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We investigate the effect of thermal fluctuations on the mechanical properties of nanotubes by
employing tools from statistical physics. For 2D sheets it was previously shown that thermal fluctu-
ations effectively renormalize elastic moduli beyond a characteristic temperature-dependent thermal
length scale (a few nanometers for graphene at room temperature), where the bending rigidity in-
creases, while the in-plane elastic moduli reduce in a scale-dependent fashion with universal power
law exponents. However, the curvature of nanotubes produces new phenomena. In nanotubes,
competition between stretching and bending costs associated with radial fluctuations introduces a
characteristic elastic length scale, which is proportional to the geometric mean of the radius and
effective thickness. Beyond elastic length scale, we find that the in-plane elastic moduli stop renor-
malizing in the axial direction, while they continue to renormalize in the circumferential direction
beyond the elastic length scale albeit with different universal exponents. The bending rigidity, how-
ever, stops renormalizing in the circumferential direction at the elastic length scale. These results
were verified using molecular dynamics simulations.

I. INTRODUCTION

Atomically thin membranes have been a subject of interest over the last few decades [1–5] for their promising
electronic and mechanical properties. Thin solid membranes are also ubiquitous in soft condensed matter [6–8] and
biological systems [9–17]. In these contexts, the statistical mechanics of freely suspended elastic membranes have
been studied extensively [18–31]. Theoretical studies of these membranes suggest that due to long-range interaction
between local Gaussian curvatures mediated by in-plane phonons, arbitrarily large elastic membranes can remain flat
at low enough temperatures [18–23]. In such membranes, the thermal fluctuations stiffen the bending rigidity κ in
a scale (ℓ) dependent fashion, κ(ℓ) ∼ ℓη, and reduce the Young’s modulus Y (ℓ) ∼ ℓ−ηu beyond a temperature T

dependent length ℓth ∼
√

κ2
0/(kBTY0), where κ0 and Y0 are the microscopic bending rigidity and Young’s modulus

respectively. This result has been obtained using various methods such as perturbative renormalization group with
ϵ-expansion [22, 24, 25], 1/d-expansion [23], self consistent screening approximation [26, 27] and nonperturbative
renormalization group [28–30], verified with numerical simulations [32–34], and being studied in experiments [35].

Atomically thin cylindrical shell-like structures are important in the context of carbon nanotubes. Since its invention
in 1991 [2], carbon nanotubes have gained significant research interest due to their electronic properties [36], high
tensile strength [37, 38], thermal conductivity [38] and their ability to adsorb gases [39]. They have been used in
field-effect transistors [40], composite materials [41], environmental monitoring [39] etc. For these applications, it
is important to study the effect of thermal fluctuations on the mechanical properties of nanotubes. While thermal
fluctuations of flat sheets are well understood, much less is known about the response of nanotubes to thermal
fluctuations.

Here we investigate the statistical mechanics of thin single-walled nanotubes at low temperatures within shallow
shell approximation [42–44]. Due to the presence of the curvature in nanotubes, the radial fluctuations along the axial
direction cost both bending and stretching energy, whereas the radial fluctuations along the circumferential direction
only cost bending energy. This competition between stretching and bending costs associated with height fluctuations
introduces a characteristic elastic length scale (ℓel ∼

√
Rt) [45, 46], which is proportional to the geometric mean of

the radius and effective thickness. In typical carbon naotubes, this length is ℓel ≲ 3nm. We show that below this
length, the bending rigidity and in-plane moduli scales the same way as for flat membranes mentioned above. As will
be discussed in detail in this article, beyond the elastic length scale, the in-plane elastic moduli stop renormalizing in
the axial direction, while they continue to renormalize in the circumferential direction beyond the elastic length scale
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albeit with different universal exponents. The bending rigidity, however, stops renormalizing in the circumferential
direction at the elastic length scale. We verify our theoretical findings with molecular dynamics simulations.

The remainder of the paper is organized as follows. In Sec. II, we review shallow shell theory description for
cylindrical shells. In Sec. III, we set up the statistical mechanics problem. In Sec. IV, we perform renormalization
group and scaling analysis to show how the elastic moduli scale in different regimes. In Sec. V, we compare the
theoretically predictions with molecular dynamics simulations. In Sec. VI, we give concluding remarks and comment
on possible further investigations for better understanding of the mechanical properties of thermalized cylindrical
shells.

II. ELASTIC ENERGY OF DEFORMATION

The elastic energy of a deformed cylindrical shell can be estimated with shallow shell theory. To this end, let us
consider a cylindrical shell with radius R and length L in its undeformed configuration. [47] Then, any point on the
undeformed shell can be written as X̄ = (R cosφ,R sinφ, z) in cartesian coordinates where the axis of the cylinder
is in the z direction. Since the radius R is a constant, the shell can be parametrized by (Rφ, z) coordinates. The
tangent vectors at any point on the shell can be written as t̄φ = ∂φX̄ = (− sinφ, cosφ, 0) and t̄z = ∂zX̄ = (0, 0, 1),

whereas the normal is N̄ = (cosφ, sinφ, 0). Note that here we used short-hand ∂φ ≡ 1
R

∂
∂φ and ∂z ≡ ∂

∂z . The

reference metric is ḡij = t̄i · t̄j = δij and curvature tensor is b̄ij = N̄ · ∂it̄j = − 1
Rδijδiφ where i ∈ {ϕ, z}. Then, in

the deformed configuration, the displacement of each point can be decomposed into tangential components ui(Rφ, z)
(where i ∈ {φ, z}) and radial component h(Rφ, z) (see Fig. 1(a)) such that the coordinates of the points in deformed
configuration are given by X = X̄ + uφt̄φ + uz t̄z + hN̄. The tangent vectors in the deformed configuration are
tφ = ∂φX = t̄φ + t̄φ∂φuφ − 1

RuφN̄+ t̄z∂φuz + N̄∂φh+ 1
Rht̄φ and tz = ∂zX̄ = t̄z + t̄φ∂zuφ + t̄z∂zuz + N̄∂zh. Then,

the metric and the curvature tensors in the deformed configuration are:

gij ≈ δij + ∂iuj + ∂jui + (∂ih)(∂jh) +
2

R
hδijδiφ,

bij ≈ − 1

R
δijδiφ + ∂i∂jh,

(1)

where we kept only the relevant terms (in the sense of Wilsonian renormalization [48]) in displacements and their
derivatives. This is termed as the Donnell-Mushtari-Vlasov approximation [42–44]. The in-plane strain and bending
strain tensors are defined as uij ≡ (gij − ḡij)/2 and Kij ≡ (bij − b̄ij), respectively [42]. Then, from Eq. 1, we find

uij = (∂iuj + ∂jui + ∂ih∂jh)/2 +
h

R
δijδiφ,

Kij = ∂i∂jh,
(2)

where i, j ∈ {φ, z}. Notice that first term inside the parenthesis in the expression of in-plane strain uij is the same as
in flat sheets. However, the second term is not present for flat sheets and will couple in-plane strains with the radial
undulation field h due to curvature 1/R. The free energy cost of the shell deformation is given by:

F =

∫
A

dA
1

2

[
κ0(Kii)

2 + λ0(uii)
2 + 2µ0(uij)

2
]
, (3)

where the first term accounts for the bending energy and the last two terms are the in-plane stretching energy. Note
that we did not consider the term consisting of the Gaussian curvature because we are interested in studying the system
under periodic boundary conditions, where the integral of the Gaussian curvature is zero due to the Gauss-Bonnet
theorem. Here, κ0 is the microscopic (bare) bending rigidity of the material and has dimensions of energy, whereas λ0

and µ0 are the microscopic (bare) Lamé coefficients and has the dimension of energy per area and dA = dφdzR is the
infinitesimal area element with A = 2πRL being the area of the system. We furthermore define ds as the infinitesimal
line element at the boundary, ∂A is the boundary of the cylinder, T is the traction force at the boundary. The
components of the traction force can be written as Ti = njσij where σij is the homogeneous stress tensor and nj is
the in-plane normal to at the boundary. Replacing this expression of the traction force Ti and using Stokes’ theorem
we get: ∫

∂A

ds Tiui =

∫
∂A

ds njσijui =

∫
A

dA∂j(σijui) =

∫
A

dAσij∂jui = σij

∫
A

dA
1

2
(∂jui + ∂iuj),

F =

∫
A

dA
1

2

[
κ0(∇2h)2 + λ0(uii)

2 + 2µ0(uij)
2 − σij(∂jui + ∂iuj)

]
,

(4)
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FIG. 1. (a) A snaphot of a thermally fluctuating cylindrical shell. The length L, diameter 2R, thickness t, in-plane displacements
uφ and uz, radial displacement h are shown. A small segment (shown in red box) on the shell is zoomed in to show that in
simulations, the shell is modeled with triangular lattice of point masses connected by harmonic springs (green lines). At bottom
right corner, the angle θαβ between two adjacent triangles of the triangular lattice is shown. (b) A deformed cylindrical shell

with only nonzero h̃(qφ ̸= 0, qz = 0) and h̃(qφ = 0, qz = 0) does not cost stretching energy if the change in the length of

circumference due to h̃(qφ ̸= 0, qz = 0) is compensated by h̃(qφ = 0, qz = 0). (c) A deformed cylindrical shell with nonzero

h̃(qφ = 0, qz ̸= 0) and h̃(qφ = 0, qz = 0) costs stretching energy different positions along the axis of the cylindrical shell have
different circumference length.

where we used the facts that σij = σji and Kii = ∇2h. We also assume that the microscopic material is isotropic
which is reasonable for carbon nanotubes. However, inspection of the last term in the expression of uij in Eq. 2
shows that it is anisotropic. This means that as we integrate small wavelength degrees of freedom to investigate long
wavelength behavior, the moduli may become anisotropic. Keeping this in mind, we write the more general form of
the free energy is given below:

F =

∫
A

dA
1

2

[
B0

ijkl(∂i∂jh)(∂k∂lh) + C0
ijkluijukl − σij(∂jui + ∂iuj)

]
, (5)

where B0
ijkl and C0

ijkl are the most general bare bending rigidity and in-plane elastic tensors, respectively. However,
because of the mirror planes x − y and r − z, the anisotropy can be at most orthorhombic, meaning that Bφφφz =
Bφzzz = Cφφφz = Cφzzz = 0. This along with the major and minor symmetries of Bijkl and Cijkl tensors mean that
the only independent moduli are Bφφφφ, Bφφzz, Bzzzz, Cφφφφ, Cφφzz, Cφzφz and Czzzz. For isotropic bare rigidities,
B0

ijkl = κ0δijδkl and C0
ijkl = λ0δijδkl + µ0(δikδjl + δilδjk).

III. THERMAL FLUCTUATIONS

The effect of thermal fluctuations can be seen in the correlation functions obtained from the functional integrals:

⟨h⟩ ≡ ⟨h(x)⟩ = 1

Z

∫
D[ui, h]h(x)e

−F/kBT , (6a)

Ghh(x2 − x1) ≡ ⟨δh(x2)δh(x1)⟩ =
1

Z

∫
D[ui, h]δh(x2)δh(x1)e

−F/kBT , (6b)

Guiuj
(x2 − x1) ≡ ⟨ui(x2)uj(x1)⟩ =

1

Z

∫
D[ui, h]ui(x2)uj(x1)e

−F/kBT , (6c)
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Z =

∫
D[ui, h]e

−F/kBT , (6d)

where T is the temperature, kB is the Boltzmann’s constant, Z is the partition function, δh(x) = h(x) − ⟨h⟩,
x ≡ (Rφ, z), and in Eqs. 6a, 6b and 6c , we used the fact the system is translationally invariant.

In the following, we decompose the radial displacement field as h(x) = h0 + h̃(x), where h0 = (1/A)
∫
dAh(x)

is the homogeneous part of the undulation field, and (1/A)
∫
dA h̃(x) = 0. Then, ⟨h0⟩ = (1/A)

∫
dA⟨h(x)⟩ = ⟨h⟩.

With this knowledge then, δh(x) = h̃(x) + h0 − ⟨h0⟩. Similarly, the in-plane strain fields can be decomposed into
uij(x) = u0

ij+ ũij(x). However, the homogeneous strain u0
φφ and the zero mode of the radial fluctuation h0 are related

by u0
φφ = h0/R because increasing the length in azimuthal direction effectively increases the radius. Integrating out

the homogeneous fields h0 and u0
ij , we obtain the following effective free energy:

Feff,1 = −kBT ln

(∫
D[u0

φz, h0, u
0
zz]e

−F/kBT

)
=

∫
A

dA
1

2

[
B0

ijkl(∂i∂j h̃)(∂k∂lh̃) + C0
ijklũij ũkl + σij(∂ih̃)(∂j h̃)

]
= F0 + FI ,

F0/A =

∫
A

dA
1

2

[
B0

ijkl(∂i∂j h̃)(∂k∂lh̃) +
C0

φφφφ

R2
h̃2 + σij(∂ih̃)(∂j h̃)

]

+

∫
A

dA
1

2

[
C0

ijkl(∂iũj)(∂kũl) + C0
ijφφ(∂iũj)

h̃

R

]
,

FI/A =

∫
A

dA
1

2

[
C0

ijkl∂iũj(∂kh̃)(∂lh̃) + C0
φφkl

h̃

R
(∂kh̃)(∂lh̃)

]

+

∫
A

dA
1

8
C0

ijkl(∂ih̃)(∂j h̃)(∂kh̃)(∂lh̃),

(7)

where F0 and FI are the harmonic and anharmonic parts of the effective free energy Feff,1. A similar functional
integral shows that the average radial and axial extensions are:

⟨h⟩
R

=
⟨h0⟩
R

=
σφφ

Y 0
φφ

−
ν0φφσzz

Y 0
φφ

− 1

2
⟨(∂φh̃)2⟩, (8a)

⟨∆L⟩
L

= ⟨u0
zz⟩ =

σzz

Y 0
zz

− ν0zzσφφ

Y 0
zz

− 1

2
⟨(∂zh̃)2⟩, (8b)

where Y 0
φφ = Cφφφφ − C2

φφzz/Czzzz and Y 0
zz = Czzzz − C2

φφzz/Cφφφφ are the 2-dimensional Young’s moduli in the
azimuthal and axial directions respectively, and νφφ = Cφφzz/Czzzz and νzz = Cφφzz/Cφφφφ are the Poisson’s ratios
in azimuthal and axial directions respectively. For isotropic microscopic properties, Y 0

φφ = Y 0
zz = 4µ0(λ0 + µ0)/(λ0 +

2µ0) ≡ Y0, and ν0φφ = ν0zz = λ0/(λ0 + 2µ0) ≡ ν0iso. The last terms in Eqs. 8a and 8b are negative meaning that in
absence of any normal stress (σφφ = σzz = 0), the radius and the length of the cylindrical shell shrink under thermal

fluctuations. This is because nonuniform radial fluctuations h̃(x) at fixed radius would increase the integrated area,
with a large stretching energy cost. The system prefers to wrinkle and shrink its radius to gain entropy while keeping
the integrated area of the convoluted shell approximately constant.

For renormalization group calculations, it is sometimes helpful to integrate out the in-plane phonons and write an
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effective free energy as a functional of radial undulations:

Feff = −kBT ln

(∫
D[uφ, uz]e

−Feff,1/kBT

)
= F 0

eff + F I
eff,

F 0
eff/A =

∑
q̸=0

1

2

[
B0

ijklqiqjqkql +
N(C0

ijkl)q
4
z

R2D(C0
ijkl;q)

+ σijqiqj

]
h̃(q)h̃(−q),

F I
eff/A =

∑
q1+q2=−q̸=0

q2z
2q2

[q1iP
T
ij (q)q2j ]

N(C0
ijkl)q

4

RD(C0
ijkl;q)

h̃(q)h̃(q1)h̃(q2)

+
∑

q1+q2=q ̸=0
q3+q4=−q̸=0

1

8
[q1iP

T
ij (q)q2j ][q3iP

T
ij (q)q4j ]

N(C0
ijkl)q

4

D(C0
ijkl;q)

h̃(q1)h̃(q2)h̃(q3)h̃(q4),

N(Cijkl) = det(Cijkl)/4 = CφφφφCφzφzCzzzz − C2
φφzzCφzφz,

D(Cijkl;q) = det(Ckiljqkql) =
1

2
(εi1i2εj1j2Ck1i1l1j1Ck2i2l2j2qk1

qk2
ql1ql2)

= CφφφφCφzφzq
4
φ + (CφφφφCzzzz − 2CφφzzCφzφz − C2

φφzz)q
2
φq

2
z

+ CzzzzCφzφzq
4
z ,

(9)

where PT
ij (q) = (δij − qiqj/q

2), εij is the permutation symbol, and we took Fourier transform of the radial undulation

field h̃(q) =
∫
A
(dA/A)h̃(x)e−iq·x. Note that in the isotropic case, Nq4/D(C0

ijkl;q) = Y0. Note that F 0
eff and F I

eff are
the harmonic and anharmonic part of the effective free energy Feff. Then, within harmonic approximation one can
read off the Fourier transform G0

hh(q) =
∫
A
(dA/A)G0

hh(x)e
−iq·x of the correlation function G0

hh(x) (the superscript
“0” is for harmonic approximation):

G0
hh(q) ≡ ⟨|h̃(q)|2⟩0 =

kBT/A

B0
ijklqiqjqkql +

N(C0
ijkl)q

4
z

R2D(C0
ijkl;q)

+ σijqiqj

isotropic
=

kBT/A

κ0q4 +
Y0q4z
R2q4 + σijqiqj

, (10)

where ⟨⟩0 is the harmonic average. The effect of the anharmonic terms is to replace the bare parameters B0
ijkl, C

0
ijkl

and σij with scale dependent renormalized parameters BR
ijkl(q), C

R
ijkl(q) and σR

ij(q):

Ghh(q) ≡ ⟨|h̃(q)|2⟩ = kBT/A

BR
ijkl(q)qiqjqkql +

N(CR
ijkl(q))q

4
z

R2D(CR
ijkl(q);q)

+ σR
ij(q)qiqj

. (11)

Before going into the details of renormalization, it is useful to gain some insights from the Green’s function in Eq. 10.

In the limit R → ∞, it gives back the Green’s function for isotropic sheets Gs,0
hh (q) = kBT/A

κ0q4+σijqiqj
. Because of the

presence of anisotropic curvature in the cylindrical shell, we have, in the denominator, an extra direction dependent
term (Y0q

4
z)/(R

2q4) which suppresses the amplitude of the radial fluctuations in the axial direction. This because the
Fourier modes of radial fluctuations which are in axial direction necessarily cost stretching energy along with bending
energy, whereas the Fourier modes of radial fluctuations which are in azimuthal direction only cost bending energy
(see Fig. 1(b) and (c)) [46]. Furthermore, setting external stresses to zero σij = 0 and equating the two remaining
terms in the denominator of Eq. 10, we obtain a characteristic wave vector:

q0el ≡
π

ℓ0el
=

(
Y0

κ0R2

) 1
4

=
γ

1
4

R
, (12)

where γ = Y0R
2/κ0 is the Föppl-von Karman number. In the theory of shallow shells, κ0 ∼ Et3 and Y0 ∼ Et,

where E is 3-dimensional Young’s modulus of the material and t is the thickness of shell. In atomically thin systems
thickness is not well defined; however, we can define an effective thickness as t ∼

√
κ0/Y0 Then, the Föppl-von

Karman number γ ∼ R2/t2 meaning that the larger γ is, the larger the radius R is with respect to the thickness
t. The length scale ℓ0el obtained from this is what we will call the “elastic length scale.” The superscript “0” is for
harmonic approximation; we will see later that when we take renormalization of the parameters due to the anharmonic
terms into account, the expression of ℓel changes slightly. As we will see in the next section, the effect of the curvature
on the renormalization of the material parameters is negligible for scales smaller the elastic length scale ℓel and will be
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important at scales larger than this. Another important length scale that is important for both isotropic sheets and
cylindrical shells comes from the form of the Green’s function: G0

hh ∼ kBT
Aκ0q4

when σij = 0 and q ≫ q0el. Therefore,

the largest amplitude of the radial (height in case of sheets) fluctuations occur when q ∼ 1/L and A ∼ L2 (where

is the system size) giving largest amplitude of the radial fluctuation as hth ∼ L
√
kBT/κ0 = Lτ1/2 (τ ≡ kBT/κ0 is

the nondimensional temperature). Anharmonic terms become important when this amplitude is of the order of the

thickness hth ∼ t ∼
√
κ0/Y0. This gives us a length ℓth ∼

√
κ2
0/(kBTY0) called thermal length scale [49] (we will get

a better estimate of ℓth later in Eq. 20). The effect of the anharmonic terms are only important when the system size
is larger than the thermal length scale ℓth. These two length scales ℓth and ℓel divides the scale dependence of the
material parameters into three regimes. We will be interested in the limit where ℓth ≪ ℓel because as was discussed
above, below ℓth the anharmonic terms are not important and thus the theory is trivial. Therefore, keeping this length
smaller than other important length scales enables us to see all possible non-trivial scalings due to the anharmonic
terms. In addition, we will be interested in zero external stress limit σR

ij(q) = 0.

IV. RENORMALIZATION GROUP AND SCALING ANALYSIS

The effect of the anharmonic terms in Eq. 7 at a given scale ℓ∗ ≡ π/q∗ can be obtained by systematically integrating
out all degrees of freedom on smaller scales (i.e., larger wave vectors). This can be done by splitting the displacement

fields into pieces: g<(r) =
∑

|q|<q∗ e
iq·rg(q) and g>(r) =

∑
Λ>|q|>q∗ e

iq·rg(q), where g ∈ {ũi, h̃} and a ≡ π/Λ is a

microscopic cutoff, and integrating out g> as

Feff,1(ℓ
∗) = −kBT ln

(∫
D[ũi,>, h̃>]e

−Feff,1/kBT

)
,

Feff(ℓ
∗) = −kBT ln

(∫
D[h̃>]e

−Feff,1/kBT

)
.

(13)

A. Scaling analysis for ℓ∗ ≪ ℓel

• ℓ∗ ≪ ℓth ≪ ℓ0el: we have C
0
φφφφ|h̃(q)|2/R2 ≪ κ0(q

∗)4|h̃(q)|2, meaning that we can ignore the term C0
φφφφh̃

2/R2

from Eq. 7, and similarly we can ignore the termN(C0
ijkl)q

4
z/(R

2D(C0
ijkl;q))h̃(q)h̃(−q) ∼ Y0q

4
z/(R

2q4)h̃(q)h̃(−q)
from Eq. 9. Since ℓ∗ ≪ ℓth, the anharmonic terms are not important as was discussed in the last section. There-
fore, the effective harmonic free energy is

Feff(ℓ
∗) =

∑
q̸=0
q<q∗

A

2

[
B0

ijklqiqjqkql + σijqiqj
]
=
∑
q̸=0
q<q∗

A

2

[
κ0q

4 + σijqiqj
]
h̃(q)h̃(−q). (14)

This free energy is isotropic and the material parameters remain the same as their bare values. The näıve
(Gaussian or harmonic) dimensions of the quantities h̃(q) and σij requiring that [Feff] = 0 and [κ0] = 0 and
expressing dimensionality in wave-vector units [50]:

[h̃(q)] = −1 = (D − 4)/2 ≡ −ζh, [σij ] = 2, (15)

where D = 2 is the dimension of the system. The meaning of these dimensions is that under the scale trans-

formation q → q′ = bq or x → x′ = b−1x, if we transform h̃(q) → h̃′(q′) = b[h̃(q)]h̃(bq) = b−1h̃(bq) and
σij → σ′

ij = b[σij ]σij = b2σij , the harmonic theory remains invariant. With these dimensions we go back to
Feff,1 in Eq. 7 and find the näıve dimensions of the following quantities:

[C0
ijkl] = 2 = 4−D, [ũi] = −1 = D − 3 = 1− 2ζh, [1/R] = 1 = D/2. (16)

This means that under scale transformation q → q′ = bq, C ′0
ijkl = b4−DC0

ijkl meaning as we zoom out of the

system C ′0
ijkl grows for dimensions D < 4. Since C0

ijkl are the coefficients of the anharmonic terms in Eq. 7, the
anharmonic terms are important for dimensions D ≤ 4. This implies that the upper critical dimension of the
theory in Eq. 7 is Du = 4 and the anharmonic terms are relevant in the physical dimension D = 2. This means
that the anharmonic terms will renormalize the parameters B0

ijkl and C0
ijkl at least in the regime ℓth < ℓ∗ ≪ ℓ0el

which we discuss next.
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• ℓth < ℓ∗ ≪ ℓ0el: In this regime, the anharmonic renormalize the parameters B0
ijkl and C0

ijkl to parameters

BR
ijkl(q

∗) and CR
ijkl(q

∗) at scale q∗. However, for ℓ∗ ≳ ℓth when the parameters are only mildly renormalized,

the anisotropic term NR(q)q4z/(R
2DR(q)) in the denominator of the Green’s function in Eq. 11 is still small

w.r.t. the first term BR
ijkl(q)qiqjqkql(we will show the consistency of this once we obtain the renormalization

group flow equations). Therefore, we can implement an isotropic (circular) momentum-shell renormalization
group scheme. We first integrate out all Fourier modes in a thin momentum shell Λ/b < q < Λ and b ≡ ℓ∗/a = es,
with s ≪ 1. Next we rescale lengths and fields:

r = br′, h̃(r) = bζh h̃(r′), ũi(r) = b2ζh−1ũi(r
′) (17)

where ζh is the field-rescaling exponent. We find it convenient to work directly with a D = 2-dimensional
cylindrical shell embedded in d = 3 space, rather than introducing an expansion in ϵ = 4 − D [22, 24]. In
principle, this is dangerous and can give wrong results because if we work in D = 2, ϵ = 4 − 2 = 2 is large
and there is no small parameter in the perturbative renormalization scheme. However, later we show using the
molecular dynamics simulations that the results obtained by directly working inD = 2 matches with simulations.
Finally, we define new elastic moduli B′

ijkl, C
′
ijkl, and a new external pressure σ′

ij , such that the free-energy
functional in Eqs. 7 and 9 retain the same form after the renormalization group steps. We then write the ordinary
differential equations for the parameters w.r.t. s, called β functions [50, 51]. To obtain the contribution to the
renormalization of Bijkl from the anharmonic terms, we find it easier to work with the effective free energy Feff

where the in-plane phonon are completely integrated out (see Fig. 2). However, for Cijkl, it is much simpler to
use the free energy Feff,1 (see Fig. 3). To one-loop order we get:

FIG. 2. Feynman diagrams relevant to the renormalization of bending rigidity. (a) Four-point and (b) three-point vertices
describe the quartic and cubic terms in the effective free energy of Eq. 9, respectively. the straight legs represent radial
displacement fields h̃(q). The red part of the three-point vertex in (b) connects to the field h̃(q) corresponding to wave vector
which is in the argument of PT

ij . (c–e) One-loop diagrams that contribute to the renormalization flows of the bending rigidities

BR
ijkl. The momentum p in (c), (d), (e) is the loop momentum which is integrated over a shell Λ/b < p < Λ and whole Fourier

space in momentum-shell renormalization and self consistent calculation respectively.

βBijkl
=

dB′
ijkl

ds
= 2(ζh − 1)B′

ijkl +
A

4π2

d

ds

∫
Λ/b<|p|<Λ

d2p εimεjnεkrεltpmpnprpt
N(C ′

ijkl)

D(C ′
ijkl;p)

Ghh(p)

− 2A2

4π2R′2kBT

d

ds

∫
Λ/b<|p|<Λ

d2p εimεjnεkrεltpmpnprptp
4
z

N2(C ′
ijkl)

D2(C ′
ijkl;p)

G2
hh(p),

(18a)
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FIG. 3. Feynman diagrams relevant to the renormalization of in-plane moduli. (a) Three-point (b) four-point vertices describe

the cubic ũh̃h̃ and quartic h̃h̃h̃h̃ terms in the free energy of Eq. 7, respectively. The wiggly line in (a) is the leg correspoding to
in-plane displacement field ũi(q). (c) One-loop diagram that contributes to the renormalization flows of the in-plane stiffnesses
CR

ijkl associated with the three-point vertex in (a). The connected legs in these diagrams represent the propagators Ghh(q).
The momentum p in (c) is the loop momentum which is integrated over a shell Λ/b < p < Λ and whole Fourier space in
momentum-shell renormalization and self consistent calculation respectively.

βCijkl
=

dC ′
ijkl

ds
= 2(2ζh − 1)C ′

ijkl −
A2

8π2kBT
C ′

ijmnC
′
rtkl

d

ds

∫
Λ/b<|p|<Λ

d2p pmpnprptG
2
hh(p), (18b)

βσij
=

dσ′
ij

ds
= 2ζhσ

′
ij , (18c)

βR =
dR′

ds
= −R′, (18d)

where εij is the permutation symbol (ε11 = ε22 = 0 and ε12 = −ε21 = 1). The scale-dependent parameters B′
ijkl,

C ′
ijkl, and σ′

ij , obtained by integrating the differential equations in Eqs. 18 up to a scale s = ln(ℓ∗/a) with initial

conditions B′
ijkl(0) = κ0δijδkl, Cijkl(0) = λ0δijδkl + µ0(δikδjl + δilδjk) and σij(0) = 0, are related to the scale-

dependent renormalized parameters as BR
ijkl(s) = B′

ijkl(s)e
(2−2ζh)s = B′

ijkl(s), C
R
ijkl(s) = C ′

ijkl(s)e
(2−4ζh)s =

C ′
ijkl(s)e

−2s and σR
ij(s) = σ′

ij(s)e
−2s, since ζh = 1.

With the initial conditions just mentioned, the only term that can make the RG flow anisotropic is the last
term in Eq. 18a. In the limit ℓth < ℓ∗ ≪ ℓ0el, the second and third terms in Eq. 18a are ∼ kBTY

′/(κ′Λ2) and
∼ kBTY

′2/(κ′2R′2Λ6) respectively. The third term is of the order of the second terms when:

kBTY
′/(κ′Λ2) ≲ kBTY

′2/(κ′2R′2Λ6)

⇒ kBTYR(s)e
2sa2/κR(s) ≲ kBTY

2
R(s)e

4sa6/(κ2
R(s)R

2e−2s)

⇒ 1 ≲ YR(s)(ℓ/a)
4a4/(κR(s)R

2)

⇒ ℓ ≳ (κR(s)R
2/YR(s))

1/4

(19)

Comparing the right hand side of the last line of Eq. 19 with Eq. 12, we define a new elastic length scale as

ℓel ≡
π

qel
= π

(
κR(ℓel)R

2

YR(ℓel)

) 1
4

, (20)

where κR(ℓel) and YR(ℓel) are themselves dependent on the elastic length scale. We will give a better estimate
of elastic length later. From, Eq. 19, we see that the third term in Eq. 18a, which is anisotropic, is negligible
compared to the isotropic second term in the regime ℓth < ℓ∗ ≪ ℓel, and can be ignored. Therefore, in this
region the material parameters remain isotropic. In this limit, the β-functions are exactly the same as those for
a thermally fluctuating isotropic sheet [49]. Hence, in this regime, the scale dependence of the isotropic material
parameters is the same as in case of isotropic sheets:

κR(ℓ)

κ0
≈ (ℓ/ℓth)

η, ℓth ≪ ℓ ≪ ℓel,

λR(ℓ)

Y0
,
µR(ℓ)

Y0
,
YR(ℓ)

Y0
≈ c(ℓ/ℓth)

−ηu , ℓth ≪ ℓ ≪ ℓel,

(21)
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where the prefactor c is −0.36, 0.72 and 1.0 for λR, µR and YR respectively [49], η ≈ 0.8− 0.85 [26, 28, 49], and
the exponents η and ηu satisfy the identity 2η + ηu = 2, which is a result of infinitesimal rotational symmetry
of the system about in-plane axes [22]. Replacing These expressions of κR(ℓ) and YR(ℓ) in Eq. 20 we get the
following estimate of elastic length:

ℓel =
π

qel
=

(
κ0R

2qη+ηu

th

Y0

) 1
4−η−ηu

. (22)

A better estimate of the thermal length scale can also be obtained from Eq. 18a. This is the scale, ℓ = aes,
at which the second term is comparable to the first (Gaussian) term of Eq. 18a is the system size where
the anharmonicity of the free energy becomes important. Then, by simplifying the second term in Eq. 18a
using the fact that the material parameters are isotropic and using the expressions κ′(s) = κR(s) ≈ κ0 (the
last equality is due to the fact that the parameters only start to renormalize at the thermal length scale),
Y ′(s) = YR(s)e

2s ≈ Y0e
2s ≈ κ0(s), s = ln(ℓth/a), Λ = π/a, we get [49]:

ℓth ≡ π

qth
=

√
16π3κ2

0

3kBTY0
. (23)

B. Scaling analysis for ℓ∗ ≫ ℓel

Thus far, in our discussion, we have seen that up to the elastic length scale the parameters remain isotropic
and BR

ijkl(qel) ≈ κR(qel)δijδkl ≈ δijδklκ0(qel/qth)
−η and CR

ijkl(qel) ≈ λR(qel)δijδkl + µR(qel)(δikδjl + δilδjk) ≈
Y0(−0.36δijδkl + 0.72(δikδjl + δilδjk))(qel/qth)

ηu . Therefore, integrating out the degrees of freedom on scales smaller
than ℓel, the free energy takes the form:

F 0
eff(qel)/A =

∑
q̸=0
q<qel

1

2

(
BR

ijkl(qel)qiqjqkql +
q4zN(CR

ijkl(qel))

R2D(CR
ijkl(qel);q)

)
h̃(q)h̃(−q)

≈
∑
q̸=0
q<qel

1

2

(
κR(qel)q

4 +
q4zYR(qel)

R2q4

)
h̃(q)h̃(−q),

(24a)

F I
eff(qel)/A =

∑
q1+q2=−q̸=0
q1,q2,q<qel

q2z
2q2

[q1iP
T
ij (q)q2j ]

N(CR
ijkl(qel))q

4

RD(CR
ijkl(qel);q)

h̃(q)h̃(q1)h̃(q2)

+
∑

q1+q2=q̸=0
q3+q4=−q ̸=0

q1,q2,q3,q4,q<qel

1

8
[q1iP

T
ij (q)q2j ][q3iP

T
ij (q)q4j ]

N(CR
ijkl(qel))q

4

D(CR
ijkl(qel);q)

h̃(q1)h̃(q2)h̃(q3)h̃(q4),

≈
∑

q1+q2=−q̸=0
q1,q2,q<qel

[q1iP
T
ij (q)q2j ]

YR(qel)q
2
z

2Rq2
h̃(q)h̃(q1)h̃(q2)

+
∑

q1+q2=q̸=0
q3+q4=−q ̸=0

q1,q2,q3,q4,q<qel

YR(qel)

8
[q1iP

T
ij (q)q2j ][q3iP

T
ij (q)q4j ]h̃(q1)h̃(q2)h̃(q3)h̃(q4).

(24b)

Starting from this course-grained free energy, the harmonic approximation to the Green’s function is:

G0
hh(q; q < qel) =

kBT/A

κR(qel)q4 +
YR(qel)q4z

R2q4

, (25)

which is aniostropic for q < qel. Now, following the argument of [52] (section V), the regime of wavevectors that

dominates the h̃-fluctuations is q8 ≈ (qelqz)
4 i.e., qz = q2φ/qel. Therefore, for small q ≪ qel, qz ∼ q2φ ≪ qφ. This leads
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to a simplification of the expression of D(Cijkl;q) keeping only the lowest order terms in qφ:

q4zN(CR
ijkl(qel))

D(CR
ijkl(qel);q)

≈
CR

φφφφ(qel)C
R
φzφz(qel)C

R
zzzz(qel)− CR

φφzz(qel)
2CR

φzφz(qel)

CR
φφφφ(qel)C

R
φzφz(qel)

q4z
q4φ

= Y R
zz(qel)

q4z
q4φ

. (26)

In this regime, if we count the dimension of wave vector component qφ as [qφ] = 1, we have to count the dimension
of qz as [qz] = 2 since qz ∼ q2φ. This happens in strongly anisotropic systems, see for example [53]. In fact the scaling
theory that will be presented in this paper is identical to that of tubules found in [52] as well as that of membranes
under uni-axially tension [54]. Though these are different systems physically, the scaling of the correlation functions
and the arguments to obtain these scalings are identical. Then, the dimension of area A is [A] = −1− 2 = −3. With
these, and requiring that Gaussian part of the effective free energy

F 0
eff(qel) ≈

∑
q̸=0
q<qel

A

2

(
BR

ijkl(qel)qiqjqkql +
q4zY

R
zz(qel)

R2q4φ

)
h̃(q)h̃(−q) (27)

dimensionless, we get the following nav̈e dimensions:

[h̃(q)] = −1/2, [BR
φφφφ(qel)] = 0, [BR

φφzz(qel)] = −2, [BR
zzzz(qel)] = −4, [Y R

zz(qel)/R
2] = 0 (28)

Therefore, the terms BR
φφzz(qel)q

2
φq

2
z h̃(q)h̃(−q), BR

zzzz(qel)q
4
z h̃(q)h̃(−q) are irrelevant. Keeping only the relevant terms

then the harmonic part of the free energy is:

F 0
eff(qel) ≈

∑
q ̸=0
q<qel

A

2

(
BR

φφφφ(qel)q
4
φ +

q4zY
R
zz(qel)

R2q4φ

)
h̃(q)h̃(−q), (29)

and the harmonic Green’s function can be approximated as:

G0
hh(q; q < qel) ≈

kBT/A

BR
φφφφ(qel)q

4
φ +

Y R
zz(qel)q

4
z

R2q4φ

. (30)

To get the näıve dimensions of other moduli, first go back to the form of the in-plane strain tensor and require that
all the terms in the same component of strain have the same dimension. This way we get:

ũφφ : [∂φũφ] = [h̃/R] = [(∂φh̃)
2] = 1 ⇒ [ũφ] = 0, [1/R] = 3/2,

ũzz : [∂zũz] = [(∂zh̃)
2] = 3 ⇒ [ũz] = 1,

ũφz : [∂φũz] = [∂zũφ] = [(∂zh̃)(∂φh̃)] = 2,

(31)

where we used ũφφ and ũzz get the dimensions of ũφ, ũz and 1/R, and checked their consistency with ũφz. With
these dimensions, we use the free energy in Eq. 7 to find the dimensions of CR

ijkl(qel):

[CR
φφφφ(qel)] = 1, [CR

φφzz(qel)] = [CR
φzφz(qel)] = −1, [CR

zzzz(qel)] = −3. (32)

This means that only terms with CR
φφφφ(qel) as coefficient are relevant. Keeping only terms with coefficients CR

φφφφ(qel)

in Eq. 7, if we integrate out the in-plane displacements, the interacting part F I
eff(qel) of effective free energy is

F I
eff(qel) = 0. Therefore, the effective free energy:

Feff(qel) ≈ F 0
eff(qel) ≈

∑
q ̸=0
q<qel

A

2

(
BR

φφφφ(qel)q
4
φ +

q4zY
R
zz(qel)

R2q4φ

)
h̃(q)h̃(−q) (33)

describes a free field theory and BR
φφφφ(qel) and Y R

zz(qel) do not renormalize any further as we integrate out Fourier
modes beyond q < qel:

BR
φφφφ(q) ≈ BR

φφφφ(qel) = κR(qel) ≈ κ0(qel/qth)
−η, (34a)

Y R
zz(q) ≈ Y R

zz(qel) = YR(qel) ≈ Y0(qel/qth)
ηu . (34b)
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Hence, the Green’s function Ghh(q; q < qel) = G0
hh(q; q < qel). However, the free energy in Eq. 7 is not a free field

theory because CR
φφφφ(qel) is relevant. Then we can use the Feynman diagram in Fig. 4 to write a self consistent

perturbative equation (see a similar analysis in [52], see also [54] for more details):

CR
φφφφ(q) = CR

φφφφ(qel)−
A2

8π2kBT
(CR

φφφφ(q)C
R
φφφφ(qel))

∫
|p|<qel

dpφdpz p
2
φ(pφ − qφ)

2Ghh(p)Ghh(p− q)

= CR
φφφφ(qel)−

kBT

8π2
(CR

φφφφ(q)C
R
φφφφ(qel))

∫
|p|<qel

dpφdpz p
2
φ(pφ − qφ)

2×

1(
BR

φφφφ(qel)p
4
φ +

Y R
zz(qel)p

4
z

R2p4
φ

)(
BR

φφφφ(qel)(pφ − qφ)4 +
Y R
zz(qel)(pz−qz)4

R2(pφ−qφ)4

) .
(35)

One can extract how the integral scales with qφ or qz by non dimensionalizing pφ and pz with either qφ and q2φ or

q
1/2
z and qz respectively. By doing this one can find that the integral scales as q−1

φ ∼ q
−1/2
z . This observation tells us

that the self consistent equation can be solved by the ansatz:

CR
φφφφ(q) = qηφ

φ Ωφφφφ(qφ/(qelqz)
z). (36)

Using simple power counting, we find that

ηφ = 1, z = 1/2. (37)

From the form of the integral in Eq. 35, it is easy to see that the function Ωφφφφ is independent of qφ when qφ → 0,
as well as independent of qz when qz → 0. This means the following:

Ωφφφφ(x) ∝

{
consant, x → ∞
x−ηφ , x → 0

. (38)

This implies the following:

CR
φφφφ(q) ∝

{
qφ, q < qel < qth and qφ ≫ (qelqz)

1/2

√
qz, q < qel < qth and qφ ≪ (qelqz)

1/2
. (39)

Although the other moduli are irrelevant, we can repeat this same analysis to obtain how they scale. We can check
how these moduli scale in our simulations and therefore better verify our theory and provide an understanding of the
mechanical properties of nanotubes. We can check for example how the shear modulus should scale:

CR
φzφz(q) = CR

φzφz(qel)−
kBT

2π2
CR

φzφz(q)C
R
φzφz(qel)

∫
dpφdpz(pφ − qφ)(pz − qz)pφpz×

1(
BR

φφφφ(qel)p
4
φ +

Y R
zz(qel)p

4
z

R2p4
φ

)(
BR

φφφφ(qel)(pφ − qφ)4 +
Y R
zz(qel)(pz−qz)4

R2(pφ−qφ)4

) . (40)

By non dimensionalizing pφ and pz with either qφ and q2φ respectively, we find the integral scales as qφ ∼ q
1/2
z → 0 as

q → 0. This implies that CR
φzφz(q) ≈ CR

φzφz(qel):

CR
φzφz(q) ≈ CR

φzφz(qel), q < qel < qth. (41)

FIG. 4. The self consistent perturbative equation for CR
ijkl(q) is shown diagrammatically using the Cijkl∂ih̃∂j h̃∂kh̃∂lh̃ vertex.

The symmetrization is due to the major symmetry of the Hamiltonian. The dotted line indicates CR
ijkl(qel) and the doubled

dotted line CR
ijkl(q).
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Similarly, for CR
φφzz(q), we have the following self-consistent equation:

CR
φφzz(q) =CR

φφzz(qel)

− kBT

16π2

∫
dpφdpz

[CR
φφφφ(q)(pφ − qφ)

2 + CR
φφzz(q)(pz − qz)

2][CR
φφzz(qel)p

2
φ + CR

zzzz(qel)p
2
z](

BR
φφφφ(qel)p

4
φ +

Y R
zz(qel)p

4
z

R2p4
φ

)(
BR

φφφφ(qel)(pφ − qφ)4 +
Y R
zz(qel)(pz−qz)4

R2(pφ−qφ)4

)
− kBT

16π2

∫
dpφdpz

[CR
φφφφ(qel)(pφ − qφ)

2 + CR
φφzz(qel)(pz − qz)

2][CR
φφzz(q)p

2
φ + CR

zzzz(q)p
2
z](

BR
φφφφ(qel)p

4
φ +

Y R
zz(qel)p

4
z

R2p4
φ

)(
BR

φφφφ(qel)(pφ − qφ)4 +
Y R
zz(qel)(pz−qz)4

R2(pφ−qφ)4

) .

(42)

Since the CR
zzzz(q) term is less relevant (has a lower scaling dimension) than the CR

φφzz(q) term, we may ignore its

contribution to the equation. In addition CR
zzzz(qel)p

2
z scales with a higher power of qφ than Cφφzz(qel)p

2
φ and may

thus be ignored. The integral with coefficient CR
φφφφ(q)C

R
φφzz(qel) scales as q−1

φ and the integral with coefficient

CR
φφzz(q)C

R
φφzz(qel) scales as qφ. Finally, the integral with coefficient Cφφφφ(qel)C

R
φφzz(q) scales as q

−1
φ . In addition,

as we have seen before, CR
φφφφ(q) ∼ qφ. This means that the self consistent equation gives the following:

CR
φφzz(q) ≈ const.× CR

φφzz(qel) + (const.× qφ + const.× q−1
φ )× CR

φφzz(q), q < qel < qth,

⇒CR
φφzz(q)(1 + (const.× qφ + const.× q−1

φ )) = const.× CR
φφzz(qel), q < qel < qth.

(43)

Hence, for the two sides in the above equation to have the same scaling as qφ → 0, it is necessary that CR
φφzz(q) ∼ qφ

and thus more explicitly:

CR
φφzz(q) ∝

{
qφ, q < qel < qth and qφ ≫ (qelqz)

1/2

√
qz, q < qel < qth and qφ ≪ (qelqz)

1/2
. (44)

For CR
zzzz(q), we have the following self-consistent equation:

CR
zzzz(q) = CR

zzzz(qel)−
kBT

8π2

∫
dpφdpz

[CR
zzzz(q)(pz − qz)qz + CR

φφzz(q)(pφ − qφ)qφ][C
R
zzzz(qel)(pz − qz)qz + CR

φφzz(qel)(pφ − qφ)qφ]×
1(

BR
φφφφ(qel)p

4
φ +

Y R
zz(qel)p

4
z

R2p4
φ

)(
BR

φφφφ(qel)(pφ − qφ)4 +
Y R
zz(qel)(pz−qz)4

R2(pφ−qφ)4

) . (45)

By non dimensionalizing pφ and pz with qφ and q2φ respectively, we find the integral scales as q3φ ∼ q
3/2
z → 0 as qφ → 0.

This implies that in the limit of qφ → 0, CR
zzzz(q) ≈ CR

zzzz(qel):

CR
zzzz(q) ≈ CR

zzzz(qel), q < qel < qth. (46)

Earlier, we found that Y R
zz(q) stops renormalizing in the regime q < qel < qth. But we know that Yzz = Czzzz −

C2
φφzz/Cφφφφ. Since CR

zzzz ∼ constant and (CR
φφzz)

2/CR
φφφφ ∼ q2φ/qφ = qφ → 0 as qφ → 0, and therefore CR

zzzz −
(CR

φφzz)
2/CR

φφφφ ∼ constant which matches with our result for Y R
zz . Similarly, Yφφ = Cφφφφ−C2

φφzz/Czzzz ∼ qφ. We
summarize these scalings in Table I.

In the beginning of this section, we assumed ℓel ≫ ℓth. However, even if ℓth > ℓel, all the analysis starting from
the näıve dimensions in Eqs. 28 and 31 would remain the same in the regime ℓ > ℓth > ℓel except the fact that
we would our starting course-grained free energy would be Feff(qth) instead of Feff(qel) in Eq. 24 and the material
parameters in the course-grained free energy Feff(qth) would be BR

ijkl(qth) ≈ B0
ijkl = κ0δijδkl and CR

ijkl(qth) ≈ C0
ijkl =

λ0δijδkl +µ0(δikδjl + δilδjk) instead of BR
ijkl(qel) and CR

ijkl(qel) in Feff(qel) since the elastic moduli do not renormalize
in the regime q > qth. We summarize these scalings in Table II.
Note that the scaling exponents in the regime q < min{qth, qel} hold to all orders of perturbation theory. This is

because of the following reason. Since the parameters in the radial correlation function remain constant due to the
irrelevance of all anharmonic terms in the effective free enegy Feff, the scaling exponents of the in-plane moduli are
obtained using simple power counting from self-consistent equations like Eqs. 35 and 45. This remains the same to
all orders in perturbation [52].
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TABLE I. Scaling functions for ℓth < ℓel ⇒ qth > qel

Scale q > qth > qel qth > q > qel qth > qel > q

CR
φφφφ/Y0

1
1−ν2

0

(
q

qth

)ηu
(

qel
qth

)ηu
(

qφ
qel

)
Ωφφφφ

(
qφ/(qelqz)

1/2
)

CR
φφzz/Y0

ν0
1−ν2

0

(
q

qth

)ηu
(

qel
qth

)ηu
(

qφ
qel

)
Ωφφzz

(
qφ/(qelqz)

1/2
)

CR
φzφz/Y0

1
2(1+ν0)

(
q

qth

)ηu
(

qel
qth

)ηu

CR
zzzz/Y0

1
1−ν2

0

(
q

qth

)ηu
(

qel
qth

)ηu

Y R
φφ/Y0 1

(
q

qth

)ηu
(

qel
qth

)ηu
(

qφ
qel

)
ΩYφφ

(
qφ/(qelqz)

1/2
)

Y R
zz/Y0 1

(
q

qth

)ηu
(

qel
qth

)ηu

BR
φφφφ/κ0 1

(
q

qth

)−η (
qel
qth

)−η

TABLE II. Scaling Exponents for ℓel < ℓth ⇒ qel > qth

Scale q > qel > qth qel > q > qth qel > qth > q

CR
φφφφ/Y0

1
1−ν2

0

1
1−ν2

0
∼

(
qφ
qel

)
Ωφφφφ

(
qφ/(qelqz)

1/2
)

CR
φφzz/Y0

ν0
1−ν2

0

ν0
1−ν2

0
∼

(
qφ
qel

)
Ωφφzz

(
qφ/(qelqz)

1/2
)

CR
φzφz/Y0

1
2(1+ν0)

1
2(1+ν0)

constant

CR
zzzz/Y0

1
1−ν2

0

1
1−ν2

0
constant

Y R
φφ/Y0 1 1 ∼

(
qφ
qel

)
ΩYφφ

(
qφ/(qelqz)

1/2
)

Y R
zz/Y0 1 1 constant

BR
φφφφ/κ0 1 1 constant

V. COMPARISON WITH MOLECULAR DYNAMICS SIMULATIONS

To test our results tabulated in Tables I and II, we compared with molecular dynamics (MD) simulations. Instead
of using a fully atomistic model to simulate a nanotube, we used a convenient coarse-grained discrete model made of
a triangular lattice of point masses with nearest neighbors connected by harmonic springs (see Fig. 1(a)). Then the
stretching part in the free energy in Eq. 3 can be modeled by assigning the equilibrium length of the springs to be a0
and a spring constant Kb:

Fstretch =
1

2
Kb

∑
⟨i,j⟩

(|xi − xj | − a0)
2, (47)

where xi is the position of ith mass and the sum is over nearest neighbor point masses i and j. The energy cost of
bending in Eq. 3 can be modeled as [33, 55]:

Fbending = Kd

∑
(α,β)

(1 + cos(θαβ − θ0αβ)), (48)

where θαβ is the angle between two adjacent triangles α and β as shown in Fig. 1(a) and θ0αβ is the value of this angle

at minimum bending energy configuration. Note that θ0αβ depends on the curvature of the nanotube and fineness of

the discretization. The parameters Kb and Kd are related to the continuum material parameters as follows [55]:

Y0 =
2√
3
Kb, λ0 = µ0 =

√
3

4
Kb, ν0 =

1

3
, κ0 =

√
3

2
Kd. (49)

The simulations were done with LAMMPS package [56, 57]. As will be discussed later, the simulations were done
in isobaric-isothermal (NPT) or canonical (NVT) ensemble. Temperature and pressure were controlled using Nosé-
Hoover type thermostat and barostat [58]. The parameters Kd, Kb, T , the aspect ratio L/(2πR) and number of point
masses were varied to probe different scaling regimes. The time steps were chosen to be one tenth of the smallest of
the characteristic time scales of the system:

τT = a

√
m

kBT
, τb =

√
m

Kb
, τd = a0

√
m

Kd
, (50)



14

where m is the mass of each point mass, and τT is characteristic time a point mass takes to cover one atomic length at
thermal velocity, τb is characteristic time of the spring-mass system, τd is characteristic time of the dihedral bond-mass
system. A simulation generally ran for approximately 1.6x108−109 time steps. For each simulation, the equilibration
was checked using autocorrelation time of different parameters such as radial fluctuations, length of the shell, etc.

First, simulations were done with periodic boundary condition along the axial direction and the simulation box
was allowed to change its size in the axial direction maintaining zero pressure condition so that the cylindrical shell
could fluctuate freely. From these simulations, the radial displacements were calculated. The Fourier transform of
the correlation function ⟨|h̃(qφ, qz = 0)|2⟩ and ⟨|h̃(qφ = 0, qz)|2⟩ of radial displacement are plotted in Fig. 5. Fig. 5(a)

shows the collapse around qth. The dotted lines for ⟨|h̃(qφ, qz = 0)|2⟩ and ⟨|h̃(qφ = 0, qz)|2⟩ coincide with each other in
the region q > qel for each parameter set. This is because in this regime the effect of anisotropic curvature is negligible
in this regime. Furthermore, in this regime, we see that the correlation function goes as ∼ q−4 when q > qth and
∼ q−3.2 when q < qth. This is because in the former case the effect of the anharmonic terms are not important and
the system is in the harmonic regime, whereas in the latter case the anharmonic terms are important and since q > qel
we see the exponent −4+ η = −3.2. However, in the regime q < qel they diverge from each other. To understand this
regime better, scaling collapse around qel is done in Fig. 5(b) keeping qel ≤ qth for all simulations. Again, for q > qel,

⟨|h̃(qφ, qz = 0)|2⟩ and ⟨|h̃(qφ = 0, qz)|2⟩ coincide with each other and scale as ∼ q−3.2 because here qel < q < qth.
However, for q < qel < qth, we see new scaling laws. In the φ direction the correlation function scales as ∼ q−4

φ ,

whereas in the z direction the correlation function scales as ∼ q
−1/2
z . These observations can be justified using the

Green’s function in Eq. 11 and Table I in the following way:

⟨|h̃(qφ, qz = 0)|2⟩ = kBT/A

BR
φφφφ(q)q

4
φ

=
kBT/A

κR(q)q4φ
≈ kBT/A

κ0(qel/qth)−ηq4φ
for qφ < qel < qth, (51a)

⟨|h̃(qφ = 0, qz)|2⟩ =
kBT/A

BR
zzzz(q)q

4
z +

Y R
φφ(q)

R2

≈ kBT/A

Y R
φφ(q)/R

2
≈ kBT/A

Y0(qel/qth)ηu(qz/qel)1/2/R2
for qz < qel < qth. (51b)

In total, both panels of Fig. 5 can be summarized using the following equations:

FIG. 5. Scaling collapse for radial displacement correlation function ⟨|h̃(q)|2⟩ for molecular dynamics simulations with zero

pressure condition in the axial direction. (a) Correlation function ⟨|h̃(qφ, qz = 0)|2⟩ and ⟨|h̃(qφ = 0, qz)|2⟩ collapsed around qth
plotted in dots. For a single parameter set, the same color was used to plot the correlation function in both φ and z direction.
The dotted lines of different colors correspond to different parameter sets. The vertical dashed lines of different colors show
qel/qth corresponding to the dotted curves of same color. The red and green slanted dashed lines are (qφ/qth)

−3.2 and (qφ/qth)
−4

respectively. (b) Correlation functions ⟨|h̃(qφ, qz = 0)|2⟩ and ⟨|h̃(qφ = 0, qz)|2⟩ collapsed around qel plotted in dots. For a single
parameter set, the same color was used to plot the correlation function in both φ and z direction. The vertical dashed lines
of different colors show qth/qel corresponding to the dotted curves of same color. The red, blue and green slanted dashed lines

are (qz/qth)
−1/2, (qφ/qth)

−1/2 and (q/qth)
−3.2 respectively. In both panels, the curling up of the tails of the simulation curves

corresponds to wave vectors close to the edge of the first Brillouin zone.
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⟨|h̃(qφ, qz = 0)|2⟩ = kBT/A

BR
φφφφ(q)q

4
φ

≈


kBT/A
κ0q4φ

, qel < qth < qφ
kBT/A

κ0(qφ/qth)−ηq4φ
, qel < qφ < qth

kBT/A
κ0(qel/qth)−ηq4φ

, qφ < qel < qth

, (52a)

⟨|h̃(qφ = 0, qz)|2⟩ =
kBT/A

BR
zzzz(q)q

4
z +

Y R
φφ(q)

R2

≈

{
kBT/A
κR(q)q4z

, qel < qz
kBT/A

Y R
φφ(q)/R2 , qz < qel

≈


kBT/A
κ0q4φ

, qel < qth < qz
kBT/A

κ0(qz/qel)−ηq4z
, qel < qz < qth

kBT/A
Y0(qel/qth)ηu (qz/qel)1/2/R2 , qz < qel < qth

.

(52b)
This confirms the nontrivial scaling of Yφφ in the regime q < qel < qth as we predicted in Section IVB.

To probe the Young’s modulus Yzz in the axial direction, we performed simulations changing the length of the box
in steps and at each step letting the shell equilibrate under thermal fluctuation. This ensemble is canonical (NVT)
since we fixed the volume of the system at each step. Then, at each value of box length we recorded the pressure of
the box in the axial direction. From that, we extracted the normal stress in the axial direction σzz (to get the stress
from the pressure, we multiply the pressure with the area of the wall and divide by the perimeter of the nanotube) and
plotted the average value of that as a function of strain (defined as the relative change of length from the size of the
box at the minimum energy configuration) for different values of temperature T in Fig. 6(a). Note that in the figure,
the strain at which the average stress is zero is different for different temperatures. This is because under thermal
fluctuations, the shell shrinks (see Eq. 8b) in equilibrium (at zero external stress condition on the average). More

FIG. 6. Simulation results from NVT simulations fixing the length of the cylindrical shell. (a) Stress vs. strain curves for a fixed
parameter set γ = 2× 106, L/2πR = 2, 2πR/a0 = 48 at different temperatures (the colorbar shows kB/κ0). The vertical axis
of the plot is |σzz|/σ0

c , where σ0
c = 2

√
Y0κ0/R is the critical buckling load for classical cylindrical shell [59]. The maximum of

the curve at each temperature is the critical buckling load for molecular dynamics, which is smaller than the classical buckling
load σ0

c because of the discrete nature and corresponding non-ideality of our model. (b) Young’s modulus extracted from the
slope of the strain vs. strain curves (example shown in (a)) at zero stress plotted as a function of ℓel/ℓth. The black dots
correspond to the parameter set γ = Y0R

2/κ0 = 1× 105, L/2πR = 1, 2πR/a0 = 48, L/ℓel ≈ 35. The blue dots correspond to
the parameter set γ = Y0R

2/κ0 = 2× 106, L/2πR = 2, 2πR/a0 = 48, L/ℓel ≈ 126. The black dashed line shows (ℓel/ℓth)
−0.37.

importantly, we notice that the slope of the stress vs. strain curves change with temperature. The slope of the stress
vs. strain curve at zero stress is defined as the Young’s modulus Yzz in the axial direction. We plotted the normalized
Young’s modulus Yzz/Y0, extracted this way, as a function of ℓel/ℓth in Fig. 6(b) for two different parameter sets. The
Young’s moduli for these two parameter sets decrease with increasing system size but only collapse on top of each
other when the horizontal axis is ℓel/ℓth in fig. 6(b). This implies that Yzz stops renormalizing at the elastic length
scale ℓel confirming Eq. 34b. Furthermore, from Fig. 6(b), we see that the Y R

zz scales as ∼ (ℓel/ℓth)
−0.37 = (ℓel/ℓth)

−ηu

confirming the scaling law in the regime ℓth < ℓ < ℓel.
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VI. CONCLUSION

We have studied the mechanical properties of thermally fluctuating nanotubes. We have shown that the presence
of length scales ℓth and ℓel gives different scaling regimes. In particular, at scales larger than both ℓth and ℓel, we find
that the moduli become anisotropic. Moreover, in this regime, we obtain new scaling exponents for the elastic moduli.
For system sizes falling between these two lenth scales and with ℓth < ℓel, we recover the same scaling exponents as
in the case of isotropic flat solid membranes. We also note that these scaling results have been obtained previously in
tubules [52] as well as membranes under uni-axial tension [54]. It would be of interest to find other physical scenarios
that exhibit similar scaling behaviors.

One immediate extension of this work can be to study the effect of thermal fluctuations on the critical axial buckling
load. We see from Fig. 6(a), the critical buckling load initially reduces with increasing temperature (see the bluer
curves), but starts increasing (see the greener curves) with increasing temperature. We anticipate that the initial dip
is due to the thermal activation over the energy barrier crossing to the buckled state, but the later increase is due to
renormalization of elastic moduli. However, deeper investigation is required for better understanding.

The theory presented here is limited to shells with length L to circumference 2πR with a ratio of order 1. However,
shells with L ≫ 2πR or L ≪ 2πR may also be importance. In both cases, one can, in principle, integrate out the
Fourier modes in the shorter direction and study the effectively 1-dimensional system. In the case L ≫ 2πR, we
expect the shell to behave like a polymer chain [60] and perform a random walk when the length is larger than its
persistence length. In the case L ≪ 2πR, we expect the shell to behave like an elastic ring which also performs a
random walk beyond a persistence length [61] and can show interesting instabilities under axisymmetric pressure [62].

While the results presented here are for single-walled nanotubes, similar studies can also be done with multi-
walled nanotubes. Whereas a realistic model with van der Waals interactions between layers may be too difficult for
analytical methods, a phenomenological elasticity-like model as described in [63] adapted for cylindrical shells may
be more amenable to analytical studies.
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