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Abstract
Tissue homeostasis, the biological process of maintaining a steady state in tissue via control
of cell proliferation and death, is essential for the development, growth, maintenance, and
proper function of living organisms. Disruptions to this process can lead to serious diseases
and even death. In this study, we use the vertex model for the cell-level description of tissue
mechanics to investigate the impact of the tissue environment and local mechanical proper-
ties of cells on homeostasis in confined epithelial tissues. We find a dynamic steady state,
where the balance between cell divisions and removals sustains homeostasis, and charac-
terise the homeostatic state in terms of cell count, tissue area, homeostatic pressure, and
the cells’ neighbour count distribution. This work, therefore, sheds light on the mechanisms
underlying tissue homeostasis and highlights the importance of mechanics in its control.

Keywords Tissue mechanics · Epithelial homeostasis · Vertex models

Mathematics Subject Classification 92C10

1 Introduction

Cell proliferation, the process by which cells grow and multiply through division, is essential
for various biological functions such as tissue development, growth, and maintenance [1].
For example, during the early stages of embryonic development cells rapidly proliferate,
differentiate, and position themselves to lay out the body plan for the development of a
new organism [2]. Throughout adult life, maintaining tissue homeostasis involves a balance
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between cell proliferation and cell death. This is essential for tissue upkeep, repair, and
regeneration in response to injury [3–5]. Disruptions of this balance can lead to serious
diseases such as cancer [6], atherosclerosis [7], and rheumatoid arthritis [8]. Therefore, a
key question is how tissues maintain the balance between cell division and cell death to
ensure homeostasis.

Tissue homeostasis relies on the delicate balance between cell proliferation and cell
death, which are regulated not only by biochemical factors but also by mechanical cues
[9, 10]. Cells experience forces by the surrounding tissues and extracellular matrix [11].
These mechanical forces affect cellular and intracellular biochemical signals that influ-
ence critical biological processes such as cell adhesion, migration, differentiation, and
growth [12]. A well-known example is contact inhibition, a process that halts cell divi-
sion in dense environments to prevent tissue overcrowding and maintain integrity [13–15].
However, in many cancers, control of cell growth is disrupted, leading to a complex, het-
erogeneous mixture of actively dividing and quiescent cells, along with the necrotic tis-
sue [16, 17]. In addition, the mechanical forces exerted by the microenvironment strongly
impact cancerous growth by regulating the stresses imposed on a tumour, highlighting the
critical role of mechanics in tumour progression [18]. Despite its central importance, our
understanding of the mechanical processes that control tissue homeostasis remains limited.

Furthermore, understanding the mechanical regulation of cell proliferation is important
for identifying physical mechanisms that underlie the development of higher organisms.
For example, in amniotes such as birds and reptiles, embryos before gastrulation [2] (i.e. the
developmental process in which an embryo transforms into a multilayered three-dimensional
structure) are a flat disk of epithelial cells consisting of two main tissue types, the epiblast
or embryonic tissue in the centre, and the extra-embryonic tissue encircling it [19]. Cell
divisions and ingressions (i.e. removal of the cells into the region below the epiblast) occur
throughout the epiblast, effectively maintaining its integrity during gastrulation [19–21]. The
extra-embryonic tissue, on the other hand, provides mechanical tension to the epiblast [22],
which is essential for the proper execution of gastrulation. It also serves critical roles in
nutrient transport, waste elimination, and providing protective barriers [23].

In this paper, we explore how the tissue environment and cell mechanical properties con-
tribute to establishing and maintaining homeostasis in confined planar epithelia. We start
by briefly reviewing various approaches used to model the mechanics of epithelial cells,
including particle-based models [24–26], phase-field methods [27–30], cellular Potts mod-
els [31, 32], Voronoi models [33, 34], and, notably, vertex models [35–38].

Particle-based models represent individual cells as discrete objects (typically discs or
spheres) that interact with their neighbours via short-range potentials, as described e.g. in
[26, 39, 40]. While particle-based models can provide valuable insights into phenomena
such as collective cell migration, they cannot easily account for the deformations and the
resulting mechanical responses of cells. Additionally, since those models do not explicitly
include cell-cell junctions, which play a key role in force transmission, defining precise
interaction potentials is not straightforward.

Phase-field methods model cells using continuous density fields to describe cell shapes
and the interfaces between them [41–44]. These methods can easily handle processes such as
cell division, cell migration, and changes in cell shape. However, they are computationally
expensive because each cell is described by a partial differential equation for its phase field,
limiting accessible system sizes and times.

Cellular Potts models represent cells on a lattice, with each cell occupying multiple lattice
sites [45, 46]. In this approach, it is straightforward to simulate processes such as cell sorting
driven by differential adhesion [45, 47] and tissue organization [48]. It was also recently used
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to model cell competition [49]. While very powerful, the discrete nature of the cellular Potts
model can, however, lead to artefacts, e.g. by limiting its ability to represent continuous
mechanical properties and precise cellular deformations accurately.

In self-propelled Voronoi models the epithelial tissue is represented as a Voronoi tessel-
lation of the plane. Cells are represented by particles that act as seed points of the Voronoi
diagram. Each cell is, thus, a tile of the corresponding Voronoi tiling. Forces on the cells
are computed using the connectivity information of the Voronoi tiling and activity is mod-
elled as a self-propelling force in the direction set by a polarity vector assigned to each cell
[33, 34, 50]. These models can efficiently capture cell rearrangement [34, 51], but are re-
stricted by the assumption that the tissue can be represented as a Voronoi tiling, which in
many situations is not the case.

Two-dimensional vertex models represent the apical side of an epithelial tissue as a
polygonal tiling of a plane. Each cell is represented as a polygon, with two cells sharing
an edge (i.e. a junction). Three or more junctions meet at a vertex, which acts as the degree
of freedom [36, 38, 52, 53]. This allows modelling changes of cell shape due to mechanical
forces [54, 55].

Several studies have used vertex models to explore tissue homeostasis and its mechanical
underpinnings. For example, Refs. [36, 56] examined how cell mechanics, cell-cell interac-
tions, and proliferation influence epithelial packing, demonstrating the critical roles these
factors play in determining cell-packing geometries and transitions during tissue growth.
Additionally, the mechanical behaviour of epithelial monolayers under external stretch high-
lighted how cell division contributes to tissue plasticity and stress adaptation, thereby pro-
viding insights into tissue viscoelasticity [57]. Furthermore, the morphodynamics of grow-
ing epithelial tissues have been shown to be significantly impacted by mechanical stresses,
which play a crucial role in regulating tissue growth [58]. In contrast to these studies, here
we examine the combined effect of the mechanical properties of the cells and the confine-
ment on epithelial tissue homeostasis.

This paper is organised as follows: In Sect. 2, we provide details of the two-dimensional
vertex model for epithelial tissue mechanics, including the implementation of cellular pro-
cesses within this framework. In Sect. 3, we present our findings by characterising home-
ostasis in terms of the variation in the (i) number of active cells, (ii) area occupied by active
cells, (iii) polygonal distribution of the active cell shapes, (iv) realised shape index (i.e. the
ratio of cell perimeter to the square root of its area) of the active tissue, and (v) the cell
pressure. Specifically, Sect. 3.1 describes the temporal dynamics as the system progresses
towards homeostasis. Then, in Sect. 3.2, we discuss the impact of model parameters, includ-
ing growth rate, cell division, and cell ingression probability coefficients, on homeostasis,
and in Sect. 3.3 we discuss the sensitivity of the homeostatic state to the target shape indexes
of active and passive cells. In Sect. 3.4, we present the analysis of the effect of confinement
on homeostasis. Lastly, summary and conclusions are given in Sect. 4.

2 Model

2.1 Two-Dimensional Vertex Model for Epithelial Tissue Mechanics

Epithelial cells are tightly packed to form a confluent monolayer (e.g. epiblast of amniote
embryos, the lining of blood vessels, kidney tubules, intestine, etc.) or a multilayer (e.g.
skin, excretory ducts of sweat glands, etc.) sheet [59]. The tissue cohesion is achieved by
an adhesion belt formed of clusters of E-cadherin molecules concentrated in the adherens
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junctions [60], giving epithelial tissues viscoelastic properties. While the shapes of cells in
an epithelial monolayer generally resemble prisms, the molecules primarily responsible for
the generation and transmission of mechanical forces are located close to the apical side
(i.e. the top surface) of the cells. Therefore, a common approach is to focus on the apical
side alone and approximate the tissue as a two-dimensional polygonal tiling. Cells are thus
represented as polygons that share junctions, and three or more junctions meet at a vertex.
This description is known as the two-dimensional vertex model [35, 36, 38].

The mechanical energy of the model epithelium is determined by cell shapes, and it is
given as

E =
∑︂

c∈ cells

[︃
KA

2
(Ac − Ac,0)

2 + KP

2
(Pc − Pc,0)

2

]︃
, (1)

where the sum is over all the cells in the tissue. The first term is the penalty associated with
changes in the cell’s area, Ac, from a reference value Ac,0, and it accounts for the volume
conservation and preferred height of actual cells. The second term penalises deviations in
the cell’s perimeter, Pc , from a reference value, Pc,0, and models the mechanical properties
of the adhesion belt. The associated elastic moduli are KA and KP , respectively. The ratio
pc,0 = Pc,0/

√︁
Ac,0 is called the target cell shape index. Finally, we have omitted the cell

dependence of KA and KP to declutter the notation. Throughout this work, we use “simu-
lation” units chosen such that the typical simulation box has size L = 50 and the perimeter
modulus KP = 1.

If all cells have the same target areas, A0, and perimeters, P0, the target shape index p0 =
P0/

√
A0 determines the tissue’s mechanical behaviour, distinguishing fluid–like and solid–

like responses. Once p0 exceeds a critical value, the shear modulus of the tissue decreases to
zero, and the tissue fluidises. This is accompanied by the disappearance of the energy barrier
for cell neighbour exchanges [61]. For a tissue made entirely of hexagonal cells, the shear

modulus falls to zero at the critical value p0 = 6/

√︂
3
√

3/2 ≈ 3.722, i.e. the perimeter to the
square root of the area ratio of a regular hexagon. However, the energy barrier for neighbour
exchanges remains finite until p0 ≈ 3.81, the corresponding ratio of a regular pentagon [62].
For random tilings, the solid-fluid transition has been reported to be in the range p0 ≈ 3.81−
3.94 [54, 63–65]. Values of p0 ≳ 4.1 often lead to unstable simulations due to irregular cell
shapes and overlap. Therefore, the relevant range of values of p0 is generally between ≈ 3.6
and ≈ 4.0. In this study, we varied p0 within the range of 3.600−3.825 because simulations
become unstable for p0 > 3.825.

Cells in epithelial tissues are dynamic, but their motion is slow (typically, ∼ 10 µm/h).
Therefore, the motion is overdamped and can be approximated as a force balance between
dissipative and mechanical forces. Under the assumption that cells are supported by a sub-
strate that provides most of the dissipation via friction, the equation of motion for the vertex
i at the position ri is

ζ ṙi = Fi . (2)

The overdot represents the time derivative, ζ is the friction coefficient, and Fi is the force
on the vertex. In simulation units, ζ = 1. If only passive mechanical forces are present,
Fi = −∇ri

E, where ∇ri
is the gradient with respect to the position vector ri of vertex i, and

mechanical energy E is defined in Eqn. (1). In the presence of activity, Fi can be extended to
include additional force contributions [66, 67]. Finally, the noise term that would normally
accompany the dissipative term in the equation of motion [68] is omitted as is usual in
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Fig. 1 Five morphological changes of the model tissue. (a) Intercalation (i.e. cell neighbour exchange) is
implemented via a T1 transition where a junction shorter than a threshold length ℓT 1 is rotated 90◦ coun-
terclockwise and vertex connectivity is updated. (b) Cell growth is implemented by rescaling the target area
Ac,0 [Eqn. (3)]. (c) Cells are divided perpendicular to their long axis along a line that passes through the cen-
troid with a probability that is a function of the cell size [Eqn. (4)]. (d) Cells are removed with a probability
that is a function of the cell size [Eqn. (5)], by collapsing cell edges into a single vertex. (e) Vertices with
four or more neighbours are resolved by spitting them at random while ensuring that mesh connectivity is not
violated

vertex models, since the effects of the microscopic noise on the long-time behaviour of cells
in epithelial tissue are usually negligible.

To maintain proper function, epithelial cells rearrange via neighbour exchanges, grow,
divide, and die. Therefore, the vertex dynamics needs to be augmented to include cellular
processes such as intercalations (i.e. cell neighbour exchanges), ingression/extrusion (i.e.
removal of individual cells from the tissue), cell division, and cell growth (Fig. 1). Modelling
these processes requires updates of the connectivity of the polygonal tiling via topological
changes such as T1 (intercalation) and T2 (ingression/extrusion) transitions [37].

2.2 An Active Inclusion in a Passive Tissue Patch

The features of the vertex model discussed above are general. We now proceed to specific
extensions of the model used to study the proliferation of an active patch embedded in a
passive tissue. Since we are interested in a general understanding of the role of mechanical
interactions between the proliferating tissue and its environment in maintaining homeostasis,
we chose a simple square geometry. Therefore, we study a square patch of size La × La of a
proliferating active epithelial tissue embedded in a passive epithelium confined to a square
box of size L × L. The passive tissue is clamped to the edges of the box, as illustrated
in Fig. 2a. Passive cells can move and rearrange, but cannot grow, divide, or be extruded.
Active cells, however, can grow, divide, and be extruded.

We initialise the simulation with a disordered tiling generated by placing N points at
random in a square box. The points act as the initial seeds for a Voronoi tessellation. Upon
building the Voronoi tesselation, the seed points are moved to the centroids of Voronoi tiles,
and a new Voronoi tiling is constructed. The procedure is repeated iteratively until the max-
imal relative difference between positions of seed points in two consecutive iterations is
below 5 · 10−5. This results in a centroidal Voronoi tesselation, which has the property that
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the tiling is random, but all cells are of similar size and shape [69]. Additionally, we sam-
ple the target perimeters of cells in the active tissue (P a

c,0) from a normal distribution with
a mean of μ = 5.98 and a standard deviation of σ = 0.3. The corresponding target areas
of the active cells are determined by Aa

c,0 = (P a
c,0/p

a
0)

2, where pa
0 is the target shape in-

dex of active cells. For the passive cells, the target perimeters and areas are set to constant
values P

p
0 = 5.98 and A

p
0 = (P

p
0 /p

p
0)

2, respectively. Furthermore, the vertices of the out-
ermost layers are fixed in position and constrained to lie along a straight line, reflecting a
clamped boundary condition [70]. Straight boundaries are created during the initial configu-
ration setup by padding the simulation box and mirroring seed points within a preset cutoff
distance from the boundaries.

Before starting the full simulation, we perform passive relaxation, i.e. each random initial
configuration is evolved for time trel = 50 without cell growth, divisions, and ingressions.
This allows the model tissue to relax close to a local energy minimum and prevents large
vertex movements in the initial stages of the actual simulation. Unless stated otherwise,
simulations were performed from a single initial configuration.

Cell intercalations are implemented via a T1 transition (Fig. 1a) based on a minimum
junction length [71]. If the junction length drops below a specified threshold, ℓT1, it is rotated
by 90◦ counterclockwise and extended to the length ℓn

T1 = 1.02ℓT1. Then the connectivity
is updated to account for the exchange of cell neighbours. Moreover, T1 transitions rarely
result in either a passive cell entering the proliferating region or an active cell entering the
passive region (i.e. a cell of one type is fully surrounded by cells of the other type). In these
cases, the cell type is changed from passive to active, or vice-versa.

Next, we discuss how we implement the active processes, i.e. cell growth, division, and
ingressions. For simplicity, we assume that the cell growth (Fig. 1b) is described by a linear
model, where the target area of active cells, Aa

c,0(t), evolves as

Ȧa
c,0 = g, (3)

where g is a constant growth rate. The target shape index of active cells is kept constant at
pa

0 by adjusting the target perimeter to P a
c,0(t) = pa

0

√︁
Aa

c,0(t). The target area and perimeter
of all passive cells are assumed to be identical and time-independent, giving the target shape
index p

p
0 .

Cells in the active region can divide, and the division mechanism is stochastic. The divi-
sion probability, Pd(c), of a cell c increases with the cell area Ac as

Pd(c) = 1

1 + e−α(Ac−Ad)
, (4)

where Ad represents the area at which the probability of cell division is 1/2 and α regulates
the sensitivity of division probability to changes in the cell area. Ad is set to 1.6Āa(t = tref),
where Āa(t = tref) is the mean area of active cells after the initial passive relaxation for tref

steps. The division probability is calculated for each cell once every five simulation time
steps, and cell division occurs if a uniformly distributed random number drawn from the
interval [0,1] is smaller than the calculated probability Pd(c). The division process follows
Hertwig’s rule [72], i.e. a cell is divided into two daughter cells by choosing a direction
perpendicular to its long axis that passes through its centroid (Fig. 1c). The long axis is
determined by diagonalising the gyration tensor [73]. The target perimeters of two daugh-



Cell-Level Modelling of Homeostasis in Confined Epithelial Monolayers

ter cells are separately drawn from the normal distribution with a mean of μ = 5.98 and
standard deviation σ = 0.3 and target areas are calculated as Aa

daughter,0 = (P a
daughter,0/p

a
0)

2.
Similarly, for cell ingression, we define the probability Pi(c) which increases with a

decrease in cell area Ac as,

Pi(c) = 1

1 + eβ(Ac−Ai)
, (5)

where Ai represents the area at which the probability of cell ingression is 1/2 and β regulates
the sensitivity of ingression probability to changes in the cell area. Ai is set to 0.3Āa(t =
tref). Ingression of a cell typically leads to the formation of a vertex with more than three
neighbours (Fig. 1d). Such vertices are resolved by picking a random “cut” direction that
does not violate the tissue connectivity and inserting a new edge of length ℓn

T1. The procedure
is repeated until all high-coordination vertices are resolved (Fig. 1e).

These five morphological transformations of the model tissue are shown schematically
in Fig. 1. Finally, the equations of motion [Eqn. (2)] are solved using the first-order Euler
method [34, 73–76] with a time step δt , implemented in an in-house developed software
package called the Active Junction Model (AJM) [77], specifically designed for simulating
the vertex model. Unless otherwise specified, the parameters and the values used are listed
in Table 1. Notably, the target shape indices of active and passive cells are varied in the range
of p

p
0,p

a
0 ∈ [3.600,3.825]. The parameters lT1, δt , and KA are simulation parameters chosen

to optimize the balance between numerical stability and simulation time. The computational
time for a single simulation depends on the system size, but typical runs take between 48 to
72 hours on a single core of a 32-core 2.35 GHz AMD EPYC 7452 CPU.

Table 1 Values of the parameters in simulation units

Parameter Description Numerical value

KA Area elastic modulus 3.0

N Initial number of cells 103

P
p
0 Target perimeter of passive cells 5.98

P̄ a
0 Mean initial target perimeter of active cells 5.98

σ Standard deviation of active cells target perimeter 0.3

g Growth rate 2.0 · 10−3

Ad Area at which Pd(c) = 0.5 1.6 Āa (t = 50)

Ai Area at which Pi(c) = 0.5 0.3 Āa (t = 50)

ℓT1 T1 transition threshold 5 · 10−3

δt Simulation time step 5 · 10−3

α Division probability parameter [Eqn. (4)] 8.0

β Ingression probability parameter [Eqn. (5)] 6.0

pa
0 Target shape index of active cells 3.600 − 3.825

p
p
0 Target shape index of passive cells 3.600 − 3.825

La Initial size of the active patch 20.0

trel Initial configuration relaxation time 50
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3 Results and Discussion

3.1 Temporal Dynamics of the Tissue

We first study the time evolution of the tissue towards homeostasis, as depicted in Fig. 2.
Cells in the central proliferating region grow, divide, ingress, and rearrange. Consequently,
the region expands and exerts compressive stress on the passive cells, leading to their defor-
mation and intermittent rearrangements. Constrained by the fixed boundary of the simula-
tion box, the passive cells get compressed. Eventually, the system reaches a steady state (i.e.
homeostasis), characterised by continuously replenishing cells in the proliferating region.

Figure 3 shows the time evolution of the fractional change in the number and area of
active cells,

fN(t) = N a(t)

N a(t = tref)
and fA(t) = Aa(t)

Aa(t = tref)
, (6)

where N a(t) and Aa(t) are the number and area of active cells at time t , respectively, and
tref is the reference time used for normalisation, depending on the specific case, set either to
tref = 0 (before passive relaxation) or to tref = 50 (after passive relaxation). While this dis-
tinction helps separate the contribution to fA from active processes and passive relaxation,
fN remains insensitive to the choice of tref because the number of cells does not change
during relaxation. The cumulative sums of cell divisions (Σd(t)) and ingressions (Σi(t))
are also calculated as the system reaches homeostasis. The active cell population gradually
increases and reaches a dynamic steady state where both fN and fA saturate but continue
to fluctuate around a mean value (Fig. 3a, b). Notably, the changes in the area due to active
processes (i.e. growth, divisions, and ingressions) are significantly larger than those due to
passive relaxation to mechanical equilibrium compatible with a given shape index and the
target area (Fig. 3b - inset).

Fig. 2 The snapshots of the evolution of the model tissue: (a) initial configuration with active inclusion
containing 169 cells (light grey) surrounded by passive tissue with 831 cells (black); (b) intermediate config-
uration showing cells born in the active region after the first division (1st generation - blue) and subsequent
divisions (≥ 2nd generation - orange); and (c) a steady-state configuration with all initial active cells replaced
by new generation cells. These snapshots correspond to pa

0 = 3.60 and p
p
0 = 3.80
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Fig. 3 (a) The time dependence of the fractional change in the number of active cells (fN ) defined in Eqn. (6).
(b) The fractional change in the area of active cells (fA) defined in Eqn. (6); Inset: Passive relaxation (i.e.
growth, division, and ingression switched off). (c) The cumulative sum (Σ) of cell divisions (Σd - solid lines)
and ingressions (Σi - dotted lines) normalized by Na(t = 0); Inset: Time dependence of the difference be-
tween the cumulative sums of cell divisions and ingressions, Σd − Σi , normalized by Na(t = 0). pa

0 = 3.60,

p
p
0 = 3.80 (blue curves) and pa

0 = 3.80, p
p
0 = 3.60 (red curves). In panel (b), the data is normalised with

respect to the reference area at tref = 0, i.e. before the passive relaxation

The homeostatic state is characterised by a dynamical balance between divisions and
ingressions (Fig. 3c), i.e. the cumulative sums of cell divisions and ingressions continuously
grow but retain, on average, a constant difference (Fig. 3c - inset). The homeostasis is,
therefore, achieved through a balance of cell proliferation and cell removal [78, 79]. This
dynamic balance is crucial for maintaining tissue integrity and function, preventing the tissue
from overgrowing or collapsing, as highlighted in experimental studies [78, 80].

Furthermore, the steady-state values of fN and fA depend on the mechanical properties
of the tissue, specifically the target shape indices of active (pa

0) and passive (pp
0) cells. Since

p0 ∝ (A0)
−1/2, and we control p0 by tuning A0, increasing p0 reduces preferred cell size.

As the cell area contribution to energy is ∝ (A − A0)
2, cells with smaller A0 are easier

to compress to the same A, i.e. are effectively softer. When pa
0 = 3.60 and p

p
0 = 3.80 (i.e.

stiffer and larger active cells surrounded by softer and smaller passive cells), the increase in
active cell count and the area they occupy is ≈ 1.5 times higher compared to the scenario
where pa

0 = 3.80 and p
p
0 = 3.60 (i.e. softer and smaller active cells surrounded by stiffer and

larger passive cells). This suggests that a stiffer proliferating tissue composed of larger cells
enclosed by a softer passive tissue of smaller cells reaches a homeostatic state with more
active cells, which occupy a significantly larger total area than their initial area.

Figure 3c shows that the target shape indices of active (pa
0) and passive (pp

0) cells play an
important role in determining cell proliferation and net population changes. A configuration
with a stiffer proliferating tissue surrounded by a softer passive tissue (pa

0 = 3.60 and p
p
0 =

3.80) results in fewer cell divisions, but the difference between the number of divisions and
the number of ingressions is larger, leading to a greater net gain of active cells. Conversely,
reversing this configuration (pa

0 = 3.80 and p
p
0 = 3.60) leads to more cell divisions but also

a higher number of ingressions, resulting in a smaller net gain of active cells. This suggests
that the tissue can adapt to its surroundings to maintain stability and proper function [12, 81].

These findings highlight the delicate balance between cell divisions and ingressions in
maintaining tissue homeostasis. A configuration with higher division rates does not neces-
sarily lead to a larger active cell population if it is accompanied by a proportionate increase
in ingressions. Instead, the optimal balance, as seen with pa

0 = 3.60 and p
p
0 = 3.80, results
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in a more effective net gain of active cells, underscoring the importance of mechanical prop-
erties in regulating tissue dynamics.

3.2 Effects of the Growth Rate, and Division and Ingression Probability Coefficients

Next, we investigate the effects of the growth rate (g) and the parameters that control the
shape of the probabilities of division (α) and ingression (β) on the homeostatic state for
pa

0 = 3.60 and p
p
0 = 3.80. This configuration was selected since the difference in the number

of cell divisions and ingressions is high, leading to the maximum number of active cells, as
illustrated in Fig. 3.

We characterise the homeostatic state in terms of the steady-state mean values of the
fractional change in the number (f̄N ) and the area (f̄A) of active cells defined, respectively,
as

f̄N = ⟨fN(ti)⟩t and f̄A = ⟨fA(ti)⟩t . (7)

Here, the time averaging ⟨. . . ⟩t is done for the time interval Δt = 500. The averaging is
started after the system reaches homeostasis, which is typically between t = 1500 and t =
2000 (Appendix A).

Figure 4 shows the dependence of the mean fractional changes of f̄N and the area oc-
cupied by active cells on the division probability coefficient (α), the ingression probability
coefficient (β), and the growth rate (g).

While f̄N decreases with increasing α, f̄A remains approximately constant (Fig. 4a). The
division probability curve is steeper for large values of α, reducing the likelihood of smaller
cells dividing. As a result, there is a significant decrease of f̄N and f̄N < f̄A for α > 8.
At α ≈ 8, the f̄N and f̄A curves intersect, corresponding to the total increase in the area
occupied by active cells closely matching the increase in the total number of those cells.
Therefore, the mean area per active cell remains close to the mean reference area before
the activity was turned on, i.e. Āa ≈ Āa(tref). For α < 8, divisions are more frequent and

Fig. 4 The mean fractional change in the number of active cells (f̄N ; blue) and the area occupied by the
active cells (f̄A; red) as a function of (a) division probability coefficient, α for β = 6 and g = 0.002, (b)
ingression probability coefficient, β for α = 6 (solid), α = 8 (dashed), and α = 15 (dotted) and g = 0.002,
and (c) growth rate, g, for α = 6 (solid), α = 8 (dashed), and α = 15 (dotted) and β = 6. The error bars
represent one standard deviation of the mean values from three different realisations. The shaded region in
(a) indicates parameter values that lead to unphysical configurations with overlapping cells. In (b) and (c),
the abrupt end of the curves, similarly, indicates that beyond those parameter values, simulations become
unstable. The insets in (a), (b), and (c) show the variation in the mean area of active cells normalized to their
mean area at t = 50 with α, β , and g, respectively. pa

0 = 3.60 and p
p
0 = 3.80 in all plots
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involve smaller cells, resulting in f̄N > f̄A, i.e. the mean cell area decreases. Since f̄A does
not change significantly, the mean area of active cells increases with α (inset of Fig. 4a),
indicating that active cells adjust their areas accordingly.

On the other hand, both f̄N and f̄A increase with β (Fig. 4b). Higher values of β make the
ingression probability curve steeper, decreasing the likelihood of cells ingressing at higher
areas. This substantially increases f̄N and f̄A, with their values weakly depending on α. As
β increses, ingressions can no longer compensate cell divisions and the system becomes
unstable. Furthermore, for a fixed β , the mean area of active cells, Āa, increases with an
increase in α (Fig. 4b - inset), consistent with Fig. 4a.

Finally, Fig. 4c shows that both f̄N and f̄A increase with the growth rate, g, until the
tissue becomes unstable. For a fixed g, the values of f̄N and f̄A depend on α following
the same trend as in Fig. 4a. On the other hand, the mean cell area of active cells depends
weakly on g, remaining nearly constant for α = 6, and slightly decreasing with g for higher
alpha (Fig. 4c - inset). Additionally, for a given g, the mean area of active cells increases
with α, consistent with Fig. 4a.

3.3 Effects of Target Shape Index of Active and Passive Cells on the Homeostatic
State

Next, we examine the effect of target shape indices of active and passive cells on the home-
ostatic state for α = 8, β = 6, and g = 0.002. This configuration corresponds to the values
of parameters where f̄N and f̄A curves cross (Fig. 4), i.e. when active cells nearly retain
their original area making simulations stable over the full parameter range. Figure 5a shows
that the dependence of the final cell count of active cells measured in terms of f̄N on the
target shape indexes of both passive, p

p
0 , and active, pa

0, cells. The mean fractional change
of the number of active cells, f̄N , increases as p

p
0 is increased from 3.600 to 3.825, for a

Fig. 5 (a) The fractional change of the average number of active cells, f̄N , and (b) the average area occupied
by the active cells, f̄A , [Eqns. (7)] in the steady state as a function of the target shape index of active (pa

0) and

passive (pp
0) cells. In panel (b) the data is normalised with respect to the configuration after passive relaxation

(tref = 50). The colour bar applies to both panels. Simulations are performed at grid points indicated by black
circles, and the colour within each square represents the average of the values at the four corners of that
square. The standard deviation of the time series used to compute the mean values is within the range of
0.01 − 0.05
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given value pa
0. Conversely, f̄N decreases with increasing pa

0. The dependence of the mean
steady area fraction of active cells, f̄A, on pa

0 and p
p
0 , is shown in Fig. 5b. Not surprisingly,

it closely matches the trend of f̄N in Fig. 5a so that, irrespective of pa
0 and p

p
0 , f̄N ≈ f̄A,

consistent with the observation that α, β and g primarily controls the relative variation of
f̄N and f̄A (see Fig. 4 and Appendix B).

The increase of f̄N and f̄A as one moves from the bottom right to the top left corner
in Fig. 5 can be understood as follows. As the target shape index of the passive cells, p

p
0 ,

increases, the target area of the passive cells decreases, and the passive tissue shrinks its
size, making more area available for active cells. As a result, the difference in the number of
divisions and the number of ingressions increases (Appendix C), leading to the increase of
f̄N and f̄A. Moreover, the dependence of the fractional change of both the number of active
cells and the area they occupy on the target shape indices of active and passive cells remains
qualitatively consistent, regardless of the specific values of model parameters α, β , and the
growth rate (Appendix B).

3.3.1 Homeostatic Pressure in Active and Passive Cells

Next, we examine the pressure in the active and passive cells in homeostasis. The pressure
of a cell is related to the actual (Ac) and target (Ac,0) areas of the cell via [82],

Pc
r = −KA(Ac − Ac,0). (8)

The mean pressure of active (P̄a
r ) and passive (P̄p

r ) cells is defined as

P̄a
r =

⟨︄
1

N a(ti)

∑︂

c∈{a}
Pc

r (ti)

⟩︄

t

, P̄p
r =

⟨︄
1

Np(ti)

∑︂

c∈{p}
Pc

r (ti)

⟩︄

t

, (9)

Fig. 6 The dependence of the (a) mean homeostatic pressure of active cells (P̄a
r ) and (b) the ratio of the

mean homeostatic pressure of active cells to that of passive cells (P̄a
r /P̄p

r ) on the target shape indices of
active, pa

0, and passive, p
p
0 , cells. Simulations are performed for parameter values corresponding to the grid

points indicated by black circles, and the colour within each square represents the average of the values at
the four corners of each square. The mean is calculated over 2 · 104 simulation time steps (i.e. time interval
Δt = 500 with the data recorded every five simulation steps) in the steady state
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where N a(ti) and Np(ti) are, respectively, the numbers of active and passive cells at time ti ,
and ⟨. . . ⟩t denotes the time average.

Figure 6 shows the dependence of P̄a
r and the ratio P̄a

r /P̄
p
r on the target shape index of

active and passive cells. The pressure in active cells (Fig. 6a) increases with a decrease in
the target shape index of either cell type. The pressure ratio in active cells to the passive
cells remains close to 1 for all values of p0 (Fig. 6b), indicating that the mechanical forces
are balanced.

Finally, with pressure being proportional to the cell area, one might expect that the plot
of the pressure of active cells (Fig. 6a) would have the same pattern as the mean area of
active cells (Fig. 5b). This is, however, not the case since the target cell areas (Ac,0) also
depend on the target cell shape index.

3.3.2 Cell Neighbour Count and Disorder in the Active Tissue

We proceed to quantify the active tissue in terms of the distribution of the cell neighbour
count and characterise its disorder via the realised shape index of active cells.

Figure 7 shows the mean distribution of cell neighbour counts averaged over time and
across five different initial configurations (generated as outlined in Sect. 2.2) for different
combinations of target shape indexes of active and passive cells. The transition from the
initial (red bars) to the steady-state distribution (blue bars) illustrates how cells reorganise.
In agreement with the previous studies [36, 83, 84], regardless of the values of pa

0 and p
p
0 , the

distribution consistently exhibits a pattern where hexagons dominate the tiling, followed by
pentagons, heptagons, and quadrilaterals. Furthermore, comparing the initial configuration
with the final dynamic configuration reveals a decrease in the fraction of hexagons and an
increase in the fraction of pentagons, irrespective of the target shape indexes. Additionally,
the increase in the fraction of pentagons at the expense of hexagons is accompanied by the
broadening of the distribution to maintain confluence. Lastly, the final distribution of cell
neighbour counts remains qualitatively insensitive to the cell neighbour count distribution
of the initial configurations.

Fig. 7 Fraction of active cells with n neighbours, Pn , averaged over time and across five different initial con-
figurations for different target shape index combinations: (a) pa

0 = 3.60, pp
0 = 3.60, (b) pa

0 = 3.80, pp
0 = 3.60,

and (c) pa
0 = 3.80, p

p
0 = 3.80. The initial and final distributions, averaged across all realisations, are denoted

by red and blue bars, respectively, with error bars indicating the corresponding standard deviations of the
mean values. The mean value for each of the five initial configurations is calculated over the time interval
Δt = 500
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Fig. 8 The dependence of (a) average value of the realised steady-state shape index of active cells, p̄a
r , and

(b) corresponding standard deviation on the target shape indices of active, pa
0, and passive, p

p
0 , cells. Simu-

lations are performed at grid points indicated by black circles, and the colour within each square represents
the average of the values at the four corners of each square

To gain further insight into the impact of target shape indexes on tissue morphology, we
explore the dependence of the mean realised steady-state shape index of the active tissue,
p̄a

r , and corresponding standard deviation, σ(p̄a
r ), on the input target shape indexes pa

0 and
p

p
0 , as shown in Fig. 8. p̄a

r is calculated as

p̄a
r =

⟨︂ 1

N a(ti)

∑︂

c

pa
r,c(ti)

⟩︂

t
, (10)

where pa
r,c(ti ) = Pc(ti)/

√
Ac(ti) represents the realised shape index of the cell c at simula-

tion step ti , with Pc(ti) and Ac(ti), respectively, being the perimeter and area of the cell c.
Both the mean realised shape index, p̄a

r , and the corresponding standard deviation increases
with increasing pa

0 and decreasing p
p
0 . This is consistent with Fig. 3c, which shows that

more divisions and ingressions occur at larger values of pa
0 and lower values of p

p
0 , leading

to increased disorder in the active tissue.
In summary, the optimal configuration for efficient tissue proliferation, characterised

by maximum cell count and reduced disorder (i.e. lower realised shape index), involves
stiffer proliferating tissue with larger cells enclosed by softer passive tissue with smaller
cells.

3.4 Effects of Confinement - Varying the Width of the Passive Tissue

Finally, we investigate the effect of confinement, quantified by the ratio La/L, on the home-
ostatic state of the active tissue for an optimal configuration of the target shape indices
pa

0 = 3.60, p
p
0 = 3.80 that result in the maximum number of cells and reduced disorder. By

keeping the initial size of the active tissue constant at La = 20, we systematically vary L

to modify the thickness of the passive tissue and, thus, the strength of the confinement. For
each value of L, P

p
0 and P̄ a

0 are calculated as the mean perimeter of the cells in the cor-
responding initial well-centred Voronoi tiling. Reducing La/L corresponds to weakening
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Fig. 9 (a) Dependence of the fractional change in the number of active cells, f̄N [Eqn. (7)], on the width
of the passive region, quantified by the ratio La/L; Inset: the realised shape index of active cells, p̄a

r , as a
function of La/L, for pa

0 = 3.60 and p
p
0 = 3.80. (b) and (c) show the corresponding probability distributions

of cell neighbour counts of the active tissue averaged over five different initial configurations for weaker and
stronger confinements, respectively. The error bars represent one standard deviation of the five mean values.
Here, La = 20 is fixed, and L is varied to change the ratio La/L

the confinement due to the presence of a thick layer of passive tissue between the active
tissue and the fixed boundary, which shields the active region from the effects of the fixed
boundaries. Conversely, the La/L → 1 case corresponds to strong confinement, as there is
only a thin layer of passive tissue, and the active patch can easily sense the boundary of the
simulation box.

Figure 9 shows how changes in La/L impact the fractional change in the number of
active cells and the cell neighbour count distribution. As shown in Fig. 9a, the cell count
monotonically decreases with a decrease in the thickness of the passive tissue (i.e. as con-
finement strengthens). This is because the clamped boundary emulates a fully rigid tis-
sue, and strengthening the confinement enhances the impact of the fixed boundary on the
active tissue. Consequently, making confinement stronger yields effects similar to reduc-
ing p

p
0 (Fig. 5). These findings are consistent with experimental studies that show how

mechanical confinement influences cellular behaviour, e.g. cells confined in microenvi-
ronments [85–87], such as micropatterned substrates, exhibit reduced proliferation rates
[88, 89].

Furthermore, Fig. 9b and Fig. 9c show the mean distribution of the number of cell
neighbours of the active tissue averaged over five different initial configurations for weaker
(La/L = 0.4) and stronger (La/L = 0.8) confinements, respectively. In weaker confine-
ments, hexagons dominate the tiling, followed by pentagons, and then heptagons, whereas
in stronger confinements, there is no significant difference between the fraction of hexagons
and pentagons (blue bars). However, comparing the initial equilibrium configuration with
the final dynamic configuration reveals a decrease in the fraction of hexagons and an increase
in the fraction of pentagons irrespective of confinement. Moreover, the fraction of quadrilat-
erals is higher in strong confinements compared to weak confinements. Thus, strong confine-
ments favour non-hexagonal cells in the active region, whereas weak confinement favours
hexagonal cells (Appendix D). Additionally, as shown in the inset of Fig. 9a, the realised
shape index of active cells (p̄a

r ) increases as the confinement becomes stronger. Therefore,
the disorder in the active tissue increases as confinement becomes stronger, akin to the effect
observed when p

p
0 is decreased.
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4 Summary and Conclusions
In this paper, we used the two-dimensional vertex model for cell-level modelling of tissue
mechanics to investigate homeostasis in confined epithelial tissues consisting of a central
region populated with actively proliferating cells surrounded by non-proliferating passive
cells. We showed that the system can reach homeostasis which is a dynamic steady state
maintained by a balance between cell divisions and ingressions. We characterised the home-
ostatic state of the tissue in terms of the fractional change in the number of active cells,
the area occupied by the active cells, and the distribution of cell shapes. Notably, these pa-
rameters demonstrate sensitivity to the mechanical properties of both the active and passive
cells, as quantified by their respective target shape indices. Moreover, we observed that the
strength of confinement significantly influences the homeostatic state. Our findings illustrate
a simple mechanism that regulates the growth of a confined tissue and establishes homeosta-
sis.

The fractional change in the number of active cells and the area occupied by them in-
creases with an increase in the target shape index of the passive cells and decreases with
an increase in the target shape index of the active cells. Thus, a softer active tissue with
smaller cells (higher target shape index) confined by a stiffer passive tissue with larger cells
(lower target shape index) results in controlled growth. However, this configuration results
in greater disorder within the proliferating tissue, as indicated by a significantly higher re-
alised shape index. Additionally, as confinement gets stronger, i.e. as the thickness of the
passive region decreases, the cell count decreases, while the realised shape index increases,
mirroring the effect of decreasing the shape index of the passive cells. However, strong con-
finement also affects the cells’ neighbour count distribution, favouring non-hexagonal cells.

This study emphasizes the central role of cells’ mechanical properties, alongside the tis-
sue environment, in regulating homeostasis, providing valuable insights into tissue mainte-
nance. By demonstrating the sensitivity of the homeostatic state to variations in mechanical
factors, such as confinement strength and tissue elastic properties, our findings highlight
the intricate interplay between mechanical cues and cellular behaviour. These insights could
help guide the design of effective tissue scaffolds that replicate the mechanical environment
of natural tissues [90, 91]. Additionally, tissue homeostasis is often disrupted in various dis-
eases, and this work highlights the contribution of mechanical properties of the tissues to
pathological conditions [18, 92].

Future work could extend the model to three-dimensional tissues to better capture the
complexity and architecture of real tissues [93–95]. Additionally, incorporating detailed
biochemical signalling pathways will offer a more comprehensive understanding of the in-
terplay between mechanical and biochemical signals in tissue regulation. Including internal
dissipation mechanisms would enhance the model’s accuracy in representing embryonic
development, especially in environments without a substrate [19, 76]. Another promising
direction is to explore dynamically varying mechanical properties to mimic the changing
physiological conditions seen in living organisms [96, 97]. Furthermore, considering the cell
cycle [98, 99] and the impact of the local mechanical environment on cell growth and divi-
sion would enhance the model’s ability to more accurately reflect the behavior of biological
tissues. These enhancements would make the model more quantitative, thereby potentially
making it applicable to specific biological systems.

Appendix A: Active Cell Count - Sensitivity to Initial Configuration
Here, we discuss the sensitivity of the change in active cell count to the initial configura-
tion. Different initial configurations are generated according to the procedure outlined in
Sect. 2.2.
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Fig. 10 The time dependence of the fractional change in the number of active cells is shown for five different
initial configurations for (a) pa

0 = 3.60, p
p
0 = 3.80, and (b) pa

0 = 3.80, p
p
0 = 3.60. Each curve in both panels

corresponds to a different initial configuration

Figure 10 shows the time evolution of the fractional change in the number of active cells
for five different realisations. Specifically, it highlights the shape index combinations re-
sulting in high (pa

0 = 3.60, p
p
0 = 3.80) and low (pa

0 = 3.80, p
p
0 = 3.60) changes in the active

cell count. The final cell count of active cells is nearly insensitive to the initial configuration.
Additionally, as discussed in Sect. 3.1, fN increases and saturates to a mean value.

Appendix B: Analysis for α = 15, β = 6, and g = 0.006

In the main text, we focused on the set of parameters where f̄N and f̄A are very close to each
other, i.e. where cells do not significantly change their mean areas from the passive cease.
Here, we repeat the analysis in Fig. 5 but for α = 15, β = 6, and g = 0.006 (Fig. 11).

Fig. 11 (a) The average number of active cells, f̄N , and (b) the average area occupied by the active cells, f̄A ,
[Eqns. (7)] in the steady state as a function of the target shape index of active (pa

0) and passive (pp
0) cells.

In panel (b) the data is normalised with respect to the configuration after passive relaxation (tref = 50). The
colour bar applies to both panels. Simulations are performed at grid points indicated by black circles, and
the colour within each square represents the average of the values at the four corners of that square. Here,
α = 15, β = 6, and g = 0.006
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Appendix C: Ratio of the Cumulative Sum of Cell Divisions and
Ingressions

Fig. 12 The mean value of
Σdiff(t), the difference between
the cumulative sum of divisions
and ingressions (Σd − Σi ),
normalized by Na(t = 0),
calculated over the time interval
δt = 500. Here, α = 8, β = 6,
and g = 0.002

Appendix D: Effect of Confinement on the Polygonal Distribution

Fig. 13 The steady-state mean
probability distributions of cell
neighbour counts of the active
tissue averaged over five different
initial configurations for weaker
and stronger confinements. The
error bars represent one standard
deviation of the five mean values.
Here La = 20 is fixed, and L is
varied to change the ratio La/L
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