

PENNSTATE

AFOSR MURI Update June 2005-Jan 2006:

Renewable Bio-solar Hydrogen Production from Robust Oxygenic Phototrophs

$BioSolarH_2 \rightarrow Team$

G. Charles Dismukes PU	photosynthesis/engineering
------------------------	----------------------------

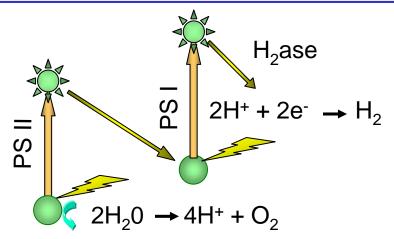
Edward I. Stiefel PU enzymology/inorganic

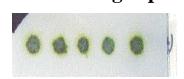
Donald A. Bryant PSU genetics/mol biology cyanos

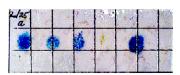
Matthew Posewitz CSM genetics/mol biology algae

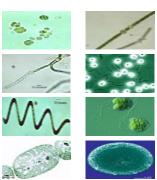
Eric Hegg UU enzymology/inorganic

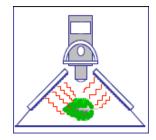
Robert Bidigare UH microbial physiology/ecology






Goal 1: High Throughput Screening for BioSolar H₂ Production


Colonies on agar plates

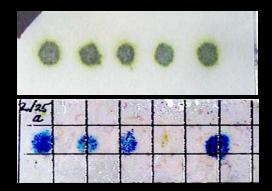

Chemochromic H₂ sensor

Kinetic Fluorescence CCD Camera

<u>Goal</u>: screen libraries of phototrophs in search of most active H_2 producers using multiple sensors for H_2 , photosynthetic capacity and O_2 consumption

Payoff to Air Force

- development of robust screening protocol to identify unique H₂ producing organisms
- development of clean renewable hydrogen fuel



Goal 2: Design/Fabricate Powerful Instrumentation

Current Tools for:

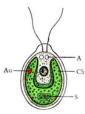
- high throughput screening of gaseous H₂ production
- •Light induced electron transfer rates in/out of PSII: $H_2O \rightarrow O_2$, $Q_A^- \rightarrow Q_A$
- Intracellular redox status PSII: PQ/PQH₂
- •Nanomolar sensitivity for dissolved O₂ and H₂ concentrations

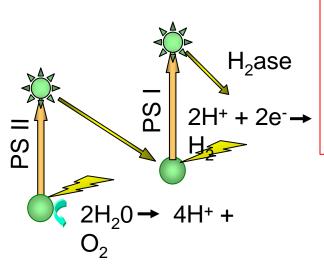
Colonies on agar

NREL H₂ gas sensor

Fast repetition rate fluorimeter PSII Quantum Efficiency

Dissolved H₂ & O₂ LED + Clark cells





Goal 3: Elucidate Pathways for e⁻ & H⁺ fluxes in Microalgae: Light-Induced H₂ Production in *Chlamydomonas reinhardtii*

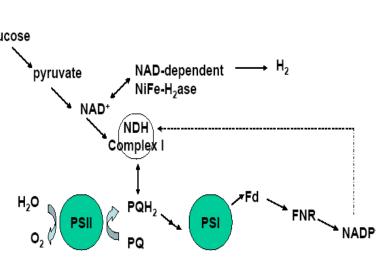
Mechanistic Pathway in WT strain cc124

- •Two pools of photo-electron acceptors in PSI identified as precursors to photo- \mathbf{H}_2
- •Established conditions for absence of competing pathways to photo-H,

Genetically Engineered Strains

•Expression of a single set of H_2 as assembly genes has been demonstrated to be sufficient to assemble a diverse set of [FeFe]-hydrogenase structural enzymes from foreign HydA genes taken from clostridial bacterial strains.

Goal 3: Elucidate Pathways for e⁻ & H⁺ Fluxes in Cyanobacteria:


Dark Fermentative H₂ production by Arthrospira maxima

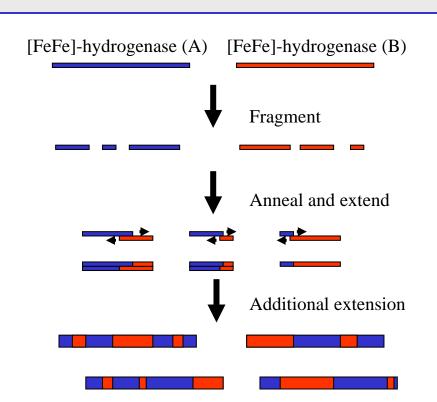
•Robust photoautotrophic growth over long periods

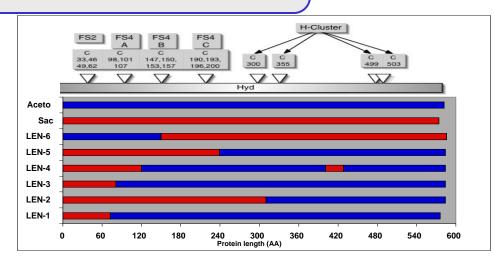
•High carbonate-requiring hypersaline alkalophile

•Optimal temporal separation of H₂ and O₂

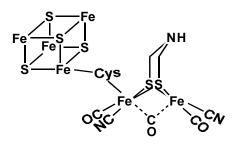
•High rates of fermentative H_2 production optimized by environment conditions (T, pH) and micro-nutrient optimization (Ni, Fe, trace metals): 5.5 ml H_2 (liter culture)⁻¹ hour⁻¹

Two stage indirect pathway to generate H₂ via a O₂-tolerant NiFe-H₂ase:


- 1) classical photosynthetic generation of glycogen,
- 2) fermentation of glycogen



Goal 4: Gene shuffling to rapidly increase diversity of [FeFe]-hydrogenases



<u>Goal</u>: Use recombinant DNA technology to rapidly generate large libraries of novel [FeFe]-hydrogenases. Select robust enzymes for application in BioSolar H₂-production applications

Examples of shuffled products with activity

FeFe-hydrogenase catalytic H-cluster

Payoff to Air Force

- Rapid generation of millions of novel [FeFe]-hydrogenases in less than a week
- Efficiently generates enzyme libraries to be screened for more robust properties
 - •Established biotechnology for improving enzyme function