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Collectives of actively moving particles can spontaneously separate into dilute and dense phases—a
fascinating phenomenon known as motility-induced phase separation (MIPS). MIPS is well-studied for
randomly moving particles with no directional bias. However, many forms of active matter exhibit
collective chemotaxis, directed motion along a chemical gradient that the constituent particles can generate
themselves. Here, using theory and simulations, we demonstrate that collective chemotaxis strongly
competes with MIPS—in some cases, arresting or completely suppressing phase separation, or in other
cases, generating fundamentally new dynamic instabilities. We establish principles describing this
competition, thereby helping to reveal and clarify the rich physics underlying active matter systems that
perform chemotaxis, ranging from cells to robots.
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The thermodynamics of active matter—collections of
agents that consume energy to move or exert forces—has
been studied extensively due to its fundamental richness as
well as its importance to diverse applications [1,2]. One
prominent class of active matter is that composed of self-
propelled agents, ranging from enzymes [3–5] and cells [6–
9] to synthetic microswimmers and robots [10–12]. These
forms of active matter can often be modeled as collections
of active Brownian particles (ABPs), each of which self-
propels with a velocity of magnitudeU0 and a direction that
is continually reoriented by random thermal fluctuations,
eventually decorrelating over a timescale τR. The persist-
ence length of an ABP trajectory is then given by ∼U0τR;
the directedness of a particle of radius a can there-
fore be described by the reorientation Péclet number
PeR ≡ a=ðU0τRÞ.
Studies of this canonical model have led to fascinating

insights into the thermodynamics of active matter. For
example, phase separation in passive equilibrium systems
typically requires attractive interactions between constitu-
ents; in stark contrast, for small PeR, ABPs undergo
motility-induced phase separation (MIPS) into dense and
dilute phases without attractive interactions [13–18].
Remarkably, this nonequilibrium process can often be
described using models inspired by the phase separation
of thermally equilibrated passive systems [15,19–22].
This prior work focused on ABPs that move randomly,

with no preferred direction. However, many forms of active
matter exhibit collective chemotaxis—directed motion in
response to an external chemical gradient that can be
generated collectively by the agents themselves. In biology,
this phenomenon enables populations of cells to escape
from harmful environments, colonize new terrain, and

migrate as groups [6,23–32]; at the subcellular level,
enzymes may also perform chemotaxis [3–5]. Synthetic
active materials that can perform chemotaxis have also
been developed, often exhibiting new surprises in their
phase behavior—e.g., unusual clustering and oscillatory
density fluctuations [10,11,33–42]. However, despite these
hints that chemotaxis can influence the physics of active
matter, a broader understanding of how exactly chemotaxis
alters MIPS remains lacking.
Here, we address this gap in knowledge by developing a

theoretical model that combines both MIPS and chemo-
taxis, which are usually studied in isolation. We find that
collective chemotaxis can dramatically suppress MIPS,
arrest phase separation, or engender new complex phase
separation dynamics reminiscent of other pattern-forming
systems [43–59], but that arise due to completely different
physics—in this case, due to the competition between
MIPS, which drives ABPs to cluster into dense phases, and
chemotaxis, which instead drives them to disperse away.
Governing equations.—Building on existing continuum

models of MIPS [15,19–22], we describe the time evolution
of the volume fraction ϕ of chemotactic ABPs via the
continuity equation

∂ϕ

∂t
¼ −∇ · J; ð1Þ

J ¼ −M0ϕ∇
�
μ̃hðϕ; PeRÞ − κ∇2ϕ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

MIPS

þ χ0ϕ∇fðc̃Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
chemotaxis

; ð2Þ

where t is time and J is the flux of particles. This flux has
two contributions, as indicated by the underbraces in
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Eq. (2). The first reflects active Brownian motion, as
established by the classical “model B”; in future work, it
would be interesting to explore other models of MIPS that
treat additional complexities [20]. As detailed in Sec. 1 of
[60], M0 ¼ 0.5U2

0τR is the active diffusivity reflecting the
random undirected motion of the particles, μ̃h is the bulk
chemical potential nondimensionalized by the energy scale
0.5ζU2

0τR with drag coefficient ζ, and the characteristic
length scale

ffiffiffi
κ

p
∼U0τR sets the width of the interface

between the dense and dilute phases in MIPS [15,19].
The second term in Eq. (2) represents a new addition of

chemotaxis to this classical model of MIPS. This term is
widely used to describe the chemotaxis of microorganisms
[6,24–32,77] as well as many synthetic forms of active
matter [4,34,78,79]; indeed, it can be directly derived from
an explicit microscopic description of chemotactic ABPs as
detailed in Sec. 2 of [60], based on [34]. Here, c̃ is the
concentration, nondimensionalized by a fixed characteristic
concentration, of a diffusible chemical signal (the “chemo-
attractant”) that the particles sense and direct their motion
in response to. The monotonically increasing function fðc̃Þ
describes the ability of the particles to sense the chemo-
attractant; we take fðc̃Þ ¼ c̃ as an illustrative example
[80,81]. The chemotactic coefficient χ0 describes the ability
of the particles to move up the sensed chemoattractant
gradient. Thus, χ0∇fðc̃Þ describes the chemotactic veloc-
ity, and when multiplied by ϕ describes the chemotactic
flux [82,83]. Hence, we define a new chemotactic Péclet
number PeC ≡ χ0=M0 to describe the competition between
directed chemotaxis and undirected active diffusion.
Chemoattractants (e.g., nutrients) are often taken up by

the particles themselves—thereby collectively generating a
local chemoattractant gradient that the particles bias their
motion in response to [24–26,28,34,37,39,40,84–88].
Thus, we describe the chemoattractant via

∂c̃
∂t

¼ Dc∇2c̃ − kϕgðc̃Þ þ S; ð3Þ

where Dc is the chemoattractant diffusivity, k is the
characteristic volumetric rate of chemoattractant uptake,
and gðc̃Þ describes how uptake rate increases with c̃; we use
the linearized gðc̃Þ ¼ c̃ for simplicity. Finally, S represents
the rate at which chemoattractant is externally supplied,
taken to be constant and spatially uniform as an illustrative
example.
Chemotaxis suppresses MIPS.—First, we establish the

conventional case of MIPS as a baseline, described by our
governing Eqs. (1)–(3) with PeC ¼ 0. To do so, we choose
a functional form for μ̃hðϕ; PeRÞ, given by Eq. (S4) of [60],
that derives from a previously established ABP equation of
state [16,89]. The homogeneous state with constant, spa-
tially uniform ϕðxÞ ¼ ϕ0, where x denotes position,
becomes unstable to fluctuations in ϕ when the free energy
is nonconvex (∂ϕμ̃h < 0). Therefore, the spinodal curve

demarcating the limit of stability is given by ∂ϕμ̃h ¼ 0,
shown by the black curves in Fig. 1; ϕ0 represents the ABP
volume fraction averaged over the entire system. Above
this spinodal curve, the homogeneous state is linearly
stable. Below the spinodal, ABPs spontaneously separate
into dense and dilute phases, initially forming domains with
a most unstable wavelength ∼q−1sp ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2κ=∂ϕμ̃h
p

that
coarsen over time via spinodal decomposition (Movie
S1) as established previously [19,89].
How do the features of MIPS change upon the introduc-

tion of chemotaxis (PeC > 0)? Given a constant and uniform
S, the homogeneous state is now described by spatially
uniform ABP and chemoattractant profiles, ϕðxÞ ¼ ϕ0 and
c̃ðxÞ ¼ c̃0, where c̃0 is given by the steady-state solution to
Eq. (3), c̃0 ¼ S=ðkϕ0Þ. By perturbing this steady state with
small-amplitude fluctuations δϕ ¼ δϕ̂eiq·xþωt and δc̃ ¼
δĉeiq·xþωt of spatial wave vector q and growth rate ω, we
obtain the dispersion relation ωðqÞ, given by Eq. (S33) of
[60], whereq ¼ jqj is thewave number of a givenmode. The
homogeneous state is linearly stable if Reω < 0, which is
always true when ∂ϕμ̃h > 0. We therefore focus our sub-
sequent analysis on the spinodal region of nonchemotactic
MIPS where ∂ϕμ̃h < 0, and nondimensionalize q and ω
by the characteristic nonchemotactic MIPS quantities qsp
and ωsp ≡ ωðqsp;PeC ¼ 0Þ.
As detailed in Sec. 3 of [60], the dispersion relation

for chemotactic MIPS [Eq. (S37)] solely depends on three
dimensionless parameters: α≡ −M0ϕ0∂ϕμ̃h=Dc, which
compares the collective ABP diffusivity −M0ϕ0∂ϕμ̃h to
that of the chemoattractant; the Damköhler number Da≡
kϕ0=ð2Dcq2spÞ ¼ −κkϕ0=ðDc∂ϕμ̃hÞ, which compares the
rates of chemoattractant uptake and diffusion over the length
scale q−1sp =

ffiffiffi
2

p
; and the reduced chemotactic Péclet number

Pe0C ≡ χ0c̃0=ð−M0ϕ0∂ϕμ̃hÞ. Because the MIPS phase dia-
gram is conventionally parametrized by ϕ0 and PeR, which
together set ∂ϕμ̃h [Eq. (S5)], we also define versions of the
three dimensionless parameters that are independent of these
variables: α0 ≡M0=Dc, Da0 ≡ κk=Dc, and PeC given ear-
lier, such that α ¼ −α0ϕ0∂ϕμ̃h, Da ¼ −Da0ϕ0=∂ϕμ̃h, and
Pe0C ¼ −PeC · S=ðkϕ2

0∂ϕμ̃hÞ. Furthermore, because the pro-
portionality between Pe0C and PeC is scaled by S=k, without
loss of generality, we fix the chemoattractant supply rate
S=k ¼ 1. Chemotactic MIPS is then parametrized by a total
of five governing parameters: fϕ0; PeR; α0;Da0; PeCg, as
summarized in Table S1. Thus, to examine how chemotaxis
influences MIPS, we first investigate how the conventional
ϕ0 − PeR phase diagram of MIPS changes upon varying α0,
Da0, and PeC.
As detailed in Sec. 3 of [60] and summarized in

Appendix A, our first main result from the linear stability
analysis is that phase separation is suppressed by chemo-
taxis, but only when two criteria are simultaneously satis-
fied: (i) Pe0C ≥ Pe0Ccrit, and (ii) α ≤ αcrit, where Pe0Ccrit¼
ð1þminfDa;1gÞ2=ð4·minfDa;1gÞ and αcrit ¼ 1þ 2 · Daþ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dað1þ DaÞp

. We therefore designate the limits given by
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Pe0C¼Pe0Ccrit and α ¼ αcrit as “Boundary 1” and “Boundary
2”—shown in the PeR − ϕ0 phase diagrams (Fig. 1) by the
solid and red dotted curves, respectively. Boundary 1 is
colored by the different values of PeC. Boundary 2 does not
depend on PeC. Criteria (i) and (ii) correspond to the regions
above Boundaries 1 and 2, respectively; hence, the region
above both boundaries represents the stable regime in which
the ABPs are in the homogeneous state, while conversely,
the region below either Boundary 1 or 2 represents the
unstable regime in which the ABPs phase separate.
As a starting example, we consider Da0 ¼ 0.2 and

α0 ¼ 1, shown in Fig. 1(a). In this case, Boundary 2 is
below the horizontal axis; hence, the system is linearly stable
above Boundary 1 and unstable below it. Boundary 1 shifts
to lower PeR and a narrower range ofϕ0 with increasing PeC.
That is, the region of instability shrinks and phase separation
is suppressed when chemotaxis is stronger. Numerical
simulations at PeC ¼ 1 confirm this linear stability result:
ABPs are in the homogeneous state above Boundary 1, but

phase separate below it, as shown in Fig. 1(b). Intriguingly,
the features of this phase separation appear to be funda-
mentally distinct from the spinodal decomposition observed
in conventional nonchemotactic MIPS. For example, as
shown in Movie S2, ABPs phase separate into finite-sized
domains that remain stationary and do not subsequently
coarsen—unlike in conventional MIPS.
Next, upon increasing α0 to 4, Boundary 1 remains un-

altered, but Boundary 2 shifts upward, as shown in Fig. 1(c).
As a result, for the case of PeC ¼ 1, Boundary 2 rises above
Boundary 1, which is omitted since Boundary 2 now
corresponds to the limit of stability, as confirmed by
numerical simulations shown in Fig. 1(d). As shown in
Movie S3, ABPs phase separate into finite-sized domains
and bands that form traveling waves, a feature that is
fundamentally distinct both from conventional MIPS and
Fig. 1(b).
Finally, to highlight yet another distinct form of phase

separation, we then increase both α0 and Da0 in Fig. 1(e),
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FIG. 1. Chemotaxis suppresses MIPS. (a),(c),(e) Phase diagram determined by linear stability analysis for different Da0 and α0; ϕ0

represents the system-averaged ABP volume fraction. The black curve shows the limit of stability without chemotaxis, below which is
conventional MIPS. The colored solid and red dotted curves show Boundaries 1 and 2, defined in the main text; different colors indicate
different PeC. Boundary 2 is below the horizontal axis in (a). The region above both boundaries is stable (ABPs in the homogeneous
state), while the region below either boundary is unstable. The different instability types—finite (F) or unbounded (U), stationary (S) or
oscillatory (O)—are denoted by the shaded, unshaded, nonhashed, and hashed regions, respectively. Dash-dotted and dashed
curves indicate the boundaries between F=U and S=O instabilities, respectively. The predictions are corroborated by simulations
(Movies S2-S4), snapshots of which are shown in (b),(d),(f), which focus on the gray boxed regions shown in (a),(c),(e). Snapshots in (b)
and (d) correspond to PeC ¼ 1, while PeC ¼ 0.35 in (f).
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where Boundary 1 shifts downward while Boundary 2
shifts upward, part of which becomes the limit of stability
for PeC ¼ 0.35, confirmed by simulations in Fig. 1(f).
Strikingly, we find that throughout the unstable region,
the patterns vary from traveling bands that are exten-
ded (shaded greenþ hashed region) or less extended
(unshadedþ hashed region) to domains that stretch, rotate,
and translate (unshaded region below the green dashed
curve), as shown in Movie S4.
Taken altogether, these results demonstrate that MIPS is

suppressed when (1) the strength of chemotaxis, as quan-
tified by PeC, and (2) chemoattractant diffusivity relative to
that of the ABPs, as quantified by α−10 , are sufficiently high.
Moreover, our simulations reveal that the features of phase
separation are dramatically altered by chemotaxis—with
separated domains that initially can either be finite-sized or
unbounded in space, and can either be stationary or exhibit
complex oscillatory dynamics in time, depending on the
values of fϕ0; PeR; α0;Da0; PeCg. We summarize these
results in the α0 − PeC phase diagram shown in Fig. 2,
holding ϕ0, PeR, and Da0 fixed, and show the region of
stability (which lies above Boundary 1 and to the left of
Boundary 2 in the α0 − PeC plane shown) and snapshots of
these different types of instability (animated in Movie S5)
that we now seek to categorize.

Chemotaxis arrests phase separation.—We first classify
the instabilities by their distinct spatial characteristics. In
particular, depending on the range of initially unstable wave
numbers q− < q < qþ in the dispersion relation ωðqÞ
[Eq. (S33)] derived using our linear stability analysis,
we differentiate instabilities as being either finite wave-
length (F) when the unstable modes are spatially bounded
(q− > 0), and therefore phase-separated domains do not
coarsen, or unbounded (U) when the unstable modes can
instead extend indefinitely in space (q− ¼ 0) [90]. While
conventional MIPS is a Type U instability [19,43,89], our
second main result is that chemotaxis can give rise to Type
F instabilities as well—as shown by the domains that do
not coarsen in, e.g., Movies S2 and S3 noted earlier.
Comparing the ABP (Movies S2 and S3) and chemo-
attractant (Movies S6 and S7) profiles reveals the under-
lying reason: ABPs in an extended, dense domain
collectively establish a strong local chemoattractant gra-
dient through uptake—which in turn causes them to bias
their motion up the gradient and disperse away, arresting
phase separation.
This behavior is also reflected in the simulations shown

in Fig. 2 and Movie S5. For the example of α0 ¼ 2 (left of
Boundary 2), as PeC increases, the coarsening slows and
eventually becomes arrested (Sec. 6 of [60]), forming
finite-sized domains and stripes—ultimately reaching the
homogeneous state at the largest PeC above Boundary 1.
Examining the dispersion relations corroborates this obser-
vation (see Appendix B). Indeed, determining q− directly
from the dispersion relation yields the criterion that Type F
is Pe0C > 1 (shaded regions in Fig. 1), while Type U is given
by Pe0C < 1 (unshaded). The boundary between the two,
given by Pe0C ¼ 1 [Eq. (S68)], is represented by the dash-
dotted curves in Figs. 1 and 2. In all cases, our predictions
agree well with the simulations, as detailed in Sec. 7 of [60]
—thereby providing a description of how chemotaxis can
arrest MIPS. Indeed, as described in Sec. 9 of [60], this
description may help to rationalize previous observations of
bacterial populations [7,91].
Chemotaxis engenders complex oscillatory dynamics.—

We further classify the instabilities by their distinct tem-
poral characteristics [43]: “Stationary” (S) if all unstable
modes are nonoscillatory with Imω ¼ 0, or “Oscillatory”
(O) if there exist unstable and oscillatory modes with
ReωðqÞ > 0 and ImωðqÞ ≠ 0. While conventional MIPS
is a Type S instability, our third main result is that
chemotaxis can give rise to Type O instabilities as well
—e.g., Movies S3 and S4 noted earlier. This behavior is
also reflected in Fig. 2 and Movie S5, and is again
corroborated by examining the dispersion relations for
the example of α0 ¼ 8 (Appendix B). In this case, at large
PeC, chemotaxis proceeds more rapidly and the diffusing
chemoattractant cannot equilibrate fast enough. As a result,
variations in c̃ðxÞ lag behind ϕðxÞ (Appendix B), driving
sustained large-scale motion of the phase-separated
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FIG. 2. Chemotaxis arrests phase separation and generates
dynamic instabilities. Phase diagram is parametrized by α0 and
PeC, holding ϕ0 ¼ 0.8, PeR ¼ 10−3, and Da0 ¼ 0.5 fixed. Differ-
ent instability types predicted by our linear stability analysis are
indicated using the same labels as in Fig. 1, again corroborated by
simulations (Movie S5), snapshots of which are shown. Arrows
show the local velocity field u relative to the characteristic
velocity u0 ≡M0=

ffiffiffi
κ

p
∼ U0; juj < 0.005u0 vectors are omitted

for clarity.
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domains [92,93], e.g., through stretching, rotating, and
translating, as indicated by the arrows in Fig. 2 showing the
local velocity field u.
The dispersion relation again yields a criterion for the

Type O instability, shown as the hashed regions in Fig. 1.
The Type S=O boundary [Eq. (S60)] is represented using
the dashed curves in Figs. 1(e), 1(f) and 2; in Fig. 1(c) and
1(d), this boundary coincides with Boundary 2. We again
observe good agreement between the predicted Type S=O
boundary and the simulations [94]. Thus, our analysis
provides a key first step toward explaining how the inter-
play between chemotaxis and chemoattractant diffusion
can generate more complex phase separation dynamics
than in conventional MIPS. Indeed, as described in Sec. 9
of [60], our results may help guide new experiments using
synthetic materials [12,95–101] to explore these rich
physics. Our simulations also show other complex features,
e.g., the quasiordered lattices in Fig. 2, whose description
will require nonlinearities to be explicitly incorporated in
the analysis; moreover, while here we examined a specific
type of chemotaxis and MIPS, our theoretical framework
can be readily extended to other forms of taxis and phase
separation. We further describe these useful directions for
future work in Sec. 10 of [60].

We acknowledge support from NSF Grants No. CBET-
1941716, No. DMR-2011750, and No. EF-2124863, the
Camille Dreyfus Teacher-Scholar Program, the Pew Bio-
medical Scholars Program, and a Princeton Bioengineering
Initiative (PBI2) Postdoctoral Fellowship.

Appendix A: Linear stability analysis.—Here, we pro-
vide a summary of the linear stability analysis in Sec. 3
of [60]. Substituting the small-amplitude perturbations
δϕ and δc̃ into linearized Eqs. (1), (2), and (3) yields

ωδϕ̂¼−M0ϕ0q2ð∂ϕμ̃hþκq2Þδϕ̂þχ0ϕ0q2f0ðc̃0Þδĉ; ðA1Þ

ωδĉ ¼ −Dcq2δĉ − kðgðc̃0Þδϕ̂þ ϕ0g0ðc̃0ÞδĉÞ: ðA2Þ

Section 3E of [60] shows that the system is always
linearly stable outside the spinodal region ∂ϕμ̃h > 0.
Therefore, we analyze the linear stability when ∂ϕμ̃h < 0

below. Nondimensionalizing the wave number q and
growth rate ω via q̃ ¼ q=ð ffiffiffi

2
p

qspÞ and ω̃ ¼ ω=ð4ωspÞ,
we obtain the following quadratic equation for ω̃:

ω̃2 þ
�
q̃4 −

�
1 −

1

α

�
q̃2 þ Da

α

	
ω̃

þ q̃2

α

�ðq̃2 − 1Þðq̃2 þ DaÞ þ Da · Pe0C
� ¼ 0: ðA3Þ

The stability condition is that the two solutions to the
equation satisfy Re ω̃�ðq̃Þ ≤ 0 for all q̃, or equivalently
ω̃þω̃− > 0 and ω̃þ þ ω̃− < 0.

Since

ω̃þω̃− ¼ q̃2

α

�ðq̃2 − 1Þðq̃2 þ DaÞ þ Da · Pe0C
�
; ðA4Þ

when Da ≤ 1, αq̃−2ω̃þω̃− ≥ Da · ðPe0C − 1Þ. When Da > 1,
αq̃−2ω̃þω̃−≥−½ð1þDaÞ2=4�þDa·Pe0C. Therefore, ω̃þω̃−>0

for all q̃ is equivalent to criterion (i) (Pe0C ≥ Pe0Ccrit).
Since

ω̃þ þ ω̃− ¼ −q̃4 þ
�
1 −

1

α

�
q̃2 −

Da
α

; ðA5Þ

when α ≤ 1, ω̃þ þ ω̃− ≤ −Da=α < 0. When α > 1,
ω̃þ þ ω̃− ≤ ð1 − α−1Þ2=4 − Da=α. Therefore, ω̃þþω̃−<0
for all q̃ is equivalent to criterion (ii) (α ≤ αcrit).
In the main text, we define Type U instability to be when

the lower bound of the unstable wave number q− is zero. As
shown in Sec. 3C of [60], this condition is equivalent to
requiring that the second order derivative of ω̃þ at q̃ ¼ 0 is
positive, that is, ω̃00þðq̃ ¼ 0Þ ¼ 2ð1 − Pe0CÞ > 0, or Pe0C < 1.
Oscillatory instability emerges when there exists q̃ for

which Re σðq̃Þ > 0 and Im σðq̃Þ ≠ 0, or equivalently
ω̃þω̃− > 0 and the discriminant of Eq. (A3) is negative.
The first condition requires that criterion (ii) is not satisfied
(α > αcrit). For the second condition, because the discrimi-
nant is

Δ ¼
�
q̃4 −

�
1þ 1

α

�
q̃2 −

Da
α

	
2

−
4Da · Pe0C

α
q̃2; ðA6Þ

Δ becomes negative when Pe0C is sufficiently large. Sec. 3D
of [60] derives the expression for the critical Pe0C above
which both conditions are met.

Appendix B: The role of chemotaxis in arresting
phase separation and generating complex dynamics.—
As shown in Fig. 2 and Movie S5, for the example of
α0 ¼ 2 (left of Boundary 2), chemotaxis arrests phase
separation with increasing PeC. Examining the dispersion
relations in Fig. 3(a) corroborates this observation. At
low nonzero PeC, the unstable modes extend to q− ¼ 0
(blue to green curves), indicating a Type U instability. By
contrast, for the larger PeC ¼ 0.75, q− > 0 (chartreuse
curve), indicating a Type F instability.
Also as shown in Fig. 2 andMovie S5, for the example of

α0 ¼ 8 (right of Boundary 2), chemotaxis arrests phase
separation with increasing PeC. Examining the dispersion
relations in Fig. 3(b) corroborates this observation. At low
PeC (blue and cyan curves), all unstable modes (with
Reω > 0) are stationary (having Imω ¼ 0), indicating a
Type S instability; by contrast, at higher PeC (green to
orange curves), some unstable modes have Imω ≠ 0,
indicating a Type O instability.
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Comparing the ABP and chemoattractant profiles, ϕðxÞ
and c̃ðxÞ respectively, sheds light on the physics underlying
these complex dynamics at large PeC and α0. Figure 3(c)
shows the illustrative case of α0 ¼ 8 for the five different
PeC shown in (a). For the lowest two PeC, chemotaxis is
weak, enabling c̃ðxÞ to equilibrate in response to changes in
ϕðxÞ. Consequently, the phase-separated patterns remain
stationary, reflective of a Type S instability. For larger PeC,
however, chemotaxis proceeds more rapidly and the dif-
fusing chemoattractant cannot equilibrate fast enough. As a
result, variations in c̃ðxÞ lag behind ϕðxÞ, driving directed
large-scale motion of the phase-separated domains [92,93],
reflective of a Type O instability.
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S1. THERMODYNAMICS OF
NON-CHEMOTACTIC ABPS

As derived in [1], the non-dimensional active pressure
generated by ABPs in 2D is

Π

nζU2
0 τR/2

= 1−ϕ−0.2ϕ2+
4

π
ϕPeR

(
1− ϕ

ϕm

)−1

, (S1)

where n is the particle number density, ϕ is the area
fraction ϕ = nv0, where v0 = πa2 is the area taken up
by each particle, and ϕm = 0.9 is the maximum area
fraction (0 ≤ ϕ < ϕm). This pressure is also related to a
nonequilibrium Helmholtz free energy per volume f ,

Π = ϕ2
∂

∂ϕ

(
f

ϕ

)
= f ′ϕ− f. (S2)

Combining Eqs. (S1)- (S2) then yields

f

ζU2
0 τR/2

=
ϕ

v0

[
lnϕ− ϕ− 0.1ϕ2

− 4

π
PeR · ϕm ln

(
1− ϕ

ϕm

)]
. (S3)

Given this Helmholtz free energy, one can further define
the bulk chemical potential, which we use in the cal-
culations described in the main text: µh ≡ ∂f/∂n =
∂(v0f)/∂ϕ. As explained in the main text, we define a
nondimensionalized version of it as µ̃h ≡ µh/(ζU

2
0 τR/2).

This definition yields

µ̃h = lnϕ+ 1− 2ϕ− 0.3ϕ2

− 4

π
PeR · ϕm

[
ln

(
1− ϕ

ϕm

)
− ϕ

ϕm − ϕ

]
. (S4)

When analyzing the linear stability in § S3, we often need
to evaluate the derivative of the non-dimensional chemi-
cal potential with respect to ϕ,

∂ϕµ̃h =
1

ϕ
− 2− 0.6ϕ− 4

π
PeR · ϕm(ϕ− 2ϕm)

(ϕ− ϕm)2
. (S5)

It is useful to note that −∂ϕµ̃h has an upper bound:

sup
ϕ,PeR

(−∂ϕµ̃h) = lim
ϕ→ϕm,PeR→0

−∂ϕµ̃h,

sup
ϕ,PeR

(−∂ϕµ̃h) = − 1

ϕm
+ 2 + 0.6ϕm ≈ 1.43. (S6)

Consistent with the classical Cahn-Hilliard theory of
phase separation, the free energy can be extended to pe-
nalize a sharp interface [2, 3]. The total free energy in a
spatial field is

F =

∫ (
f +

1

2

ζU2
0 τR
2v0

κ∥∇ϕ∥2
)
dx, (S7)

from which the overall chemical potential can be de-
fined variationally by µ ≡ δF/δn = v0δF/δϕ; here,
κ = l20 as noted in the main text. Again, we define
a normalized version of this overall chemical potential
µ̃ ≡ µ/(ζU2

0 τR/2). Therefore,

µ̃ = µ̃h − κ∇2ϕ, (S8)

Using these thermodynamic rules, we next describe the
phase dynamics following Ref. [1]. The particle volume
fraction satisfies the conservation equation:

∂ϕ

∂t
= ∇ ·

(
ϕ

ζ
∇µ

)
= ∇ ·

(
M0ϕ∇

(
µ̃h(ϕ,PeR)− κ̃∇2ϕ

))
,

(S9)
where M0 = U2

0 τR/2. For convenience of notation, we
define the collective diffusivity M(ϕ) ≡ M0ϕ. This ex-
pression thereby yields the part of Eq. (1) of the main
text that reflects active Brownian motion.

S2. DERIVATION OF THE CONTINUUM
MODEL OF CHEMOTAXIS

We introduce a modified model of self-phoretic active
colloids that self-propel and chemotax in response to a
chemical gradient based on Refs. [4, 5] where we take
into account the inter-particle force,

dri
dt

= U0ei +
Dtr

kBT
Fi − ζtr∇c̃+ ξtr,i, (S10)

dei
dt

= −ζrot(I − ei ⊗ ei)∇c̃+ ξrot,i × ei, (S11)

where ri is the position of particle i, ei is the orienta-
tion of particle i, Dtr is the translation diffusivity, Fi

is the conservative inter-particle repulsive force on par-
ticle i, ζtr and ζrot are the translational and rotational
diffusiophoretic coefficient, respectively, I is the iden-
tity tensor, ξtr,i and ξrot,i are the independent trans-
lation and rotational thermal noise and their time cor-
relations satisfy ⟨ξtr,i(t)ξtr,i(t′)⟩ = 2DtrIδ(t − t′) and
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⟨ξrot,i(t)ξrot,i(t′)⟩ = 2DrotIδ(t − t′), respectively, where
Drot = 1/τR is the rotational diffusivity.

In order to obtain a closed-form continuum model of
chemotactic MIPS based on the microscopic model, we
must make certain assumptions and use closures. We
follow and adapt the established methods used to derive
continuum equations for MIPS based on the ABP model
and for chemotactic colloids. Specifically, in Ref. [4]’s
derivation of a continuum model based on Eq. (S10) and
(S11), a Smoluchowski equation for a single particle is
used without considering the interaction between parti-
cles, and the Keller-Segel model is obtained as the lowest
order equation for the particle density. We extend the
derivation to the MIPS regime where particle-to-particle
repulsion in the densely packed region needs to be con-
sidered to account for particle slowing-down in the dense
region and hence is the key to modeling MIPS. To achieve
this goal, we follow the derivation in Ref. [2, 6] based on
a Smoluchowski equation for the probability distribution
ψ(r, e, t) of finding a single particle at position r moving
in direction e and add the additional phoretic terms in
Eq. (S10) and (S11) that involves ζtr and ζrot to obtain

∂ψ

∂t
= −∇ · (ψve) +∇ · (Dtr∇ψ) + ζtr∇ · (ψ∇c̃)

+ ζrot∂φ(ψ∂φe · ∇c̃) +Drot∂
2
φψ, (S12)

where we consider the 2D case for simplicity, and φ is
the orientation angle that corresponds to e, v is the self-
propulsion speed that is assumed to be isotropic (no de-
pendence on e) and depends on local particle density
[2, 6, 7]. Particle density is defined to be

n(r, t) =

∫
ψ(r, φ, t)dφ. (S13)

Additionally, we define polar order

p(r, t) =

∫
ψ(r, φ, t)edφ, (S14)

nematic order tensor

Q(r, t) =

∫
ψ(r, φ, t)

(
e⊗ e− 1

2

)
dφ, (S15)

and the third order harmonics P3 defined by (following
Ref. [4]’s notation)

P3(r, t) =

∫
ψ(r, φ, t)

(
e⊗ e⊗ e− 3

4
e1

)
dφ, (S16)

where (e1)ijk = (eiδjk + ejδik + ekδij)/3. Following
Ref. [4] and integrating Eq. (S12), we obtain the dynam-
ical equation for particle density

∂n

∂t
= −∇ · (vp) +∇ · (Dtr∇n) + ζtr∇ · (n∇c̃). (S17)

Integrating Eq. (S12) multiplied by e, we obtain the dy-
namical equation for polar order

∂p

∂t
= −∇ · (vQ)− 1

2
∇(vn) +∇ · (Dtr∇p)

+ζtr∇ · (p⊗∇c̃) + ζrot

(
Q− 1

2
nI

)
∇c̃−Drotp.

(S18)

Following Ref. [2, 4], the dynamical equation for nematic
order is

∂Q

∂t
= −1

4

(
∇(vp) + [∇(vp)]

T −∇ · (vp)I
)
−∇ · (vP3)

+∇ · (Dtr∇Q) + ζtr∇ · (Q⊗∇c̃)

+ζrot

(
2P3 −

3

2
p1+ I ⊗ p

)
∇c̃− 4DrotQ, (S19)

where similar to e1, p1 = (piδjk + pjδik + pkδij)/3.
For clarity, we express the last term in index notation
ζrot

(
2P3,ijk + 1

2piδjk − 1
2pjδik − 1

2pkδij
)
∂ic̃. Following

Ref. [2, 4, 6], at a time scale much larger than the re-
orientation time τR and length scale much larger than
the persistence length l0, the high order moments p and
Q reach steady state much faster than n. From ∂Q

∂t ≈ 0,
we get the nematic order tensor

Q =
1

4Drot

(
−1

4

(
∇(vp) + [∇(vp)]

T −∇ · (vp)I
)

−∇ · (vP3) + ζrot

(
2P3 −

3

2
p1+ I ⊗ p

)
∇c̃

)
+O(∇2), (S20)

where O(∇2) refers to all terms involving second or
higher mixed order derivatives of p, P3, and c̃. Sub-
stituting into ∂p

∂t ≈ 0, we get the polar order

p = − 1

2Drot
(∇(vn) + ζrotn∇c̃) +O(∇2), (S21)

where O(∇2) refers to all terms involving second or
higher mixed order derivatives of n, P3 and c̃. Substi-
tuting into Eq. (S17), we get the evolution of the particle
density

∂n

∂t
= −∇ · (V n−D∇n+ χn∇c̃) + o(∇2), (S22)

where

V = − v∇v
2Drot

, (S23)

D =
v2

2Drot
+Dtr, (S24)

χ = −
(
ζrotv

2Drot
+ ζtr

)
(S25)

and o(∇2) refers to all terms involving mixed derivatives
of n and c̃ of order higher than 2. Following Ref. [2], v,
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Drot, and Dtr depend on local particle density n, hence
V , D, and χ are functions (or in general functionals) of
n, and we define excess free energy functional Fex[n] such
that

− V

D
= ∇

(
δFex

δn

)
(S26)

and define the free energy function F [n] = Fex[n] +∫
n(lnn− 1)dx, and substituting into Eq. (S22) we ob-

tain the following closed dynamical equation for n up to
diffusion and convection terms,

∂n

∂t
= ∇ ·

(
Dn∇

(
δF

δn

)
− χn∇c̃

)
. (S27)

It is known that the local speed v decreases with increas-
ing particle density due to crowding [7]. This can lead
to a concave free energy near the onset of instability and
hence MIPS. To obtain the leading order model, we con-
sider χ to be a constant (χ ≈ χ0, which occurs in the limit
of ζtr ≫ ζrotU0/(2Drot)). Similarly, we approximate the
diffusivity D to be a constant, and when the diffusivity
is due to randomly-oriented self-propulsion, D ∼ U2

0 τR.
Finally, by converting the number density n to volume
fraction ϕ and using the free energy model described in
§ S1, we arrive at the leading order model for chemotactic
MIPS (Eqs. (1-2) in the main text)

∂ϕ

∂t
= ∇ · (M0ϕ∇(µ̃h(ϕ,PeR)− κ∇2ϕ)−χ0ϕ∇c̃). (S28)

In the derivation above going from Eq. (S22) to
Eq. (S27), we made the assumption that the self-
propulsion speed of a single freely-moving particle (U0) is
constant and independent of the chemical concentration
c̃, and hence v, Drot, and Dtr are also independent of c̃
and only depend on n. For simplicity, the work presented
here and in the main text focuses on this case in which
the self-propulsion velocity is independent of c̃; however,
in some cases, the self-propulsion speed can depend on
the chemical concentration. In this case, the general
derivation spanning Eqs. (S12) to (S22) still holds; that
is, Eq. (S22) remains true when v, Drot, Dtr, ζrot, and ζtr
are also functions of both n and c̃, since no constraints
are imposed on these variables. In this case, V , D, and
χ depend on both n and c̃. In general, the “integrabil-
ity” condition [Eq. (S26)] may not be satisfied. However,
when the translational diffusivity of particles due to ther-
mal noise Dtr is negligible compared to the active part
v2/(2Drot), which is often the case as discussed in Ref. [7],
−V /D = ∇ ln v[n, c̃]. This relation always satisfies the
integrability condition [7, 8] and δFex

δn = ln v[n, c̃]. There-
fore, Eq. (S27) still holds and we arrive at a generalized
version of Eq. (S28) where the chemical potential µ̃h(ϕ, c̃)
can depend on c̃,

∂ϕ

∂t
= ∇ · (M0ϕ∇(µ̃h(ϕ, c̃)− κ∇2ϕ)− χ0ϕ∇c̃). (S29)

This equation introduces a new coupling between ϕ and c̃
and therefore a new way that the chemical concentration

can affect the phase separation. The specific form of µ̃h

is then determined by the exact functional dependence
of self-propulsion speed v on n and c̃.

S3. LINEAR STABILITY ANALYSIS

A. Dispersion relation

In this section, we study the linear stability of the
governing equations, Eqs. (1)-(3) of the main text. For
generality, here we do not assume any particular func-
tional form for the chemotactic sensing function f(c̃) or
chemoattractant uptake rate g(c̃). We perturb the ho-
mogeneous steady state ϕ(x) = ϕ0 and c̃(x) = c̃0 =
g−1(Sk−1ϕ−1

0 ) with small amplitude perturbations δϕ =

δϕ̂eiq·x+ωt, and δc̃ = δĉeiq·x+ωt. Linearizing Eqs. (1)-(3)
and substituting δϕ and δc̃ yields

ωδϕ̂ = −M(ϕ0)q
2(∂ϕµ̃h(ϕ0) + κq2)δϕ̂+ χ0ϕ0q

2f ′(c̃0)δĉ,
(S30)

ωδĉ = −Dcq
2δĉ− k(g(c̃0)δϕ̂+ ϕ0g

′(c̃0)δĉ), (S31)

where q = |q|. For simplicity of notation, in the following
text, the arguments ϕ0 and c̃0 in ∂ϕµ̃h(ϕ0), g(c̃0), g

′(c̃0),
and f ′(c̃0) are omitted. The eigenvalue ω satisfies

ω2 + (M+D)ω +MD + X = 0. (S32)

The solution to ω is

ω± =
1

2

(
−(M+D)±

√
(M−D)2 − 4X

)
, (S33)

where

M ≡Mq2(∂ϕµ̃h + κq2),

D ≡ Dcq
2 + kϕ0g

′,

X ≡ kχ0ϕ0f
′gq2.

(S34)

In conventional non-chemotactic MIPS (χ0 = 0), the
two eigenvalues are −M and −D, respectively. Be-
cause D ≥ 0, the stability is determined by M. When
∂ϕµ̃h < 0, or in the spinodal region as defined in the main
text, ω can be positive in a range of wavenumber q, and
the most unstable wavenumber that corresponds to max-
imum instability growth rate ω is q−1

sp ≡
√
−2κ/∂ϕµ̃h.

Because of Eq. (S6), q−1
sp

>∼ l0. In the majority of this
section and the manuscript, we focus on the MIPS spin-
odal region. We provide a discussion of linear stabil-
ity analysis outside the spinodal region in §S3E. By
nondimensionalizing wavenumber with the characteristic
length scale of spinodal decomposition,

q̃ ≡
√

− κ

∂ϕµ̃h
q =

q√
2qsp

, (S35)

and nondimensionalizing rate with the characteristic
growth rate of non-chemotactic spinodal decomposi-
tion 4ωsp = 4ω(qsp,PeC = 0) = M (∂ϕµ̃h)

2
/κ, ω̃ ≡
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ω/(4ωsp), M̃ ≡ M/(4ωsp), D̃ ≡ D/(4ωsp), X̃ ≡
X/(4ωsp)

2, we obtain the nondimensionalized equation
for the eigenvalues

ω̃2 + (M̃+ D̃)ω̃ + M̃D̃ + X̃ = 0. (S36)

The solution is then

ω̃± =
1

2

(
−(M̃+ D̃)±

√
(M̃ − D̃)2 − 4X̃

)
, (S37)

where

M̃ = q̃2
(
−1 + q̃2

)
,

D̃ =
1

α

(
q̃2 +Da

)
,

X̃ =
Da

α
Pe′C q̃

2,

(S38)

and the dimensionless parameters are

α = −M∂ϕµ̃h

Dc
,

Da = − κkϕ0g
′

Dc∂ϕµ̃h
,

Pe′C = − χ0

M∂ϕµ̃h

f ′g

g′
.

(S39)

We restrict our discussion below to ∂ϕµ̃h < 0 (in the
spinodal region), α > 0, Da > 0, and Pe′C ≥ 0.

B. Stability condition

When the discriminant of the quadratic equation
Eq. (S36) is positive, i.e., ∆ ≡ (M̃−D̃)2−4X̃ > 0, it can
be seen from Eq. (S37) that ω̃+ decreases with increasing
Pe′C . In other words, chemotaxis has a stabilizing effect.
Therefore, next, we derive the condition under which the
system is stable, that is, Re ω̃±(q̃) ≤ 0 for all q̃. This con-

dition is equivalent to (1) I2 ≡ ω̃+ω̃− = M̃D̃ + X̃ ≥ 0,

and (2) I1 ≡ ω̃+ + ω̃− = −(M̃+ D̃) ≤ 0 for all q̃.
Criterion (1) (I2 ≥ 0) can be achieved with sufficiently

large Pe′C : since

I2 =
q̃2

α

(
(q̃2 − 1)(q̃2 +Da) + DaPe′C

)
, (S40)

I2 ≥ 0 for all q̃ is equivalent to minq̃ αq̃
−2I2 ≥ 0.

When Da ≤ 1, the minimum is obtained at q̃ = 0, and
minq̃ αq̃

−2I2 = Da(Pe′C−1); hence, criterion (1) is equiv-
alent to Pe′C > 1. When Da > 1, the minimum is ob-
tained at q̃2 = (1−Da)/2, and

min
q̃
αq̃−2I2 = − (1 + Da)2

4
+ DaPe′C . (S41)

In this case criterion (1) is equivalent to Pe′C > (1 +
Da)2/(4Da). Therefore, we can summarize criterion (1)
in a more compact form as

Pe′C > Pe′Ccrit =
(1 +min{Da, 1})2

4min{Da, 1}
. (S42)

In other words, in order to suppress phase separation,
chemotactic rate needs to be sufficiently fast.
As noted above, at the critical point of stability where

maxq̃ I2 = 0, the critical wavenumber is

q̃2crit,2 =
1−min{Da, 1}

2
. (S43)

This result indicates that if criterion (2) is satisfied so
that the stability of the system is solely determined by
criterion (1), as the control parameter Pe′C varies near
the critical condition of stability, the range of unstable
wavelength can either be unbounded (q̃ near 0) if Da ≥ 1

or finite (q̃ near
√
(1−Da)/2) if Da ≤ 1. The former

belongs to type F instability while the latter belongs to
type U instability according to Cross and Hohenberg’s
classification of dispersion relations [9].
Having large Pe′C is a necessary but insufficient con-

dition for the suppression of phase separation. An-
other way to interpret criterion (2) (I1 ≤ 0) is that,
when Pe′C is sufficiently large, ∆ becomes negative, and

Re ω̃± = −(M̃ + D̃)/2 = I1/2. Hence, sufficiently large
Pe′C can fully stabilize the system only when I1 < 0.
Since

I1 = −q̃4 +
(
1− 1

α

)
q̃2 − Da

α
, (S44)

when α ≤ 1, the maximum is obtained at q̃ = 0, and
maxq̃ I1 = −Da/α < 0. When α > 1, the maximum is
obtained at q̃2 = (α− 1)/2α, and

max
q̃
I1 =

1

α

(
(α− 1)2

4α
−Da

)
. (S45)

I1 ≤ 0 for all q̃ is equivalent to maxq̃ I1 < 0, or equiva-
lently α ≤ 1 or Da ≥ (α − 1)2/4α. This condition can
be written in a more compact form as shown in the main
text,

α ≤ αcrit = 1 + 2 ·Da + 2
√

Da(1 + Da). (S46)

Or alternatively,

Da ≥ Dacrit =
(1−max{α, 1})2

4max{α, 1}
. (S47)

In other words, in order to suppress phase separation,
chemoattractant diffusion or uptake rate needs to be suf-
ficiently fast.
As noted above, at the critical condition of stability

where maxq̃ I1 = 0, the critical wavenumber is

q̃2crit,1 =
1− α−1

2
. (S48)

This result indicates that if criterion (1) is satisfied so
that the stability of the system is solely determined by
criterion (2), as the control parameter α or Da varies near
the critical condition of stability, the range of unstable
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mode is finite and near q̃crit,1. This belongs to type F
instability according to Cross and Hohenberg’s classifi-
cation of dispersion relations [9].

In summary, the stability criteria (1) and (2) are equiv-
alent to Pe′C ≥ Pe′Ccrit and α ≤ αcrit (or Da ≥ Dacrit),
indicating that MIPS can be suppressed with sufficiently
fast chemotaxis and chemoattractant diffusion (or uptake
rate).

C. Finite and unbounded wavelength instabilities

In the main text, we define finite and unbounded
wavelength instabilities based on the range of unstable
modes, which we here express in dimensionless form:
q̃u− < q̃ < q̃u+. When q̃u− = 0, the unstable wavelength
extends all the way to infinity—we thus call this an un-
bounded instability (type U). Otherwise when q̃u− > 0,
the range of unstable wavelengths is finite—we thus call
this a finite wavelength instability (type F).

From Eq. (S37), we see that ω̃+(q̃ = 0) = 0 and ω̃′
+(q̃ =

0) = 0. Hence the sign of the second order derivative
determines whether modes near q̃ = 0 are stable. At
q̃ = 0,

ω̃′′
+ = − (M̃D̃ + X̃ )′′

M̃+ D̃

∣∣∣∣∣
q̃=0

= 2(1− Pe′C). (S49)

When Pe′C < 1, ω̃′′(q̃ = 0) > 0, we have q̃u− = 0, hence
the system has an unbounded instability. Otherwise,
when Pe′C > 1 and the system is in the unstable regime, it
has a finite wavelength instability. These results suggest
that as the chemotactic rate increases, modes near zero
wavenumber become stabilized—and thus, phase sepa-
rated domains are less likely to coarsen since chemotaxis
disperses the particles.

When criterion (2) described in § S3B is satisfied, the
dispersion relation can be classified by Pe′C . If Da < 1,
the system has type U instability when Pe′C < 1, type F
instability when 1 < Pe′C < Pe′Ccrit, and is stable when
Pe′C > Pe′Ccrit. The transition from instability to sta-
bility by increasing chemotactic rate is of type F [9].
Hence, when chemoattractant uptake rate is slow such
that Da < 1, finite-sized domains can be observed near
the boundary of stability.

If Da > 1, the system has type U instability when
Pe′C < 1, and is stable when Pe′C > 1. The transi-
tion from instability to stability by increasing chemotac-
tic rate is of type U [9]. Hence when chemoattractant
uptake rate is fast such that Da > 1, phase separated
domains are more likely to coarsen near the boundary of
stability.

The classification of type F/U instability also applies
when criterion (2) is not satisfied, which we describe in
the next section.

FIG. S1: A plot of (M̃ − D̃)2(q̃2) and two lines that
pass through the origin and are tangent to the curve at

q̃2l and q̃2r . Da = 0.05, α = 1.5.

D. Oscillatory instability condition

In § S3B we have shown that when criterion (2) is not
satisfied, large Pe′C cannot suppress phase separation.
Instead, at high enough Pe′C , the discriminant becomes
negative ∆ < 0, which means that eigenvalues can have
imaginary part (Im ω̃ ̸= 0). Therefore, next, we derive
the condition for oscillatory instability—that there ex-
ists q̃ for which Re ω̃ > 0 and Im ω̃ ̸= 0, or equivalently
I1 > 0 and ∆ < 0.
Since I1 is a quadratic polynomial of q̃2, I1 > 0 can be

obtained by finding the values of q̃2 that correspond to
the zeros of I1:

q̃2± =
α− 1±

√
(α− 1)2 − 4αDa

2α
. (S50)

In this section, we always require that α > 1 and Da <
(α − 1)2/4α (criterion (2) is not satisfied). This ensures
that q̃2± exist and are positive. I1 > 0 when q̃− < q̃ < q̃+.
Notice that q̃+ < (α− 1)/α < 1.

Fig. S1 shows a typical plot of (M̃−D̃)2 as a function

of q̃2 in blue while X̃ as a function of q̃2 is a line that
passes through the origin whose slope is proportional to
Pe′C . The intersection of these two curves is where ∆ = 0,

and the region of ∆ < 0 is where (M̃− D̃)2 is below the

line X̃ . When Pe′C = 0, ∆ ≥ 0. As Pe′C increases, the

slope of X̃ increases, the range of wavenumbers in which
∆ < 0 expands.
Because ∆ is a quartic polynomial of q̃2, it has at most

four roots. Now we would like to analyze the properties
of its roots in order to determine the region of ∆ < 0.
Notice that M̃ − D̃ has one valid root,

q̃2c =
α+ 1 +

√
(α+ 1)2 + 4αDa

2α
, (S51)
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as shown in Fig. S1. Note that q̃2c > (α + 1)/α > 1.

Hence, when Pe′C > 0, (M̃ − D̃)2 and X̃ has at least
one intersection beyond q̃2c . This is shown graphically
in Fig. S1, where we see that any straight line that goes
through the origin has one interaction with the blue curve
at q̃2 > q̃2c . In other words, ∆ has one root greater than
q̃2c .
Since we are interested in the region I1 > 0, or q̃− <

q̃ < q̃+, and we have q̃+ < 1 < q̃c, next, we focus on the

roots of ∆ within [0, qc]. Because at q̃ = 0, (M̃ − D̃)2 >

0 and X̃ = 0, there is at least one root within [0, qc].
Therefore, within this interval, there can be 1, 2, or 3
roots in total.

Having 2 roots in this interval or 3 roots in total for
a quartic polynomial means that it has one root of mul-
tiplicity 2, or ∆ = 0 and d∆/dq̃2 = 0. Graphically, this

corresponds to the line X̃ being tangent to (M̃−D̃)2, as
shown in Fig. S1, where there are two solutions, and the
root of multiplicity 2 is denoted as q̃2l and q̃2r respectively.
Mathematically it is equivalent to:

(M̃ − D̃)2

q̃2
=
d
(
(M̃ − D̃)2

)
dq̃2

, (S52)

or

M̃ − D̃
q̃2

= 2
d(M̃ − D̃)

dq̃2
. (S53)

Substituting in M̃ and D̃ [Eq. (S34)], we obtain

3αq4 − (1 + α)q2 +Da = 0. (S54)

A solution exists when

Da ≤ (α+ 1)2

12α
, (S55)

and the roots are

q̃2l,r =
α+ 1±

√
(α+ 1)2 − 12αDa

6α
. (S56)

In the above equation, q̃2l takes the minus sign and q̃2r
takes the plus sign. In the discussion below, whenever
we refer to q̃l,r, we imply that the inequality in Eq. (S55)
holds. The Péclet number Pe′C that corresponds to the
tangent lines ∆(q̃2l,r) = 0 is

Pe′C,l,r =
(M̃ − D̃)2(q̃2l,r)

4α−1Daq̃2l,r
=

(αq̃4l,r − (1 + α)q̃2l,r −Da)2

4αDaq̃2l,r

Pe′C,l,r =
((α+ 1)q̃2l,r + 2Da)2

9αDaq̃2l,r
. (S57)

When 0 < Pe′C < Pe′C,l, ∆ has one root q̃1 in (q̃r, q̃c) and

∆ < 0 in (q1, qc]. When PeC,l < Pe′C < PeC,r, ∆ has
three roots, q̃2 ∈ (0, q̃l), q̃3 ∈ (q̃l, q̃r), and q̃4 ∈ (q̃r, q̃c),
and ∆ < 0 in (q2, q3) and (q4, qc]. When Pe′C > PeC,r,
∆ has one root q̃5 ∈ [0, q̃l], and ∆ < 0 in (q5, qc]. When

Da > (α + 1)2/12α, q̃l,r does not exist and ∆ has one
root in [0, q̃c].
Recall that we are seeking the condition for unsta-

ble oscillatory modes, or ∆ < 0 within the interval of
[q̃−, q̃+]. Since the interval in which ∆ < 0 expands with
increasing Pe′C , we need to find the critical condition that
there exists q̃∗ ∈ [q̃−, q̃+] for which ∆(q̃∗) = 0 and for all
q̃ ∈ [q̃−, q̃+], ∆(q̃) ≥ 0. Therefore it is important to
determine the order of q̃± and q̃l,r.
Setting q̃± = q̃l,r, we find that q̃− or q̃+ is equal to q̃l

or q̃r when

Da = 1− 2

α
. (S58)

Furthermore, we find that when Da < 1−2/α, q̃l < q̃− <
q̃r < q̃+. When Da > 1− 2/α, the orders are: q̃l < q̃− <
q̃+ < q̃r when 1 < α < 3; q̃l < q̃r < q̃− < q̃+, when
3 < α < 5, and q̃− < q̃l < q̃r < q̃+ when α > 5. Based
on the analysis of the region of ∆ < 0, we see that when
q̃− < q̃l < q̃+, the critical wavenumber q̃∗ can be q̃−, q̃+,
or q̃l, whichever makes ∆(q̃∗) = 0 at the smallest Pe′C .
In all other cases, including when q̃l,r do not exist (Da >
(α + 1)2/12α), q̃∗ can only be q̃−, q̃+, whichever makes
∆(q̃∗) = 0 at the smallest Pe′C . Therefore, we define the
Péclet number Pe′C that corresponds to ∆(q̃±) = 0,

Pe′C,± =
(M̃ − D̃)2(q̃2±)

4α−1Daq̃2±
=

(q̃2± +Da)2

αDaq̃2±
. (S59)

In summary, when α > αcrit, the unstable modes be-
come oscillatory when Pe′C > Pe′C,∗, where

Pe′C,∗ =



min{Pe′C,+,Pe
′
C,−,Pe

′
C,l} when

Da < (α+ 1)2/12α,

Da > 1− 2/α,

and α > 5

min{Pe′C,+,Pe
′
C,−} otherwise.

(S60)

Therefore, we have established that oscillatory instabil-
ity occurs when chemoattractant diffusion is slow and
chemotaxis is sufficiently fast.
Lastly, we note that by setting Pe′C,+ = Pe′C,−, we find

further that when αDa < 1, Pe′C,+ < Pe′C,−, and when

αDa ≥ 1, Pe′C,+ ≥ Pe′C,−.

E. Linear stability outside the MIPS spinodal

Outside the MIPS spinodal region where the free en-
ergy is convex, or ∂ϕµ̃h > 0. We see from Eq. (S32) that
the sum of the eigenvalues is

ω+ + ω− = −(M+D),

ω+ + ω− = −(Mq2(∂ϕµ̃h + κq2) +Dcq
2 + kϕ0g

′).

(S61)
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Because ∂ϕµ̃h > 0 and g′ > 0, we have ω++ω− ≤ 0, and
the product of the eigenvalues is

ω+ω− = MD + X ,
ω+ω− =Mq2(∂ϕµ̃h + κq2)(Dcq

2 + kϕ0g
′) + kχ0ϕ0f

′gq2.

(S62)

Because for chemoattractant χ0 > 0, we have ω+ω− ≥
0. Therefore Re ω± ≤ 0 and the homogeneous state is
stable.

S4. LINEAR STABILITY ANALYSIS IN THE
PeR − ϕ0 PHASE DIAGRAM

The results of linear stability analysis in § S3 are de-
scribed in terms of the three dimensionless parameters
α, Da, and Pe′C . In their expressions (Eq. S39), ∂ϕµ̃h is
a function of ϕ0 and PeR, and M is a function of ϕ0. ϕ0
and PeR are the two dimensionless parameters in the con-
ventional MIPS phase diagram. Therefore, in the main
text, we define another version of the parameters that do
not involve any dependence on ϕ0 and PeR: α0, Da0 and
PeC . Using linear models for chemotactic sensing func-
tion and chemoattractant rate f(c̃) = c̃ and g(c̃) = c̃, the
two versions of dimensionless parameters are related by

α = −ϕ0(∂ϕµ̃h)α0,

Da = − ϕ0
∂ϕµ̃h

Da0,

Pe′C = PeC
S

k
· (−1)

ϕ20∂ϕµ̃h
.

(S63)

Fig. 2 in the main text shows the chemotactic MIPS
phase diagram in the plane of PeC − α0 at given Da0,
ϕ0 and PeR. The linear stability analysis results can be
easily applied using the conversion in Eq. (S63).

Fig. 1 in the main text shows the chemotactic MIPS
phase diagram in the plane of PeR−ϕ0 at given α0, Da0,
and PeC . In this phase diagram, we would like to obtain
the stability criteria and different types of instabilities
expressed in terms of PeR and ϕ0, which we derive in
this section.

When there is no chemotaxis, the stability boundary is
the spinodal curve ∂ϕµ̃h(ϕ0,PeR,sp) = 0. Using Eq. (S5),
the spinodal curve can be written explicitly in terms of
PeR:

PeR,sp =
π(ϕ0 − ϕm)2(ϕ−1

0 − 2− 0.6ϕ0)

4ϕm(ϕ0 − 2ϕm)
. (S64)

Because ∂ϕµ̃h is linear with respect to PeR, in the fol-
lowing text, we give the stability and instability type
conditions in terms of ∂ϕµ̃h; the expression can then
be easily written explicitly in terms of PeR. Based on
Eq. (S64), because PeR,sp > 0 and 0 < ϕ0 < ϕm, we

have ϕ−1
0 − 2− 0.6ϕ0 < 0. Hence, we find that the spin-

odal curve spans the range of volume fractions given by
(−5 + 2

√
10)/3 < ϕ0 < ϕm.

Based on Eq. (S42), the criterion (1) (Pe′C ≥ Pe′Ccrit)
can be written in terms PeC , Da0, ϕ0, and ∂ϕµ̃h as

S

k
· PeC ≥ ϕ30

{
−∂ϕµ̃h/ϕ0, for (−µ′

h/ϕ0 ≤ Da0)
(Da0−∂ϕµ̃hϕ

−1
0 )2

4Da0
, for (−µ′

h/ϕ0 > Da0)
,

(S65)
or explicitly in terms of ∂ϕµ̃h:

− ∂ϕµ̃h

ϕ0
≤


SPeC
kϕ3

0
, for (SPeC

kϕ3
0
< Da0)

2
√

SPeC
kϕ3

0
Da0 −Da0, otherwise.

(S66)
Thus we have also obtained the expression for Boundary
1 in the PeR − ϕ phase diagram by setting Eq. (S66)
to equality, and the region above Boundary 1 satisfies
criterion (1).
Similarly, criterion (2) (α ≤ 1 or Da ≥ (α − 1)2/4α)

can be written in terms of α0, Da0, ϕ0, and ∂ϕµ̃h as

− ∂ϕµ̃h ≤ 1

ϕ0α0

(
1 + 2ϕ0

√
Da0α0

)
. (S67)

Thus we have also obtained the expression for Boundary
2 in the PeR − ϕ phase diagram by setting Eq. (S67)
to equality, and the region above Boundary 2 satisfies
criterion (2).
Finite-wavelength instability Pe′C > 1 can be expressed

as

− ∂ϕµ̃h <
SPeC
kϕ20

, (S68)

which coincides with criterion (1) if SPeC/(kϕ
3
0) < Da0.

Setting Eq. (S68) to equality gives the expression for
the F/U boundary. Finite-wavelength instability ex-
ists between the F/U boundary and Boundary 1 when
SPeC/(kϕ

3
0) > Da0.

Finally, oscillatory instability occurs when Pe′C >
Pe′C,∗ and α > αcrit. The following derivation needs
to be discussed separately depending on whether Da <
(α+ 1)2/12α, Da > 1− 2/α, and α > 5, which is equiv-
alent to

max{5, ϕ0
√

12α0Da0 − 1} < α < 2 + ϕ20α0Da0. (S69)

If outside this region, the condition for oscillatory unsta-
ble mode is Pe′C > min{Pe′C,+,Pe

′
C,−}, which is equiva-

lent to

P ≡ 2PeC
S

k
α2
0Da0ϕ0 > min {h(u+), h(u−)}, (S70)

where

h(u) =
(u+ 2αDa)2

u
, (S71)

and

u± = α− 1±
√
(α− 1)2 − 4αDa. (S72)
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Because

h(u) ≥ 8αDa, (S73)

and the equality is attained at u = 2αDa, this puts a
lower bound on PeC :

PeC
S

k
>

4ϕ0
α0

. (S74)

Given the above constraint, the roots of P = h(u) are

u± =
1

2

[
P − 4αDa±

√
P 2 − 8αDaP

]
. (S75)

Hence, Eq. (S70) is equivalent to u− < u+ < u+ or
u− < u− < u+, that is, at least one of u± is in between
the two roots u±. Recall that we would like to express
the condition of oscillatory instability in terms of ∂ϕµ̃h

explicitly. Because αDa = α0Da0ϕ
2
0, u

± does not depend
on ∂ϕµ̃h. But u± depends on ∂ϕµ̃h because of α. Our
goal, then, is to express u− < u+ < u+ or u− < u− <
u+ explicitly in terms of α, from which we obtain the
condition in terms of ∂ϕµ̃h via ∂ϕµ̃h = −α/(α0ϕ0).

To achieve the above goal, we first notice that

α− 1 = j(u±) ≡
u2± + 4αDa

2u±
. (S76)

The following derivation uses the property that the min-
imum of h(u) is obtained at u = 2αDa and the minimum

of j(u) is obtained at u = 2
√
αDa.

We first consider condition (a) 2
√
αDa ≤ u− < u+.

Because h(u−) = P , this requires: 2αDa ≥ 2
√
αDa, or

αDa ≥ 1 (which corresponds to Pe′C,+ > Pe′C,− as noted

in § S8), and P ≤ h(2
√
αDa), or

P ≤ 2
√
αDa(

√
αDa + 1)2. (S77)

Under condition (a), u− < u+ < u+ or u− < u− < u+ is
equivalent to j(u−) < α− 1 < j(u+).

Next, we consider condition (b) u− < u+ ≤ 2
√
αDa,

which requires αDa ≤ 1 and Eq. (S77), then u− < u+ <
u+ or u− < u− < u+ is equivalent to j(u+) < α − 1 <
j(u−).

Lastly, if (c) u− < 2
√
αDa < u+, which requires P >

h(2
√
αDa), or the opposite of Eq. (S77), then u− < u+ <

u+ or u− < u− < u+ is equivalent to 2
√
αDa < α −

1 < max {j(u−), j(u+)}, where the lower bound is the

minimum of j(u) (minu j(u) = 2
√
αDa). Notice that

α−1 > 2
√
αDa is equivalent to Da < (α−1)2/4α. Hence

all conditions above imply Da < Dacrit (or α > αcrit).
Now we have obtained the condition of oscillatory in-

stability in terms of α and hence ∂ϕµ̃h explicitly, which
has an upper and lower bound. The upper bound coin-
cides with or is below Boundary 2.

In summary, in this section, we have derived the condi-
tions for stability or instability (both type F/U and type
S/O) in the PeR−ϕ0 phase diagram, by expressing them
explicitly in terms of ∂ϕµ̃h.

S5. NUMERICAL SIMULATIONS

In this section, we describe the details of numerical
simulations. Firstly, we define the characteristic length
scale to be l0 ≡

√
κ ∼ U0τR, which is on the order of

the persistence length [3, 7]. We define the characteristic
time scale to be t0 ≡ κ/M0 ∼ τR, which is on the order
of the ABP reorientation time. The characteristic length
and time scales motivate us to define the characteristic
velocity u0 ≡ l0/t0 ∼ U0, which we will use in § S8.
All simulations in this work are performed in a periodic

domain of size [100l0, 100l0]. The governing equations
are solved using the finite volume method to ensure con-
servation of particle volume fraction and chemoattrac-
tant concentration. We use an implicit solver of variable
order as the time-stepper with adaptive time stepping,
adaptive order and error control [10]. Simulations are
solved on a grid of size [256, 256]. The initial condition for
ϕ(x, t = 0) is the homogeneous state ϕ0 with added spa-
tially uncorrelated Gaussian noise at each grid point with
a standard deviation of 0.02. The initial condition for the
chemoattractant concentration is the homogeneous state
c̃(x, t = 0) = c̃0 = S/(kϕ0) which satisfies the steady
state condition.
Snapshots in Fig. 1 and Fig. 2 in the main text are

taken at t = 4 × 104t0 and t = 2 × 104t0, respectively.
Note that in Fig. 2(b-c), of the two eigenvalues, only the
higher one ω̃+ is shown since it determines the stability.
In all phase diagrams where simulations are displayed
(Fig. 1-2, SI Movie 1-7), the parameters for the simula-
tions correspond to the coordinates of the center of the
images.

S6. CHARACTERIZATION OF COARSENING
DYNAMICS

 0  0.15  0.35  0.55  0.76  0.96

2

3

4
5
6

1/3

0 = 2
(a)

102 103 104102 103 104

2

3

4
5
6

1/3

0 = 8
(b)

FIG. S2: Evolution of the characteristic domain sizes
that correspond to the simulations at α0 = 2 and 8 and
increasing values of PeC in Fig. 2(a) in the main text.

It is known that in conventional MIPS the size of
phase-separated domain coarsens over time [3]. However,
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as shown in the main text, chemotaxis can arrest such
coarsening. In this section, we quantify the coarsening
dynamics by plotting the evolution of the characteristic
domain size over time, defined to be [11–13]

R(t) =

[∫
|q|S(q, t)dq∫
S(q, t)dq

]−1

, (S78)

where S(q, t) is the structure factor associated with spa-
tial variations in particle volume fraction

S(q, t) = |∆ϕ̂(q, t)|2, (S79)

where ∆ϕ̂ is the Fourier transform of ∆ϕ = ϕ− ϕ0.
Fig. S2(a-b) shows the normalized characteristic do-

main size Rqsp with respect to time that correspond to
the simulations with α0 = 2 and 8 in Fig. 2(a) in the main
text (Da0 = 0.5, PeR = 10−3, ϕ = 0.8). The domain size
of the case of non-chemotactic MIPS (PeC = 0) grows as
R ∼ t1/3 (black curve), consistent with the growth law of
spinodal decomposition [14], showing that the coarsen-
ing persists. With increasing PeC , this coarsening slows
down (blue to chartreuse curves), eventually becomes ar-
rested and gives rise instead to finite-sized domains char-
acteristic of a Type F instability.

Next, we show more examples of the coarsening dy-
namics with smaller steps of increasing PeC . Fig. S3
shows the snapshots of the coarsening process and the de-
pendence on PeC when Da0 = 0.5, PeR = 10−3, ϕ = 0.8
and α0 = 2 and 10, along with the corresponding R(t).
PeC is chosen such that it is equally spaced between 0
and 90% of the critical PeC that corresponds to Bound-
ary 1. We see that when the patterns are stationary
(α0 = 2), with increasing PeC , the coarsening gener-
ally slows down, and the domain size at steady state de-
creases. For α0 = 10, coarsening also slows down with in-
creasing PeC until the pattern becomes oscillatory, when
initially, the coarsening may be faster than stationary
patterns. Note that R(t) is typically non-monotonic for
oscillatory patterns, and when R(t) converges to a steady
value at longer time, the steady value decreases with in-
creasing PeC .
The observation above can also be seen in Fig. S4,

which shows the results for ϕ0 = 0.65 (other dimension-
less parameters are identical to Fig. S3). Because the
pattern for ϕ0 = 0.65 is bicontinuous for a larger frac-
tion of the time, at PeC = 0, the growth curve R(t) is
smoother than ϕ0 = 0.8 shown in Fig. S2, which shows
step increase due to events of dissolution and merger of
phases. Again, we confirm the R ∼ t1/3 power law for
non-chemotactic MIPS (PeC = 0). In the main text, we
referred the readers to Figs. S3 and S4 for snapshots of
the non-chemotactic spinodal decomposition.

Fig. S4 also shows that the slope of lnR−ln t decreases
with increasing PeC for stationary patterns at both α0 =
2 and 10, again indicating slower coarsening. A traveling
pattern is instead observed at α0 = 10 and PeC = 0.39,
for which R(t) shows non-monotonic behavior.

PeC = 0 0.17 0.33 0.5 0.66 0.83(a)

0.4 0.9

PeC = 0 0.17 0.33 0.5 0.66 0.83(b)

2

3

4
5
6

1/3

0 = 2
(c)

102 103 104102 103 104

2

3

4
5
6

1/3

0 = 10
(d)

0 0.17 0.33 0.5 0.66 0.83

FIG. S3: (a-b) Snapshots of simulations and
(c-d) evolution of the characteristic domain size R(t) at

Da0 = 0.5, PeR = 10−3, ϕ0 = 0.8, α0 = 2 (a,c) and
10 (b,d), and increasing values of PeC .

S7. CHARACTERIZATION OF
SMALL-AMPLITUDE FLUCTUATION

In this section, we verify the classification of type F/U
instability based on the linear stability analysis using nu-
merical simulations. To compare with the dispersion re-
lation shown in Fig. 2(b-c) in the main text, we per-
form simulations at these parameters. The initial condi-
tion for ϕ(x) is a homogeneous ϕ0 with added spatially
uncorrelated Gaussian noise at each grid point with a
standard deviation of 0.001. We use a small amplitude
perturbation here to reduce the nonlinear effect. The
initial condition for the chemoattractant concentration
is the homogeneous state c̃(x, t = 0) = c̃0 = S/(kϕ0)
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PeC = 0 0.078 0.16 0.23 0.31 0.39(a)

0.4 0.9
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102 104
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0 0.078 0.16 0.23 0.31 0.39

2

4

6
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1/3

0 = 2
(c)

102 104

FIG. S4: (a-b) Snapshots of simulations and
(c-d) evolution of the characteristic domain size R(t) at
Da0 = 0.5, PeR = 10−3, ϕ0 = 0.65 for α0 = 2 (a,c) and

10 (b,d).

with added noise that has the opposite sign as the added
noise for ϕ(x). We observe the early time evolution of
long, medium, and short wavelength modes by defin-
ing the following quantities based on the structure fac-

tor: A1(t) =
∫ 0.16qsp
0

S(q, t)dq, A2(t) =
∫ qsp
0.5qsp

S(q, t)dq,

A3(t) =
∫∞√

2qsp
S(q, t)dq. Fig. S5 shows that in the long

wavelength regime for both α0 = 2 and α0 = 8, the am-
plitude of the perturbation decreases for PeC = 0.75 and
0.95 and increases for other cases, consistent with the dis-
persion relation in Fig. 2(b-c), verifying that PeC = 0.75
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FIG. S5: The time evolution of the perturbation in the
long (A1), medium (A2) and short wavelength (A3)

regimes. The parameters correspond to the columns of
α0 = 2 and α0 = 8 in Fig. 2(a) in the main text.

and PeC = 0.95 correspond to type F and other cases
correspond to type U. In the medium wavelength regime
where the instability grows the fastest, the perturbation
grows for all cases except for α0 = 2 and PeC = 0.95,
which is linearly stable at all wavelengths. Note that the
curve is nonmotonic for α0 = 2 and PeC = 0.75. This
can be due to the coupling between ϕ and c, since the
perturbation we impose is not an eigenvector in the lin-
ear stability analysis. In the short wavelength regime,
initially all amplitudes decrease sharply.

S8. CHARACTERIZATION OF OSCILLATORY
PATTERN FORMATION

In Fig. 2(a) in the main text, we plot the velocity (red
arrows) of the patterns. In this section, we show the
definition of the velocity and its dependence on PeC and
α0.
To quantify the velocity of stripes that span the entire

domain and spirals, we define a level set velocity u, that
is, the velocity at which contours of ϕ move in the direc-
tion along the gradient: u = −∂tϕ ·∇ϕ/|∇ϕ|2. Note that
the level set velocity is undefined when the gradient van-
ishes. Cases that use this definition are: PeC = 0.96,
α0 = 4, 6, 8, 10, and PeC = 0.76, α0 = 10. For all
other cases, which exhibit dot-like and short stripe-like
patterns, u is instead defined to be the velocity of the
center of mass of each of the disjoint regions defined by
{x|ϕ(x) < 0.7} to facilitate ease of visualization. The
vectors of u are indicated by the red arrows in Fig. 2(a).
The scale bar u0 ≡ l0/t0 ∼ U0 indicates the characteristic
velocity.

Fig. S6 summarizes the velocity of patterns shown in
Fig. 2(a). We compute the average speed u at t/t0 =
2 × 104. The level set velocity is averaged over all grid
points for which |∇ϕ| > 0.03l−1

0 to avoid inaccuracy when
the magnitude of the gradient is small (level set velocity
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FIG. S6: Average speed of patterns corresponding to
Fig. 2(a) in the main text.

is undefined when |∇ϕ| = 0), while the center of mass
velocity is averaged over all disjoint regions. We see that
patterns move faster with increasing PeC and the onset
of motion occurs at lower PeC with increasing α0.
As a reference, the average speed of the patterns at

PeC = 0.95 is on the order of 0.1u0, which means that
the pattern travels at a speed that is an order of mag-
nitude smaller than the speed at which ABP particles
self-propel.

S9. APPLICATION IN LIVING AND
SYNTHETIC SYSTEMS

In this section, we estimate the values of the dimen-
sionless parameters of living systems and discuss ways
to study the phase diagram of chemotactic MIPS exper-
imentally by tuning certain properties of synthetic col-
loidal systems.

Populations of motile bacteria. We use Myxo-
coccus xanthus and Escherichia coli as representative
examples to draw estimates of parameter values from.
PeR ∼ 10−2, and hence, cells may undergo MIPS at suffi-
ciently high cell density [15]. We therefore take ∂ϕµ̃h ∼ 1
as shown in Eq. (S6) for cells in the spinodal region
of MIPS. The experimentally measured diffusivity M0

can range from ∼ 0.1 to ∼ 102 µm2/s [15–17], typi-
cally lower than chemoattractant diffusivity, which sug-
gests that α <∼ 1. The typical chemoattractant depletion

length is
√
Dc/k ∼ 1 µm [16], and persistence length

l0 [18] is about 20 µm, hence Da ∼ 102. These estimates
suggest that populations of motile bacteria satisfy cri-
terion (2), indicating that MIPS can be suppressed by
chemotaxis when Pe′C ≈ PeC · S/k is sufficiently large.
Because PeC ∼ 10 [16, 17, 19], when chemoattractant is
abundant (S is large), MIPS is suppressed. Conversely,
when chemoattractant is limited, we expect that MIPS
can occur.

For synthetic systems such as self-propelled colloids,

because Da ∼ U2
0 τ

2
Rk/Dc, and α ∼ U2

0 τR/Dc, Da and
α can be tuned via the swimming velocity U0 e.g., us-
ing external stimuli such as light [20–23]. In addition,
Da can be tuned by changing the reactive material to
alter the chemoattractant uptake rate k. Finite-sized do-
mains arise experimentally if synthetic chemotactic col-
loids have a low uptake rate k, which leads to smaller Da.
With a smaller Da and a larger α (such as by increasing
U0), oscillatory dynamics involving clusters of colloidal
particles traveling in space may arise.

S10. POSSIBLE EXTENSIONS OF OUR WORK

The derivation in § S2 indicates that our continuum
model is a suitable description for the long time and
length scale dynamics of chemotactic ABPs that self-
propel and undergo chemotactic drift and alignment—
and thus is broadly applicable to many living and active
systems. While we focused on the case in which the par-
ticles are attracted to and consume the chemical signal,
our conclusions also hold for the case in which the par-
ticles are repelled by (χ0 < 0) and produce the chemical
signal. This case also allows for a homogeneous steady
state around which a linear stability analysis can be eas-
ily performed, exactly following the procedure described
in above, yielding similar behavior to that described in
this paper. Intuitively, this can be understood as arising
because in both forms of chemotaxis, the chemical gra-
dient generated by particle consumption or production
causes the particles to disperse, which competes against
motility-induced phase separation.
Nevertheless, there are many other different ways in

which chemotaxis can arise, possibly leading to different
types of couplings in the continuum theory; exploring
these other forms of chemotaxis will be an important fu-
ture direction for research, building on our work. For
example, the effective free energy may depend on the
chemoattractant concentration gradient. By not having
the chemoattractant concentration gradient in the free
energy, our model is the lowest order model that cou-
ples chemotaxis and MIPS in an additive way. Exploring
other forms of chemotaxis, leading to other more complex
forms of Eq. (2) in the main text, will be an important
future direction for research, building on our work.
In addition, in contrast to the illustrative case consid-

ered here, producers of a chemoattractant or consumers
of a chemorepellent are attracted to each other by chemo-
taxis and aggregate, hence further enhancing phase sepa-
ration, resulting in fundamentally different behaviors. In
such cases, chemotaxis can give rise to pattern formation
without requiring MIPS: for example, when the individ-
ual active agents produce a chemoattractant (which is
the case for e.g., the aggregation of the slime mold Dic-
tyostelium discoideum) or conversely consume a chemore-
pellent. Exploring the interplay between MIPS and these
other forms of chemotaxis using the approach we devel-
oped will surely be a fascinating direction for future work.
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Variable Physical meaning

a ABP particle radius

U0 ABP self-propulsion speed

τR ABP reorientation time

M0 = 1
2
U2

0 τR ABP active diffusivity

ϕ0 Average ABP volume fraction

µ̃h Normalized ABP chemical potential

l0 ≡
√
κ ∼ U0τR Characteristic length scale of the width of the MIPS interface

Dc Chemoattractant diffusivity

k Chemoattractant uptake rate coefficient

S Chemoattractant supply rate

χ0 Chemotactic coefficient

f(c̃) = c̃ Chemotactic sensing function

g(c̃) = c̃ Dependence of chemoattractant uptake rate on chemoattractant concentration

PeR ≡ a
U0τR

Reorientational Péclet number: directedness of ABPs

α0 ≡ M0
Dc

Ratio of single-particle ABP to chemoattractant diffusivity

Da0 ≡ κk
Dc

Chemoattractant uptake rate to diffusion rate over
√
κ

PeC ≡ χ0
M0

Chemotactic Péclet number: ratio of ABP chemotactic coefficient to diffusivity

α ≡ −M0ϕ0∂ϕµ̃h

Dc
= −α0ϕ0∂ϕµ̃h Ratio of effective collective ABP to chemoattractant diffusivity

Da ≡ − κkϕ0g
′

Dc∂ϕµ̃h
= −Da0

ϕ0g
′

∂ϕµ̃h
Damköhler number: effective chemoattractant uptake to diffusion rate

Pe′C ≡ − χ0
M0ϕ0∂ϕµ̃h

f ′g
g′ = −PeC

f ′g
ϕ0∂ϕµ̃hg′ Reduced chemotactic Péclet number: effective ABP chemotactic to diffusivity rate

TABLE S1: Summary of variables and dimensionless parameters.

We also note the confusing point that Keller and Segel
— whose 1971 paper forms the basis of our model of
chemotaxis — also published another seminal but dis-
tinct model of chemotaxis [24] that is suitable to the case
of slime mold aggregation noted above. Examining the
interplay between MIPS and this alternative version of
the Keller-Segel model could be an interesting way to
extend our work.

More broadly, while we focused on biased motion up
a chemoattractant gradient as an illustrative example,
our theoretical framework also provides a foundation to
describe the influence of other forms of taxis—e.g., duro-
taxis, electrotaxis, and phototaxis [25–32]—on MIPS.
Moreover, while we focused on a specific model of MIPS,
extending our framework to other forms of active phase
separation (e.g., [33–39]) would be interesting.

Finally, as noted above and in the main text, it is im-
portant to note that while our linear stability analysis
provides useful predictions for the boundary of stability,
it is not accurate in predicting more complex nonlinear
features such as the boundary between arrested coars-
ening and patterns that coarsen. While the prediction
of finite or unbounded wavelength instability based on
the linear stability analysis can be verified through sim-
ulations by tracking the amplitude of perturbations at
short, medium, and long wavelengths over time at early
times not far from the homogeneous state, it does not
quantitatively predict whether the pattern coarsens as
the system reaches deeper into the nonlinear regime at
longer time scales. Therefore, we use linear stability anal-
ysis only to provide an approximate explanation of the

essential physics underlying finite wavelength selection
and the observation of finite-sized domains that do not
coarsen, which becomes more common with increasing
chemotactic rate. More accurate quantitative agreement
will require nonlinearities to be explicitly incorporated in
the analysis.

S11. SUPPLEMENTARY MOVIES

1. Animated profiles of ϕ(x) that show non-
chemotactic MIPS in the PeR − ϕ0 phase diagram
(PeC = 0).

2. Animated profiles of ϕ(x) for the simulations in
Fig. 1(b). Da0 = 0.2, α0 = 1, PeC = 1.

3. Animated profiles of ϕ(x) for the simulations in
Fig. 1(d). Da0 = 0.2, α0 = 4, PeC = 1.

4. Animated profiles of ϕ(x) for the simulations in
Fig. 1(f). Da0 = 0.5, α0 = 10, PeC = 0.35.

5. Animated profiles of c(x) for the simulations in
Fig. 1(b). Da0 = 0.2, α0 = 1, PeC = 1.

6. Animated profiles of c(x) for the simulations in
Fig. 1(d). Da0 = 0.2, α0 = 4, PeC = 1.

7. Animated profiles of ϕ(x) for the simulations in
Fig. 2(a). Da0 = 0.5, PeR = 10−3, ϕ0 = 0.8.
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