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Abstract: 

Researchers conducting non-experimental studies of panel data often attempt to remove the 
potentially biasing effects of individual heterogeneity through the inclusion of fixed effects.  I 
evaluate so-called �Value Added Models� (VAMs) that attempt to identify teachers� effects on 
student achievement.  I develop falsification tests based on the assumption that teachers in later 
grades cannot have causal effects on students� test scores in earlier grades.  A simple VAM like those 
used in the literature fails this test:  5th grade teachers have nearly as large effects on 4th grade gains as 
on 5th grade gains.  This is direct evidence of non-random assignment.  I use a correlated random 
effects model to generalize the test to more complex estimators that allow for tracking on the basis 
of students� permanent ability.  The identifying restrictions of these estimators are again rejected.  
Teacher assignments evidently respond dynamically to year-to-year fluctuations in students� 
achievement.  I propose models of this process that permit identification.  Estimated teacher effects 
are quite sensitive to model specification; estimators that are consistent in the presence of (some 
forms of) dynamic tracking yield very different assessments of teacher quality than those obtained 
from common VAMs.  VAMs need further development and validation before they can support 
causal interpretations or policy applications. 
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I. Introduction 

Experiments are in short supply, but the demand for causal estimates is large.  Non-

experimental methods can identify causal effects, if their maintained assumptions about the 

assignment to treatment and the processes governing outcomes are correct.  Some data structures 

allow tests of these assumptions, permitting an assessment of the validity of the treatment effect 

estimates (Ashenfelter and Card, 1985; Heckman, Hotz and Dabos, 1987). 

A common approach to non-experimental inference is to condition on individual fixed 

effects.  Advances in computing have made ever more complex models tractable.  Models that 

decompose the variation in wages into worker and firm components, for example, have spawned a 

burgeoning literature on the determinants of firm wage effects.1  Quite similar specifications have 

been used to distinguish the effects of student ability and teacher quality on students� test scores.  

On the basis of this sort of model, a consensus has formed that teacher quality is an extremely 

important determinant of student achievement, and that an important goal of educational policy 

should be the creation of incentives to attract, retain, and motivate high-quality teachers.2 

Each teacher and each firm constitutes a distinct treatment and the effects of teachers and 

firms participating in any experiment3 would therefore be uninformative about the effects of non-

participants.  An important advantage of non-experimental estimators is that they can be used to 

measure effects for the entire population.  So-called �growth models� are increasingly important 

components of school accountability policy, and several states have incorporated econometric 

models for teacher quality into their teacher accountability programs.  Some analysts (e.g., Gordon, 

et al., 2006) have gone so far as to suggest that schools be encouraged to fire as many as one quarter 

of new teachers who are found to make inadequate contributions to student learning.   

                                                 
1 Abowd and Kramarz (1999) provide a somewhat outdated review.   See also Abowd et al. (1999). 
2 See, e.g., Gordon et al. (2006), Hanushek (2002), Hanushek and Rivkin (2006), Koppich (2005), and Peterson (2006). 
3 Dee and Keys (2004) and Nye et al. (2004) use the Tennessee STAR experiment to study teachers� value added. 
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These applications require causal estimates.  Workers and students are not randomly 

assigned to firms and teachers.  The inclusion of controls for individual heterogeneity may permit 

causal identification, but only under rarely-specified assumptions for which there is little evidence.  

This paper investigates the estimation of teachers� causal effects on student achievement 

through so-called �Value Added Models,� or VAMs, applied to non-experimental data.4  The focus 

on education is dictated by data availability; the theoretical analysis applies equally to other 

applications, in particular the analogous models for firm effects on worker wages, though of course 

the empirical results might not.  I enumerate the identifying assumptions of the commonly-used 

VAMs and construct tests of these assumptions.   

The most important assumption made in value added modeling concerns the assignment of 

students to teachers.  Most VAMs assume that teacher assignments are uncorrelated with other 

determinants of student learning.  (The most widely used VAM, the Tennessee Value Added 

Assessment System, or TVAAS, assumes that there is no heterogeneity in student growth rates.5)  

This is unlikely.  In most schools, there is some degree of non-random assignment, either via formal 

�ability tracking� or informally, at the principal�s discretion subject to the influence of parental 

requests.  If the information used to form these assignments is predictive of future achievement 

growth, simple VAMs will not yield causal estimates.  

My tests are based on a simple falsification exercise:  Future treatments cannot have causal 

effects on current outcomes, and models that indicate such effects must be misspecified.6  I 

                                                 
4 Recent examinations of value added modeling include Ballou (2002), Braun (2005a, b), Harris and Sass (2006), 
McCaffrey et al. (2003), and a symposium in the Journal of Educational and Behavioral Statistics (Wainer, 2004).  Clotfelter, 
Ladd, and Vigdor (2006) highlight the importance of non-random teacher assignments for value added analysis, the 
focus of the current study, but conclude that this is a relatively minor issue in North Carolina. 
5 See Ballou et al. (2004); Bock et al. (1996); Sanders and Horn (1994, 1998); Sanders and Rivers (1996); and Sanders et 
al. (1997).  The TVAAS model allows error terms to be correlated across grades.  But these error terms are in 
achievement level equations; in fact, TVAAS does not allow for observed or unobserved heterogeneity in growth rates.   
6 This is directly analogous to the strategy used by Heckman et al. (1987)  to evaluate non-experimental estimators of the 
effect of job training on workers� wages.  Heckman et al. argue that estimators which fail to eliminate differences in pre-
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demonstrate that a simple VAM of the form typically used in the literature indicates large effects of 

current teachers on past achievement:  A student�s 5th grade teacher has nearly as large an �effect� 

on her 4th grade achievement growth as on her learning during 5th grade.  This is direct evidence of 

non-random assignment.   

Richer VAMs may be able to identify causal effects in the presence of sorting, but the 

appropriate model depends on the type of sorting used.  It is useful to distinguish between two 

types:  That based solely on students� permanent characteristics (e.g., IQ), and that based in part on 

the time-varying component of student performance.  I refer to the former as �static tracking� � 

even if it is less formal and complete than an announced ability tracking policy � and the latter as 

�dynamic� tracking.  If students entering a school are assigned permanently into advanced or 

remedial tracks, tracking is static.  If students can be re-assigned after entrance when annual test 

scores indicate that the initial assignment was incorrect, however, the tracking is dynamic. 

Some value added analyses have used enriched VAMs that absorb differences in student 

ability across classrooms via the inclusion of student fixed effects.  These can identify teachers� 

causal effects in the presence of static tracking.  If there is dynamic tracking, however, the available 

estimators are inconsistent for teachers� causal effects.7   

The interpretation of student fixed effects VAMs thus depends crucially on the form of 

tracking that is used.  To evaluate the static tracking assumption, I embed my falsification exercise in 

Chamberlain�s (1982, 1984) correlated random effects model.  Static tracking implies that estimators 

which fail to account for student heterogeneity will yield the same apparent effect of future teachers 

                                                                                                                                                             

training wages between the treatment and comparison groups must be relying on incorrect assumptions about the wage 
process or about the assignment of workers to training. 
7 A similar result applies to the separation of worker and firm heterogeneity in wages:  Firm effects are identified by fixed 
effects regressions if worker-firm matches depend only on permanent worker characteristics, but not if mobility is 
related to the short-term innovation in a worker�s productivity.  I discuss below the infeasibility of estimators for models 
with dynamic assignment (Arellano, 2001) in the teacher or firm effects contexts. 
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in all grades, as each reflects the omitted student effect.  That is, grade-6 teachers should appear to 

have similar effects on grade-4 and grade-5 scores.  The data definitively reject this restriction. 

I close by considering models of dynamic tracking that would permit the estimation of 

teachers� causal effects.  I describe two sets of assumptions about the educational production 

function and about the teacher assignment process, appropriate for different settings, that permit 

identification.  I present estimates using approximations to the implied estimators that are feasible 

given the available data.  These indicate that tracking leads to important biases in teachers� estimated 

effects, as estimates that account for (a restricted type of) tracking are not very highly correlated with 

those from simpler VAMs.  They also point to a second important, often overlooked factor:  

Students� past teachers appear to have continuing effects on their gains as they progress through 

school.  Effects in the second year after contact (e.g., of the 4th grade teacher on the 5th grade gain) 

are negatively correlated (ρ = -0.5) with effects in the first year, and the first year effects are poor 

proxies (ρ = 0.5) for teachers� cumulative contributions.  Correct models of tracking and of 

educational production are essential for the causal interpretation of value added estimates.   

II. The Education Production Function and Value Added Modeling8 

A. Educational Production 

A student�s achievement depends on the cumulative impact of inputs received to date from a 

variety of sources � family, school, peers, community, etc. � as well as on the student�s permanent 

ability.  School-based inputs are my focus here.  A general educational production function is: 

(1) Aig = fg (Si(g), μi, εi(g)), 

where Aig is the achievement score of student i in grade g, Si(g) contains the full history of school-

based inputs from birth through grade g, μi is contains all non-school inputs (both family and 

                                                 
8 I draw in this section on Harris and Sass (2006) and Todd and Wolpin (2003). 
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individual) that do not vary over time, and εi(g) is a history of time-varying non-school inputs and 

random errors in each year.   

If fg( ) is linear, this yields an equation of the form 

(2) Aig = Si1 β1
g + � + Sig βg

g + μi τg + εi1 φ1
g + � + εig φg

g, 

where Sih is a vector of school-based inputs in grade h, βh
g (h ≤ g) is the effect of grade-h school 

inputs on grade-g achievement, εih and φh
g are the corresponding variables and coefficients for time-

varying non-school inputs, and τg is the effect of permanent characteristics.9 

B. Gain Scores 

The difference between (2) and the corresponding equation for achievement in grade g-1, 

(3) Aig-1 = Si1 β1
g-1 + � + Sig-1 βg-1

g-1 + μi τg-1 + εi1 φ1
g-1 + � + εig-1 φg-1

g-1,  

characterizes the �gain score,� the change in achievement between grade g-1 and grade g: 

(4) ∆Aig ≡ Aig � Aig-1 = Si1 (β1
g � β1

g-1) + � + Sig-1 (βg-1
g � βg-1

g -1) + Sig βg
g 

+ μi (τg � τg-1) + εi1 (φ1
g � φ1

g-1) + � + εig-1 (φg-1
g � φg-1

g-1) + εig φg
g.  

μi enters into (4) only to the extent that it has different effects on achievement in grades g-1 and g.  

A focus on gains can therefore be seen as removing a student fixed effect in achievement.  Of 

course, if ability has different effects in different grades, it cannot be treated as a fixed effect and is 

not removed by differencing.   

C. Decay 

In general, the grade-g gain depends on the full history of school and time-varying non-

school inputs.  With restrictions on the β coefficients, however, past inputs may disappear from the 

                                                 
9 Boardman and Murnane (1979), Rivkin et al. (2005) and Hanushek (1979) discuss the limitations of this sort of 
specification.  Todd and Wolpin (2003) emphasize that family inputs will respond, most likely in a compensatory 
fashion, to school inputs.  Note also that (2) rules out any complementarities between school and non-school inputs, or 
between inputs of the same type across grades.  I maintain this assumption throughout. 
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gain score equation.  For example, if effects of inputs persist forever without decay (i.e., if βh
g = βg

g 

and φh
g = φg

g for all h < g), then grade-g gains depend only on grade-g inputs: 

(5) ∆Aig = Sig βg
g + μi (τg � τg-1) + εig φg

g.  

Alternatively, if inputs decay at a constant rate (i.e., βh
g = ξg-h βg

g and φh
g = ξg-h φg

g for some 0 ≤ ξ ≤ 1 

and all h < g), (4) can be re-arranged to express grade-g gains as a function of current inputs and the 

lagged achievement level: 

(6) ∆Aig = Aig-1 (ξ � 1) + Sig βg
g + μi (τg � ξ τg-1) + εig φg

g.10 

Both zero decay and constant decay are strong restrictions on the educational production 

process, and it is easy to imagine ways in which they might be violated.11  For example, vocabulary 

drills might raise students� scores on the end-of-grade test without having much effect on their long-

run achievement, implying rapid decay.  The rate of decay may vary with teaching styles:  Compare a 

teacher who focuses on drills with one who is skilled at teaching her students to enjoy reading for 

pleasure.  The achievement effects of the latter are likely to decay slowly if at all, and indeed it may 

have larger effects on students� long-run scores than in the short term.  If so, the rate of decay may 

be faster for the �drills� treatment than for the �instill a taste for reading� treatment.  There is little 

basis for either the zero-decay or the constant-decay restrictions. 

The general model (4) imposes only one important restriction:  There is no effect of future 

inputs on current gains.  That is, neither Sih nor εih enter into the equation for ∆Aig, g < h.  This 

restriction arises naturally from the structure of the model, and forms the basis for my tests. 

                                                 
10 See Harris and Sass (2006).  If there is any measurement error in the annual test score, this will be a component of εig 
that decays fully in the next year.  Generalizing (6) to allow for this when other inputs do not decay so quickly introduces 
a correlation between Aig-1 and the error term, and some researchers (Koedel and Betts, 2007; Ladd and Walsh, 2002) 
instrument for Aig-1 with Aig-2. 
11 The decay of past inputs is closely related to the degree to which test scores in different grades measure the same 
things and use the same scale.  The no-decay and constant-decay properties are not invariant to re-scaling of test scores 
unless the same transformation is applied to each grade�s scores.   
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D. A Simple VAM 

It is difficult to measure and control for the full set of relevant schooling inputs, particularly 

as the sorts of inputs that are readily measured � class sizes, teacher experience, school spending � 

may be less important than the hard-to-capture efficiency with which these inputs are used 

(Hanushek, 1981, 1986).  A widely-used alternative, and the focus of the current analysis, is to 

include a full set of indicators for students� grade-g teachers in Sig.  There are typically no other 

classroom-level controls; a teacher�s �effect� is defined to equal the effect of being in a particular 

classroom and incorporates both the teacher�s quality and the total effects of all other classroom-

level determinants of performance (including, e.g., peers and class size). 

The simplest value added specification is a regression of grade-g gain scores on indicators 

for grade-g teachers, perhaps with controls for a few student characteristics: 

(7) ∆Aig = Tig βg
g + Xi θg + eig. 

Here, Tig is an exhaustive set of teacher indicators and Xi is a vector of student characteristics.  My 

notation treats X as non-time-varying:  Most of the regressors that are typically available are constant 

across grades.12  Equation (7), by excluding teachers from grades 1 through g-1, imposes the zero 

decay assumption discussed above , though this could be loosened by including past teacher 

assignments as additional explanatory variables.13   

(7) attributes all school-level determinants of gain scores to teachers.  As an alternative, one 

can normalize the β coefficients to have mean zero within each school.  This avoids the need to 

model the assignment of students to schools, though because it prevents comparisons of teacher 

quality across schools it is unsuitable for most policy applications.  I focus throughout on within-

                                                 
12 Typical regressors are race, gender, and free lunch status.  Even the last varies little over time in practice. 
13 Some studies include the lagged achievement score as a control variable, either instrumented or not.  As noted above, 
this allows for decay of past inputs, but at a constant, uniform rate. 
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school variation in β.  Identification of this component is necessary but not sufficient for 

identification of the full β vector. 

Estimates of specifications much like equation (7) form the basis for most value added 

analyses.14  Many authors model the coefficients on the teacher indicators as random effects, while 

others use fixed effects techniques.  The two types of models differ in their abilities to accommodate 

X variables:  Random effects models typically require that teacher quality be orthogonal to any 

included controls (Ballou, et al., 2004), while fixed effects models can accommodate a correlation 

between teacher quality and observed controls, at some cost in efficiency.  The two models rely on 

common assumptions about the relationship between teacher assignments and unobserved 

determinants of student achievement.  As these assumptions are the focus of my analysis, my results 

(primarily from fixed effects estimators) are equally applicable to both sorts of models.   

Value added analyses cannot identify teachers causal effects under any exogeneity 

assumptions if we maintain the conventional definition that sampling error must go to zero as the 

sample size grows toward infinity:  Realistic assumptions would allow the number of teachers to 

grow with the number of students, keeping the number of students per teacher � the class size � 

approximately fixed and ensuring that sampling errors remain non-trivial.  I focus on a weaker 

definition:  I refer to teacher effects as �identified� if they would be accurately estimated as the 

number of students in the sample went to infinity with the number of teachers fixed.  If teacher 

effects are identified under these unrealistic asymptotics, VAMs can be used in compensation and 

retention policy with appropriate correction for the sampling errors that arise with finite class sizes; 

if not, it is unreasonable to treat them as noisy but unbiased estimates of causal effects.   

                                                 
14 See, e.g., Aaronson et al. (2007) and Rockoff (2004).  The TVAAS model is expressed as a mixed model for level 
scores that depend on all lagged inputs, but the essential identification strategy is of this form.  Other studies include the 
lagged achievement score as a control variable.  See, e.g., Kane et al. (2006); Clotfelter et al. (2007); Goldhaber (2007); 
and Jacob and Lefgren (2005).  As noted above, this allows for input effects to decay at a constant rate.  
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Even under this definition, identification of the β coefficients � or of summary statistics like 

the variance of β across teachers � requires strong assumptions about teacher assignments.  

Specifically, Tig must be orthogonal to all other determinants of grade-g gains.  Even with zero decay 

of teachers� effects, any correlation between Tig and (μi - E[μi | Xi]) � if τg ≠ τg-1 � or εig  will 

introduce bias.  The first rules out static tracking, if permanent characteristics influence gain scores.  

The second puts strong restrictions on dynamic tracking.  We require at least contemporaneous 

exogeneity, E[Tig εig] = 0, and most likely something stronger:  Although in principle the grade-g 

teacher assignment could depend on the grade-h gain (h<g), this can be accommodated only if εig is 

uncorrelated with εih.  Without strong restrictions on the serial correlation of ε, teacher assignments 

must be independent of test scores (conditional on Xi) in each previous grade. 

E. The Student Fixed Effects VAM 

Some studies adopt a richer specification that allows teacher assignments to depend on 

unobserved, permanent components of the error term, absorbing these components with student 

fixed effects in the gain equation (i.e. with student-specific trends in achievement).15  The model is: 

(8) ∆Aig = Tig βg
g + Di μ + eig, 

where Di is a set of indicators for each student and μ a set of student-specific coefficients.   This 

again relies on the assumption of zero decay.16   

Estimation of (8) requires at least two observations on gain scores for each student.  To 

illustrate the identifying assumptions, suppose that we observe gain scores in grades 1 and 2: 

(9) ∆Ai1 = Ti1 β1
1 + Ti1 β2

2 + Di μ + ei1 

(10) ∆Ai2 = Ti1 β1
1 + Ti2 β2

2 + Di μ + ei2 

                                                 
15 See, e.g., Harris and Sass (2006), Koedel and Betts (2007); Jacob and Lefgren (2005); Rivkin et al. (2005); and Boyd et 
al. (2007). 
16 Even under the assumptions discussed in the text, strong assumptions about the decay process would be required to 
identify the effects of lagged teachers in an augmented version of (8) that allowed for decay. 
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The mean gain for student i is: 

(11) Mi ≡ ½ [∆Ai1 + ∆Ai2 ] = ½ [Ti1 β1
1 + Ti2 β2

2] + Diμ + ½(ei1 + ei2). 

The estimating equation subtracts the mean gain for student i from each year�s gain score: 

(12) ∆Aig � Mi = ½Tig βg
g � ½ Ti3-g β3-g

3-g + ½ eig � ½ ei3-g, 

Demeaning eliminates the Di μ term.  But both grades� teacher assignments and the transitory error 

terms from both grades� gain equations enter into the equations for each grade�s de-meaned gain.  

Whenever the number of grades, G, is small enough that G-1 is non-negligible, as will be true in any 

imaginable value added analysis, a non-zero correlation between the error in one grade and the 

teacher assignment in that or any other grade will bias the estimated β coefficients.  

The advantage of the student fixed effects model is that it is robust to correlations between 

teacher assignments and the permanent component of the test score error, μi, at least insofar as this 

component enters with the same loading into each grade�s gain equation (that is, if τg � τg-1 is 

constant across g).  But identification of the β coefficients requires strict exogeneity of teacher 

assignments conditional on μ:  There can be no correlation between the grade-g teacher assignment 

and the time-varying residual ε in any past or future grade.  This is stronger than the corresponding 

assumption for the simple VAM without decay, which even at its strongest required only that the 

grade-g teacher assignment be unrelated with past residuals.  It is easy to imagine how it might be 

violated:  It requires in effect that principals decide on classroom assignments for the remainder of a 

child�s career on the day that the child begins kindergarten.  If instead teacher assignments are 

updated each year and depend on both the student�s permanent ability and her performance during 

the previous year, strict exogeneity would be violated. 

A standard strategy in panel data analysis when strict exogeneity does not hold is to work 

with the first-differenced equation,  

(13) ∆Ai2 � ∆Ai1 = Ti2 β2
2 � Ti1 β1

1 + ei2 � ei1, 
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rather than the de-meaned equation, instrumenting for the explanatory variables with lagged values 

(Anderson and Hsiao, 1981; Arellano and Bond, 1991).17  But note that here Tig and Tig-1 are each 

vectors of hundreds or thousands of teacher indicators, and lagged teacher assignments are unlikely 

to have much predictive power for them (and are invalid in any case if the zero decay assumption 

fails).  Thus, if teacher assignments may depend on student ability, there is no practical estimator 

that is robust to violations of strict exogeneity. 

F. Testing the Identifying Assumptions 

Panel data on teacher assignments can be used to test for violations of the exogeneity 

assumptions that underlie the basic and student fixed effects VAMs.  An informal test of the basic 

VAM can be formed by examining the correlation between Tig and ∆Aig-1.  A non-zero correlation � 

an apparent effect of grade-g teachers on gains in g-1 � suggests that Tig is correlated with either μi 

or εig-1.18  Coupled with evidence that the residual from the gain equation is serially correlated, this 

would strongly imply that T is endogenous in (7).19   

The student fixed effects VAM can rationalize this result as the consequence of a correlation 

between μ and teacher assignments.  But an extension of the test can be used to evaluate the strict 

exogeneity assumption on which it relies.  With this assumption, any apparent effect of (for 

example) 6th grade teachers on 4th grade gains arises only because 6th grade teacher assignments 

depend on and are correlated with μ.  Grade-6 teachers who are assigned high-μ students will appear 

to have positive effects and those with low-μ students will appear to have negative effects.  We 

should see the same pattern of apparent effects on grade-5 gains, positive for grade-6 teachers with 

                                                 
17 Equation (13) can be estimated by OLS without instrumentation (Koedel and Betts, 2007, implement a strategy like 
this) if the grade-g error term is uncorrelated with teacher assignments in grades g-1, g, and g+1.  This is slightly weaker 
(when G>2) than strict exogeneity.  It is difficult to imagine an assignment process that would satisfy this but would not 
satisfy strict exogeneity, however. 
18 A formal test would have to rule out the potential explanation that Tig is correlated with Tig-1 and that the omission of 
the latter drives the result.  This might be done by controlling for Tig-1 directly. 
19 I describe below a detailed, restrictive set of assumptions under which Tig might be correlated with Ai,g-1 without being 
correlated with the error term in (7).  But these would not hold in general. 
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high-μ students and negative for teachers with low-μ students.  An indication that a grade-6 teacher 

has different �effects� on grade-4 and grade-5 gain scores would indicate that not all of the omitted 

variables bias in (7) derives from μ, implying that the strict exogeneity assumption fails and that the 

student fixed effects VAM does not identify teachers� causal effects.  I develop this test � a direct 

application of Chamberlain�s (1982, 1984) correlated random effects model � formally in Section V.  

III. Data and Sample Construction 

My empirical analysis uses administrative data on public school students in North Carolina.  

North Carolina has been a leader in the development of linked longitudinal data on student 

achievement, and in 2006 was one of the first two states approved by the U.S. Department of 

Education to use �growth-based� accountability models.  The data, assembled and distributed by the 

North Carolina Education Research Data Center (NCERDC), have undergone extensive cleaning to 

ensure accurate matches between the component administrative data systems.  They have been used 

for several previous value added analyses (see, e.g., Clotfelter, et al., 2006; Goldhaber, 2007).   

The dataset contains scores from end-of-grade tests in math and reading in grades 3 through 

8.  I focus on reading scores; analyses for math scores are available upon request.  The tests purport 

to use a so-called �interval� scale, so that a one point increment corresponds to an equal amount of 

learning at each grade and at each point in the within-grade distribution.20  I standardize the scale 

scores so that the distribution of 3rd grade scores has mean zero and standard deviation one.  This 

preserves the interval scale.   

The importance of interval scales to value added modeling is not widely appreciated.21  As 

noted earlier, most VAMs rely on a zero-decay assumption:  A 3rd grade teacher who raises her 

                                                 
20 The scale scores are linear transformations of the estimated θ parameters from a 3-parameter Item Response Theory 
model (Sanford, 1996, p. 20).   
21 But see Ballou (2002) and Yen (1986)  Many authors (see, e.g., Boyd, et al., 2007; Kramarz, Machin and Ouazad, 2007; 
Rivkin, et al., 2005) standardize scores separately in each grade.  This destroys any interval scale unless the variance of 
achievement is indeed constant across grades. 
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students� end-of-grade scores by 1 point also adds one point to their scores in all future grades. This 

restriction is not scale-invariant, and is particularly implausible if scores do not have the interval 

property.  The assumption that ability is equally important to each grade�s gain is also sensitive to 

scaling.  Interval scaling makes these assumptions plausible, but does not guarantee them.  In the 

specifications below, I allow for both arbitrary, heterogeneous decay of teachers� effects and grade-

specific effects of ability, as in (4). I also explore alternative scalings. 

A. Empirical Properties of Gain Scores 

Table 1 presents summary statistics for reading test scores and gains, computed over all 

available observations on students who were in 3rd grade in 1999, 4th grade in 2000, 5th grade in 2001, 

or 6th grade in 2002.   

The table indicates that test scores are correlated about 0.82 in adjacent grades.  A 1996 

report estimates that the North Carolina reading score�s test-retest reliability � based on 

administrations of alternative forms of the test one week apart � is 0.86 (Sanford, 1996, p. 45), 

indicating that 14% of the variance of test scores is transitory noise.  This places an upward bound 

on the year-to-year correlations, one that is nearly met.  Because gain scores retain all of the noise 

from the two component tests but eliminate much of the signal, they are necessarily less reliable, 

particularly when the signal is highly correlated over time.  A simple calculation indicates that the 

correlation in true achievement between adjacent years is 0.93 and that individual gain scores have 

reliability around 0.3.22 

The lower right portion of Table 1 shows the correlation between gains in different grades.  

The correlation between the grade-4 gain (the change in scores between grade 3 and grade 4) and the 

                                                 
22 This and the following calculations are derived in an Appendix, and assume that the variance of achievement is 
constant across grades.  Stake (1971) presents a nearly identical calculation; see also Kane and Staiger (2001, 2002).  
Rogosa  (1995) argues that reliability is higher if gains are uncorrelated with initial levels, but Table 1 indicates that this is 
not the case here.   
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grade-5 gain is -0.43.  Noise in the grade 4 score enters positively into the grade-4 gain and 

negatively into the grade-5 gain, biasing the observed correlation downward relative to the 

correlation in true gains.  Based on gain score reliability of 0.3, the observed correlation is consistent 

with a correlation in true gains of -0.27.  A similar calculation indicates that the correlation between 

true grade-5 and grade-6 gains is -0.23.   

Finally, the correlation between observed grade-4 and grade-6 gains is 0.01.  Though small, 

this is significantly different from zero.  Using a reliability of 0.3, the observed correlation indicates a 

correlation between true gains of 0.03. 

These calculations have two implications for value added modeling.  First, gain scores are 

exceptionally noisy.  It will be difficult to pick out effects on true gains with any reliability (Ballou, 

2002), and mean reversion is likely to be an important factor.  Second, the weak correlation between 

grade-4 and grade-6 gains suggests that there is little permanent heterogeneity across students in the 

rate of gain � either var(μ) is small or τ is nearly constant across grades.   

B. Samples 

The North Carolina data do not contain explicit teacher identifiers, but they do identify the 

teacher (or other school staff member) who administered the end-of-grade tests.  In the elementary 

grades, this was usually the regular teacher.  I follow Clotfelter et al. (2006) in using a linked 

personnel database to identify test administrators who had regular teaching assignments.  I count a 

test administrator as a valid teacher if she taught a �self-contained� (i.e. all day, all subject) class for 

the relevant grade in the relevant year, if that class was not coded as Special Education or Honors, 

and if at least half of the tests that she administered were to students in the correct grade.  73% of 

5th grade tests were administered by �valid� teachers. 

In North Carolina, 6th grade students are typically in middle school and have different 

teachers for each subject.  The end-of-grade exam need not be taken in the relevant subject-matter 
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classroom, and students may not move together across classes.  I do not attempt to identify �valid� 

6th grade teachers, nor do I attempt to estimate any grade-6 teacher�s causal effect.  Instead, I use 6th 

grade class assignments as a source of information about student sorting, on the assumption that 

students who take the exam together share at least one class.  I use the relationship between earlier 

achievement and grade-6 classroom assignments to identify the form that tracking takes.  Classes are 

likely more heavily tracked in 6th grade than in earlier grades, so class groupings may proxy for 

unobserved student ability even better than do those in earlier grades.  

I work with two samples.  The first consists of 65,582 students from 860 schools who were 

in 5th grade in 2000-2001 and who could be matched with valid teachers in that year.  I exclude 

students whose longitudinal records provide inconsistent measures of race or gender or multiple 

observations in any year, as these might indicate mismatches.  I also exclude those whose teachers 

have fewer than 12 sample students or whose schools have fewer than two included teachers.   

The second sample is more homogenous.  To simplify the correlated random effects 

analysis, I use only students who were in 3rd grade in 1998-1999 and who progressed at the normal 

rate through 6th grade in 2001-2002, without skipped or repeated grades or missing test scores in any 

year.  I exclude students who changed schools in 4th or 5th grade as well as those whose 4th or 5th 

grade teachers are invalid according to the definition outlined above.  I do not require that the 3rd or 

6th grade test administrator be a valid teacher, though I do track the identity of each, and I treat the 

group with which each student took the exam as a reasonably accurate proxy for the degree of 

across-classroom sorting.23  I exclude schools with only a single teacher in the sample from any of 

grades 3, 4, 5, and 6.24  The final sample consists of 21,101 students.  There are 457 schools, 1,760 

                                                 
23 The median school in my sample has 4 5th grade teachers but sees its students dispersed across 9 6th grade teachers.  
To avoid estimating effects from very small samples, I re-assign 6th grade teachers who had very small shares of the 
sample to a composite ID. 
24 Schools here are those that the students attend in grades 3-5. I also exclude a few students to eliminate perfect 
collinearity between teacher identifiers (as when an entire 4th grade class transitions to the same 5th grade teacher).   
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4th grade teachers, and 1,764 5th grade teachers represented.  Students are grouped into 2,005 and 

1,641 test administration groups in 3rd and 6th grade, respectively.   

Table 2 presents summary statistics for the two samples and for the population, the latter 

including all available observations for each variable.  The more homogenous samples, which will 

tend to exclude students who move frequently, have higher average achievement levels but similar 

patterns of gain scores.  The Data Appendix describes each sample in more detail. 

IV. Preliminary Estimates 

Before implementing my formal tests, I present preliminary models that illustrate VAM 

estimation and suggest the importance of considering the dynamic path of educational production 

and teacher assignments.  I focus on a very simple value added model with teacher effects but no 

other controls, fit to the first, broader sample: 

(14) ∆Ai5  =  Ti5 β5
5  +  ei5. 

Model (14) has R2 = 0.098 and adjusted R2 = 0.050.  By comparison, a model that includes only 

school effects has R2 = 0.048 and 2R  = 0.034.   

The 3,013 β5
5 coefficients can be summarized by their standard deviation across teachers, 

after normalizing them to have mean zero within each school.25  This is 0.145, indicating that a 

student whose teacher is one standard deviation (of achievement levels) above average will see her 

achievement improve relative to the average by one seventh of a standard deviation over the course 

of the year.  This corresponds to over one quarter of a standard deviation in the gain score 

distribution, and is similar to what has been found in other studies (e.g., Aaronson, et al., 2007; 

Kane, et al., 2006; Rivkin, et al., 2005). 

                                                 
25 Both the mean and the standard deviation are weighted by the number of students taught by each teacher.  The 
standard deviation is adjusted for the degrees of freedom absorbed by the normalization. 
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This overstates the standard deviation of true teacher effects, as it also incorporates a 

component due to sampling variance.  Following Aaronson, Barrow, and Sander (2007), note that 

E[( β� 5j
5)2] = (β5j

5)2 + E[( β� 5j
5 � β5j

5)2], where β5j
5 is the effect of teacher j and β� 5j

5 is the 

corresponding estimate.  Thus, the variance of the true β coefficients � the mean of (β5j
5)2 across 

teachers � can be computed as the difference between the observed variance and the average 

sampling variance.  I use a heteroskedasticity-robust estimator for this.  The implied standard 

deviation of teachers� �true� effects is 0.106.  This again resembles existing estimates.  

A robust Wald test rejects (with a p value below 0.0001) the hypothesis that there is no 

variation in the β coefficients within schools.  But this test obscures as much as it reveals, as there is 

a great deal of heterogeneity across schools in the apparent importance of teachers.  Under the null 

hypothesis that teachers don�t matter, the p value for a test that all of the teachers from school k 

have identical coefficients will have a uniform distribution on [0, 1].  By contrast, if there are true 

differences across teachers at school k, the p value will come from a distribution that peaks at zero 

and has lower density at high values.  The rate at which the density declines depends on the test�s 

power, and we may not be likely to reject the null hypothesis at small schools, but very high p values 

should be unlikely.  Figure 1 shows the histogram of school-level p values.  There is indeed a large 

spike at zero:  At about 120 of the 860 schools in the sample, the p value is less than 0.05; at another 

150 schools, the p value is between 0.05 and 0.2.  But beyond this point, the density remains fairly 

stable.  327 schools have p values above 0.5, with no fall-off at higher values.  The overall picture is 

of a mixture of a uniform distribution with one skewed toward zero.  Taking the 327 (38%) schools 

with p values above 0.5 as coming from the uniform distribution, the implication is that there are no 

differences among teachers at perhaps three quarters of schools.  The result that teachers matter 

appears to be driven by the remaining quarter of schools, where there are clear differences.  This is 
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not merely a reflection of low power:  Figure 1 also shows the histogram of p values at schools with 

5 or more teachers, where power should be greater.  This has the same pattern as the overall sample.   

A. Counterfactual value added estimates 

As a first step toward evaluating the identifying assumptions discussed in Section II, I re-

estimate model (14), substituting gain scores in other grades as the dependent variable.  Table 3 

summarizes the results of this analysis.  Column 1 describes the model for grade-5 gains.  Columns 2 

and 3 describe models for grade-4 and grade-6 gains, respectively, and column 4 describes a model 

in which the dependent variable is the cumulative gain score from 3rd to 6th grade, Ai6 � Ai3.  In each 

case, the explanatory variables are grade-5 teacher indicators.   

As grade-5 teachers likely have only small effects on grade-6 gains and can have no effects 

on grade-4 gains, we should not expect these specifications to have much explanatory power if 

teacher assignments are exogenous.  In fact, the R2 statistics are comparable to those in the original 

specification, and the hypothesis that the teacher effects are all zero is rejected at any reasonable 

confidence level in all four models.  The bottom rows show the standard deviations of the estimated 

�effects.�  These are nearly as large when the dependent variable is the lagged or lead gain or the 

long-run cumulative gain as when it is the contemporaneous gain.  This casts doubt on the causal 

interpretation of simple value added models like (14). 

The upper portion of Table 4 presents correlations between the coefficients in the various 

models from Table 3.  The correlation between a teacher�s estimated effect on 5th and 4th grade gains 

is -0.41.  The correlation between 5th and 6th grade effects is also strongly negative, -0.54.  By 

contrast, the correlation between a teacher�s effects on 5th grade gains and on cumulative gains 

across three years is positive but quite small, 0.12.26 

                                                 
26 The cumulative effect is more strongly correlated with the effects on 4th and on 6th grade gains, even after correcting 
for sampling covariance deriving from the use of the same test scores in the cumulative and the 4th and 6th grade gains. 
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These correlations reflect the combination of true relationships and sampling error, which is 

almost certainly correlated across models.  This is most obvious for comparisons between 5th grade 

gains and 4th or 6th grade gains, for which the sampling error is strongly negatively correlated:  Any 

positive, non-persistent shock to, for example, students� 4th grade scores will inflate β� 5j
4 � the 

estimated effect on the 4th grade gain � and reduce β� 5j
5.  The lower portion of Table 4 presents 

sampling-adjusted estimates of the correlations of the true coefficients across specifications.27  The 

adjustment has remarkably little effect, and the correlations between coefficients in models for 

adjacent grades� gains are still quite negative.  In other words, this simple VAM indicates that 

teachers who have positive effects on 5th grade gains tend to have negative effects on 4th and 6th 

grade gains.  The correlation between the 5th grade model and the cumulative model remains small. 

There are several candidate explanations for these results.  Begin with the negative 

correlation between β5j
6 and β5j

5, which we have established is not attributable to sampling error.  

This could be causal, if teachers who raise students� 5th grade gains reduce their future potential 

(perhaps by teaching �cramming� skills with positive short-term but negative long-term returns).  It 

could also reflect bias from equation (14)�s failure to account for static tracking, persistent student 

heterogeneity in the rate of achievement growth that is correlated with teacher assignments.  This 

explanation would suggest that the true variance of 5th grade teachers� effects on 5th grade gains is 

larger than is indicated by the basic VAM, as the better teachers are, on average, assigned students 

with flatter growth trajectories.  Finally, the result could reflect dynamic tracking:  If students are 

assigned to 5th grade teachers on the basis of transitory shocks in 4th grade, these could generate 

                                                 

27 I discussed earlier how to compute V(β5jh) from V(β� 5jh) and V(β� 5jh � β5jh).  A similar formula applies to covariances.  

Assuming that sampling errors are uncorrelated with true coefficients, cov(β5jg, β5jh) = cov(β� 5jg, β� 5jh) - cov(β� 5jg � β5jg, 

β� 5jh � β5jh).  For computational simplicity, I restrict the sample for these calculations to students for whom both grade-g 
and grade-h gain scores are observed.  I allow for arbitrary clustering of errors for the same student across grades. 
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differences across 5th grade teachers in growth paths in all future grades.  In this case, it is unclear 

how estimates of β5
5 from (14) relate to true causal effects. 

The sizable effects of 5th grade teachers on 4th grade scores rule out the causal explanation, as 

teachers can have no causal effects on their students� prior gains.  Students are evidently assigned to 

teachers in a way that correlates with past achievement gains.   

V. The Full Lags and Leads Specification 

A. Correlated Random Effects 

Chamberlain�s (1982, 1984) correlated random effects model can be used to distinguish 

between static and dynamic tracking as explanations for the non-causal estimates in Table 3.  I 

develop the model in its general form, then describe its application in my data. 

Begin with the general gain score equation (4), using teacher indicators as the only observed 

explanatory variables.  This allows the grade-g gain to depend on individual ability and on the full 

history of teacher assignments and unobserved errors.  Simplifying notation slightly,28 

(15) ∆Aig = ∑∑
==

++
g

1h

g
hih

g
i

g

1h

g
hih φ~ετ~μβ~T .  

Now consider a linear projection of the permanent heterogeneity term, μi, onto the full sequence of 

teacher assignments in grades 1 through G.   

(16) μi = Ti1 λ1 + � + TiG λG + vi, 

with E[viTih] = 0 for h=1,�,G.  If teacher assignments are independent of μ, all of the λ coefficients 

are identically zero; otherwise, some or all may be non-zero.  Substituting (16) into (15), we obtain 

(17) ∆Aig = ( ) ( ) ∑∑∑
=+==

++++
g

1h

g
hih

g
i
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1gh

g
hih

g

1h
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hih φ~ετ~vτ~λTτ~λβ~T .  

                                                 

28 The relation between the earlier and the new coefficients is:  1g
h

g
h

g
h βββ~ −−=  (for h<g); g

g
g

g ββ~ = ; 1-ggg τ-ττ~ = ; 
1g

h
g
h

g
h φφφ~ −−=  (for h<g); and g

g
g
g φφ~ = . 
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Define g
h

g
h

g
h γλβ~π +=  when h≤g and g

h
g
h γλπ =  for h>g.  Then (17) becomes 

(18) ∆Aig = ∑∑
==

++
g

1h

g
hih

g
i

G

1h

g
hih φ~εγvπT .  

Recall that the identifying assumption of the student fixed effects VAM is that teacher assignments 

are strictly exogenous conditional on μ, E[εih | Ti1, �, TiG] = 0 for each h.  If so, an OLS regression 

of grade-g gains onto teacher indicators in grades 1 through G identifies the πh
g coefficients.   

Equation (17) places strong restrictions on these coefficients.  If teacher assignments are 

uncorrelated with student ability (implying λh = 0) or if ability does not enter into the grade-g gain 

equation ( gτ~  = τg � τg-1
 = 0) then πh

g should be identically zero for all h>g.  Even if teacher 

assignments do depend on student ability, the restriction that πh
g must be a scalar multiple of λh in 

each grade h > g permits a specification test.  Specifically, if we observe gains in two grades, g and k, 

and teacher assignments in some later grade h>max(g,k), (17) implies that πh
g = λh 

gτ~  and πh
k = λh 

kτ~ .  Without loss of generality, we can normalize kτ~ = 1.  We then have πh
g = πh

k * gτ~ .  

Chamberlain proposes using optimal minimum distance (OMD; see also Abowd and Card, 1989) to 

identify the restricted coefficients and to form an overidentification test statistic.  A rejection of the 

restriction indicates that the strict exogeneity assumption for ε is incorrect. 

B. Implementation 

As noted earlier, I work with a relatively homogenous sample of students who attend the 

same school in grades 3 through 5, never skip grades or are held back, and have complete data in 

grades 3, 4, 5, and 6.29  I model both 4th and 5th grade gains, including as predictor variables 

indicators for the school that the student attended in grades 3-5 and indicators for the teachers that 

the student had in 3rd, 4th, 5th, and 6th grades:  
                                                 

29 It is not essential to the Chamberlain model that the full sequence of teacher assignments be observed.  The same 
strategy applies when μ is projected only onto teacher indicators in grades 3-6, so long as there are no effects of teachers 
before 3rd grade on the gain scores considered. 



   

 � 22 � 

(19) ∆Ai4 = Ti3 π3
4 + Ti4 π4

4 + Ti5 π5
4 + Ti6 π6

4+ ei4. 

(20) ∆Ai5 = Ti3 π3
5 + Ti4 π4

5 + Ti5 π5
5 + Ti6 π6

5+ ei5. 

Estimation of (19) and (20) presents computational difficulties, as each contains over six 

thousand dummy variables in five different sets.  The approach that I take is described in detail in 

the Appendix.  The homogeneity of my sample greatly reduces the computational burden:  Because 

I exclude students who change schools and include only covariates that are measured within 

schools,30 (19) and (20) can be estimated via a sequence of within-school regressions, each including 

only the indicators for teachers at the school in question.  Each is estimated by system OLS, with 

standard errors that are robust to arbitrary heteroskedasticity and within-student, across-grade serial 

correlation.  I then normalize the πh
g coefficients to have mean zero across all grade-h teachers at the 

same school.   

Recall from (17) that the πh
g coefficients for current and past teachers (h<g) include causal 

effects ( g
hβ

~ ) as well as the student sorting parameters λh
gτ~ , while the coefficients for future teachers 

include only the sorting parameters.  Intuitively, we might expect the former coefficients to be larger 

(in a variance sense) than are the latter.  Table 5 presents the unadjusted and adjusted standard 

deviations of the π coefficients from (19) and (20).  Diagonal elements � π4
4 and π5

5 � are shaded for 

emphasis.  We see that each of the πh
g coefficient vectors has substantial variation.  Standard 

deviations are larger for current and past teachers than for future teachers, but not by much.   

Table 6 presents goodness-of-fit statistics, for the full model and for restricted models that 

exclude one or more sets of teacher effects.  The first column shows the number of model degrees 

of freedom, including 457 school effects and all teacher effects that can be separately identified.  The 

second column shows the model R2.  The model with just school effects explains 0.06 (0.05) of the 

                                                 
30 I allow a grade-6 teacher with students from several elementary schools to have separate �effects� on each group, in 
effect fully interacting Ti6 with elementary school indicators.  This allows tracking to depend on the base group � a 
teacher might get the best students from a low-achieving school and the worst students from a high-achieving school. 



   

 � 23 � 

variance of grade-4 (5) gains.  Adding indicators for the contemporaneous teacher raises this to 0.14 

(0.13).  Adding the remaining three sets of teacher indicators raises the R2 to 0.33 in each grade. 

Columns 3 and 4 report heteroskedasticity-robust Wald tests of restricted models that leave 

out one or more sets of teachers.  These have χ2 distributions under the null hypothesis.  Every 

restricted model is rejected at the 0.001 level.  Recall that if the strict exogeneity assumption holds, 

the coefficients for future teachers reflect only the degree to which students are sorted on the basis 

of their μ parameters.  Thus, if there is no tracking these coefficients should equal zero.  The clear 

rejection of this restriction, in the bottom row of each panel, indicates that there is indeed sorting.  

This rules out the basic VAM, as well as other specifications (including random effects models like 

that used in TVAAS) that rely on the same identifying assumptions.   

Columns 5-7 report three fit statistics that attempt to indicate whether the additional 

covariates included in richer models have enough explanatory power to justify their inclusion.  

Column 5 shows 2R .  With one exception (the exclusion of 6th grade teachers from the model for 

4th grade gains), 2R  is maximized in the most saturated model that includes all four sets of teacher 

indicators.  Columns 6 and 7 show the logs of the Akaike and Schwartz Information criteria, 

respectively.  These criteria penalize saturated models much more than does 2R , and in each case 

lower values correspond to better fit.  Both indicate that the saturated model is uniformly worse 

than any of the restricted models.  This is not particularly surprising, as the saturated model contains 

a large ratio of regressors (5,799) to observations (21,101).  However, its poor performance on these 

criteria does not offer support for the more traditional VAM specification:  Each criterion prefers 

the specification with only school effects to one including contemporaneous teacher effects as well. 

Table 7 presents the correlations between grade-h teachers� estimated effects on grade-4 and 

grade-5 gains, corr(πh
4, πh

5), weighted by the number of students exposed to each teacher.  To the 

extent that the λh coefficients � the factor loading of individual ability μi on the grade-h teacher 
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assignment � are an important part of the variation in πh
g, one would expect these correlations to be 

positive.  In fact, the correlation is around -0.5 for grade-4 teachers (and -0.6 when adjusted for 

sampling error) and only slightly less negative for teachers in other grades.   

To be sure, one can construct a story in which grade-4 teachers� causal effects on 4th and 5th 

grade gains are negatively correlated.  Perhaps some teachers achieve high gain scores by cramming 

and coaching for the test, enabling their students to do well on the end-of-grade test with little effect 

on future performance.  If indeed the grade-4 teacher can affect only Ai4 and not Ai5, the lagged 

effect 5
4β

~  should solely reflect mean reversion and should be perfectly negatively correlated with 4
4β

~ .  

Alternatively, if teachers� effects on grade-4 and grade-5 scores are uncorrelated and of equal 

magnitude, one should observe ( ) 5.0β~,β~corr 5
4

4
4 −= .  One can tell a similar story about why 

( )5
3

4
3 β

~,β~corr  might be negative. 

It is more difficult to account for the negative correlation between grade-6 teachers� 

apparent �effects� on 4th and 5th grade gain scores.  Indeed, this correlation indicates a rejection of 

strict exogeneity.  Recall that πh
g = ( )kg τ~τ~ πh

k (up to sampling error) for each g, k < h.  As kg τ~τ~  

is a scalar, corr(π6
4, π6

5) should equal one (again, up to sampling error) if kg τ~τ~  is positive and 

minus one if it is negative.   

I implement the formal test via optimal minimum distance (OMD), minimizing  

(21) D ≡ ((π6
4  π6

5) - ( 4τ~ λ6   
5τ~ λ6)) W-1 ((π6

4  π6
5) - ( 4τ~ λ6   

5τ~ λ6))� 

over the scalars 4τ~  and 5τ~  and vector λ6.31  W is the cluster-robust variance matrix for (π6
4, π6

5).   

In the full sample, π6
g has 1,184 independent coefficients, yielding 1,183 degrees of freedom 

in D.32  The first panel of Table 8 reports the (unweighted) standard deviations of the π coefficients 

                                                 

31 These are identified only up to a scale parameter:  Multiplying λ6 by any non-zero constant and dividing 4τ~  and 
5τ~ by the same constant has no effect on D.  The composites gτ~ λ6 and 5τ~ / 4τ~  are uniquely identified, however. 
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for the effects of grade-6 teachers on 4th and 5th grade gains, both unadjusted and adjusted for 

sampling error.  The second panel reports the standard deviations of the fitted values from the 

restricted model, SD(γ4λ6) and SD(γ5λ6).  The restricted parameterization is unable to fit the OLS 

coefficients well, and the best fit is obtained by aligning closely with the unrestricted estimates for 

π6
5 (grade-6 teachers for grade-5 gains) and setting 4τ~  to near zero.   

The next row shows the value of the objective, D, at the OMD estimates.  Under the null 

hypothesis of strict exogeneity, this is distributed χ2 with 1,183 degrees of freedom.  This null is 

decisively rejected.  We can thus conclude that teacher assignments are not strictly exogenous, even 

conditional on a fixed individual effect.   

Given the importance of this result � it implies that VAMs which absorb student 

heterogeneity through fixed effects are misspecified � in Table 9 I explore its sensitivity to several 

alternative specifications.  The first row repeats the estimates from Table 8.  Row 2 uses scale scores 

that have been standardized separately in each grade.  Row 3 uses gain scores that are standardized 

separately for each initial level, to allow for the possibility that the test may exhibit mean reversion 

or other sensitivities to the location in the score scale.  Specifically, the dependent variable for the 

models summarized in this row is ( ) ]A|V[A]A|E[A-A 1igig1igigig −− .  Hanushek, et al. (2005) and 

Jacob and Lefgren (2007) use standardizations of this form.  Row 4 uses percentile scores in place of 

scale scores for all computations.  In each case, I reject the restriction that the grade-6 teacher 

effects on grade-4 and grade-5 gains are proportional. 

All of the above specifications exclude the score in year g-1 from the equation for the grade-

g gain score.  The last row of Table 9 presents a test based on a model that includes the once-lagged 

                                                                                                                                                             

32 The complete list of grade-6 teachers at each school is perfectly collinear, implying a singular W.  I drop the teacher at 
each school with the largest number of students, and use only the remaining π coefficients (relative to that teacher�s π).  
This leaves 1,184 linearly independent coefficients for each grade.   
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score as well as all lagged teachers as explanatory variables.  This takes a different form.  Suppose 

that the causal model for grade-g achievement is: 33 

(22) Aig = Ti1 β1
g + � + Tig βg

g + Aig-1 χ + μi + ηig. 

Differencing from this the corresponding equation for the g-1 score, we get 

(23) ∆Aig = Ti1 (β1
g � β1

g-1) + � + Tig-1 (βg-1
g � βg-1

g-1) + Tig βg
g + ∆Aig-1 χ + ∆ηig. 

This eliminates the ability term μi, but even with strict exogeneity of teacher assignments the lagged 

gain score ∆Aig-1 is endogenous to ∆ηig.  Aig-2 will serve as an instrument (Anderson and Hsiao, 1981, 

1982).  Strict exogeneity can be tested by including Tig+1 as an additional regressor in (23); if the 

assumption holds, the coefficients on future teachers should be zero.  The last row of Table 9 

presents the test of this restriction (using g=5).  It is rejected decisively. 

VI. Teacher Characteristics 

Many value added studies contrast the large apparent effects of teachers indicated by VAMs 

like those discussed here with the small estimated effects of teachers� observed characteristics.  The 

latter derive from simple regression specifications that replace teacher indicators with observed 

teacher characteristics.  In light of the results thus far, it is reasonable to ask whether this sort of 

specification can identify the causal effects of teacher characteristics on student gains.  I again 

investigate this by asking whether future teachers� characteristics predict current gains. 

Table 10 presents the results.  I focus on a short vector of teacher characteristics:  An 

indicator for whether the teacher has a master�s degree, a linear experience measure, an indicator for 

whether the teacher has less than two years of experience, and the teacher�s score on the Praxis tests 

                                                 
33 As discussed in Section IIC, including the lagged score adds no generality so long as the specification allows a flexible 
decay structure for the effects of lagged inputs.  However, as many authors focus on models with lagged test scores, this 
is presented for completeness.  



   

 � 27 � 

required to obtain certification in North Carolina.34  My sample consists of students with complete 

records in grades 3-6 who attended the same school in grades 4 and 5 and had valid teacher matches 

in grades 3-5.  I further discard students for whom I am unable to assemble complete characteristics 

for each of the teachers in grades 3-6, as well as those attending schools where fewer than 10 

students meet the other criteria.   

Columns 1 and 3 present basic estimates of the effects of 4th and 5th grade teachers on 4th 

and 5th grade gain scores, respectively.  Each specification includes school fixed effects and in each 

case standard errors are clustered on the school.35  Results echo those in the literature:  A master�s 

degree appears to make little difference, but teacher experience has an effect on student test scores 

(e.g., Clotfelter, et al., 2006, 2007; Goldhaber and Brewer, 1997; Hanushek and Rivkin, 2006).   

Columns 2 and 4 generalize these specifications by adding controls for past and future 

teachers� characteristics.  Several characteristics of past and future teachers have significant effects, 

and there is no indication that current teachers� characteristics are better predictors than are those of 

past and future teachers.  The bottom rows of the table present hypothesis tests on several 

combinations of the coefficients.  I cannot reject zero effects of 3rd grade teachers� characteristics on 

4th grade gains, but the other tests indicate that the effects of past and future teachers� characteristics 

are significantly different from zero (at the 10 percent level).   

Column 5 reports the sum of teachers� effects on grade-4 and grade-5 gains, as well as 

composite tests.  None of the teacher characteristics have significant effects on cumulative gains.  I 

reject the hypotheses that past teachers� effects are zero for both 4th and 5th grade gains (that is, 

                                                 
34 I use the tests required for elementary certification for teachers in grades 3 through 5.  For grade 6 teachers, I use 
middle-school-certification tests if they are available, or all available tests if not.  Each test is standardized among North 
Carolina teachers who took them in the same year, then scores are averaged across tests (when multiple scores are used) 
35 This clustering is made possible by the shift from teacher fixed effects to a limited number of teacher characteristics 
(Kezdi, 2004).  The clustered standard errors are robust to classroom-level error components.  As it happens, clustering 
makes little difference to the results, suggesting that the earlier results were not much biased by the failure to allow for 
classroom-level errors in inference. 
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grade-3 teachers in column 2 and grade-3 and -4 teachers in column 4); that future teachers� effects 

are zero; and that all past and future teachers� effects are zero.  I also test and (marginally) reject the 

hypothesis that the effects of grade-6 teachers� characteristics on grade-5 gains are a constant 

multiple of those on grade-4 gains, as in the correlated random effects model.  The dynamic tracking 

found earlier evidently applies to teacher characteristics as well.  

VII. Toward Identification 

I have established thus far that teachers have apparent �effects� on students� prior 

achievement, and that these effects are both highly statistically significant and approximately as 

important as those on current gain scores.  It is apparent that students are not even approximately 

randomly assigned to teachers.  I have also investigated and rejected a leading explanation for this 

result, that students are sorted across teachers on the basis of a permanent component of 

achievement but that assignments are random conditional on this.  Rather, it seems that teacher 

assignments respond dynamically to transitory shocks to student achievement. 

Traditional VAMs do not identify teachers� causal effects in the presence of dynamic 

tracking.  Non-experimental identification will require richer models that explicitly account for this 

tracking.  In this Section, I describe two models that may permit identification, under differing 

assumptions about the information used in teacher assignments.  Each model requires richer data 

than are available.  I present approximations to each that are feasible given the available data.  These 

cannot be treated as causal.  They nevertheless suggest factors that should be the focus of future 

work, and offer an indication of the degree of bias in estimates based on the VAMs in common use. 

Both of my models assume that the underlying rate of learning is homogenous across 

students (i.e. that τg is constant across g in equation (2)).  The negligible student-level correlation 

between grade-4 and grade-6 gains suggests that this is plausible.   
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The models differ in their treatment of the source of the relationship between the transitory 

error, ε, and teacher assignments.  The first model makes three assumptions:  (i) there is no decay in 

the effect of non-teacher inputs, so the error term in equation (4) is simply εig φg
g; (ii) this error is 

composed of a signal component and a noise component, εig = εig
* + eig, and the signal component is 

serially uncorrelated; (iii) teacher assignments depend in part on past realizations of the signal, εi1
*, 

�, εig-1
*, but not, conditional on this, on the noise component.  Assumption (ii) attributes all serial 

correlation in observed gains to measurement error in the annual tests.36  (iii) might hold if the test 

scores themselves were unavailable for use in tracking.  

Under assumptions (i) through (iii), the non-random assignment of students to teachers can 

account for the correlation between gain scores and future teacher assignments that was seen earlier, 

but is ignorable for the effects of current and previous teachers.  Causal effects can be identified 

from simple regressions of grade-g gains on teacher assignments in grades 1 through g.   

Table 11 presents a comparison between estimates based on this model and the basic VAM, 

(14), for the effects of 4th grade teachers.  The important distinction between the two � assuming 

that assumptions (i) through (iii) are satisfied � is the need to estimate lagged effects.  If indeed 

inputs decay, the net effect of the 4th grade teacher is not simply the effect on 4th grade gains, β4
4, but 

the cumulative effect on gains in all grades from 4 onward, β4
4 + β4

5 + � + β4
G.  The available data 

do not permit the model to be extended beyond grade 5.  I therefore truncate this series after two 

terms, focusing on β4
4 + β4

5.  Similarly, one should ideally control for all previous teachers; I control 

only for those in grade 3 and afterward. 

Column 1 of Table 11 presents the basic VAM, relating grade-4 gains to grade-4 teachers.  

Column 2 presents an augmented VAM with controls for 3rd grade teachers.  Their effects are 

                                                 
36 This is inconsistent with the calculations in Section IIIA, which indicated that corr(εi4*, εi5*) ≈ -0.25.  But these were 
based on a known reliability of 0.86.  If the test�s reliability is in fact a bit lower, assumption (ii) could hold.  The 
published reliability is based on a sample of only 70 students (Sanford, 1996), so should not be taken as precise. 
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approximately as large as those of 4th grade teachers.  Column 3 presents the corresponding model 

for grade-5 gains, with controls for teachers in grades 3-5.  Both 3rd and 4th grade teachers continue 

to have important effects in 5th grade.  Column 4 presents teachers� cumulative effects, βh
4 + βh

5.  

For grade 4 teachers, these are slightly smaller than the contemporaneous effects.  The explanation is 

in the lower portion of the table, showing the correlation between the Ti4 effects from the various 

specifications.  The estimates from the basic VAM (column 1) are almost perfectly correlated with 

those from the augmented model for grade-4 gains (column 2), indicating that omitted variables bias 

in the former is trivial.  But effects on grade-5 gains are strongly negatively correlated with those on 

grade-4 gains.  Thus, the correlation between contemporaneous and cumulative (over two grades) 

effects is only about 0.5. 

My second proposed model is more realistic for the North Carolina data, where test scores 

appear to be available for use in teacher assignments.  It replaces assumptions (i) - (iii) with a single 

assumption:  E[εig | Ti1, �, Tig, εi1, �, εig-1] = E[εig | εi1, �, εig-1].  This would be appropriate if 

lagged test scores were the only information used in forming teacher assignments; if so, all of the 

information about future errors that is encoded in the teacher assignment sequence is also available 

from the error history.37  Thus, the endogeneity of teacher assignments can be absorbed via controls 

for the full history of ε.  Alternatively, one can include controls for all lags of A and T (though in 

this case the lagged T coefficients are not directly interpretable as estimates of βh
g, which must be 

solved for recursively).   

Table 12 presents a comparison between this model and the basic VAM for estimation of 

the contemporaneous effect of 5th grade teachers on 5th grade gains.  Column 1 presents the basic 

VAM.  Column 2 presents a specification that is augmented with controls for teachers in grades 3 

                                                 
37 This implies that Ti1 is randomly assigned, as there is no prior achievement history on which it can be based.  This 
initial condition is required for the identification of lagged effects.  Without it, only contemporaneous effects � the βgg 
parameters in (4), for g>1 � are identified. 
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and 4 (as in column 3 of Table 11).38  Column 3 further adds controls for the full available history of 

test scores.  Three scores are available:  The end-of-grade tests in grades 3 and 4, plus a pre-test 

given at the beginning of grade 3.  All three are highly significantly related to the grade-5 gain.39  

Their inclusion changes the estimated grade-5 teacher effects:  The correlation of the β5
5 coefficients 

from the augmented specification and those from the VAM with lagged teachers but no 

achievement history controls is only 0.82.  

Neither of these models is perfectly realistic for North Carolina, where test scores might be 

used in teacher assignments but where � not least because there are no end-of-grade tests before 3rd 

grade � they are unlikely to be the only information used.  However, the analyses in Tables 11 and 

12 suggest that both heterogeneous rates of decay and the non-random assignment of students to 

teachers are important factors, and that simple VAMs which fail to account for them are not likely 

to be very informative about teachers� true value added. 

VIII. Discussion 

In the absence of random assignment, researchers often assume without evidence that the 

inclusion of large numbers of fixed effects will permit unbiased estimation of causal effects.  My 

analysis indicates, at least in the case of teachers, that this assumption is unwarranted.  Teachers are 

not as good as randomly assigned.   

The results presented here invalidate many of the strategies that have been used to estimate 

teachers� effects.  In particular, there is no basis for the continued inclusion of student fixed effects 

in value added models, as the assumptions that are required for this are clearly falsified by the data.  

It remains possible that the assumptions needed for identification without student fixed effects are 

                                                 
38 This is an identical specification to that in column 3 of Table 11.  The samples differ somewhat, as the sample used in 
Table 12 conditions on a complete test score history. 
39 The significance of the grade-3 scores indicates that assumption (ii) of the first model must be incorrect, as 
measurement error in grade-5 gains should be uncorrelated with grade-3 scores.   
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satisfied, though even here there must be changes in the methods used:  There is clear evidence for 

heterogeneity in teachers� lagged effects on achievement gains in later grades, and a teacher�s short-

run effect appears to be a poor proxy for her cumulative effect.   

It must also be emphasized that even when value added models incorporate sufficient 

flexibility to capture lagged effects, they rely on strong, unverified assumptions about the teacher 

assignment process.  The VAMs in common use depend on incorrect assumptions, and richer 

models that are not falsified by the data yield notably different estimates of teachers� effects.  Causal 

inference from observational data on student tests and teacher assignments calls for a great deal of 

caution and more attention to the plausibility of the identifying assumptions.   

Value added estimates should be validated before being pressed into service in accountability 

and compensation policy.  An obvious first step is to compare non-experimental estimates of 

individual teachers� effects in random assignment experiments with those based on pre- or post-

experimental data (as in Cantrell, Fullerton, et al., 2007).  But experiments are unlikely to resolve the 

issue.  Experimental samples are typically small and unrepresentative, while most value added 

applications would apply to most or all teachers.  As Figure 1 indicates, value added analyses are 

driven by a minority of schools; an experiment that excludes these schools is unlikely to resolve the 

important questions about universal value added systems.  More attention should be paid as well to 

non-experimental evaluations, both validation studies40 and falsification exercises like this one. 

The questions investigated and methods used here have application beyond the estimation of 

teacher value added.  Within education, similar observational estimates are used to measure the 

quality of schools (Kane and Staiger, 2002; Ladd and Walsh, 2002).  Outside of education, models of 

firm and industry wage effects that include worker fixed effects (Abowd, et al., 1999) are structurally 

                                                 
40 Jacob and Lefgren (2005) and Harris and Sass (2007) show that VAM estimates are correlated with principals� ratings 
of teacher performance.  More work along these lines is needed. 
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similar to the student fixed effects VAM, and rely on similar (equally implausible) assumptions.  

Evidence about the �effects� of future schools and employers on current outcomes would be 

informative about the validity of both strategies. 
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Figure 1.  Distribution of p values from school-level tests of hypothesis that all teachers at 
school have identical effects. 
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Table 1.  Across-grade correlations of reading test scores and test score gains

Grade 3 Grade 4 Grade 5 Grade 6 Grade 4 Grade 5 Grade 6 Cumulative
(1) (2) (3) (4) (5) (6) (7) (8)

N 96,678 96,243 97,199 98,080 88,982 89,352 89,945 80,724 
Mean 0.00 0.34 0.98 1.15 0.34 0.63 0.17 1.13
SD 1.00 0.98 0.84 0.94 0.60 0.56 0.53 0.65
Correlations

Grade 3 1
Grade 4 0.81 1
Grade 5 0.77 0.82 1
Grade 6 0.76 0.80 0.82 1
Grade 4 -0.29 0.29 0.06 0.05 1
Grade 5 -0.24 -0.51 0.07 -0.19 -0.43 1
Grade 6 0.15 0.16 -0.11 0.47 0.01 -0.42 1
Cumulative -0.38 -0.04 0.02 0.27 0.57 0.12 0.46 1

Achievement 
levels

Gain scores

Achievement levels Gain scores



Table 2.  Summary Statistics

(1) (2) (3) (4) (5) (6)
Students Schools

Total 129,665 1,316 65,582 860 21,101 457 
Count by # of 5th grade teachers represented in the sample

1 5th grade teacher 1,947 117 0 0 0 0 
2 5th grade teachers 4,240 128 8,556 202 1,527 59 
3-5 5th grade teachers 44,026 608 48,425 600 16,118 353 
>5 5th grade teachers 79,452 463 8,601 58 3,456 45 

Mean SD Mean SD Mean SD
Female 48% 50% 51%
Black 30% 28% 18%
Hispanic 5% 4% 2%
Other non-white 5% 4% 3%
Consistent student record 98% 100% 100%
Data available for 

Grade 3 78% 87% 100%
Grade 4 78% 92% 100%
Grade 5 79% 99% 100%
Grade 6 80% 93% 100%

Changed schools in
Grade 4 26% 21% 0%
Grade 5 23% 19% 0%
Grade 6 80% 95% 93%

"Valid" teacher in
Grade 3 78% 84% 86%
Grade 4 77% 87% 100%
Grade 5 73% 100% 100%
Grade 6 0% 0% 0%

Reading test score
Grade 3 0.00 1.00 0.04 0.98 0.25 0.90
Grade 4 0.34 0.98 0.39 0.97 0.59 0.89
Grade 5 0.98 0.84 1.01 0.83 1.18 0.76
Grade 6 1.15 0.94 1.19 0.92 1.38 0.86

Gain score
Grade 4 0.34 0.60 0.33 0.58 0.34 0.56
Grade 5 0.63 0.56 0.62 0.55 0.59 0.53
Grade 6 0.17 0.53 0.16 0.53 0.19 0.52
Cumulative 1.13 0.65 1.11 0.63 1.12 0.62

Population Sample 1 Sample 2



Table 3.  Simple models for 5th grade teachers' value added

5th grade 
gain score

4th grade 
gain score

6th grade 
gain score

Cumulative gain, 
4th - 6th grades

(1) (2) (3) (4)
Fit statistics

N 59,104 54,377 59,535 51,275
# of teachers 3,013 3,013 3,013 3,013
# of schools 860 860 860 860
R2 0.098 0.085 0.095 0.096
Adjusted R2 0.050 0.031 0.047 0.039
Just school effects: R2 0.048 0.044 0.052 0.053
Just school effects: Adj. R2 0.034 0.028 0.038 0.037

Test, teacher effects = 0
Test statistic 2,953 2,318 2,650 2,274
DF 2,153 2,153 2,153 2,153
5% critical value 2,262 2,262 2,262 2,262
p value <0.001 0.007 <0.001 0.035

Standard deviation of teacher effects
Unadjusted 0.145 0.140 0.130 0.154
Adjusted 0.103 0.081 0.085 0.087

Dependent variable

Notes:  Standard deviations of teacher effects are weighted by the number of students assigned 
to each teacher, with degrees of freedom adjustments to account for the adjustment of teacher 
effects to have mean zero at each school.  Adjusted variances are computed by subtracting the 
weighted mean heteroskedasticity-robust sampling variance.  



Table 4.  Across-grade correlations of 5th grade teacher effects, simple models

4th grade 
gain score

5th grade 
gain score

6th grade 
gain score

Cumulative gain, 
4th - 6th grades

(1) (2) (3) (4)
Unadjusted

4th grade gain score 1 -0.41 0.04 0.56
5th grade gain score -0.41 1 -0.54 0.12
6th grade gain score 0.04 -0.54 1 0.40
Cumulative gain, 4th - 6th grades 0.56 0.12 0.40 1

Adjusted for sampling covariances
4th grade gain score 1 -0.38 0.06 0.56
5th grade gain score -0.38 1 -0.69 0.15
6th grade gain score 0.06 -0.69 1 0.28
Cumulative gain, 4th - 6th grades 0.56 0.15 0.28 1

Dependent variable

Notes:  Each correlation is computed from specifications like those in Table 3, but limited to students 
with data on both dependent variables.  Correlations are weighted by the number of such students in 
this subsample.  Sampling covariances are estimated allowing for heteroskedasticity and arbitrary 
clustering within students across grades.



Unadjusted Adjusted Unadjusted Adjusted
(1) (2) (3) (4)

3rd grade teacher 0.21 0.14 0.18 0.10
4th grade teacher 0.22 0.15 0.20 0.13
5th grade teacher 0.20 0.12 0.20 0.13
6th grade teacher 0.17 0.10 0.17 0.11

Model for 4th grade gain score Model for 5th grade gain score

Notes:  Statistics are computed from separate specifications for 4th and 5th grade gain scores, each 
including school fixed effects and fixed effects for 3rd, 4th, 5th, and 6th grade teachers.  Across-
teacher variances are weighted by the number of students taught.  Adjusted variances are 
computed by subtracting the weighted average of the heteroskedasticity-robust sampling variance of 
the teachers' effects.  Estimates corresponding to the contemporaneous teacher are shaded.

Table 5.  Standard deviations of teacher effects in models with controls for past and future 
teachers



Table 6.  Models with controls for all past and future teachers

Model 
DF R2 DF Test stat Adj. R2

Akaike 
Info.

Schwartz 
Info.

(1) (2) (3) (4) (5) (6) (7)
Dependent variable is 4th grade gain score

Full model 5,799 0.33 0.082 -1.00 1.18
Restricted model

Omitting one set of teacher effects at a time
 Excluding 3rd grade teachers 4,251 0.25 1,548 2,127 0.064 -1.04 0.57

Excluding 4th grade teachers 4,496 0.26 1,303 2,014 0.056 -1.02 0.68
Excluding 5th grade teachers 4,492 0.28 1,307 1,621 0.079 -1.04 0.65
Excluding 6th grade teachers 4,615 0.28 1,184 1,441 0.084 -1.04 0.70

Omitting several teacher effects together
All teachers excluded 457 0.06 5,342 5,773 0.036 -1.16 -0.99
All but current teachers excluded 1,760 0.14 4,039 4,357 0.063 -1.13 -0.47
All past teachers excluded 4,251 0.25 1,548 2,127 0.064 -1.04 0.57
All future teachers excluded 3,308 0.22 2,491 2,822 0.081 -1.09 0.16

Dependent variable is 5th grade gain score
Full model 5,799 0.33 0.082 -1.15 1.04
Restricted model

Omitting one set of teacher effects at a time
 Excluding 3rd grade teachers 4,251 0.27 1,548 1,838 0.082 -1.20 0.41

Excluding 4th grade teachers 4,496 0.26 1,303 1,899 0.061 -1.16 0.53
Excluding 5th grade teachers 4,492 0.26 1,307 1,810 0.066 -1.17 0.52
Excluding 6th grade teachers 4,615 0.28 1,184 1,619 0.075 -1.18 0.57

Omitting several teacher effects together
All teachers excluded 457 0.05 5,342 5,886 0.034 -1.30 -1.13
All but current teachers excluded 1,764 0.13 4,035 4,567 0.052 -1.26 -0.60
All past teachers excluded 2,948 0.19 2,851 3,440 0.060 -1.22 -0.11
All future teachers excluded 4,615 0.28 1,184 1,619 0.075 -1.18 0.57

More conservative criteriaRobust Wald test 
(relative to full model)

Notes:  N=21,101.  Each model includes 457 effects for the school attended in grades 3-5; 6th grade teachers 
are interacted with indicators for these schools.  The tests in columns 3-4 reject each restriction at the 0.001 
level.  Akaike (AIC) and Schwartz (BIC) statistics are presented in logs.



Grade 3 teacher Grade 4 teacher Grade 5 teacher Grade 6 teacher
(1) (2) (3) (4)

Unadjusted -0.37 -0.52 -0.41 -0.42
Adjusted -0.25 -0.61 -0.38 -0.40

Table 7.  Correlation between teacher effects on 4th and 5th grade gains, by teacher grade, 
full model



Table 8.  Optimal minimum distance estimates

4th grade gain 5th grade gain
(1) (2)

Unconstrained estimates
SD, unadjusted 0.21 0.21
SD, adjusted 0.12 0.14

Constrained (OMD) estimates
SD, unadjusted 0.02 0.18
SD, adjusted 0.01 0.10
Ratio, 

Overidentification test
Statistic (χ2 under null)
DF
95% critical value
P value

Note:  Standard deviations are not weighted by student enrollment.

1,264
<0.0001

8.2

6th grade teacher effect on

1,607
1,183

45 τ~τ~



Table 9.  Tests for overidentifying restrictions, alternative specifications

Objective 
function DF

5% critical 
value p

(1) (2) (3) (4)
1) Base model 1,607 1,183 1,264 <0.001
2) Gain in standardized scores 1,584 1,183 1,264 <0.001
3) Standardized (by base level) gain 1,659 1,183 1,264 <0.001
4) Gain in percentile scores 1,616 1,183 1,264 <0.001
5) Control for lagged score (2SLS; Wald for β6

5=0) 1,349 1,184 1,265 <0.001

Notes:  Tests in rows 1-4 are of the hypothesis that the vector of teacher effects on 4th grade gains is a 
scalar multiple of the vector of effects on 5th grade gains.  Each is computed as the objective function 
from OMD estimates, as reported (for the base model) in Table 8, and each is distributed chi2 under the 
null hypothesis.  The test in row 5 is of the hypothesis that the vector of 6th grade teacher effects on 5th 
grade gains is identically zero; it, too, is chi2 under the null.  



Table 10.  Estimates of the effects of teacher characteristics on student gains

Cumulative
(1) (2) (3) (4) (5)

MA degree Grade 3 teacher 1.64 -1.81 -0.17
(1.31) (1.14) (1.82)

Grade 4 teacher 0.88 0.82 -0.14 0.68
(1.42) (1.41) (1.33) (1.68)

Grade 5 teacher 1.69 -1.35 -1.38 0.31
(1.27) (1.23) (1.23) (1.67)

Grade 6 teacher 2.51 -0.20 2.31
(1.16) (1.07) (1.72)

Experience Grade 3 teacher -0.12 0.00 -0.12
(0.06) (0.06) (0.09)

Grade 4 teacher 0.09 0.09 -0.02 0.07
(0.07) (0.07) (0.07) (0.09)

Grade 5 teacher -0.04 0.13 0.13 0.10
(0.07) (0.06) (0.06) (0.10)

Grade 6 teacher 0.01 -0.11 -0.10
(0.06) (0.05) (0.09)

Experience < 2 Grade 3 teacher 0.56 1.95 2.51
(2.14) (1.81) (3.21)

Grade 4 teacher -5.79 -5.86 6.66 0.80
(1.90) (1.90) (1.86) (2.62)

Grade 5 teacher -1.30 -0.13 -0.32 -1.62
(1.92) (1.91) (1.89) (2.88)

Grade 6 teacher -0.32 1.19 0.86
(1.73) (1.68) (3.21)

Praxis score Grade 3 teacher -0.60 0.15 -0.45
(0.74) (0.66) (1.13)

Grade 4 teacher -0.19 -0.17 -0.22 -0.39
(0.80) (0.80) (0.78) (0.96)

Grade 5 teacher -1.01 0.83 0.92 -0.09
(0.71) (0.82) (0.82) (1.10)

Grade 6 teacher -1.28 0.22 -1.06
(0.68) (0.62) (0.96)

R2 0.076 0.077 0.068 0.070
p values for restrictions Joint tests

All current teacher characteristics = 0 0.001 0.001 0.216 0.176 0.002
All prior teacher characteristics = 0 0.249 0.007 0.005
All future teacher characteristics = 0 0.087 0.062 0.033
All past and future teacher characteristics = 0 0.115 0.002 0.002
Grade-6 coefficients in (2) and (4) are proportional 0.056

Grade 4 gain*100 Grade 5 gain*100

Notes:  Sample restricted to students for whom complete teacher data is available in grades 3-6 and who 
attended the same school in grades 4 and 5.  N=16,386 from 632 schools.  All specifications include fixed 
effects for the (grade 4 and 5) school, and standard errors are clustered on the school.  Column 5 reports 
composite tests for the combined restrictions in columns 2 and 4, allowing for clustering across grades as well 
as within.  The "scalar" hypothesis is that the ratio of the grade 6 teacher coefficients in column 4 to those in 
column 2 is constant; this test is based on the objective function in an optimal minimum distance estimator.



Table 11.  Sensitivity of estimates of 4th grade teacher effect to allowing for lagged effects

4th grade 
gains

5th grade 
gains

Cumulative 
effect

(1) (2) (3) (4)
Standard deviation of teacher effects

Unadjusted
Grade 3 teacher 0.20 0.18 0.22
Grade 4 teacher 0.19 0.20 0.19 0.19
Grade 5 teacher 0.19 0.19

Adjusted
Grade 3 teacher 0.13 0.09 0.14
Grade 4 teacher 0.13 0.14 0.13 0.11
Grade 5 teacher 0.12 0.12

Correlation of 4th grade teacher effect across specifications
Unadjusted

(1) Sparse model 1 0.94 -0.50 0.48
(2) 4th grade effect 0.94 1 -0.52 0.52
(3) 5th grade effect -0.50 -0.52 1 0.46
(4) Cumulative effect 0.48 0.52 0.46 1

Adjusted
(1) Sparse model 1 0.9996 -0.68 0.50
(2) 4th grade effect 1.00 1 -0.67 0.51
(3) 5th grade effect -0.68 -0.67 1 0.39
(4) Cumulative effect 0.50 0.51 0.39 1

Model with lagged effectsSparse 
model for 4th 
grade gains

Notes:  Sparse model includes only school effects and effects for the current teacher.  Models in 
columns 2 and 3 add controls for the 3rd grade teacher and (in column 3) the 4th grade teacher.  
Cumulative effect is the sum of the effects in columns 2 and 3.



Table 12.  Alternative specifications for 5th grade gain scores

Basic model Controls for 
lagged teachers

Controls for lagged 
teachers & scores

(1) (2) (3)
Standard deviation of teacher effects

Unadjusted
Grade 3 teacher 0.21 0.14
Grade 4 teacher 0.21 0.14
Grade 5 teacher 0.17 0.19 0.19

Adjusted
Grade 3 teacher 0.13 0.07
Grade 4 teacher 0.15 0.08
Grade 5 teacher 0.11 0.12 0.11

Coefficients on lagged scores
Grade 3 score, beginning of year 0.077

(0.006)
Grade 3 score 0.252

(0.007)
Grade 4 score -0.581

(0.007)
Correlations of grade-5 teacher effects

Unadjusted
(1) Basic model 1 0.87 0.68
(2) Lagged teachers 0.87 1 0.80
(3) Lagged teachers & scores 0.68 0.80 1

Adjusted
(1) Basic model 1 0.99 0.76
(2) Lagged teachers 0.99 1 0.82
(3) Lagged teachers & scores 0.76 0.82 1

Notes:  All teacher effects are normalized to mean zero within each school.  Basic model (column 
1) includes only effects for the current teacher.  Model in column 2 adds controls for grade-3 and 
grade-4 teachers.  Column 3 also adds controls for achievement scores at the beginning of grade 
3 and at the end of grades 3 and 4.  


	draft3_20071120.pdf
	Do Value-Added Models Add Value?
	Tracking, Fixed Effects, and Causal Inference  
	I.  
	I. Introduction
	II. The Education Production Function and Value Added Modeling 
	A. Educational Production
	B. Gain Scores
	C. Decay
	D. A Simple VAM
	E. The Student Fixed Effects VAM
	F. Testing the Identifying Assumptions

	III. Data and Sample Construction
	A. Empirical Properties of Gain Scores
	B. Samples

	IV. Preliminary Estimates
	A. Counterfactual value added estimates

	V. The Full Lags and Leads Specification
	A. Correlated Random Effects
	B. Implementation

	VI. Teacher Characteristics
	VII. Toward Identification
	VIII. Discussion
	References

	figures.pdf
	tables_2007nov20.pdf

