq2]− iω)f̃α(q, ω)

+ qi

[ ∑
(p,γ)̸=0

(
iC̃u,Df

ijkl pkul(p, γ)−
C̃f,Df

ijkl

2

∑
z,ξ

(pk − zk)zlf̃
β(p− z, γ − ξ)f̃β(z, ξ)

)
(qj − pj)f̃

α(q− p, ω − γ)

]
(S80)

W(ηj , η
α
f ,Υi, Φ̃

α) ∝ e−AMSRJD = e
∫
dωA·τ

∑
q[kBT L̃|Υ̃i(q,ω)|2−Υ̃i(q,ω)ηi(−q,−ω)+kBTDf |Φ̃α(q,ω)|2−Φ̃α(q,ω)ηα

f (−q,−ω)]

(S81)

with the harmonic portion of the action taking the form:

Aharm.
MSRJD =

1

2

[
Υ̃j(q, ω)
ũj(q, ω)

]T [
−2kBT L̃δjl iωδjl + C̃u,D

ijklqiqk
−iωδjl + C̃u,D

ijklqiqk 0

] [
Υ̃l(−q,−ω)
ũl(−q,−ω)

]

+
δαβ
2

[
Φ̃α(q, ω)

f̃α(q, ω)

]T [
−2kBTDf iω +Dfq

4 + σ̃oq2

−iω +Dfq
4 + σ̃oq2 0

] [
Φ̃β(−q,−ω)

f̃β(−q,−ω)

] (S82)

with additional anharmonic terms:

Aanharm.
MSRJD = −Υ̃i(q, ω)

[
iqi
2
C̃f,D
ijkl

∑
p,γ

pk(pl + ql)f̃
α(p, γ)f̃α(−q− p,−ω − γ)

]

+ Φ̃α(q, ω)qi

[ ∑
(p,γ)̸=0

(
iC̃u,Df

ijkl pkul(p, γ)−
C̃f,Df

ijkl

2

∑
z,ξ

(pk − zk)zlf̃
β(p− z, γ − ξ)f̃β(z, ξ)

)
(−qj − pj)f̃

α(−q− p,−ω − γ)

]
(S83)

These non-linear/anharmonic terms can be found in the next section in Fig. S1 as diagrams (a), (b), (c). From here
forwards we will take kBT = 1 as was done in [28], due to the fact that there are many parameters that are present
in the theory. Setting kBT = 1 will also not change the asymptotic results of the scaling of the moduli.

E. Renormalization of Over-Damped Odd Elastic Membranes

1. Feynman Diagrams and Renormalization Group Equations

With the set up of the equations complete, we can commence the process of renormalization. Each term can be
renormalized by the contraction of an-harmonicities Taylor-expanded from the MSRJD action. We intend to show
the calculations diagrammatically with an attached Mathematica code which performs the accompanying analytic
calculations. We begin by representing an-harmonic terms diagrammatically in isolation. This is done in Fig. S1
(a),(b) and (c). By further integrating out the harmonic in-plane field using Eq. (S81) and Eq. (S82), one can also
obtain effective vertices of the flexural field shown in (d) and (e). This is analytically done in the attached Mathematica
code, but is too complicated to put in closed form in text. The effective flexural vertices will aid us by allowing us to
calculate less Feynman diagrams in total.

We perform a 1-loop perturbative momentum-shell renormalization group scheme to leading order in dc. The 1-
particle-irreducible diagrams included in such a scheme are given in Fig. S2 [27, 28, 49, 52]. Other diagrams in a
1-loop scheme are ignored as they are lower in order dc, such as that found in Fig. S3(c). However, such diagrams
would have to be hypothetically included in an ϵ-expansion analysis, as all 1-loop diagrams are of order ϵ. In the
case when fluctuation-dissipation relations hold and in the absence of odd elasticity, these extra diagrams vanish
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FIG. S1: The Feynman diagrams corresponding to the linear terms in equations Eq. (S79) and Eq. (S80) are shown in (a), (b)
and (c). If one integrates out the in-plane order parameters ũj , Υ̃j , then one obtains in effective flexural vertices shown in (d)
and (e).

(thus leading to the exact same analysis as presented by [28]). This is not the case if those two conditions do not
hold. The contributions of these extra diagrams in the non-odd-elastic case has been recently done by [38], where
breaking the isotropy of the embedding space is effectively equivalent to our case in which fluctuation-dissipation
relations do not hold. We also note here that these other ignored Feynman diagrams can also allow Aodd and Kodd

to generate one another. Thus further investigation is merited in exploring these other potential Feynman diagrams
that we have ignored here. Other diagrams such as Fig. S3(a,b) can be ignored on the grounds that they produce
only higher-order-wavelength contributions to the original vertices and thus are respectively irrelevant.

FIG. S2: The Feynman diagrams corresponding to a 1-loop renormalization group to leading order in dc are shown. Diagrams
in (a) renormalize Df and σ̃o, (b) C̃u,D

ijkl , (c) C̃f,D
ijkl, (d) C̃u,Df

ijkl , (e) C̃f,Df

ijkl .

Considering these Feynman diagrams, we can write down the renormalization factors in order to calculate our renor-
malization group equations. To remove the UV divergences due to an-harmonic Feynman diagrams and reformulate
the theory in terms of renormalized variables, we make the following ansatz of how to rescale the theory:

ũR
i = Z−1ũi, f̃

α,R = Z
−1/2
f f̃α,

Υ̃R = Z−1
Υ Υ̃, Φ̃α,R = Z

−1/2
Φ Φ̃α

(S84)

DR
f = ZDf

Df (S85)

L̃R = ZLL̃ (S86)
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FIG. S3: Examples of numerous Feynman diagrams that have been ignored are shown. (a) renormalizes (Φ̃α)2 to non-zero
orders of the wave-vector and thus would be irrelevant with respect to its scalar coefficient. (b) is ignored on basis of the same
argument with respect to Υ̃2

j . (c) Diagrams of this type have been ignored as they contribute to C̃f,D
ijkl to a lower order in dc

than the diagram found in Fig. S2(c).

C̃u,D,R
ijkl = Zu,D

ijkl C̃
u,D
ijkl (S87)

C̃f,D,R
ijkl = Zf,D

ijkl C̃
f,D
ijkl (S88)

C̃u,Df ,R
ijkl = Z−1

Df
Z

u,Df

ijkl C̃u,Df

ijkl (S89)

C̃f,Df ,R
ijkl = Z−1

Df
Z

f,Df

ijkl C̃f,Df

ijkl (S90)

σ̃R = Zσσ̃
o (S91)

where we have used our scale transformations in Eq. S64 to account for how the diffusivity, Df , has been absorbed
into the tensors C̃u,Df

ijkl , C̃f,Df

ijkl and the stress σ̃o. From this ansatz, similar as to [28], we can obtain certain reductions in
the number of independent renormalization factors. We obtain symmetries of ΓM,M̃,N,Ñ which is the effective vertex
function with M f fields, M̃ Φ fields, N u fields and Ñ Υ fields as in [28, 52]. Since:

∂ωΓ1100(q = 0, ω) ∼ i
√

ZfZΦ

∂ωΓ0011(q = 0, ω) ∼ iZuZΥ

(S92)

and since all an-harmonic vertices vanish when q = 0, we obtain that Z = 1/ZΥ and Zf = 1/ZΦ. Furthermore:

Γ0200(q = 0, ω) ∼ ZDf
ZΦ (S93)

which also implies that ZDf
= 1/ZΦ. Thus we have established that Zf = ZDf

. However, unlike [28], we cannot use
any Ward identity as we have shown that it is not valid for a dynamical action and thus we cannot establish that
Z = Zf . This is an important point because without the Ward identity, we cannot establish further simplifications of
the following renormalization factors Zu,D

ijkl , Z
f,D
ijkl, Z

u,Df

ijkl , Z
f,Df

ijkl . Thus we must treat these renormalization factors as
independent. With renormalization factors established, we can write down the following renormalization group ODEs
for the following parameters with the use of our evaluated Feynman diagrams:

βµ̃u,D,R = 2µ̃u,D,R − dcDR
f Λ

2 µ̃
f,D,Rµ̃u,Df ,R − K̃f,D,R

odd K̃
u,Df ,R
odd

8π[DR
f Λ

2 + σ̃R]2
(S94a)

βλ̃u,D,R = 2λ̃u,D,R − dcDR
f Λ

2 2λ̃
f,D,R(λ̃u,Df ,R + µ̃u,Df ,R) + µ̃f,D,R(2λ̃u,Df ,R + µ̃u,Df ,R)− K̃f,D,R

odd K̃
u,Df ,R
odd

8π[DR
f Λ

2 + σ̃R]2

βK̃u,D,R
odd

= 2K̃u,D,R
odd − dcDR

f Λ
2 K̃

f,D,R
odd µ̃u,Df ,R + µ̃f,D,RK̃

u,Df ,R
odd

8π[DR
f Λ

2 + σ̃R]2

βÃu,D,R
odd

= 2Ãu,D,R
odd − dcDR

f Λ
2 Ã

f,D,R
odd (µ̃u,Df ,R + λ̃u,Df ,R)

4π[DR
f Λ

2 + σ̃R]2
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βµ̃u,Df ,R = 2µ̃u,Df ,R − dcDR
f Λ

2 µ̃
f,Df ,Rµ̃u,Df ,R − K̃

f,Df ,R
odd K̃

u,Df ,R
odd

8π[DR
f Λ

2 + σ̃R]2
− µ̃u,Df ,R

DR
f

∂logZDf

∂b

βλ̃u,Df ,R = 2λ̃u,Df ,R − dcDR
f Λ

2 2λ̃
f,Df ,R(λ̃u,Df ,R + µ̃u,Df ,R) + µ̃f,Df ,R(2λ̃u,Df ,R + µ̃u,Df ,R)

8π[DR
f Λ

2 + σ̃R]2
(S94b)

+ dcDR
f Λ

2 K̃
f,Df ,R
odd K̃

u,Df ,R
odd

8π[DR
f Λ

2 + σ̃R]2
− λ̃u,Df ,R

DR
f

∂logZDf

∂b

β
K̃

u,Df ,R

odd

= 2K̃
u,Df ,R
odd − dcDR

f Λ
2 K̃

f,Df ,R
odd µ̃u,Df ,R + µ̃f,Df ,RK̃

u,Df ,R
odd

8π[DR
f Λ

2 + σ̃R]2
−

K̃
u,Df ,R
odd

DR
f

∂logZDf

∂b

β
Ã

u,Df ,R

odd

= 2Ã
u,Df ,R
odd − dcDR

f Λ
2 Ã

f,Df ,R
odd (µ̃u,Df ,R + λ̃u,Df ,R)

4π[DR
f Λ

2 + σ̃R]2
−

Ã
u,Df ,R
odd

DR
f

∂logZDf

∂b

βµ̃f,D,R = 2µ̃f,D,R − dcDR
f Λ

2 µ̃
f,D,Rµ̃f,Df ,R − K̃f,D,R

odd K̃
f,Df ,R
odd

8π[DR
f Λ

2 + σ̃R]2

βλ̃f,D,R = 2λ̃f,D,R − dcDR
f Λ

2 2λ̃
f,D,R(λ̃f,Df ,R + µ̃f,Df ,R) + µ̃f,D,R(2λ̃f,Df ,R + µ̃f,Df ,R)− K̃f,D,R

odd K̃
f,Df ,R
odd

8π[DR
f Λ

2 + σ̃R]2

βK̃f,D,R
odd

= 2K̃f,D,R
odd − dcDR

f Λ
2 K̃

f,D,R
odd µ̃f,Df ,R + µ̃f,D,RK̃

f,Df ,R
odd

8π[DR
f Λ

2 + σ̃R]2

βÃf,D,R
odd

= 2Ãf,D,R
odd − dcDR

f Λ
2 Ã

f,D,R
odd (µ̃f,Df ,R + λ̃f,Df ,R)

4π[DR
f Λ

2 + σ̃R]2

β
µ̃f,Df ,R = 2µ̃f,Df ,R − dcDR

f Λ
2 µ̃

f,Df ,Rµ̃f,Df ,R − K̃
f,Df ,R
odd K̃

f,Df ,R
odd

8π[DR
f Λ

2 + σ̃R]2
− µ̃f,Df ,R

DR
f

∂logZDf

∂b

β
λ̃f,Df ,R = 2λ̃f,Df ,R − dcDR

f Λ
2 2λ̃

f,Df ,R(λ̃f,Df ,R + µ̃f,Df ,R) + µ̃f,Df ,R(2λ̃f,Df ,R + µ̃f,Df ,R)

8π[DR
f Λ

2 + σ̃R]2

+ dcDR
f Λ

2 K̃
f,Df ,R
odd K̃

f,Df ,R
odd

8π[DR
f Λ

2 + σ̃R]2
− λ̃f,Df ,R

DR
f

∂logZDf

∂b

β
K̃

f,Df ,R

odd

= 2K̃
f,Df ,R
odd − dcDR

f Λ
2 K̃

f,Df ,R
odd µ̃f,Df ,R + µ̃f,Df ,RK̃

f,Df ,R
odd

8π[DR
f Λ

2 + σ̃R]2
−

K̃
f,Df ,R
odd

DR
f

∂logZDf

∂b

β
Ã

f,Df ,R

odd

= 2Ã
f,Df ,R
odd − dcDR

f Λ
2 Ã

f,Df ,R
odd (µ̃f,Df ,R + λ̃f,Df ,R)

4π[DR
f Λ

2 + σ̃R]2
−

Ã
f,Df ,R
odd

DR
f

∂logZDf

∂b

βσ̃R = 2σ̃R +
∂logZσ

∂b

βL̃R = 2
L̃R

DR
f

∂logZDf

∂b

βDR
f
=

∂logZDf

∂b
,

(S94c)

where we have used that ZL = 1 since no Feynman diagrams contribute to zero-th order in the wave vectors to Υ2
j .

Furthermore Λ is the UV cutoff, in other words the Fourier wave-vector corresponding to the microscopic length
scale of the theory (for example, the lattice spacing of the system). The parameter b = es where s is the re-scaling
parameter [30, 51, 52]. Note as well that the stress does in fact renormalize, thus from a zero-stress state, a non-zero
stress can be generated in the presence of odd elastic moduli or a mis-match of diffusivities. More on this will be
mentioned in Sec. S-3 E 4.
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2. Stability Analysis

With Eq. (S94), we may perform a stability analysis of the Aronovitz-Lubensky fixed point [2]. We are interested
in having only physically relevant parameters. Thus we further reduce the equations so that the only parameters
considered are:

{C̃u,D,R
ijkl /L̃R, C̃f,D,R

ijkl /L̃R, C̃u,Df ,R
ijkl /DR

f , C̃
f,Df ,R
ijkl /DR

f , σ̃
R/DR

f } = { ˆ̃Cu,D,R
ijkl , ˆ̃Cf,D,R

ijkl , ˆ̃Cu,Df ,R
ijkl , ˆ̃Cf,Df ,R

ijkl , ˆ̃σR} (S95)

The equations derived are then:

β ˆ̃µu,D,R = 2ˆ̃µu,D,R − dc(DR
f )

2Λ2
ˆ̃µf,D,R ˆ̃µu,Df ,R − ˆ̃Kf,D,R

odd
ˆ̃K
u,Df ,R
odd

8π[DR
f Λ

2 + ˆ̃σR]2
− 2

ˆ̃
λu,D,R

DR
f

∂logZDf

∂b

βˆ̃
λu,D,R

= 2
ˆ̃
λu,D,R − dc(DR

f )
2Λ2 2

ˆ̃
λf,D,R(

ˆ̃
λu,Df ,R + ˆ̃µu,Df ,R) + ˆ̃µf,D,R(2

ˆ̃
λu,Df ,R + ˆ̃µu,Df ,R)

8π[DR
f Λ

2 + ˆ̃σR]2

+ dc(DR
f )

2Λ2
ˆ̃Kf,D,R
odd

ˆ̃K
u,Df ,R
odd

8π[DR
f Λ

2 + ˆ̃σR]2
− 2

ˆ̃
λu,D,R

DR
f

∂logZDf

∂b

β ˆ̃Ku,D,R
odd

= 2 ˆ̃Ku,D,R
odd − dc(DR

f )
2Λ2

ˆ̃Kf,D,R
odd

ˆ̃µu,Df ,R + ˆ̃µf,D,R ˆ̃K
u,Df ,R
odd

8π[DR
f Λ

2 + ˆ̃σR]2
− 2

ˆ̃Ku,D,R
odd

DR
f

∂logZDf

∂b

β ˆ̃Au,D,R
odd

= 2 ˆ̃Au,D,R
odd − dc(DR

f )
2Λ2

ˆ̃Af,D,R
odd (ˆ̃µu,Df ,R +

ˆ̃
λu,Df ,R)

4π[DR
f Λ

2 + ˆ̃σR]2
− 2

ˆ̃Au,D,R
odd

DR
f

∂logZDf

∂b

β ˆ̃µu,Df ,R = 2ˆ̃µu,Df ,R − dc(DR
f )

2Λ2
ˆ̃µf,Df ,R ˆ̃µu,Df ,R − ˆ̃K

f,Df ,R
odd

ˆ̃K
u,Df ,R
odd

8π[DR
f Λ

2 + ˆ̃σR]2
− 2

ˆ̃µu,Df ,R

DR
f

∂logZDf

∂b

βˆ̃
λu,Df ,R = 2

ˆ̃
λu,Df ,R − dc(DR

f )
2Λ2 2

ˆ̃
λf,Df ,R(

ˆ̃
λu,Df ,R + ˆ̃µu,Df ,R) + ˆ̃µf,Df ,R(2

ˆ̃
λu,Df ,R + ˆ̃µu,Df ,R)

8π[DR
f Λ

2 + ˆ̃σR]2

+
ˆ̃K
f,Df ,R
odd

ˆ̃K
u,Df ,R
odd

8π[DR
f Λ

2 + ˆ̃σR]2
− 2

ˆ̃
λu,Df ,R

DR
f

∂logZDf

∂b

β ˆ̃K
u,Df ,R

odd

= 2 ˆ̃K
u,Df ,R
odd − dc(DR

f )
2Λ2

ˆ̃K
f,Df ,R
odd

ˆ̃µu,Df ,R + ˆ̃µf,Df ,R ˆ̃K
u,Df ,R
odd

8π[DR
f Λ

2 + ˆ̃σR]2
− 2

ˆ̃K
u,Df ,R
odd

DR
f

∂logZDf

∂b

β ˆ̃A
u,Df ,R

odd

= 2 ˆ̃A
u,Df ,R
odd − dc(DR

f )
2Λ2

ˆ̃A
f,Df ,R
odd (ˆ̃µu,Df ,R +

ˆ̃
λu,Df ,R)

4π[DR
f Λ

2 + ˆ̃σR]2
− 2

ˆ̃A
u,Df ,R
odd

DR
f

∂logZDf

∂b

β ˆ̃µf,D,R = 2ˆ̃µf,D,R − dc(DR
f )

2Λ2
ˆ̃µf,D,R ˆ̃µf,Df ,R − ˆ̃Kf,D,R

odd
ˆ̃K
f,Df ,R
odd

8π[DR
f Λ

2 + ˆ̃σR]2
− 2

ˆ̃µf,D,R

DR
f

∂logZDf

∂b

βˆ̃
λf,D,R

= 2
ˆ̃
λf,D,R − dc(DR

f )
2Λ2 2

ˆ̃
λf,D,R(

ˆ̃
λf,Df ,R + ˆ̃µf,Df ,R) + ˆ̃µf,D,R(2

ˆ̃
λf,Df ,R + ˆ̃µf,Df ,R)

8π[DR
f Λ

2 + ˆ̃σR]2

+ dc(DR
f )

2Λ2
ˆ̃Kf,D,R
odd

ˆ̃K
f,Df ,R
odd

8π[DR
f Λ

2 + ˆ̃σR]2
− 2

ˆ̃
λf,D,R

DR
f

∂logZDf

∂b

β ˆ̃Kf,D,R
odd

= 2 ˆ̃Kf,D,R
odd − dc(DR

f )
2Λ2

ˆ̃Kf,D,R
odd

ˆ̃µf,Df ,R + ˆ̃µf,D,R ˆ̃K
f,Df ,R
odd

8π[DR
f Λ

2 + ˆ̃σR]2
− 2

ˆ̃Kf,D,R
odd

DR
f

∂logZDf

∂b

β ˆ̃Af,D,R
odd

= 2 ˆ̃Af,D,R
odd − dc(DR

f )
2Λ2

ˆ̃Af,D,R
odd (ˆ̃µf,Df ,R +

ˆ̃
λf,Df ,R)

4π[DR
f Λ

2 + ˆ̃σR]2
− 2

ˆ̃Af,D,R
odd

DR
f

∂logZDf

∂b

β ˆ̃µf,Df ,R = 2ˆ̃µf,Df ,R − dc(DR
f )

2Λ2
ˆ̃µf,Df ,R ˆ̃µf,Df ,R − ˆ̃K

f,Df ,R
odd

ˆ̃K
f,Df ,R
odd

8π[DR
f Λ

2 + ˆ̃σR]2
− 2

ˆ̃µf,Df ,R

DR
f

∂logZDf

∂b
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βˆ̃
λf,Df ,R = 2

ˆ̃
λf,DR

f − dc(DR
f )

2Λ2 2
ˆ̃
λf,Df ,R(

ˆ̃
λf,Df ,R + ˆ̃µf,Df ,R) + ˆ̃µf,Df ,R(2

ˆ̃
λf,Df ,R + ˆ̃µf,Df ,R)

8π[DR
f Λ

2 + ˆ̃σR]2

+ dc(DR
f )

2Λ2
ˆ̃K
f,Df ,R
odd

ˆ̃K
f,Df ,R
odd

8π[DR
f Λ

2 + ˆ̃σR]2
− 2

ˆ̃
λf,Df ,R

DR
f

∂logZDf

∂b

β ˆ̃K
f,Df ,R

odd

= 2 ˆ̃K
f,Df ,R
odd − dc(DR

f )
2Λ2

ˆ̃K
f,Df ,R
odd

ˆ̃µf,Df ,R + ˆ̃µf,Df ,R ˆ̃K
f,Df ,R
odd

8π[DR
f Λ

2 + ˆ̃σR]2
− 2

ˆ̃K
f,Df ,R
odd

DR
f

∂logZDf

∂b

β ˆ̃A
f,Df ,R

odd

= 2 ˆ̃A
f,Df ,R
odd − dc(DR

f )
2Λ2

ˆ̃A
f,Df ,R
odd (ˆ̃µf,Df ,R +

ˆ̃
λf,Df ,R)

4π[DR
f Λ

2 + ˆ̃σR]2
− 2

ˆ̃A
f,Df ,R
odd

DR
f

∂logZDf

∂b

βˆ̃σR = 2ˆ̃σR +
∂logZσ

∂b
(S96)

Formulated in terms of these variables, one in principle should solve for the fixed point/manifold. However, as we
know

∂logZDf

∂b is a complicated expression and thus renders obtainment of these solutions analytically intractable. In
addition we note that, ∂logZσ

∂b is also quite complicated as an expression, however it indicates that stress is generated
when fluctuation dissipation is broken or when odd elastic parameters are present. Despite the complexity of these
expressions, if we define the Aronovitz-Lubensky fixed point as:

{ ˆ̃µγ,δ,R,
ˆ̃
λγ,δ,R, ˆ̃Kγ,δ,R

odd , ˆ̃Aγ,δ,R
odd , ˆ̃σR} = {16πΛ

2

4 + dc
,
−8πΛ2

4 + dc
, 0, 0, 0} (S97)

where γ ∈ {u, f}, δ ∈ {D,Df}, one can check that it is indeed a fixed point of the equations and we can analyze its
stability. Performing a stability analysis on these 16 variables gives the following eigen-values:

Eigen-values = {0, 0, 0, 0, 0, 0, 0, 0, −2dc
4 + dc

,
−2dc
4 + dc

,−2,
2dc

4 + dc
,

2dc
4 + dc

,
2dc

4 + dc
,

2dc
4 + dc

,
2dc

4 + dc
,
2(2 + dc)

4 + dc
} (S98)

The eight zero eigen-values indicate that the Aronovitz-Lubensky fixed point potentially belongs to a higher-
dimensional fixed manifold, although perhaps not a stable one. Four of these eight zero eigen-values are perturbations
purely in { ˆ̃µγ,δ,R,

ˆ̃
λγ,δ,R} and three of them are somewhat analytically complicated, however they indicate that there

are potentially a broader set of fixed points where fluctuation-dissipation may not necessarily hold [38]. The one
simple eigen-vector that is a pure perturbation in { ˆ̃µγ,δ,R,

ˆ̃
λγ,δ,R} is:

[δ ˆ̃Au,D,R
odd , δ ˆ̃Af,D,R

odd , δ ˆ̃A
u,Df ,R
odd , δ ˆ̃A

f,Df ,R
odd , δ ˆ̃Ku,D,R

odd , δ ˆ̃Kf,D,R
odd , δ ˆ̃K

u,Df ,R
odd , δ ˆ̃K

f,Df ,R
odd ,

δ
ˆ̃
λu,D,R, δ

ˆ̃
λf,D,R, δ

ˆ̃
λu,Df ,R, δ

ˆ̃
λf,Df ,R, δ ˆ̃µu,D,R, δ ˆ̃µf,D,R, δ ˆ̃µu,Df ,R, δ ˆ̃µf,Df ,R, δ ˆ̃σR]

= [0, 0, 0, 0, 0, 0, 0, 0,−−4− 3dc
16

,−−3(4 + dc)

32
,−−3(4 + dc)

32
,−1/2,−1, 0, 0, 1, 0]

(S99)

The other 4 zero eigen-values are perturbations in { ˆ̃Kγ,δ,R
odd , ˆ̃Aγ,δ,R

odd } and include:

[δ ˆ̃Au,D,R
odd , δ ˆ̃Af,D,R

odd , δ ˆ̃A
u,Df ,R
odd , δ ˆ̃A

f,Df ,R
odd , δ ˆ̃Ku,D,R

odd , δ ˆ̃Kf,D,R
odd , δ ˆ̃K

u,Df ,R
odd , δ ˆ̃K

f,Df ,R
odd ,

δ
ˆ̃
λu,D,R, δ

ˆ̃
λf,D,R, δ

ˆ̃
λu,Df ,R, δ

ˆ̃
λf,Df ,R, δ ˆ̃µu,D,R, δ ˆ̃µf,D,R, δ ˆ̃µu,Df ,R, δ ˆ̃µf,Df ,R, δ ˆ̃σR]

= [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

(S100)
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These four marginal perturbations indicate that perturbations in Âγ,δ,R
odd that preserve fluctuation dissipation are

marginal. Furthermore the two eigen-vectors corresponding to the eigen-value −2dc

4+dc
are:

[δ ˆ̃Au,D,R
odd , δ ˆ̃Af,D,R

odd , δ ˆ̃A
u,Df ,R
odd , δ ˆ̃A

f,Df ,R
odd , δ ˆ̃Ku,D,R

odd , δ ˆ̃Kf,D,R
odd , δ ˆ̃K

u,Df ,R
odd , δ ˆ̃K

f,Df ,R
odd ,

δ
ˆ̃
λu,D,R, δ

ˆ̃
λf,D,R, δ

ˆ̃
λu,Df ,R, δ

ˆ̃
λf,Df ,R, δ ˆ̃µu,D,R, δ ˆ̃µf,D,R, δ ˆ̃µu,Df ,R, δ ˆ̃µf,Df ,R, δ ˆ̃σR]

= [0, 0, 0, 0, 0, 0, 0, 0,−5/4,−5/4,−5/4,−5/4, 1, 1, 1, 1, 0],

[0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

(S101)

and the eigen-value −2 corresponds to the eigen-vector:

[δ ˆ̃Au,D,R
odd , δ ˆ̃Af,D,R

odd , δ ˆ̃A
u,Df ,R
odd , δ ˆ̃A

f,Df ,R
odd , δ ˆ̃Ku,D,R

odd , δ ˆ̃Kf,D,R
odd , δ ˆ̃K

u,Df ,R
odd , δ ˆ̃K

f,Df ,R
odd ,

δ
ˆ̃
λu,D,R, δ

ˆ̃
λf,D,R, δ

ˆ̃
λu,Df ,R, δ

ˆ̃
λf,Df ,R, δ ˆ̃µu,D,R, δ ˆ̃µf,D,R, δ ˆ̃µu,Df ,R, δ ˆ̃µf,Df ,R, δ ˆ̃σR]

= [0, 0, 0, 0, 0, 0, 0, 0,−1/2,−1/2,−1/2,−1/2, 1, 1, 1, 1, 0]

(S102)

One of these negative eigen-values and their respective eigen-vectors tells us that perturbations in K̂γ,δ,R
odd that preserve

fluctuation-dissipation are irrelevant. In addition it gives us the associated eigen-value −2dc

4+dc
and thus we expect

K̂R
odd/µ̂

R to re-scale to zero with this exponent. Meanwhile, the other two correspond to eigen-vectors found in
a fixed point analysis using Boltzmann weights for equilibrium elastic membranes (using Boltzmann weights [2]),
indeed they indicate that if we restrict ourselves to the domain of phase space where fluctuation-dissipation holds and
Âγ,δ,R

odd , K̂γ,δ,R
odd are odd, then the Aronovitz-Lubensky fixed point is the globally stable fixed point. The eigen-vectors

corresponding to the eigen-value 2dc/(2 + dc) correspond to:

[δ ˆ̃Au,D,R
odd , δ ˆ̃Af,D,R

odd , δ ˆ̃A
u,Df ,R
odd , δ ˆ̃A

f,Df ,R
odd , δ ˆ̃Ku,D,R

odd , δ ˆ̃Kf,D,R
odd , δ ˆ̃K

u,Df ,R
odd , δ ˆ̃K

f,Df ,R
odd ,

δ
ˆ̃
λu,D,R, δ

ˆ̃
λf,D,R, δ

ˆ̃
λu,Df ,R, δ

ˆ̃
λf,Df ,R, δ ˆ̃µu,D,R, δ ˆ̃µf,D,R, δ ˆ̃µu,Df ,R, δ ˆ̃µf,Df ,R, δ ˆ̃σR]

= [0, 0, 0, 0, 0, 0, 0, 0,
−31− 9dc

26
,−1/2,−1/2,−1/2,

32 + 3dc

26
, 1, 1, 1, 0],

[0, 0, 0, 0, 0, 0, 0, 0,
8π(34 + 9dc)

13(4 + dc)
, 0, 0, 0,−8π(20 + 3dc)

13(4 + dc)
, 0, 0, 0, 1],

[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

(S103)

The last eigen-vector corresponding to eigen-value 2(2 + dc)/(4 + dc) is:

[δ ˆ̃Au,D,R
odd , δ ˆ̃Af,D,R

odd , δ ˆ̃A
u,Df ,R
odd , δ ˆ̃A

f,Df ,R
odd , δ ˆ̃Ku,D,R

odd , δ ˆ̃Kf,D,R
odd , δ ˆ̃K

u,Df ,R
odd , δ ˆ̃K

f,Df ,R
odd ,

δ
ˆ̃
λu,D,R, δ

ˆ̃
λf,D,R, δ

ˆ̃
λu,Df ,R, δ

ˆ̃
λf,Df ,R, δ ˆ̃µu,D,R, δ ˆ̃µf,D,R, δ ˆ̃µu,Df ,R, δ ˆ̃µf,Df ,R, δ ˆ̃σR]

= [0, 0, 0, 0, 0, 0, 0, 0,− 8(2 + dc)π

(3 + dc)(4 + dc)
,− 8(2 + dc)π

(3 + dc)(4 + dc)
,

− 8(2 + dc)π

(3 + dc)(4 + dc)
,− 8(2 + dc)π

(3 + dc)(4 + dc)
,

16(2 + dc)π

(3 + dc)(4 + dc)
,

16(2 + dc)π

(3 + dc)(4 + dc)
,

16(2 + dc)π

(3 + dc)(4 + dc)
,

16(2 + dc)π

(3 + dc)(4 + dc)
, 1]

(S104)

All in all, we can then summarize our findings via the following statements:
a. If we enforce fluctuation dissipation and insist upon the odd elastic constants being zero, then indeed the

Aronovitz-Lubensky fixed point is the globally stable fixed point.
b. If we enforce fluctuation dissipation but do not insist upon the odd elastic constants being zero, then indeed

the Aronovitz-Lubensky fixed point is stable to perturbations in ˆ̃Kγ,δ,R
odd but is marginally stable with respect to

perturbations in ˆ̃Aγ,δ,R
odd . Stress however is always an unstable direction.

c. If we do not enforce fluctuation dissipation and insist upon the odd elastic constants being zero, then the
Aronovitz-Lubensky fixed point potentially belongs to a larger manifold and the fixed point is no longer globally
stable. Relevant unstable directions could potentially take us to a new fixed point to be obtained. Indeed this has
been better explored in [38].
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d. If we do not enforce fluctuation dissipation and do not insist upon the odd elastic constants being zero, then
the Aronovitz-Lubensky fixed point is not globally stable. A globally stable fixed point has not been established.

e. All the above analysis has been only done to 1-loop order and thus a 2-loop expansion is in principle necessary
to establish whether the zero eigen-value directions stay zero or become non-zero (in the absence of a symmetry that
enforces the eigen-values to be zero). This would be important for comprehending how these other perturbative
eigen-vectors impact the stability of the Aronovitz-Lubensky fixed point.

3. Derivation of Thermal Length Scale Assuming Fluctuation-Dissipation Relations

As can be seen from the Fig. 2 and Fig. 3 of the main text, we have non-dimensionalized the linear system size by
a thermal length scale which we have yet to define. Given that the odd elastic parameters are now present, there is
no reason that the thermal length scale should take the value given in the equilibrium Hamiltonian theory [53]:

ℓth =

√
16π3(κo)2

3kBTY o
(S105)

where we use un-scaled variables and Y o is the bare Young’s modulus. The superscript o marks the fact that the bare
parameters are being used. The manner in which one may obtain this length scale in the equilibrium Hamiltonian case
is by comparing the an-harmonic ∂logZDf

/∂logb with Do
f and obtain for what value of UV-cutoff, Λ, for which the

two are comparable. The procedure is no different in the odd elastic case, however, ∂logZDf
/∂logb is now significantly

more complicated. Without assuming fluctuation-dissipation to hold or even making some simplifications explained in
the following sentence, it is difficult to obtain a thermal length scale. Thus we resort to obtaining a provisional form
done in the Mathematica code whereby one assumes fluctuation-dissipation to hold and obtains the lowest powers of Λ
in ∂logZDf

/∂logb (in order to reduce the power of the polynomial in Λ that one has to solve for) and then comparing
them to Do

f . By doing this, we obtain that in terms of the bare elastic moduli of the theory:

ℓth =

(
π2κo[6kBTDo

f (K
o
odd)

2(λo + µo)2 + 4πκoDo((Ko
odd)

2 + µo(λo + 2µo))2

+ (Ao
odd)

2((Ko
odd)

2(kBTDo
f + 4πDoκo) + kBTDo

f (µ
o)2) + 8πDoκoAo

odd((K
o
odd)

2

+ µo
odd(λ

o + 2µo))− 6kBTDo
fA

o
oddK

o
odd]/(3kBTDo[(Ko

odd)
2 + (µo)2]

[Ao
oddK

o
odd + (Ko

odd)
2 + µo(λo + 2µo)][λo + µo])

)1/2

(S106)

where we have re-inserted all variables, including temperature and bending rigidity, that we scaled out in Eq. (3) and
Eq. (4) of the main text. This equation also reduces to the form Eq. (S105) when Aodd and Kodd are both zero and
the fluctuation-dissipation relations are satisfied. We use this definition of ℓth to plot Fig. 2 and Fig. 3 of the main
text.

4. Numerical Renormalization With Fluctuation-Dissipation Relations

We now aim to show how we obtain theoretical plots which indicate the scaling of our moduli when fluctuation-
dissipation relations hold. For a 1-loop 1/dc analysis, the diagrams we . With the assumption that fluctuation
dissipation holds (L = D and Lf = Df ), we may rewrite Eq. (S94) and drop the hats, ,̂ from above our moduli to
instead write down:

βµ̃R = 2µ̃R − dc(DR
f )

2Λ2 (µ̃
R)2 − (K̃R

odd)
2

8π[DR
f Λ

2 + σ̃R]2
− 2

µ̃R

DR
f

∂logZDf

∂b

βλ̃R = 2λ̃R − dc(DR
f )

2Λ2 2λ̃
R(λ̃R + µ̃R) + µ̃R(2λ̃R + µ̃R)− (K̃R

odd)
2

8π[DR
f Λ

2 + σ̃R]2
− 2

λ̃R

DR
f

∂logZDf

∂b

βK̃R
odd

= 2K̃R
odd − dc(DR

f )
2Λ2 2µ̃RK̃R

odd

8π[DR
f Λ

2 + σ̃R]2
− 2

K̃R
odd

DR
f

∂logZDf

∂b

βÃR
odd

= 2ÃR
odd − dc(DR

f )
2Λ2 ÃR

odd(µ̃
R + λ̃R)

4π[DR
f Λ

2 + σ̃R]2
− 2

ÃR
odd

DR
f

∂logZDf

∂b
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βσ̃R = 2σ̃R + (DR
f )

2Λ2[ÃR
odd + 2K̃R

odd][(Ã
R
odd − 2K̃R

odd)(DR
f Λ

2 + σ̃R) + 2L̃RÃR
oddµ̃

R]/

{4π[λ̃R + 3µ̃R][(L̃R)2(K̃R
oddÃ

R
odd + (K̃R

odd)
2 + µ̃R(λ̃R + 2µ̃R)) + L̃R(DR

f Λ
2 + σ̃R)(λ̃R + 3µ̃R) + (DR

f Λ
2 + σ̃R)2]}

βL̃R = 2
L̃R

DR
f

∂logZDf

∂b

βDR
f
=

∂logZDf

∂b
(S107)

As one can see, the diagrammatic contribution for the stress greatly simplifies and can be written down under the
assumption of fluctuation-dissipation relations. Furthermore, this contribution is generically non-zero in the presence
of odd elastic parameters. Keeping in mind that simulations are done using a barostat that tunes the system to zero
pressure for the box, we must numerically integrate these equations with some microscopic stress in order to tune,
as best we can, the stress at the system size to zero. This is done in both Fig. S4. We tune the microscopic stresses
such that a target system size (a specific value of L/ℓth) satisfies σR(L/ℓth) ≈ 0 in order to compare the theory to
simulation results. This is equivalent to tuning the stress such that we are at the critical point in the thermodynamic
limit. In the case of Kodd in Fig. S4(a), we need to tune the microscopic stress to a positive value because negative
stress is generated by Kodd. This can be seen from the sign of the Kodd portion of the diagrammatic contribution in
the stress equation, βσ̃R , in Eq. (S107). On the other hand, in the case of Aodd in Fig. S4(a), we need to tune the
microscopic stress to a negative value because positive stress is generated by Aodd. This can be seen from the sign of
the Aodd portion of the diagrammatic contribution in the stress equation, βσ̃R , in Eq. (S107).

We finish by mentioning that the results for both odd moduli are in agreement with the stability analysis, taking
dc = 1.

FIG. S4: In the above plots, we observe the elastic moduli plotted against the system size normalized by our new definition of
ℓth given in Eq. (S106). For reference, η ≈ .8 and ηu ≈ .4. In addition, the microscopic odd elastic moduli (Ao

odd,K
o
odd) are a

tenth of λo, µo. In case (a) we plot the elastic moduli in the present of Kodd. As one can see, we tune the microscopic stress to a
positive value (≈ 5.94 · 10−3 at L/ℓth = 10−4) in an attempt to tune the stress at L/ℓth ≈ 104 to be as close to zero as possible.
In case (b) we plot the elastic moduli in the present of Aodd. As one can see, we tune the microscopic stress to a negative value
(≈ −1.58 · 10−3 at L/ℓth = 10−4) in an attempt to tune the stress at L/ℓth ≈ 104 to be as close to zero as possible.
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