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Abstract

Non-random assignment of students to teachers can bias value added estimates of
teachers’ causal effects. Rothstein (2008) shows that typical value added models indi-
cate large counter-factual effects of 5th grade teachers on students’ 4th grade learning,
implying that assignments do not satisfy the imposed assumptions. This paper quanti-
fies the resulting biases in estimates of 5th grade teachers’ causal effects from several
value added models, under varying assumptions about the assignment process. Under
selection on observables, models for gain scores without controls or with only a single
lagged score control are subject to important bias, but models with controls for the full
test score history are nearly free of bias. I consider several scenarios for selection on
unobservables, using the across-classroom variance of observed variables to calibrate
each. Results indicate that even well-controlled models may be substantially biased,
with the magnitude of the bias depending on the amount of information available for
use in classroom assignments.
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1 Introduction

Proposals to consider teacher quality in hiring, compensation, and retention require ade-

quate measures of quality. This is increasingly defined in terms of educational outputs, as

reflected in student performance, rather than by teacher inputs like graduate degrees and

experience. In order for output-based quality measures to be of use, they must reflect teach-

ers’ causal effects on the student outcomes of interest, not pre-existing differences among

students for which the teacher cannot be given credit or blame.

If students were known to be randomly assigned to teachers, there would be no system-

atic differences in students’ potential outcomes across teachers, so straightforward com-

parisons of mean end-of-year achievement would provide unbiased estimates of teachers’

effects.1 But there is good reason to think that teachers are not in fact randomly assigned.

Principals may attempt to group students of similar ability together, so as to permit more

focused teaching to students’ skill levels, or they may try to spread high- and low-ability

students across classrooms. Teachers who are thought to be particularly skilled at teaching,

e.g., reading skills may be assigned students who are in need of extra reading help. Students

who are known to create trouble together may be intentionally assigned to different class-

rooms. Teachers who the principal would like to reward may be given the easiest-to-teach

students, and teachers who the principal would like to induce to find another job may be

given the troublemakers.2 Finally, parents, perceiving teacher assignments as important de-

terminants of their children’s success, may intervene to ensure that their students are given

1There would still be the problem of accounting for sampling variation in the estimates: Because each
teacher is in contact with only a few dozen students per year, annual estimates of teacher effects are quite
noisy, and compensation schemes based on these estimates would have to be robust to the mis-identification of
teacher quality that results from this noise. But existing strategies – e.g., the Empirical Bayes approach used
by Kane and Staiger (2008) or the similar Best Linear Unbiased Predictor used by the Tennessee Value Added
Assessment System (Sanders and Horn, 1994) – suggest methods for doing this.

2This aspect of assignments is likely to depend on the accountability metric in place: If teachers are re-
warded for their value added and if value added estimates can be biased by systematic student assignment, the
pattern of assignments is likely to change so that favored teachers benefit from this bias and disfavored ones are
penalized.
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a favored teacher or kept away from a disfavored one.

The evaluation challenge in teacher effect modeling is to distinguish teachers’ causal

effects from the effects of pre-existing differences between the students in their classrooms.

If the determinants of classroom assignments are not adequately controlled, teacher effect

estimates will be biased. This bias is not averaged away even in large samples, and existing

methods for adjusting value added estimates for sampling error will not (absent strong as-

sumptions about, e.g., the across-year stability of teachers’ assignments) remove its effects

from teacher rankings.

The premise of “value added” models is that differences in the difficulty of the task

faced can be controlled by holding teachers responsible not for their students’ absolute end-

of-year achievement but only for the students’ gains over the course of the year. Rothstein

(2008) shows that this is false. Students are sorted across classrooms in ways that correlated

not just with their score levels but also with their annual gains. Specifically, 4th grade gains

are highly non-randomly sorted across 5th grade classrooms, with nearly as much across-

class variation as in 5th grade gains. Because annual achievement tends to revert quickly

toward a student-specific mean, a student with a 4th grade gain that exceeds the average by

one standard deviation can be expected to fall short of the average in 5th grade by about 0.4

standard deviations. Existing value added models attribute this mean reversion to the 5th

grade teacher. A teacher assigned students with high 4th grade gains in the previous year

will look like a bad teacher through no fault of her own, while a teacher whose students

posted poor gains in the previous year will be credited for their predictable reversion to

trend.

Although Rothstein (2008) documents substantial non-randomness in teacher assign-

ments that violates the restriction of common value added models (hereafter, VAMs), he

does not directly estimate the magnitude of the resulting biases, and he provides little evi-

dence about the prospects for correcting them via more sophisticated controls for students’
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past achievement trends.3

This paper attempts to quantify the bias created by non-random assignment in several

value added specifications. Three conditions govern the bias. It depends first on the amount

of information available for use in the teacher assignment process about students’ potential

end-of-year achievement or annual gain, second on the importance attached to this informa-

tion in the formation of teacher assignments, and third on the degree to which the control

variables included in the value added specification can proxy for those used in assignments.

I take the classroom effect – the causal effect of being in one classroom as opposed

to another in the same school – as the parameter of interest.4 This avoids the problem of

distinguishing different components of the classroom effect, the most obvious being the

effects of teacher quality and of peers. This problem is complex, and is likely made even

more difficult by non-random assignments of students to classrooms. But the identification

of classroom effects is a necessary precondition for the larger problem of isolating teachers’

causal effects, and by focusing on this smaller, first problem I can place a lower bound on

the bias in estimates of teachers’ effects that is produced by the assignment process.

Bias in classroom effect estimates can be measured directly if and only if classroom

assignments are assumed to depend only on variables that are observed by the analyst, with

random assignment conditional on these variables. Although I present estimates of this

form, the selection-on-observables assumption is unattractive.

The bias created by selection on unobservables cannot be measured directly, but its

magnitude can be quantified under assumptions about the amount and nature of information

3Rothstein (2008) does demonstrate that unbiased estimation requires controls for dynamic student achieve-
ment: Teacher assignments are not governed solely by permanent student characteristics, but respond dynami-
cally to each year’s test scores. This rules out fixed effects solutions like those used by Harris and Sass (2006);
Koedel and Betts (2007); Jacob and Lefgren (2008); Rivkin et al. (2005); and Boyd et al. (2007).

4Some value added studies use multiple cohorts of students assigned to each teacher. If assignments are
uncorrelated across cohorts – that is, if a teacher who gets high-potential-gain students this year is no more or
less likely than any other teacher to get high-potential-gain students next year – then multiple cohort studies
can convert bias in the classroom effect into mere sampling error in the teacher’s effect. But this uncorrelated
assignments assumption is a strong one, and it does not appear to hold – even approximately – in the North
Carolina data used here and in Rothstein (2008).
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available to the principal for use in classroom assignments and about the way in which that

information is used.5 The approach that I take is in the spirit of Altonji, Elder, and Taber’s

(2005) assumption that sorting on unobserved variables resembles sorting on observables,

though the specific assumptions differ: Where Altonji et al. (2005) assume that sorting

is incidental and is equally correlated with observed and unobserved determinants of the

outcome variable of interest, I assume that the sorting is intentional and that it depends on

a limited set of predictors that are observed by the school principal, a subset of which are

observed by the researcher as well. Altonji et al.’s assumption represents a limiting case for

my analysis, in which the principal can perfectly predict students’ end-of-year achievement

and gains before making teacher assignments.

Section 2 describes the data. In Section 3, I demonstrate that past test scores and behav-

ioral variables are strongly predictive of future achievement and achievement gains. Section

4 summarizes the evidence from Rothstein (2008) that teacher assignments are importantly

correlated with past scores. In Section 5, I compute and summarize the bias that arises

in several common value added models if classroom assignments are random conditional

on the observed variables. Section 6 develops the methodology for assessing the bias that

would arise if the principal had more information about students’ potential learning growth

than is available in research data sets. Section 7 presents the results of the analysis of bias

with selection on unobservables. Section 8 concludes.

2 Data

I work with longitudinal administrative data on students in public elementary schools in

North Carolina, assembled and distributed by the North Carolina Education Research Data

Center. North Carolina has been a leader in the development of linked longitudinal data on

5For simplicity, I discuss class assignments as the outcome of principals’ decisions. This is not meant to
restrict the principal to be the only determinant of these assignments; the principal’s decision might reflect input
from parents, teachers, and the student itself.
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student achievement, and the North Carolina data have been used for several previous value

added analyses (Clotfelter et al., 2006; Goldhaber, 2007).6

I focus on the value added of 5th grade teachers in 2000-2001. I use annual end-of-year

tests that were given in grades 3-5, as well as “pre-test” scores given at the beginning of

grade 3. I treat the pre-tests as 2nd grade tests.

The tests purport to use a so-called “developmental” scale, and the score scale is in-

tended to be meaningful (i.e. scores are cardinal and not simply ordinal measures) both

across grades and across the distribution within grades.7 I standardize scores so that the

population mean is zero and the standard deviation one in 3rd grade; by using the same

standardization in all grades I preserve the comparability of scores across grades.

The North Carolina data do not identify students’ teachers directly, but they do identify

the person who administered the end-of-grade tests. In the elementary grades, this was

usually the regular teacher. I follow Clotfelter et al. (2006) in using a linked personnel

database to identify test administrators with regular teaching assignments. I count a match

as valid if the test administrator taught a self-contained (all day, all subject) 5th grade class,

if that class was not coded as Special Education or Honors, and if at least half of the tests

that she administered were to 5th grade students. 73% of 5th grade tests were administered

by teachers who are valid by this definition.

My analysis focuses reading scores, though similar results obtain for math scores. My

sample consists of students who were in 5th grade in 2000-2001, who had a valid teacher

assignment in that year, and for whom I have complete test score data in grades 3-5. Table

1A presents summary statistics and a correlation table for reading scores on the 3rd grade

6North Carolina was one of the first two states approved by the U.S. Department of Education to use
“growth-based” accountability models in place of the status-based metrics that are otherwise required under
No Child Left Behind.

7It is not clear that a scale with this property is even possible (Martineau, 2006), or even if it is how one
would know whether a test’s scale has the property. Nevertheless, value added modeling as typically practiced
is difficult to justify if scores do not have the so-called interval property. See Ballou (2002) and Yen (1986). The
analysis here is not sensitive to violations of this property, though if it does not hold the value added estimators
considered (here, and elsewhere in the literature) are difficult to justify. See Rothstein (2008).
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pretest and on the end-of-grade tests in 3rd, 4th, and 5th grades, as well as for the 5th grade

gain score (defined as the difference between the 4th and 5th grade scores). Mean scores in

my complete-data sample are about 0.07 standard deviations higher than in the population

in every grade. Scores are correlated about 0.80 in adjacent grades (lower for the 3rd grade

pre-test, which is substantially shorter), with slightly reduced correlations across longer

time spans. 5th grade gains are weakly positively correlated (+0.07) with 5th grade score

levels and strongly negatively correlated (-0.52) with 4th grade scores. They are notably

negatively correlated (-0.25) with 3rd grade scores as well.

Observed scores are noisy measures of true achievement. The degree of measurement

error in test scores is usually measured by the “test-retest” reliability, the correlation be-

tween students’ scores on alternative forms of the same test administered a short interval

apart.8 A 1996 report estimates that the test-retest reliability of the North Carolina 7th grade

reading test is 0.86 (Sanford, 1996, p. 45). Unfortunately, test-retest studies have not been

conducted for other grades. Under the assumption that individual item reliability is con-

stant across grades and that item responses are independent, the 7th grade reliability can be

extended to the shorter tests in earlier grades.9 Doing so, I estimate that the grade-3 pre-test

has reliability 0.72, the grade-3 end-of-grade test has reliability 0.84, and the tests in grades

4 and 5 have reliability 0.86. I treat these as known, without sampling error.10

8Test makers often report alternative measures of reliability, e.g. internal consistency measures that are
based on correlations between a student’s scores on different subsets of questions. The internal-consistency
reliabilities for the tests in grades 3, 4, and 5, respectively, are 0.92, 0.94, and 0.93 (Sanford, 1996, p. 45).
The corresponding statistic for the grade-3 pre-test used for the cohort under consideration is not reported,
but a more recent form of the test has reliability 0.82 (as compared with 0.92 in on the corresponding tests in
grades 3-5; see Bazemore, 2004, p. 63). These statistics are computed under the assumption that responses are
independent across questions; common shocks (e.g. a cold on test day) would lead these methods to overstate
the test’s reliability.

9If item responses are not independent, reliability will be less sensitive to test length, and I will most likely
understate the reliability of the (relatively short) 3rd grade pretest.

10The sample for the test-retest study was only 70 students, in 3 classrooms. If the 70 observations are
independent, an approximate confidence interval for the grade-7 test reliability is (0.78, 0.91), though within-
classroom dependence would imply a wider interval. Note also that a given test will have higher reliability in a
heterogeneous population than in a homogeneous one; the likely homogeneity of the test-retest sample suggests
that the reliability in the population of North Carolina students is probably higher than was indicated.
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A known reliability allows me to compute summary statistics for true achievement,

net of measurement error, assuming that errors are independent across grades. These are

reported in Table 1B. The correlation between a student’s true achievement in grades g and

g+1 is approximately 0.96. The 5th grade gain is negatively correlated with achievement

levels in all grades.

One can examine across-grade correlations in gain scores as well as in score levels.

The correlation between observed grade-4 and grade-5 gains is -0.42. Measurement error

in the annual test scores biases this downward, but even when corrected the correlation re-

mains negative. Thus, students with above-average gains in grade 4 will, on average, have

below-average gains the following year. To the extent that such students are systemati-

cally assigned to particular teachers, value added models that fail to account for this mean

reversion will be biased against those teachers.

3 Predictions of grade 5 achievement and gains

Table 2 presents several specifications for students’ reading scores at the end of grade 5,

using prior scores and other predetermined variables as explanatory variables. Because it

is almost certainly more difficult to control for the sorting of students across schools than

within, and because I focus in this paper in identifying differences in teachers’ effects within

schools, I consider only specifications for within-school variation in 5th grade scores. The

first column shows that 13% of the variance in 5th grade scores is across schools. Column 2

adds the 4th grade reading score. This has a coefficient of 0.680; neither zero (correspond-

ing to a white noise process for individual scores) nor one (corresponding to a martingale)

is within the confidence interval. The inclusion of the 4th grade score increases the model’s

R-squared by 0.55; 4th grade scores explain 63.5% of the within-school variation in 5th

grade scores.

Column 3 adds to the specification reading scores from the beginning and end of grade
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3. Both are significant predictors of 5th grade scores. Their inclusion lowers the 4th grade

score coefficient by about one third, and raises the within-school R-squared by 0.045. Col-

umn 4 adds three lagged scores on the math exam. Again, all are significant. The within-

school R-squared is 0.058 higher than in the specification with just a single lagged reading

score. Column 5 adds 28 additional covariates, measured in grade 4, that might help to

predict students’ grade-5 achievement. These include race, gender, and free lunch sta-

tus indicators; measures of parental education; various categories of “exceptionality” and

learning disabilities; and measures of the time spent on homework and watching TV. These

are jointly highly significant, though their inclusion raises the explained share of variance

by only 0.003.

The available variables – all or nearly all of which would be readily observable when

classroom assignments are made – explain nearly 70% of the within-school variation in

students’ grade-5 test scores. Moreover, this substantially understates the predictability of

student achievement. Recall from Section 2 that 14% of the variance in observed 5th grade

scores is noise that would not even persist into a second administration of the test a week

later. This noise is irrelevant to the predictability of achievement, and is uncorrelated with

all predictor variables. Table 2 also shows estimates of the explained share of the within-

school variance of true achievement, net of this transitory noise. These range from 0.764

with just the 4th grade score to 0.837 with the full set of controls.

Many value added models focus on the gain score rather than the end-of-year level. So

long as the grade-4 score is included as a covariate, the coefficients in a prediction equation

for (observed) gains are identical to those for levels, save that the grade-4 score coefficient is

reduced by 1. The bottom rows of the Table show the R-squared statistics for specifications

that take grade-5 gains as the dependent variable. These range from 0.279 to 0.398 within

schools. The first-difference transformation reduces but does not eliminate predictability;

the principal clearly has substantial information at his disposal for the prediction of student
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gain scores.11

Also relevant to the analysis below is the value of past gains for predicting future scores

and gains. Table 3 presents specifications using grade-4 gains as explanatory variables.

These explain only 0.2% of the within-school variance in 5th grade achievement but 10.3%

of the variance in 5th grade gains.

4 Evidence for non-random assignment

The simplest value added model estimates each teacher’s effect as the average gain score

of her students. In order to attribute this average gain to the teacher, it must be the case

that the information used to make teaching assignments is uninformative about students’

potential gains, conditional on any control variables. As shown in Section 3, prior achieve-

ment and gains are strongly predictive of future scores and gains, so correlations between

teacher assignments and past gains would violate the simple VAMs identifying assumption.

Rothstein (2008) tests for “effects” of grade-g teachers on gains in grade g− 1. Given the

evidence in Table 3, effects of this sort would indicate that expected grade-g gains are not

balanced across grade-g classrooms, and that the simple VAM will be biased.

Let Aig be the test score for student i in grade g. Then the student’s grade-g gain score

is ∆Aig ≡ Aig−Ai,g−1. The simple value added model specifies gain scores as depending

only on school (-by-grade) and teacher effects and random errors:12

∆Aig = Sigαg +Tigβg + εig, (1)

11The fit statistics cannot be directly converted to those that would be seen for the true gain score, net of
measurement error, because measurement error in the grade-4 score appears on both sides of the equation for
grade-5 gains. I discuss in Section 6.4 how the coefficients of specifications for true gains can be recovered
from the estimates in Table 2. True gains are quite predictable as well.

12This is essentially the specification used by the Tennessee Value Added Analysis System (Ballou et al.,
2004; Bock and Wolfe, 1996; Sanders and Horn, 1994, 1998; Sanders and Rivers, 1996; Sanders et al., 1997).
Though TVAAS is estimated through a mixed effects framework, it implies equation (1)’s specification for
gains, and it requires the same exclusion restriction.
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where Sig and Tig are vectors of indicators for students’ grade-g schools and teachers, re-

spectively. The teacher effects βg are normalized to have mean zero across all teachers in

each grade at each school. The estimated effect of teacher j at school s is the average gain

in classroom j less the average gain in the school:

β̂g j = E [∆Aig |Tig = j, Sig = s]−E [Aig |Sig = s]

= βg j +E [εig |Tig = j, Sig = s]−E [εig |Sig = s] . (2)

If the mean of the error term distribution is the same for all teachers in the grade at the

school, E [εig |Sig, Tig] = E [εig |Sig], this is unbiased.

This identifying assumption can be evaluated by examining gains in grade g− 1. The

mean gain in grade g−1 for students who will have teacher j in grade g is

E [∆Ai,g−1 |Tig = j, Sig = s] = E [Si,g−1αg−1 +Ti,g−1βg−1 + εi,g−1 |Tig = j, Sig = s] . (3)

Setting aside the first two terms, which might be absorbed through controls for the school

attended and teacher assigned in grade g−1, the grade-g teacher’s “effect” on g−1 gains is

θ j ≡ E [εi,g−1 |Tig = j, Sig = s]−E [εi,g−1 |Sig = s], the average grade-g−1 residual among

students in grade-g classroom j less the average in school s.

If this is non-zero, the grade-g effect β̂g j will in general be biased. Suppose, for exam-

ple, that the ε process is autoregressive: εig = ρεi,g−1 +νig, where ν is serially uncorrelated

and νig is independent of the grade-g teacher assignment. Then

E [εig | j(i,g) = j, s(i,g) = s]−E [εig |s(i,g) = s] = ρθ j. (4)

Table 3 indicates that ρ =−0.39. Thus, any evidence that θ j is also non-zero would imply

that the identifying assumption for the value added model (1) is violated.
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I present estimates of 5th grade teachers’ coefficients in models for gain scores in grades

5, 4, and 3, using specifications like (1) and a balanced panel of students who attended the

same school for all three grades. These are similar to those reported in Table 3 of Rothstein

(2008), albeit estimated from a slightly different sample.

Begin with the model for grade-5 gains,

∆Ai5 = Si5α5 +Ti5β5 + εi5. (5)

The 3,013 elements of the β̂5 vector (normalized to mean zero at the school) can be sum-

marized by their standard deviation. This, 0.145, is shown in Column 1 of Table 4.13 I

also report an adjusted standard deviation that subtracts from the across-teacher variance

the contribution of sampling error to this variance (Aaronson et al., 2007; Rothstein, 2008).

This adjusted standard deviation, which estimates the variability of the true β coefficients

net of sampling error, is 0.106: A teacher who is one standard deviation better than average

has students who gain 1/10 of a standard deviation (of achievement levels) relative to the

average over the course of the year. This resembles existing estimates (Aaronson et al.,

2007; Kane et al., forthcoming; Rivkin et al., 2005).

The remaining columns of Table 4 present counterfactual estimates that vary only the

dependent variable. Column 2 presents estimates for 4th grade gains:14

∆Ai4 = Si5α̃4 +Ti5β̃4 + ei4. (6)

We know that there are no causal effects of 5th grade teachers on 4th grade gains (i.e.

13Across-teacher means and standard deviations are weighted by the number of students taught, and degrees
of freedom are adjusted for the normalization of β̂5. Further details of the methods are available in Rothstein
(2008).

14In principle, the omission of controls for 4th grade teachers and schools creates an omitted variables bias
in (6). Rothstein (2008) presents estimates that include such controls. In practice, there is little correlation
between teacher assignments in different grades, and estimates of the coefficients on T5 in equations for grade-
4 gains are nearly identical in specifications that do and do not control for T4.
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that β̃4 = 0), so any non-zero coefficients in this specification are indicative of student

sorting. The hypothesis that β̃4 = 0 is decisively rejected, and indeed there is nearly as

much variation in the elements of ˆ̃
β 4 as in those of β̂5: The sampling-adjusted standard

deviation of 5th grade teachers’ normalized “effects” on 4th grade gains is 0.080, nearly

as large as that for 5th grade gains. Column 3 presents an analogous model where the

dependent variable is the 3rd grade gain, the difference between the student’s score on the

end-of-grade reading test and the beginning-of-the year pretest. We see even larger apparent

effects of 5th grade teachers here.

The lower portion of Table 4 presents correlations between the estimates of the coeffi-

cient vectors β5, β̃4, and β̃3, first unadjusted for sampling error and then adjusted. Adjacent

coefficients are highly negatively correlated, both before and after the adjustment for sam-

pling error, while there is nearly no correlation between β5 and β̃3.

Two of these correlations are of particular interest here. First, corr
(

β5, β̃4

)
= −0.35.

This indicates that 5th grade teachers who appear (by the simple model 5) to have high

value added tend to be those whose students experienced below-average gains in grade 4. As

noted earlier, gains are negatively autocorrelated at the student level; at least a portion of the

variation in estimated 5th grade value added apparently reflects predictable consequences

of non-random student assignments.

The second interesting correlation is that between β̃4 and β̃3, -0.36. One hypothesis

that could explain the presence of counterfactual “effects” of 5th grade teachers on earlier

grades’ gains is that students differ systematically in their rate of gain, and that classroom

assignments depend in part on that rate. Rothstein (2008) refers to this explanation as “static

tracking”–the determinants of classroom assignments are constant across grades, and condi-

tional on these determinants the test score in grade g does not affect the teacher assignment

in g + 1. In the presence of static tracking, the bias in teacher effects coming from non-

random assignment can be absorbed by pooling data on a student’s gains across several
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grades and including student fixed effects in the specification. This sort of specification is

used by Harris and Sass (2006); Koedel and Betts (2007); Jacob and Lefgren (2008); Rivkin

et al. (2005); and Boyd et al. (2007), among others.

As Rothstein (2008) notes, static tracking implies that in simple specifications like those

in Table 4 the coefficients for the grade-g teacher on gains in grades h and k (h, k < g) should

be identical, up to sampling error. In other words, corr
(

β̃4, β̃3

)
= 1.15 This restriction does

not even approximately hold in the data. Classroom assignments are evidently not made

on the basis of permanent student characteristics, but respond dynamically to annual stu-

dent performance. This implies that student fixed effects specifications provide inconsistent

estimates of teachers’ causal effects. The only way to control for non-random classroom

assignments while permitting consistent estimation of teachers’ effects is to measure the

determinants of assignments directly.

Many value added specifications (Gordon et al., 2006; Kane et al., forthcoming; Aaron-

son et al., 2007; Jacob and Lefgren, 2008) control for the baseline score, in effect modeling

the end-of-year score as a function of the beginning-of-year score and the teacher assign-

ment. These specifications are robust to dynamic teacher assignments of a very restricted

form: Unless teacher assignments are random conditional on the baseline score, estimates

will still be biased. The estimates in Tables 2 and 3 indicate that there is a great deal of

information available to principals about students’ potential gains above and beyond that

provided by the lagged score; there is no reason to expect that the use of this information

in forming classroom assignments can be absorbed with simple controls. I show below that

the once-lagged-score specification is rejected by the data.

15Again, this conclusion is supportable only if the correlation between β̃4 and β̃3 is negative in specifications
that include controls for 4th and 3rd grade teachers, where those in Table 2 do not. The correlation is nearly
identical when these controls are included.

14



5 Selection on observables

Strategies for isolating causal effects in the presence of non-random assignment of treatment

(in this case, of classroom assignments) depend importantly on whether the determinants

of treatment are observed or unobserved. In this section, I assume that 5th grade teacher

assignments are random conditional on observable variables measured in 4th grade. Un-

der this assumption, bias can be avoided by controlling for the full set of observables in

the value added model. But models that use fuller controls may be biased if the included

variables are unable to absorb all of the non-randomness of teacher assignments.

Note that no harm is done by controlling for variables that are not used in teacher

assignments; this merely sacrifices some precision. Accordingly, I assume in this subsection

that Xi,4 is the set of variables included in Column 5 of Table 2 – the history of math and

reading test scores plus a set of demographic and behavioral variables as measured in grade

4. My baseline estimator for 5th grade teachers’ causal effects is:

∆Ai5 = Si5α +Ti5β +Xi,4γ + εi js5. (7)

I estimate this by OLS, imposing the normalization that β have weighted mean 0 across

teachers at each school. I compare the estimates that it yields to those from four value

added models (hereafter, VAMs) with less-complete controls:

VAM1: Ai5 = Si5a+Ti5b+ ei5

VAM2: ∆Ai5 = Si5a+Ti5b+ ei5

VAM3: ∆Ai5 = Si5a+Ti5b+Ai4c+ ei5

VAM4: ∆Ai5 = Si5a+Ti5b+Ai4c1 +Ai3c2 +Ai2c3 + ei5

VAM1 credits each teacher with the average achievement of students in her class (less the

school-level average). Few would advocate this “levels” specification. VAM2 credits each
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teacher with her students’ average 5th grade gain score (again less the school average).

This is the basic specification used in most value added policy and above in Section 4.

VAM3 controls for students’ 4th grade achievement. Though I have written this as a model

for the 5th grade gain, it is equivalent to a similar specification for the 5th grade score.

VAM4 controls not just for last year’s score but for the two prior scores as well. This sort

of specification is not widely used, but in principle it could be used in most value added

implementations.

For each model, I compute the standard deviation across teachers of b and of the bias

relative to the coefficient vector from the richer specification (7). A useful summary statistic

is the variance of the bias relative to that of teachers’ true effects, V (b−β )
V (β ) . I also compute

the correlation between the bias and the true effect, corr (b−β , β ): It is helpful to know

whether good teachers (at least as indicated by the baseline model 7) are helped or hurt

by the assignment process. A strong positive correlation between true effects and the bias

would imply that teacher rankings are not much affected by sorting bias.

Table 5 presents the results. Each statistic is computed first from the estimated coeffi-

cients (in the first panel), then adjusted for the influence of sampling error (second panel).

The baseline specification indicates that the standard deviation of teachers’ effects is 0.096,

or 0.124 before the adjustment for sampling error. VAM1 indicates much more variability

of teacher effects, though this is primarily bias–the bias in this specification is more than

three times as large (in variance terms) as the true variability that we are attempting to mea-

sure. The specification for gain scores, VAM2, eliminates much of the bias, but its variance

is still half that of the true effects. VAM3, controlling for the 4th grade score, cuts the stan-

dard deviation of the bias in half; here, the variance of the bias is 13% of that of the quality

signal. This is small in comparison with the previous models, but still substantial enough

to represent a problem for policy. In each case, biases are only weakly correlated with true

coefficients.
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VAM4 eliminates nearly all of the bias relative to the richer selection-on-observables

specification. This is unsurprising: Recall that Table 2 indicated that the control variables

included in (7) but excluded from VAM4 added only 0.3% to the explained share of variance

of grade-5 achievement and 0.6% to the explained share of variance of grade-5 gains. Thus,

my assumption that specification (7) permits unbiased estimation of teachers’ causal effects

implies that omitted variables bias in VAM4 is negligible. To understand the true potential

for bias in this specification, we will need to consider the impact of selection on information

that is unobserved in my sample but is available for use in forming classroom assignments.

I develop methods for assessing this in the next Section.

6 A model of tracking on unobservables

There is no good reason to think that classroom assignments depend only on the variables

available in my data. Indeed, the presence of noise in the observed test score history strongly

suggests otherwise. Even a principal who had no additional information would almost cer-

tainly be able to form a less noisy measure of students’ achievement each year by combining

test scores with other measures (e.g. grades) that I do not observe. In this section I develop

a framework in which classroom assignments depend on the observed variables and on

unobserved variables that have known correlations with the observables. This permits com-

putation of the variance across teachers of the bias in feasible estimates of β , though not

the bias in any individual teacher’s estimated effect.

6.1 The sorting process

Let Ω be the information available to the principal for prediction of student outcomes Y ,

and let I = E [Y |Ω] be the best prediction that the principal can make given the available

information. Y might measure true gains or observed gains; we will see below that this

has important consequences for the analysis. The amount of information available to the
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principal about future gains can be measured by V (I)/V (Y ) or, if we write Y = I +ε , by σ2
I

σ2
I +σ2

ε

.

The principal makes classroom assignments on the basis of an index λ = I + η . I

represents the portion of the determinants of classroom assignment that are predictive of

future achievement, while η represents the remaining portion. I assume that η is orthogonal

to I, to all variables in the principal’s information set, Ω, and (by construction) to ε .16

I also assume that {I, η , ε} are jointly normally distributed. The importance of predicted

outcomes in assignments is controlled by σ2
η : If the principal assigns students to classrooms

solely on the basis of predicted outcomes, σ2
η = 0, while perfect random assignment can be

seen as the opposite limiting case, σ2
η = ∞.

Students are sorted perfectly on λ into classes. That is, all of the students assigned to a

particular teacher have the same λ value. This is a crude approximation at best. A typical

school has three to five classes per grade; even if these classes are perfectly stratified, λ will

have considerable heterogeneity within classes. The assumption of perfect sorting is made

for reasons of mathematical tractability: With perfect sorting, we have simple expressions

for, e.g., the across-class variance of I. With less than perfect sorting, my methods will

understate the importance of I (relative to η) in classroom assignments and therefore will

understate the bias due to these assignments.17

6.2 Bias in undercontrolled value added models

The role of I in classroom assignments produces across-classroom differences in student

achievement gains that do not reflect teacher quality, biasing value added models with inad-

equate controls. It is easiest to characterize the bias in VAM2, which does not include any

16The assumption that η is uncorrelated with observed predictors of Y is central to my strategy: I assume
that the principal uses the observed variables solely to predict Y , and does not sort students on the basis of these
variables out of proportion to their information about Y . This is required because Ω (and therefore I) is only
partially observable; I use the across-classroom share of variance of the observed test score history to recover
σ2

η .
17The basic approach could be extended to stratification on λ across a finite number of classes (so that one

class has students with λ ∈ (−∞, c1), another has λ ∈ (c1, c2), etc.), at the cost of considerable additional
complexity. I do not pursue this approach here.
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controls. Suppose that Y is the gain score, so that the principal makes classroom assign-

ments on the basis of his predictions of the same outcome that is used to measure teacher

effects. Then across-classroom differences in I represent biases in b. The across-classroom

variance of I is V (I)−V (I |λ ) = corr2 (I, λ )V (I) = σ4
I

σ2
I +σ2

η

.

In richer VAMs that include control variables, Z, these variables may absorb some of the

bias. Write the regression of I onto T and Z as I = T κ +Zπ +ν , where T κ is the remaining

bias. Because λ is assumed to be perfectly sorted across classrooms, and because the

teacher’s identity is informative about I only through λ , the teacher effects T κ solely reflect

differences across classes in λ , and we can therefore write T κ = λξ and I = λξ +Zπ +ν .

To obtain the coefficients ξ and π , I assume that any variables available for use in the

value added model are used by the principal to form his predictions (i.e., Z ⊆ Ω), and are

orthogonal to η . The variance of the triplet (λ , I, Z) is thus

V


λ

I

Z

=


σ2

I +σ2
η σ2

I cov (Z, I)

σ2
I σ2

I cov (Z, I)

cov (Z, I) cov (Z, I) V (Z)

 (8)

and

 ξ

π

 =

V

 λ

Z



−1 cov (λ , I)

cov (Z, I)



=

 σ2
I +σ2

η cov (Z, I)

cov (Z, I) V (Z)


−1 σ2

I

cov (Z, I)

 . (9)

There are thus three parameters that determine the variance of the bias in the under-

controlled model, two deriving from the sorting process and one from the choice of value

added specification. The first, σ2
I , concerns the principal’s ability to predict students’ out-
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comes. The second, σ2
η , controls the importance that the principal attaches to predicted

outcomes in classroom assignments. The last describes the relationship between the control

variables included in the value added model and the principal’s prediction, cov (Z, I). (A

fourth parameter, V (Z), is readily measured.) With knowledge of these parameters, we can

recover ξ and, via it, V (κ) = ξ 2V (λ ) = ξ 2
(
σ2

I +σ2
η

)
.

To fix ideas, it is useful to consider three limiting cases. First, suppose that we control

for all of the variables used by the principal (under selection on observables). Then I = Zπ

for some π , ξ = 0, and V (λξ ) = V (T κ) = 0. Second, suppose that the principal places

much more weight on variables unrelated to achievement than on predicted achievement

in forming assignments, σ2
η � σ2

I . Then there is little sorting on I, ξ ≈ 0, and V (T κ) ≈

0 regardless of the content of Z. Finally, suppose that the principal uses only predicted

achievement to form assignments, σ2
η = 0. Then λ = I, and bias depends only on the extent

to which Z can account for the principal’s predictions. If there are no Z variables, bias will

be in proportion to the principal’s ability to predict performance; with Z variables, bias will

depend on the extent to which the econometrician can predict the principal’s predictions.

6.3 The principal’s prediction

Clearly, results concerning bias depend importantly on the information available to the prin-

cipal for predictions of students’ future growth. In order to impose structure, I parametrise

the principal’s information and its relationship with observed variables. I consider several

scenarios. Intermediate cases between selection-on-observables and perfect predictability

of future outcomes are the most realistic and I focus on these, though I also include the

limiting cases for comparison. I begin with base cases in which selection is on observables,

as in Section 5:

A. I = E [Y |Ag−1] = Ag−1φA: The principal has no information about future achievement

gains beyond that contained in the prior grade’s test score.
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B. I = E [Y |A] = AφB, where A = (A1, . . . . , Ag−1) is the history of test scores up to grade

g−1. The principal observes the test score history, but has no additional information

about achievement gains.

Note that scenarios A & B are falsified by the evidence in Table 2: Since the principal can

observe all of the grade-4 variables that are available in my data, the fact that these variables

are useful in predicting gains indicates that the principal has more information about poten-

tial gains than just the score history. Nevertheless, these scenarios provide useful baselines.

One use to which the principal might put his information is to reduce the noise that

is contained in the test score history, A. Thus, a useful parametrisation of the princi-

pal’s information assumes that he has access to k some number of additional series, un-

observed by the researcher, that measure the true achievement history with independent,

identically distributed error. That is, if the true achievement history through grade g−1 is

A∗ =
(

A∗1, . . . , A∗g−1

)
and A = A∗+ u, we can suppose that the principal observes in addi-

tion {q1, q2, . . . , qk}, where q j = A∗+v j, E
(

v′jv j

)
= E (u′u), and E

(
v′jvh

)
= E

(
v′ju
)

= 0.

The q series can be thought of as representing grades, student evaluations, or classroom ob-

servations that are available to the principal but not reported in typical data sets.

C. I = E [Y |A, q1, . . . , qk] = AφC +q1τC1 +q2τC2 + . . .+qkτCk.

In the limit as k→∞, this scenario converges to one where the principal observes A∗ without

error:

D. I = E [Y |A∗, Ag−1] = A∗χD +Ag−1φD.

Note that I retain Ag−1 as a conditioning variable; when Y is the observed gain, the lagged

observed score can provide information about the error component in Y (i.e. about ∆Ag−

∆A∗g). By contrast, when Y is the true gain, φD = 0.

These scenarios are quite restrictive. As we will see, the true achievement history ex-

plains only 34% of the within-school variance of true achievement gains, and it is plausible
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that the principal, who knows something of the child’s family situation and emotional and

cognitive development patterns, has information about the remaining portion. Let W be a

proxy for the principal’s information about ∆A∗g−E
[
∆A∗g |A∗1, . . . , A∗g−1

]
. I assume without

loss of generality that W is orthogonal to A∗ and u.

E. I = E [Y |A∗, Ag−1, W ] = A∗χE +Ag−1φE +WψE .

Results here will depend on the quantity of information that W is assumed to contain. I

index this by f = V (WψE )/V (A∗χE ). The limiting case (as f → V(∆A∗g |A∗)/V (A∗χE )18) is one in

which the principal can predict (true) gains perfectly:

F. I = Y .

This is not a particularly plausible scenario for the problem at hand, but it is useful for

illustrating the relationship between the methods used here and those used by Altonji et al.

(2005). Where in the earlier scenarios the principal observed all of the variables available to

the analyst plus a subset of the remaining component of students’ gains, here the principal

observes both components equally. As a result, both are equally sorted across classrooms.

This does not imply perfect sorting on potential gains, as the principal may consider factors

other than a student’s gain in forming classroom assignments. However, it does imply

that selection on unobservables is identical to selection on observables, as in Altonji et al.

(2005).19

The six scenarios are summarized in Table 6.
18This corresponds to f → 1−R2

R2 , where R2 is the explained share of variance from a regression of ∆A∗ onto
A∗. Since R2 is empirically about 0.34, this limit is just below 2.

19Altonji et al. also consider intermediate cases, where the correlation between the unobserved determinants
of selection and outcomes lies between zero (no selection) and the value corresponding to scenario F. The above
framework can be seen as providing a basis for the choice of this correlation.
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6.4 Calibration

Selecting a single scenario characterizing the principal’s information, observed covariances

can be used to calibrate the model. There are three steps to the calibration: First, the

coefficients entering into the principal’s prediction are estimated. This takes advantage of

the observed relationship between gains and past scores, and of the structure that the various

scenarios in Section 6.3 place on the principal’s predictions. Second, the degree of sorting

of students to classrooms is computed, using as an input the measured between-classroom

variance in observed predictor variables. Third, the bias in various value added models is

computed.

6.4.1 Estimating the prediction coefficients

Table 2 presented estimates of the φ coefficients for scenarios A and B, when Y is the ob-

served gain score. Estimates for predictions of true gain scores, measured without error, can

be computed using omitted variables formulae. The computation for scenario A illustrates

the method. The observed gain, ∆Ag, equals the true gain ∆A∗g plus the difference between

the measurement errors in the grade-g and grade-g− 1 scores: ∆Ag = ∆A∗g + ug− ug−1.

Because the test measurement error is independent across grades, ug cannot be predicted

based on lagged variables. But ug−1 can, and the prediction coefficients can be obtained

by viewing the g− 1 score, Ag−1, as a noisy measure of ug−1. Because the test error is

orthogonal to true achievement, E [Ag−1ug−1] = E
[
A∗g−1ug−1 +u2

g−1

]
= V (ug−1), and the

bias in a regression that takes ∆Ag as the dependent variable relative to one that uses ∆A∗g is

simply −V(ug−1)/V(Ag−1). Thus, the Ag−1 coefficient from a model for true gains equals the

Ag−1 coefficient from a model for observed gains (Table 2, column 2) plus V(ug−1)/V(Ag−1).

A multivariate version of this yields coefficients for scenario B when Y is the true gain.

Similar methods can be used to recover the coefficients in scenarios C and D, for either

definition of Y . Begin with scenario D when Y is the true gain. We have already discussed
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a method for obtaining φB, the coefficients of a regression of true gains on the observed

score history, A. A standard errors-in-variables formula relates these to the coefficients for

predictions of true gains from the true achievement history, χD:

φB =
(

I−
(
E
[
AA′
])−1 E

[
uu′
])

χD. (10)

Inversion of this formula provides an expression for χD. It is straightforward to extend this

to the case where Y is instead the observed gain.

Now consider scenario C, where the principal observes k + 1 noisy measures of the

achievement history but not the history itself. If Y is the true gain, the principal’s best

prediction will use the average of his measures, Ā = 1
k+1

(
A+q1 + . . .+qk

)
. The variance

of the measurement error in this average will equal 1
k+1 times the variance of the error in a

single series. Thus, when k +1 series are available the coefficients for each series will be

φC = τC1 = . . . = τCk =
1

k +1

(
I− 1

k +1
(
E
[
AA′
])−1 E

[
uu′
])

χD. (11)

(Note that this is identical to (10) when k = 0.) When Y is instead the observed gain, the

coefficients on the observed history will deviate from those for the k other histories. The

correction for the presence of correlated measurement error in the dependent variable and

one of the independent variables is again straightforward.

Scenarios E and F differ, in that not all of the coefficients can be estimated directly.

Assumptions about f , the ratio of the principal’s information about the component of gains

that is orthogonal to the achievement history to the information contained in that history,

replace estimates of the prediction coefficients ψ . χ and φ are as in scenario D.
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6.4.2 Recovering the sorting parameters

With estimates of coefficients for predictor variables with known variance, it is trivial to

compute σ2
I . The next step is to estimate the extent to which students are sorted across

classrooms on the basis of I. I assume that there is some uni-dimensional student-level

statistic ω that is observable to the researcher and is contained within Ω (so orthogonal to

η). Empirically, I use linear combinations of past test scores for ω .20 The various scenarios

pin down cov (I, ω). We can recover σ2
η by analyzing the between-classroom variance of

ω . The within-classroom variance is

V (ω |λ ) = V (ω)
(
1− corr2 (ω, λ )

)
(12)

= V (ω)− cov2 (ω, λ )
V (λ )

(13)

= V (ω)− cov2 (ω, I)
σ2

I +σ2
η

. (14)

Rearranging terms, we obtain

σ
2
η =

cov2 (ω, I)
V (ω)−V (ω |λ )

−σ
2
I . (15)

Note that the denominator here is simply the across-class variance of ω .

6.4.3 Computing the bias

I consider value added models VAM2, VAM3, and VAM4 from Section 5. These are dis-

tinguished by the control variables that are included in models for the grade-g gain. In each

case, the control variables are subsets of the A vector, so it is straightforward to compute the

covariance between these variables and the principal’s prediction. As indicated by equation

20I weight past scores based on the weights applied to either true or observed achievement in the principal’s
prediction. That is, I let ω = Ag−1φA (in scenario A); ω = Aφ j (for j = B,C); or ω = Aχ j (for j = D,E,F).
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(9), this is sufficient to compute the variance of the bias term, V (T κ).21

7 Results

7.1 The principal’s prediction

Table 2 presented prediction models for the grade-5 test score as a function of test scores

in earlier grades. As discussed above, these are readily converted into predictions of grade-

5 gains given the observed achievement history. Columns 1 and 2 of Table 7 present the

prediction coefficients, when the predictor variables are the 4th grade reading score (column

1) or the sequence of three prior reading scores (column 2).

These models overstate the value of prior test scores for predicting true gains, net of

measurement error. This is because the noisy 4th grade test score achieves predictive power

for the observed 5th grade gain due to the presence of the same measurement error, u4,

in both variables. As discussed above, standard errors-in-variables formulae can be used

to obtain the best prediction equations for true gains. These are presented in columns 3

and 4 of Table 7.22 The within-school R2 statistics and especially the prediction coef-

ficients themselves are reduced in magnitude from the specifications for observed gains.

True achievement gains are negatively correlated with past achievement levels, but not dra-

matically so.23 The model for observed gains in column 2 implicitly attaches a coefficient

of around -0.81 (=−0.57−0.24) to the 4th grade gain, while the corresponding model for

true gains assigns a weight of only -0.02 (=−0.07−−0.05) to this gain.

Table 8 presents estimates of the coefficients that the principal would apply to the avail-

able predictor variables in scenarios C and D. Columns 1-4 show prediction coefficients

21Extending the analysis to VAMs that control for non-test variables requires assumptions about the relation-
ship between these variables and the q and W variables seen by the principal. I do not pursue this here.

22In principle, the coefficients of regressions that include math scores could be recovered as well.
23Note that this implies that value added models which impose a coefficient of 1 on the lagged achievement

level, as in VAM2, are mis-specified.
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for observed gains, while columns 5-8 show coefficients for true gains. Columns 1 and 5

repeat the coefficients from scenario B, where only the observed test score history is avail-

able. Columns 2 and 6 show coefficients when a second, equally noisy series is available.

Columns 3 and 7 show coefficients when two series are available in addition to observed

scores (i.e. k = 2). Note that the coefficients on the observed and unobserved series are

identical in columns 6 and 7, where the dependent variable is the true gain, but that they

differ in columns 2 and 3, where the observed series can be used to predict some of the mea-

surement error in the observed gain. Columns 4 and 8 show predictions assuming that the

principal is able to observe the history of true achievement. This substantially improves his

ability to predict observed gains, as the measurement error portion of the 4th grade score

can be perfectly isolated, but adds relatively little to his ability to predict true gains over

what could be done with three noisy histories.

7.2 The importance of predictions in classroom assignments

Using the coefficients from Tables 2, 7, and 8 and relying on an observed component of

the principal’s predictions, I can compute the variance decomposition of the principal’s

predictions, I, into within- and between-classroom components. For scenario C, I present

estimates for k = 1 and k = 2. In scenario E, I present estimates for f = 0.25, f = 0.5, and

f = 1; the scenario of perfect information, F, corresponds to f = 1.96.

The first column of Table 9 shows the fraction of the within-school variance in gains

that the principal is able to predict (i.e. σ2
I/V (Y )) in each scenario, for true gains in the first

panel and for observed gains in the second panel. The second column shows the across-

school share of variance for the scenarios in which I is perfectly observable. Coefficients

for between-school predictions may differ from those for the within-school predictions that

I focus on, so I do not compute the across-school component of the incompletely observed

indices. Column 3 shows the fraction of the within-school variation that is across class-
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rooms. This equals σ2
I

σ2
I +σ2

η

, the weight placed on predicted outcomes relative to other fac-

tors in classroom assignments. Column 4 shows the across-classroom standard deviation in

predicted gains.

Not surprisingly, the scenarios in which the principal has more information permit him

to explain a larger share of the within-school variance in gains. Moreover, the richer predic-

tion scenarios yield larger estimates of the across-classroom share of variance of predicted

gains. Thus, the more information that we permit the principal to have about the student’s

achievement history, the larger is the bias that is implied for value added specifications (like

VAM2) that do not allow for across-classroom sorting.

Sorting appears to be substantially more important when the principal is presumed to

be using predictions of observed rather than true gains for classroom assignments. But this

can be misleading: True gains are much less variable than observed gains (with a standard

deviation less than half as large). Disparities between the panels are smaller in column 3,

showing the fraction of the variance of predicted gains that is across classrooms. Even in

this column, though, scenarios C-E show more sorting in the second panel. This is because

observed scores form a smaller share of predicted observed gains than of predicted true

gains in these scenarios (compare the R-squared statistic in column 1 of Table 8 to those

in columns 2-4, versus that in column 5 and those in 6-8), so the same sorting on observed

variables corresponds to more overall sorting in the observed gain scenarios.

7.3 Bias in value added models with controls for observables

Table 9 shows that the standard deviation of across-classroom differences in predicted gain

scores ranges from 0.037 to 0.191, depending on the assumptions made about the informa-

tion used in sorting. This variation is bias in specifications like VAM2 that do not control

for classroom assignments. By comparison, the total across classroom standard deviation

of observed gain scores is 0.134. Thus, even scenarios that restrict the principal to use little
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more than the observed variables in classroom assignments indicate biases in simple value

added models that are large relative to the effects that we hope to measure.

Table 10 presents estimates of the standard deviation of the bias in richer models that

include controls for students’ prior achievement. Columns 1-3 of this table index value

added models, corresponding to VAMs 2, 3, and 4, respectively. The bias in the simplest

model (VAM2) is substantial in every scenario. Column 2 shows that the inclusion of a

control for the prior year’s test score eliminates much of the bias in VAM2, though there

is important variation across scenarios. If we assume that the principal forms classroom

assignments on the basis of his predictions of true gains (rather than observed gains) and

that he has no information about students’ potential gains beyond that contained in their

achievement histories (as in scenarios B-D), the remaining bias in VAM3 is negligible.

However, if we allow the principal to have additional information or if we assume that he

sorts on the basis of predicted observed gains – as he likely would if accountability policies

condition rewards and punishments on observed gains rather than on unmeasurable true

gains – then the bias remains important. If the principal observes even two independent

achievement histories (e.g. the test score history plus an additional series, perhaps coming

from teacher grades) and uses them in classroom assignments, the standard deviation of the

bias in VAM3 is 0.043.

Column 3 shows that much of the bias in VAM3 remains in VAM4, which controls for

the full sequence of prior test scores. If the principal is assumed to observe the student’s true

achievement history plus another set of variables that explain an equal amount of student

gains (i.e. scenario E with f = 1), the standard deviation of the bias ranges from 0.051 to

0.076, both large relative to the standard deviation of teachers’ estimated “effects.”
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8 Conclusion

Typical value added analyses treat the process by which students are assigned to teachers as

ignorable, under the implicit assumption that the statistical model used can absorb any sys-

tematic non-random assignment. This would be true if, for example, classroom assignments

were random conditional on students’ prior-grade test scores. But there is little reason to

think that this is an adequate characterization of classroom assignments. Principals have a

great deal of information beyond the prior test score that is predictive of students’ end-of-

year achievement, and this information is unlikely to be ignored in classroom assignments.

This paper attempts to quantify the bias that arises in value added models that fail to

control for the determinants of classroom assignments. The task is straightforward if class-

room assignments are assumed to be random conditional on observable variables. My anal-

ysis indicates that simple VAMs that fail to control for the dynamic process of test scores,

simply modeling differences in mean gain scores across classrooms, are substantially bi-

ased by student sorting. The bias is reduced – with a variance about 15% as large as that of

teachers’ true effects – in a VAM that controls for the lagged score, and is further reduced

when additional lagged scores are included as controls.

The analysis is more complex if we loosen the unrealistic assumption that all of the

information considered by the principal in forming teacher assignments is available in the

research dataset. I develop methods for assessing the bias when the principal is assumed

to have access to a limited amount of information that the researcher cannot observe. I

consider several scenarios for the information set, and estimate the bias in three value added

models under each scenario.

A great deal turns out to depend on how the principal uses his information: If he weights

past achievement to best predict observed gains, even a limited amount of unobserved infor-

mation generates substantial biases in the sorts of value added models that are commonly

used. Richer models that control the full test score history rather than just a single lagged
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score reduce these biases, but only if the principal has very limited information about stu-

dents’ potential. With less restrictive assumptions, biases remain quantitatively important

even in rich value added models.

Three recent studies have provided evidence that appears to validate observational value-

added estimates. On closer examination, however, all are consistent with the presence of

substantial bias in these estimates. Jacob and Lefgren (2008) and Harris and Sass (2007)

compare value added estimates with principals’ subjective assessments of teacher quality,

which might be assumed to reflect unbiased estimates of teachers’ causal effects. Both pa-

pers find that the two measures are correlated, though far from perfectly. This indicates that

there is at least some signal in the value added estimates. But the weak correlations leave

plenty of room for non-causal factors in the VAM estimates.

Kane and Staiger (2008) compare estimates of teacher effects from a randomized ex-

periment with observational estimates based on data prior to the experiment. They test the

hypothesis that the (appropriately shrunken) observational estimate is an unbiased predic-

tion of the causal estimate, and obtain estimates consistent with this hypothesis. There are

three important sources of slippage here. First, Kane and Staiger test a statistical hypothesis

about the joint distribution of the true coefficients and the bias; while zero bias is consistent

with the null hypothesis, so are large biases that are negatively correlated with teachers’ true

causal effects.24 Second, Kane and Staiger’s sample provides low power. Their standard

errors are consistent with substantial attenuation of the prediction coefficient due to bias in

the observational estimates. While their confidence intervals might rule out my scenario

F (if biases are assumed to be uncorrelated with true quality), my more realistic scenarios

are wholly consistent with the Kane and Staiger estimates but are nevertheless extremely

troubling regarding the potential for bias in value added estimates. Finally, the Kane and

24They test the hypothesis that cov(β ,b)
V (b) =1, where β is the vector of causal effects and b is the best linear

predictor of β +κ , the sum of causal effects and any bias, based on the coefficients from the value added model.
This equality will hold either if V (κ) = 0 – i.e., there is no bias – or if corr (β , κ) =−

√
V (κ)/V (β ).
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Staiger analysis is based on a carefully selected sample of pairs of teachers for which prin-

cipals consented to random assignment. One might expect that principal consent was more

likely when the two teachers would have been given similar students in any case. If so, the

results cannot be generalized beyond the sample, even to other teachers at the same schools.

The results here suggest that it is hazardous to interpret typical value added estimates

as indicative of causal effects. Although some assumptions about the assignment process

permit nearly unbiased estimation, other plausible assumptions yield large biases. Further

evidence on the process by which students are assigned to classrooms is needed before it

will be clear which types of assumptions are closest to reality. The most recent such study,

Monk (1987), is now more than twenty years old. More recent evidence, from studies more

directly targeted at the assumptions of value added modeling, is badly needed, as are richer

VAMs that can account for real world assignments. In the meantime, causal claims will be

tenuous at best.
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Table 1A:  Summary statistics and correlations for reading test scores and gains

Grade 3 pretest Grade 3 Grade 4 Grade 5
(1) (2) (3) (4) (5)

Mean -0.82 0.07 0.42 1.05 0.63
SD 0.87 0.96 0.95 0.82 0.55
Correlations

Grade 3 pretest 1 0.70 0.69 0.65 -0.23
Grade 3 end-of-grade 0.70 1 0.80 0.77 -0.25
Grade 4 end-of-grade 0.69 0.80 1 0.81 -0.52
Grade 5 end-of-grade 0.65 0.77 0.81 1 0.07
Grade 5 gain -0.23 -0.25 -0.52 0.07 1

Notes: N=49,453

Score levels 5th grade 
gain



Grade 3 pretest Grade 3 Grade 4 Grade 5
(1) (2) (3) (4) (5)

Mean -0.82 0.07 0.42 1.05 0.63
SD 0.74 0.88 0.88 0.75 0.27
Correlations

Grade 3 pretest 1 0.91 0.89 0.84 -0.56
Grade 3 end-of-grade 0.91 1 0.96 0.92 -0.57
Grade 4 end-of-grade 0.89 0.96 1 0.96 -0.59
Grade 5 end-of-grade 0.84 0.92 0.96 1 -0.33
Grade 5 gain -0.56 -0.57 -0.59 -0.33 1

Notes: N=49,453

Score levels 5th grade 
gain

Table 1B:  Summary statistics and correlations for reading achievement levels and 
growth, net of sampling error



Table 2:  Predictability of grade 5 reading scores from prior information

(1) (2) (3) (4) (5)
Grade 4 reading score 0.680 0.430 0.356 0.347

(0.003) (0.004) (0.005) (0.005)
Grade 3 reading score 0.245 0.196 0.186

(0.004) (0.004) (0.004)
Grade 3 pretest score, reading 0.082 0.066 0.063

(0.003) (0.003) (0.003)
Grade 4 math score 0.120 0.109

(0.005) (0.005)
Grade 3 math score 0.045 0.041

(0.005) (0.005)
Grade 3 pretest score, math 0.020 0.017

(0.005) (0.005)
Non-test covariates n n n n y
N 49,453 49,453 49,453 49,409 49,285
Goodness-of-fit measures

Models for G5 achievement
R2 0.131 0.683 0.722 0.733 0.736
R2, within school n/a 0.635 0.680 0.693 0.696
R2, within school, for true achievement n/a 0.764 0.819 0.834 0.837

Models for G5 gains
R2 0.047 0.313 0.397 0.421 0.427
R2, within school n/a 0.279 0.367 0.392 0.398

Notes:  All columns include fixed effects for 838 schools, and standard errors are clustered at the 
school level.  "Non-test covariates" in column (5) include indicators for gender, for race/ethnicity, for 
learning disabilities in reading or in any area, for Title 1 participation, for each possible 
"exceptionality" (gifted, hearing impaired, mentally handicapped, etc.), for parental years of 
education, for free and for reduced-price lunch participation, for reporting never doing any 
homework; and a linear control for the number of hours of TV watched each school day (plus a 
dummy for missing values for this variable).



Table 3:  Prediction models with past gains as predictors

(1) (2) (3) (4) (5) (6)
Grade 4 reading gain 0.051 0.082 0.430 -0.394 -0.410 -0.570

(0.007) (0.007) (0.004) (0.005) (0.005) (0.004)
Grade 4 math gain -0.130 0.067

(0.008) (0.005)
Grade 3 reading gain 0.675 -0.325

(0.004) (0.004)
Grade 3 pretest score, reading 0.757 -0.243

(0.003) (0.003)
Goodness-of-fit measures

R2 0.132 0.140 0.722 0.221 0.225 0.397
R2, within school 0.002 0.010 0.680 0.182 0.186 0.367

Grade 5 reading score Grade 5 reading gain
Dependent variable



Grade 5 Grade 4 Grade 3
(1) (2) (3)

Standard deviation of normalized teacher coefficients
Unadjusted for sampling error 0.152 0.142 0.170
Adjusted for sampling error 0.107 0.080 0.097

Correlations, unadjusted for sampling error
Grade 5 Grade 4 Grade 3

Grade 5 1 -0.39 -0.06
Grade 4 -0.39 1 -0.40
Grade 3 -0.06 -0.40 1

Correlations, adjusted for sampling error
Grade 5 Grade 4 Grade 3

Grade 5 1 -0.35 -0.08
Grade 4 -0.35 1 -0.36
Grade 3 -0.08 -0.36 1

Gain score measured in:

Table 4.  Simple models for 5th grade teachers' "effects" on gains in 
grades 3, 4, and 5

Notes:  All specifications include fixed effects for 5th grade schools and for 
5th grade teachers, normalized to mean zero at each school; only the 
dependent variable changes.  Sample excludes 111 teachers with fewer 
than 10 sample students each.  The remaining sample has 49,235 students, 
2,733 teachers, 784 schools.  Correlations are between teacher coefficients 
in the three specifications, weighted by the number of students taught and 
adjusted for the degrees of freedom absorbed by the school-level 
normalization.



SD of teacher 
coefficients

SD of 
bias

Bias variance / 
total (correct) 

variance

corr(bias, 
true effect)

(1) (2) (3) (4)
Panel 1:  Unadjusted for sampling error

Control for all observables 0.124 0
Levels, no controls (VAM1) 0.251 0.208 279% 0.09
Gain scores, no controls (VAM2) 0.153 0.095 59% -0.05
Control for lagged score (VAM3) 0.137 0.050 16% 0.06
Control for score history (VAM4) 0.128 0.025 4% 0.06

Panel 2:  Adjusted for sampling error
Control for all observables 0.096 0.000
Levels, no controls (VAM1) 0.208 0.171 318% 0.14
Gain scores, no controls (VAM2) 0.114 0.070 53% -0.09
Control for lagged score (VAM3) 0.106 0.035 13% 0.11
Control for score history (VAM4) 0.100 0.018 3% 0.11

Notes:  Specification that controls for "all observables" includes controls for math and reading 
scores in grades 2, 3, and 4; indicators for gender, for race/ethnicity, for learning disabilities in 
reading or in any area, for Title 1 participation, for each possible "exceptionality" (gifted, hearing 
impaired, mentally handicapped, etc.), for parental years of education, for free and for reduced-
price lunch participation, and for reporting never doing any homework; and a linear control for the 
number of hours of TV watched each school day (plus a dummy for missing values for this 
variable).

Table 5.  Bias in simple value added specifications if classroom assignment is random 
conditional on observables



Table 6.  Scenarios for the principal's information about student gains

Scenario Principal's information set
Selection on observables

A Ag-1 Principal observes only the prior test score

B A={A1,…,Ag-1} Principal observes full history of test scores

C {A, q1, …, qk} Principal observes history of test scores plus k addl. sequences, 
each a noisy measure of true achievement in grades 1, …, g-1.

D {A*, Ag-1} Principal observes true achievement history (without measurement 
error) plus observed prior test score

E {A*, Ag-1, W} Principal observes true achievement history, observed prior score, 
and an additional measure that is predictive of A* - E[ΔA* | A*] 

F {Y} Principal is able to perfectly predict student outcomes

Selection on observed and some unobserved variables

Selection on unobservables is like selection on observables



Table 7:  Models for observed and true (measured without error) grade-5 reading gains 

Scenario: A B A B
(1) (2) (3) (4)

Grade 4 reading score -0.320 -0.570 -0.150 -0.073
(0.003) (0.004) (0.003) (0.004)

Grade 3 reading score 0.245 -0.055
(0.004) (0.004)

Grade 3 pretest score, reading 0.082 -0.051
(0.003) (0.003)

R2 0.313 0.397 0.449 0.484
R2, within school 0.279 0.367 0.273 0.312

Notes:  See text for computational details.  Standard errors treat the test reliability as known 
perfectly.  In practice, this is estimated, likely with substantial sampling and non-sampling error.

Observed gains True achievement gains
Dependent variable



Scenario: B C C D B C C D
(1) (2) (3) (4) (5) (6) (7) (8)

Observed test score history
Grade 4 -0.57 -0.74 -0.81 -1.00 -0.07 -0.04 -0.03 0.00
Grade 3 0.24 0.11 0.07 0.00 -0.06 -0.03 -0.02 0.00
Grade 2 0.08 0.02 0.00 0.00 -0.05 -0.03 -0.02 0.00
Grade 4 (math)
Grade 3 (math)
Grade 2 (math)

Second noisy achievement history
Grade 4 0.26 0.19 -0.04 -0.03
Grade 3 0.11 0.07 -0.03 -0.02
Grade 2 0.02 0.00 -0.03 -0.02

Third noisy achievement history
Grade 4 0.19 -0.03
Grade 3 0.07 -0.02
Grade 2 0.00 -0.02

History of true achievement
Grade 4 0.90 -0.10
Grade 3 0.00 0.00
Grade 2 -0.10 -0.10

R2 (within school) 0.37 0.44 0.46 0.54 0.31 0.33 0.33 0.35

Notes: All coefficients are for within-school predictions.  See text for details of computations.

Predictions of observed gains Predictions of true gains

Table 8.  Prediction weights if principal has more information than just the observed test 
score history



Table 9:  Variance decompositions for actual and predicted grade-5 gains

Predicted variable
Scenario

Predictor variables (1) (2) (3) (4)
True gain

A Using grade 4 score 27.3% 12.3% 7.3% 0.037
B Using 3 prior scores 31.2% 12.3% 7.5% 0.040
C Using 2 independent achievement histories 32.7% -- 7.8% 0.041
C Using 3 independent achievement histories 33.2% -- 7.9% 0.041
D Using true achievement history 34.5% -- 8.4% 0.043
E Using true history & W variable (f=0.25) 43.2% -- 10.5% 0.054
E Using true history & W variable (f=0.5) 51.8% -- 12.5% 0.065
E Using true history & W variable (f=1) 69.1% -- 16.7% 0.087
F Using perfect information (f=1.96) 102% -- 24.8% 0.129

Observed gain
A Using grade 4 score 27.9% 12.3% 7.3% 0.079
B Using 3 prior scores 36.7% 9.3% 5.9% 0.082
C Using 2 independent achievement histories 43.5% -- 9.8% 0.111
C Using 3 independent achievement histories 46.2% -- 11.2% 0.123
D Using obs. & true achievement histories 54.0% -- 14.1% 0.149
E Using true history & W variable (f=0.25) 55.9% -- 14.6% 0.155
E Using true history & W variable (f=0.5) 57.9% -- 15.1% 0.160
E Using true history & W variable (f=1) 61.7% -- 16.1% 0.171
F Using true gains (f=1.96) plus obs scores 69.1% -- 18.1% 0.191

Grade 5 gain (observed) 1 4.7% 5.8% 0.134

Explained 
share of 
within-
school 

variance

ANOVA for predicted gains
Across-
school 
share

Fr. of within-
school variance 

that is across 
classrooms

SD of across-
class, within-

school 
component



Teachers only Lagged score Score history
(VAM2) (VAM3) (VAM4)

(1) (2) (3)

Unadjusted for sampling error 0.153 0.137 0.128
Adjusted for sampling error 0.114 0.106 0.100

If classroom assignments depend on predictions of true gains
Scenario
B Using observed achievement history 0.039 0.005 0.000
C Using 2 independent achievement histories 0.041 0.007 0.002
C Using 3 independent achievement histories 0.041 0.008 0.003
D Using true achievement history 0.043 0.010 0.004
E Using true history & W variable (f=0.25) 0.054 0.021 0.016
E Using true history & W variable (f=0.5) 0.065 0.033 0.028
E Using true history & W variable (f=1) 0.087 0.056 0.051
F Using perfect information (f=1.96) 0.126 0.098 0.094

If classroom assignments depend on predictions of observed gains
Scenario
B Using observed achievement history 0.080 0.020 0.000
C Using 2 independent achievement histories 0.111 0.043 0.019
C Using 3 independent achievement histories 0.123 0.052 0.028
D Using true achievement history + obs. scores 0.149 0.078 0.053
E Using true history & W variable (f=0.25) 0.155 0.084 0.059
E Using true history & W variable (f=0.5) 0.160 0.089 0.065
E Using true history & W variable (f=1) 0.171 0.101 0.076
F Using true gains (f=1.96) plus observed scores 0.191 0.123 0.099

SD of bias

Table 10.  Bias in value added measures if information is used in teacher assignments that is 
not observed by the researcher

Value added model includes controls for:

SD of bias

SD of teachers' estimated effects
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